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Vizing's Theorem

Recall a proper k-edge-coloring is a function ¢ : E(G) — [k] such that
©(e) # ¢(f) when e and f share an endpoint.
The chromatic index of a graph (denoted x/(G)) is the minimum value k such

that G admits a proper k-edge-coloring.
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Vizing's Theorem

Recall a proper k-edge-coloring is a function ¢ : E(G) — [k] such that

©w(e) # ¢(f) when e and f share an endpoint.

The chromatic index of a graph (denoted x/(G)) is the minimum value k such
that G admits a proper k-edge-coloring.

The following renowned result of Vizing provides a general bound on x/(G).

Theorem (Vizing 1964)
For any simple graph G, x'(G) € {A(G),A(G) + 1}. J
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Vizing's Theorem

Theorem (Vizing 1964)
For any simple graph G, x'(G) € {A(G), A(G) + 1}. J
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(a) Before shifting. (b) After shifting.
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Sequential Algorithms

Theorem
@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in O(mn)
time (Bollobds 1984; Rao, Dijkstra 1992; Misra, Gries 1992).
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Sequential Algorithms
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@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in O(mn)
time (Bollobds 1984; Rao, Dijkstra 1992; Misra, Gries 1992).

@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
O(m+/nlog n) time (Gabow, Nishizeki, Kariv, Leven, Terada 1985).
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Sequential Algorithms

Theorem
@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in O(mn)
time (Bollobds 1984; Rao, Dijkstra 1992; Misra, Gries 1992).

@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
O(m+/nlog n) time (Gabow, Nishizeki, Kariv, Leven, Terada 1985).

@ There is a randomized (A + 1)-edge-coloring algorithm that runs in O(m+/n)
time with probability at least 1 — e=V'™ (Sinnamon 2019).
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Sequential Algorithms

Theorem
@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n? time (Bollobds 1984; Rao, Dijkstra 1992; Misra, Gries 1992).

@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n*/2/log n time (Gabow, Nishizeki, Kariv, Leven, Terada 1985).

@ There is a randomized (A + 1)-edge-coloring algorithm that runs in
poly(A) n*/? time with probability at least 1 — e~ V" (Sinnamon 2019).

@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n*/? time (Sinnamon 2019).
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Sequential Algorithms

Theorem
o There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n? time (Bollobds 1984; Rao, Dijkstra 1992; Misra, Gries 1992).

o There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n*/2\/log n time (Gabow, Nishizeki, Kariv, Leven, Terada 1985).

@ There is a randomized (A + 1)-edge-coloring algorithm that runs in
poly(A) nlog n time with probability at least 1 — 1/poly(n) (Bernshteyn, D.
2022+).

@ There is a deterministic (A + 1)-edge-coloring algorithm that runs in
poly(A) n*/? time (Sinnamon 2019).
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Locality of Vizing's Theorem

Definition (Augmenting Subgraphs)

Given a partial coloring ¢, we say a subgraph H C G is augmenting if there is at
least one uncolored edge in H and there is a proper coloring 1) that can be
obtained by modifying ¢ on the edges in H such that every edge in H is now

colored.
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Locality of Vizing's Theorem

Definition (Augmenting Subgraphs)

Given a partial coloring ¢, we say a subgraph H C G is augmenting if there is at
least one uncolored edge in H and there is a proper coloring 1) that can be
obtained by modifying ¢ on the edges in H such that every edge in H is now
colored.

For an arbitrary n-vertex graph G of maximum degree A and partial

(A + 1)-edge-coloring ¢, how small can H be?
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Locality of Vizing's Theorem

Definition (Augmenting Subgraphs)
Given a partial coloring ¢, we say a subgraph H C G is augmenting if there is at
least one uncolored edge in H and there is a proper coloring v that can be

obtained by modifying ¢ on the edges in H such that every edge in H is now
colored.

For an arbitrary n-vertex graph G of maximum degree A and partial

(A + 1)-edge-coloring o, how small can H be?

Theorem

o There exists G, ¢ such that e(H) = Q(A log n) for every augmenting
subgraph H (Chang, He, Li, Pettie, Uitto 2018).
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Locality of Vizing's Theorem

Definition (Augmenting Subgraphs)
Given a partial coloring ¢, we say a subgraph H C G is augmenting if there is at
least one uncolored edge in H and there is a proper coloring v that can be

obtained by modifying ¢ on the edges in H such that every edge in H is now
colored.

For an arbitrary n-vertex graph G of maximum degree A and partial

(A + 1)-edge-coloring o, how small can H be?
Theorem
@ There exists G, ¢ such that e(H) = Q(Alog n) for every augmenting
subgraph H (Chang, He, Li, Pettie, Uitto 2018).

