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Motivation

Let G be a graph/network with adjacency matrix A = (aij).
The Kuramoto model on G is described by the following
differential equations

θ̇i = ϵ

N∑
j=1

aij sin(θj − θi ) , (0.1)

where θi (t) ∈ [−π, π] is the state of oscillator i ∈ [1,N] at
time t and ϵ is the coupling strength.

It is known that structure of G strongly influences the
dynamics governed by the Kuramoto model.
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A multilayer network

Many real-world networks are multilayers; namely they are
composed of several smaller “communities” joined together.

Figure 1: A multilayer network with three layers

From both a theoretical and an applied perspective, it is
interesting and important to study the spectra of these
multilayer networks.
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The joined union of graphs as a model for multilayer
networks

Let G1,G2 be two graphs. The join of G1 and G2 is defined
pictorially as follow.

Figure 2: The join of two graphs
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More generally, suppose G is a (weighted) graph with d
vertices {v1, v2, . . . , vd}. Let G1,G2, . . . ,Gd be (weighted)
graphs on k1, k2, . . . , kd vertices. The joined union
G [G1,G2, . . . ,Gd ] is obtained from the union of G1, . . . ,Gd by
joining with an edge each pair of a vertex from Gi and a
vertex from Gj whenever vi and vj are adjacent in G .

The adjacency matrix of G [G1,G2, . . . ,Gd ] has the following
form

A =


AG1 a12Jk1,k2 · · · a1dJk1,kd

a21Jk2,k1 AG2 · · · a2dJk2,kd
...

...
. . .

...

ad1Jkd ,k1 ad2Jkd ,k2 · · · AGd

 .

Here Jm,n is the matrix of size m × n with all entries equal to
1, AGi

is the adjacency matrix of Gi , and A = (aij) is the
adjacency matrix of G .
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Spectra of multilayer networks

Definition

Let A = (aij) be an n × n matrix. We say that A is rA-row
regular if the sum of all entries in each row of A is equal to
rA, namely

∀1 ≤ i ≤ n,
n∑

j=1

aij = rA.

Similarly, we say that A is cA-column regular if the sum of all
entries in each column of A is equal to cA.

We say that A is a semimagic square if it is both rA-regular
and cA-regular and rA = cA.

We say that A is normal if AA∗ = A∗A. Here A∗ is the
conjugate transpose of A.
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Some properties of normal semimagic squares

Let A be a normal semimagic square. Because A is a semimagic
square, vA1 = 1√

n
1n = 1√

n
(1, 1, . . . , 1)t ∈ Cn is an eigenvector of A

associated with the eigenvalue rA. Furthremore, because A is
normal, we have.

Proposition

Then there exists an orthonormal basis {vA1 , vA2 , . . . , vAn } of
eigenvectors of A associated with the eigenvalues {λA

1 , λ
A
2 , . . . , λ

A
n }

such that vA1 = 1√
n

1n = 1√
n
(1, . . . , 1)t ∈ Cn. In particular,

rA = λA
1 and, for 2 ≤ k ≤ n, the standard inner product

⟨vA1 , vAk ⟩ = 0.
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Spectra of multilayer networks

We will assume that Ai = AGi
is normal semimagic square of

size ki × ki for 1 ≤ i ≤ d .

Let {vAi
1 , vAi

2 , . . . , vAi
ki
} and {λAi

1 , λAi
2 , . . . , λAi

ki
} be the set of

eigenvectors and eigenvalues of Ai as described previously.

For two vectors (x1, . . . , xm)
T and (y1, . . . , yn)

T their
concatenation is defined as

(x1, . . . , xm)
T ∗(y1, . . . , yn)T = (x1, . . . , xm, y1, . . . , yn)

T .

Proposition

For each 1 ≤ i ≤ d and 2 ≤ j ≤ ki let

wi ,j = 0⃗k1 ∗ . . . ∗ 0⃗ki−1
∗ vAi

j ∗ 0⃗ki+1
∗ . . . ∗ 0⃗kd

Then wi ,j is an eigenvector of A associated with the eigenvalue λAi
j .
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Spectra of multilayer networks

The reduced characteristic polynomial of A is defined as

pA(t) =
pA(t)∏

1≤i≤d ,
2≤j≤ki

(t − λAi
j )

=
pA(t)∏d
i=1

pAi (t)

t−rAi

.

Theorem

The reduced characteristic polynomial of A coincides with the
characteristic polynomial of A: pA(t) = pA(t). Here A the
following matrix

A =


rA1 a12k2 · · · a1nkd
a21k1 rA2 · · · a2nkd
...

...
. . .

...
ad1k1 ad2k2 · · · rAd

 .
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A corollary

Corollary

If G1 is r1-regular with k1 vertices and G2 is r2-regular with k2
vertices then the characteristic polynomial of the join G1 + G2 is
given by

pG1+G2(t) =
pG1(t)pG2(t)

(t − r1)(t − r2)
((t − r1)(t − r2)− k1k2) .

Proof.

Let A1,A2 be the adjacency matrix of G1,G2 respectively. We have

A =

(
r1 k2
k1 r2

)
.

Hence
pA(t) = (t − r1)(t − r2)− k1k2.
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Applications to nonlinear dynamics

Let us consider the Kuramoto model on A

θ̇i = ϵ

N∑
j=1

Aij sin(θj − θi ) , (0.2)

where

A =


rA1 a12k2 · · · a1nkd
a21k1 rA2 · · · a2nkd
...

...
. . .

...
ad1k1 ad2k2 · · · rAd

 ≃


0 a12k2 · · · a1nkd

a21k1 0 · · · a2nkd
...

...
. . .

...
ad1k1 ad2k2 · · · 0


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Applications to nonlinear dynamics

Given a solution of the reduced Kuramoto model:

θ̄∗ = (θ̄∗1, θ̄
∗
2, · · · , θ̄∗M), (0.3)

we define

θ∗ = (θ̄∗1, θ̄
∗
1, · · · , θ̄∗1︸ ︷︷ ︸
1stlayer

, θ̄∗2, θ̄
∗
2, · · · , θ̄∗2︸ ︷︷ ︸

2ndlayer

, · · · , θ̄∗M , θ̄∗M , · · · , θ̄∗M︸ ︷︷ ︸
Mthlayer

), (0.4)

Theorem

θ∗ is a solution of the Kuramoto model on A. It is called the
broadcasted solution from A.

Theorem

The fixed point θ̄∗ for the reduced system is linearly stable if and
only if the corresponding broadcasted fixed point for the multilayer
system is linearly stable.
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Figure 3: Dynamics on a 3 layers system and its reduced system with
random initial conditions.
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