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40 Years of Successes in Computer-Aided Mathematics

1976 Four-Color Theorem

1998 Kepler Conjecture

2010 “God’s Number = 20”: Optimal Rubik’s cube strategy

2012 At least 17 clues for a solvable Sudoku puzzle

2014 Boolean Erdős discrepancy problem

2016 Boolean Pythagorean triples problem

2018 Schur Number Five

2019 Keller’s Conjecture
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1976 Four-Color Theorem

1998 Kepler Conjecture

2010 “God’s Number = 20”: Optimal Rubik’s cube strategy

2012 At least 17 clues for a solvable Sudoku puzzle

2014 Boolean Erdős discrepancy problem (using a SAT solver)

2016 Boolean Pythagorean triples problem (using a SAT solver)

2018 Schur Number Five (using a SAT solver)

2019 Keller’s Conjecture (using a SAT solver)
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Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Progress of SAT Solvers
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SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-cb-dl-v3-2019
maple-lcm-cb-2018
maple-lcm-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002
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Satisfiability and Mathematics

Proofs of Unsatisfiability

Future and Challenges
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Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c?

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
monochromatic solution of a + b = c with a, b, c ≤ S(k), while
this is impossible for [1, S(k)+1].

S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44 [Baumert 1965].

We show that S(5) = 160 [Heule 2018]. Proof: 2 petabytes
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Schur’s Theorem [Schur 1916]

Will any coloring of the positive integers with red and blue
result in a monochromatic solution of a + b = c? Yes

1 + 1 = 2 1 + 2 = 3 1 + 3 = 4
1 + 4 = 5 2 + 2 = 4 2 + 3 = 5

Theorem (Schur’s Theorem)

For every positive integer k, there exists a number S(k), such
that [1, S(k)] can be colored with k colors while avoiding a
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this is impossible for [1, S(k)+1].
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Pythagorean Triples Problem (I) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

32 + 42 = 52 62 + 82 = 102 52 + 122 = 132 92 + 122 = 152

82 + 152 = 172 122 + 162 = 202 152 + 202 = 252 72 + 242 = 252

102 + 242 = 262 202 + 212 = 292 182 + 242 = 302 162 + 302 = 342

212 + 282 = 352 122 + 352 = 372 152 + 362 = 392 242 + 322 = 402

Best lower bound: a bi-coloring of [1, 7664] s.t. there is no
monochromatic Pythagorean Triple [Cooper & Overstreet 2015].

Myers conjectures that the answer is No [PhD thesis, 2015].
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Pythagorean Triples Problem (II) [Ronald Graham, early 80’s]

Will any coloring of the positive integers with red and blue
result in a monochromatic Pythagorean Triple a2 + b2 = c2?

A bi-coloring of [1, n] is encoded using Boolean variables xi
with i ∈ {1, 2, . . . , n} such that xi = 1 (= 0) means that i is
colored red (blue). For each Pythagorean Triple a2 + b2 = c2,
two clauses are added: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc).

Theorem ([Heule, Kullmann, and Marek (2016)])

[1, 7824] can be bi-colored s.t. there is no monochromatic
Pythagorean Triple. This is impossible for [1, 7825].

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker
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Keller’s Conjecture: A Tiling Problem

Consider tiling a floor with square tiles, all of the same size. Is
it the case that any gap-free tiling results in at least two fully
connected tiles, i.e., tiles that have an entire edge in common?
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Keller’s Conjecture: Resolved
[Brakensiek, Heule, Mackey, & Narvaez 2019]

In 1930, Ott-Heinrich Keller
conjectured that this phenomenon holds
in every dimension.

Keller’s Conjecture.
For all n ≥ 1, every tiling of the
n-dimensional space with unit cubes has
two which fully share a face.

[Wikipedia, CC BY-SA]
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Satisfiability and Mathematics

Proofs of Unsatisfiability

Future and Challenges
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Media: “The Largest Math Proof Ever”
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Proofs of Unsatisfiability: Checking Satisfiability is Easy

Boolean
formula

SAT

solver

solution
satisfiable

?
unsatisfiable

Solution
Checker

SAT Solvers Useful & Powerful

I Formal verification

I Security verification

I Mathematics

Can We Trust Them?

I No!

I Complex software
with lots of optimizations
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Proofs of Unsatisfiability: Proof Generating Solvers

Boolean
formula

SAT

solver unsatisfiability
proof

unsatisfiable

Proof
Checker

Unsatisfiability Proof

I Step-by-step proof in
some logical framework

Proof Checker

I Simple program

I May be formally verified
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Proofs of Unsatisfiability: Motivation

Automated reasoning tools may give incorrect answers.

I Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Claims of correctness could be due to bugs;

I Misconception that only weak tools are buggy;

I Implementation errors often imply conceptual errors;

I Proofs now mandatory in some competitive events;

I Mathematical results require a stronger justification than a
simple yes/no by a tool. Answers must be verifiable.
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Proofs of Unsatisfiability: Verified Solvers?

Verifying efficient automated reasoning tools is a daunting task:

I Tools are constantly modified and improved; and

I Even top-tier and “experimentally correct” solvers turned
out to be buggy. [Järvisalo, Heule, Biere ’12]

Various simple solvers can verified, but they lack performance

I DPLL [Shankar and Vaucher ’11]

I CDCL [Fleury, Blanchette, Lammich ’18]

Validating proof is the more effective approach

I Solving + proof logging + proof verification is much faster
compared to running a verified solver

I One verified tool can validate the results of many solvers
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Proofs of Unsatisfiability: Initial Challenges

Theoretical challenges:

I Some “simple” problems have exponentially large proofs in
the resolution proof system [Urquhart ’87, Buss and Pitassi ’98];

I While some dedicated techniques can quickly solve them.