@ For every G,  there exists an augmenting subgraph H such that
e(H) < poly(A)(log n)? (Bernshteyn 2021).
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Distributed Algorithms

A distributed algorithm in the LOCAL model occurs in rounds, where in each

round, every vertex performs some local computation and then broadcasts its

results to its neighbors in G.
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Distributed Algorithms

Theorem

o There is a randomised distributed (A + O(v/A))-edge-coloring algorithm that
runs in poly(A, log log n) rounds (Chang, He, Li, Pettie, and Uitto 2018).
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Distributed Algorithms

Theorem
o There is a randomised distributed (A + O(v/A))-edge-coloring algorithm that
runs in poly(A, log log n) rounds (Chang, He, Li, Pettie, and Uitto 2018).

@ There is a deterministic distributed |3A/2|-edge-coloring algorithm that runs
in poly(A) (log n)® rounds (Ghaffari, Kuhn, Maus, and Uitto 2018).
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Distributed Algorithms

Theorem
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Distributed Algorithms

Theorem

o There is a randomised distributed (A + O(v/A))-edge-coloring algorithm that
runs in poly(A, log log n) rounds (Chang, He, Li, Pettie, and Uitto 2018).

@ There is a deterministic distributed |3A/2|-edge-coloring algorithm that runs
in poly(A) (log n)® rounds (Ghaffari, Kuhn, Maus, and Uitto 2018).

@ There is a randomised distributed (A + 2)-edge-coloring algorithm that runs
in poly(A) (log n)3 rounds (Su, Vu 2019).

@ There is a randomised distributed (A + 1)-edge-coloring algorithm that runs
in poly(A) (log n)® rounds (Bernshteyn 2021).

o There is a deterministic distributed (A + 1)-edge-coloring algorithm that runs
in poly(A, log log n) (log n)'* rounds (Bernshteyn 2021).
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Our Results

Theorem (Bernshteyn, D. 2022+)

Let G be an n-vertex graph of maximum degree A and let ¢ be a partial
(A + 1)-edge-coloring. For any uncolored edge e, there is an augmenting
subgraph H containing e such that e(H) < poly(A) log n.
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Our Results

Theorem (Bernshteyn, D. 2022+)

There exists a randomized (resp. deterministic) distributed algorithm in the
LOCAL model that computes a proper (A + 1)-edge-coloring of an n-vertex graph
of maximum degree A in poly(A)(log n)® rounds (resp. poly(A, log log n)(log n)6).)

Theorem (Bernshteyn, D. 2022+)

There exists a randomized sequential algorithm that computes a proper

(A + 1)-edge-coloring of an n-vertex graph of maximum degree A in poly(A) n
time with probability at least 1 — 1/A".
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Non-Intersecting Vizing Chains

Idea (Grebik, Pikhurko 2020; Bernshteyn 2021)

@ If P is too long, consider a random initial segment of P, shift and try again.
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Non-Intersecting Vizing Chains

Idea (Grebik, Pikhurko 2020; Bernshteyn 2021)

@ If P is too long, consider a random initial segment of P, shift and try again.

@ Repeat until the final path is short.
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Non-Intersecting Vizing Chains

Idea (Grebik, Pikhurko 2020; Bernshteyn 2021)

@ If P is too long, consider a random initial segment of P, shift and try again.

@ Repeat until the final path is short, while guaranteeing the chain is

non-intersecting.

(a) Intersection between P;, P; at an edge e (b) Intersection between P;, F; at an edge e

(c) Intersection between F;, P; at a vertex v.  (d) Intersection between F;, F at a vertex v (< J
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The Multi-Step Vizing Algorithm

@ Input: A graph G, a partial coloring (, an uncolored edge e = xy, a vertex
x € e and a parameter £ € N.

@ Output: A non-intersecting augmenting multi-step Vizing chain C such that
Start(C) = xy.
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The Multi-Step Vizing Algorithm

@ Input: A graph G, a partial coloring ¢, an uncolored edge e = xy, a vertex

x € e and a parameter £ € N.
@ Output: A non-intersecting augmenting multi-step Vizing chain C such that

Start(C) = xy.

Step 1: First Chain
Find the first Vizing Chain F + P on C. J
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The Multi-Step Vizing Algorithm

@ Input: A graph G, a partial coloring (, an uncolored edge e = xy, a vertex

X € e and a parameter £ € N.
@ Output: A non-intersecting augmenting multi-step Vizing chain C such that

Start(C) = xy.

Step 2: lterate
Let C (in black) and F + P (in red) be the current chain and candidate chain at

the start of the iteration.
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The Multi-Step Vizing Algorithm

@ Input: A graph G, a partial coloring (, an uncolored edge e = xy, a vertex
x € e and a parameter ¢ € N.

@ Output: A non-intersecting augmenting multi-step Vizing chain C such that
Start(C) = xy.

Step 2: lterate

Let C (in black) and F + P (in red) be the current chain and candidate chain
after truncation. Let F + P (in blue) be the next step chain.