Solution: A proof system to compactly express all techniques.

Practical challenges:

I Earlier efforts failed due to complexity and overhead

I Convince developers to support proof logging

Solution:

I The computational burden and complexity is in the checker

I A reference implementation of proof logging
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Proofs of Unsatisfiability: Arbitrarily Complex Solvers

Verified checkers of certificates in strong proof systems:

I Don’t worry about correctness or completeness of tools;

I Facilitates making tools more complex and efficient; while

I Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry

Marijn Heule 18 / 31



Satisfiability and Mathematics

Proofs of Unsatisfiability

Future and Challenges
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Future of Computer-Aided Mathematics
Fields Medalist Timothy Gowers stated that mathematicians
would like to use three kinds of technology [Big Proof 2017]:
I Proof Assistant Technology

I Prove any lemma that a graduate student can work out

I Proof Search Technology
I Automatically determine whether a conjecture holds
I Recent improvement: Linear speedups on thousands of cores

I Proof Checking Technology
I Mechanized validation of all details
I Recent improvement: Formally verified checking of huge proofs

Classic problems ready for mechanization?
I Chromatic number of the plane

I Optimal matrix multiplication

I Collatz Conjecture
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Chromatic Number of the Plane (CNP)

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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CNP: Bounds since the 1950s

I The Moser Spindle graph shows the lower bound of 4

I A coloring of the plane showing the upper bound of 7
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CNP: First progress in decades

Recently enormous progress:

I Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

I This breakthrough started a
polymath project

I Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

I 874 vertices on April 14, 2018

I 803 vertices on April 30, 2018

I 610 vertices on May 14, 2018
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Proof Minimization: 510 Vertices [Heule 2021]
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Matrix Multiplication: Introduction

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 + M4 − M5 + M7

a1,1·b1,1 + a1,2·b2,1

c1,2 =

M3 + M5

a1,1·b1,2 + a1,2·b2,2

c2,1 =

M2 + M4

a2,1·b1,1 + a2,2·b2,1

c2,2 =

M1 − M2 + M3 + M6

a2,1·b1,2 + a2,2·b2,2
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(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)
. . . where

M1 = (a1,1 + a2,2)·(b1,1 + b2,2)

M2 = (a2,1 + a2,2)·b1,1

M3 = a1,1·(b1,2 − b2,2)

M4 = a2,2·(b2,1 − b1,1)

M5 = (a1,1 + a1,2)·b2,2

M6 = (a2,1 − a1,1)·(b1,1 + b1,2)

M7 = (a1,2 − a2,2)·(b2,1 + b2,2)
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The 3× 3 Case is Still Open

7 multiplications for 2× 2 matrices is optimal and unique

Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

I naive algorithm: 27

I padd with zeros, use Strassen twice, cleanup: 25

I best known upper bound: 23 (Laderman 1976)

I best known lower bound: 19 (Bläser 2003)

I maximal number of multiplications allowed if we want to
beat Strassen: 21 (because log3 21 < log2 7 < log3 22).
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Other schemes [Heule, Kauers, & Seidl 2019]

I Using integer coefficients, there have so far been only three
other schemes for 3× 3 matrices and 23 multiplications.

I Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23
using SAT, and we expect that there are many others.

I Unfortunately we found no scheme with only 22
multiplications yet.

I Kauers already improved the 5x5 bound days later to 95

I Next step: Use SAT to further improve these bounds
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Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)
5 4 3 2 1 0
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Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n + 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function s.t. fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)
5 4 3 2 1 0

Marijn Heule 28 / 31



Collatz Conjecture: Studying a Rewrite System
[Yolcu, Aaronson, & Heule 2021]

1 ×3+2 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×2+1 ×3 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×2+1 ×3+2 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×2+1 ×3 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×2+1 ×3+2 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×2+1 ×1
1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×2+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×2+1 ×3+1 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×2 ×3+2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×2 ×3+2 ×1
1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×1

×2 ×1 ×1

×2+1 ×1 ×3+2 ×1

×2 ×3 ×3 ×2

×2 ×3+1 ×3 ×2+1

×2 ×3+2 ×3+1 ×2

×2+1 ×3 ×3+1 ×2+1

×2+1 ×3+1 ×3+2 ×2

×2+1 ×3+2 ×3+2 ×2+1

1 ×3 1 ×2+1

1 ×3+1 1 ×2 ×2

1 ×3+2 1 ×2 ×2+1
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Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

Marijn Heule 30 / 31



Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

Marijn Heule 30 / 31



Collatz Conjecture: Successes and Challenge

Success. Rewrite system with 11 rules: Their termination solves
Collatz. Our tool proves termination of any subset of 10 rules.

Success. Our tool proves termination of Farkas’ variant:

F(n) =


n−1

3 if n ≡ 1 (mod 3)
n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Challenge ($500). An easier generalized Collatz problem is open:

H(n) =


3n
4 if n ≡ 0 (mod 4)

9n+1
8 if n ≡ 7 (mod 8)
⊥ otherwise

Marijn Heule 30 / 31



Conclusions

Successes, Advances, and Trust:

I A performance boost of SAT technology allows solving
new problems in mathematics

I Problems beyond NP are ready for an automated approach

I Some proofs may be gigantic, but can be validated using
formally-verified checkers

Classic problems ready for mechanization?

I Chromatic number of the plane

I Optimal matrix multiplication

I Collatz Conjecture
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