Case 1: Non-intersecting.
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The Multi-Step Vizing Algorithm

@ Input: A graph G, a partial coloring (, an uncolored edge e = xy, a vertex

x € e and a parameter ¢ € N.
@ Output: A non-intersecting augmenting multi-step Vizing chain C such that
Start(C) = xy.
Step 2: lterate

Let C (in black) and F + P (in red) be the current chain and candidate chain
after truncation. Let F + P (in blue) be the next step chain.
Case 2: Intersecting.
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Termination of the Multi-Step Vizing Algorithm

Theorem (Bernshteyn, D. 2022+)

For ¢ = poly(A) of large enough degree, the Multi-Step Vizing Algorithm
terminates in O(log n) steps with probability at least 1 — 1/poly(n).
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Termination of the Multi-Step Vizing Algorithm

We utilise the entropy compression argument developed by Moser and Tardos in
2010.
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Termination of the Multi-Step Vizing Algorithm

We utilise the entropy compression argument developed by Moser and Tardos in

2010.
Some Notable Applications

@ For every n > 1 and a sequence of sets Ly, ..

non-repetitive sequence chosen from Ly, ...

2011).

., L, of size at least 4, there is a
, Ln (Grytczuk, Kozik, Micek

o For every graph G of maximum degree A, there is a non-repetitive coloring
using at most (1 + o(1))A? colors (Dujmovi¢, Joret, Kozik, Wood 2014;

Rosenfeld 2020).

@ The list chromatic number of triangle free graphs is at most
(1+ 0o(1))A/log A asymptotically (Molloy 2017).
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Termination of the Multi-Step Vizing Algorithm

@ Suppose your process runs for t steps making random choices wy, . . ., w;.
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Termination of the Multi-Step Vizing Algorithm

@ Suppose your process runs for t steps making random choices wy, . . ., w;.

@ Define a record for each step ry,..., r: such that given the record and the
output O, after t steps, we can recover wy, ...,w; as well as the outputs O;
foreach 1 <j < t.
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Termination of the Multi-Step Vizing Algorithm

@ Suppose your process runs for t steps making random choices wy, ..., w;.

@ Define a record for each step ry,..., r: such that given the record and the
output Oy after t steps, we can recover wy,...,w; as well as the outputs O;
foreach 1 <j < t.

o We have

#(record,output)-pairs
Amount of randomness generated

P[Failure in t steps] <
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Termination of the Multi-Step Vizing Algorithm

@ Suppose your process runs for t steps making random choices wy, . . ., w;.
@ Define a record for each step ry,..., r: such that given the record and the
output O, after t steps, we can recover wy, ...,w; as well as the outputs O;

foreach 1 <j < t.

o We have
#(record,output)-pairs

vt

P[Failure in t steps] <
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Termination of the Multi-Step Vizing Algorithm

The Record

Each entry of our record is of the form (d;, k;). Assuming the process doesn't

terminate, we define the i-th entry as follows:
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Termination of the Multi-Step Vizing Algorithm

The Record

Each entry of our record is of the form (d;, k;). Assuming the process doesn't

terminate, we define the i-th entry as follows:

@ If the second step chain found is non-intersecting, we let d; = 1, k; = blank.
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Termination of the Multi-Step Vizing Algorithm

The Record

Each entry of our record is of the form (d;, k;). Assuming the process doesn't

terminate, we define the i-th entry as follows:

@ If the second step chain found is non-intersecting, we let d; = 1, k; = blank.

@ If the second step chain found intersects C, we let d; = —k and let k; denote
the (k + 1)-step chain causing the truncation.
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Termination of the Multi-Step Vizing Algorithm

A subtle counting argument shows that the number of k-step chains ending at a

vertex x is at most poly(A)X. This observation helps in bounding the number of
(record, output)-pairs.
Lemma

Assuming the process doesn’t terminate, there are at most n(poly(A) £)t/?

(record, output)-pairs after t steps of the Multi-Step Vizing Algorithm.

Abhishek Dhawan Fast (A + 1)-Edge-Coloring October 21, 2022



Termination of the Multi-Step Vizing Algorithm

A subtle counting argument shows that the number of k-step chains ending at a
vertex x is at most poly(A)X. This observation helps in bounding the number of

(record, output)-pairs.

Lemma

Assuming the process doesn’t terminate, there are at most n(poly(A) £)t/?

(record, output)-pairs after t steps of the Multi-Step Vizing Algorithm.

It follows that
n(poly(A) £)/2
o ’
For £ ~ poly(A) and t ~ log n, the above is at most 1/poly(n).

P[Failure] <
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Key Takeaways

@ The upper bound on the size of an augmenting subgraph matches the lower

bound asymptotically.
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Key Takeaways

@ The upper bound on the size of an augmenting subgraph matches the lower

bound asymptotically.
@ Runtime of the distributed algorithms matches those for
(A + 2)-edge-coloring.
© The sequential coloring algorithm matches the lower bound asymptotically.

@ Moreover, the result implies that the average size of an augmenting subgraph

found using the Multi-Step Vizing Algorithm is independent of n.
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Key Takeaways

© 0

The upper bound on the size of an augmenting subgraph matches the lower

bound asymptotically.

Runtime of the distributed algorithms matches those for

(A + 2)-edge-coloring.

The sequential coloring algorithm matches the lower bound asymptotically.

Moreover, the result implies that the average size of an augmenting subgraph

found using the Multi-Step Vizing Algorithm is independent of n.

Unconventional use of the entropy compression argument.
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Thank you!
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