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Integer Coloring

Definition

An integer coloring takes in the the integers from 1to n, we call this
[n], and assigns to each integer a particular color. This work most
commonly uses only two colors: {a, b}.
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Integer Coloring

Definition
An integer coloring takes in the the integers from 1to n, we call this

[n], and assigns to each integer a particular color. This work most
commonly uses only two colors: {a, b}.

Example
Let’s define A : [15] — {a, b} as given below:

A b babaabadbdbaaalda

Forexample, A(1) = band A(5) = a.
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Definition

Let S be an integer coloring of [n] and {a, b} be our colors. Then
A C [n] is monochromatic if every element in A is associated to the

same color.
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Definition

Let S be an integer coloring of [n] and {a, b} be our colors. Then
A C [n] is monochromatic if every element in A is associated to the
same color.

Example

Let A be the coloring below and Q = {3, 5,6, 8,12}.

A b babaababdbaaalda
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Definition

Let S be an integer coloring of [n] and {a, b} be our colors. Then
A C [n] is monochromatic if every element in A is associated to the
same color.

Example
Let A be the coloring below and Q = {3, 5,6, 8,12}.
A: b babaababdbaaadbda
X

AR >
Q
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Definition

Let S be an integer coloring of [n] and {a, b} be our colors. Then
A C [n] is monochromatic if every element in A is associated to the
same color.

Example
Let A be the coloring below and Q = {3, 5,6, 8,12}.

A b babaababdbaaaldba
A_ARA_A »

Q

Notice that each element of () are all colored with a, so the set Q) is
monochromatic.
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Set Precedence

Definition
Let B and B’ be subsets of [n].
Then B precedes another set B’ (denoted B <,, B’) if the biggest

element in the first set (max(B)) is smaller than the smallest element
in the second set (min(B’)). Thatis max(B) < min(B’).
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Set Precedence

Definition

Let B and B’ be subsets of [n].

Then B precedes another set B’ (denoted B <,, B’) if the biggest
element in the first set (max(B)) is smaller than the smallest element
in the second set (min(B’)). That is max(B) < min(B’).

Example

Let B = {1,4}and B’ = {6, 8}.
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Set Precedence

Definition

Let B and B’ be subsets of [n].

Then B precedes another set B’ (denoted B <,, B’) if the biggest
element in the first set (max(B)) is smaller than the smallest element
in the second set (min(B’)). That is max(B) < min(B’).
Example

Let B = {1,4}and B’ = {6, 8}.

The biggest element in B is 4 and the smallest element in B’ is 6.
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Set Precedence

Definition
Let B and B’ be subsets of [n].

Then B precedes another set B’ (denoted B <,, B’) if the biggest
element in the first set (max(B)) is smaller than the smallest element
in the second set (min(B’)). That is max(B) < min(B’).
Example

Let B = {1,4}and B’ = {6, 8}.

The biggest element in B is 4 and the smallest element in B’ is 6.

Since 4 < 6, B precedes B',or B <, B'.
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The Diameter of a Set

Definition

Let C' C [n]. Then the diameter of a set C is the difference of its
largest value and smallest value.
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The Diameter of a Set

Definition

Let C' C [n]. Then the diameter of a set C is the difference of its
largest value and smallest value.

Example

Let’ssay that C' = {9,11, 14, 15}.
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The Diameter of a Set

Definition

Let C' C [n]. Then the diameter of a set C is the difference of its
largest value and smallest value.

Example

Let’ssay that C' = {9,11, 14, 15}.

So the diameter of C'isdm(C) = 15 — 9 = 6.
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(m, r, t)-Permissibility

Definition

Aninteger coloring [n], colored with r colors, is (m, 7, t)-permissible
if there exist ¢ subsets of [n] such that
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(m, r, t)-Permissibility

Definition

Aninteger coloring [n], colored with r colors, is (m, 7, t)-permissible
if there exist ¢ subsets of [n] such that

= each setis monochromatic,
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(m, r, t)-Permissibility

Definition

Aninteger coloring [n], colored with r colors, is (m, 7, t)-permissible
if there exist ¢ subsets of [n] such that

= each setis monochromatic,
= all the sets have the same size (cardinality), m,
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(m, r, t)-Permissibility

Definition
Aninteger coloring [n], colored with r colors, is (m, 7, t)-permissible

if there exist ¢ subsets of [n] such that

= each setis monochromatic,
= all the sets have the same size (cardinality), m,
= the sets can be ordered by precedence, and
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(m, r, t)-Permissibility

Definition

Aninteger coloring [n], colored with r colors, is (m, 7, t)-permissible
if there exist ¢ subsets of [n] such that

= each setis monochromatic,

= all the sets have the same size (cardinality), m,

= the sets can be ordered by precedence, and

= inthat order, the diameters of the sets are nondecreasing.
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Example of (m, r, t)-perimissibity
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):

A b babaababbaaaldba

Let m = 3 (set size) and t = 3 (number of sets).
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):

A b babaababbaaaldba

Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1, 2,4},

Fundamental Definitions 8/28



Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdbaaala
AR
By
Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1, 2,4},
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdbaaala
AR
By
Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1,2,4}, By = {5,6, 8},
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaaldba
»

AR AA

By By

Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1,2,4}, By = {5,6, 8},
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaaldba
»

AR AA

By By

Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

B By B3

Let m = 3 (set size) and t = 3 (number of sets).

Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets Bi, B, and Bs aret = 3 sets which are
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets B, By, and Bs aret = 3 sets which are monochromatic,
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets B, By, and Bs aret = 3 sets which are monochromatic,
B, <pBQ <pB3,
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets B, By, and Bs aret = 3 sets which are monochromatic,
B <, By <), B3, all of sizem=3,
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets B, By, and Bs aret = 3 sets which are monochromatic,
B <, By <p Bs, all of size m =3, and have nondecreasing diameters.
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Example of (m, r, t)-perimissibity

Example
Back to that 2-coloring of [15] (r = 2):
A: b babaababdaaadbdoa
> S

AR AA

By By B3

Let m = 3 (set size) and t = 3 (number of sets).
Consider By = {1,2,4}, B, = {5,6,8},and Bs = {11,13, 15}.

The sets B, By, and Bs aret = 3 sets which are monochromatic,
B <, By <p Bs, all of size m =3, and have nondecreasing diameters.

So Ais (3,2, 3)-permissible.
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The Function: f(m,r,t)

What exactly is f(m,r,t)?
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The Function: f(m,r,t)

What exactly is f(m,r,t)?

= m,r,andt are all positive integers.
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The Function: f(m,r,t)

What exactly is f(m,r,t)?

= m,r,andt are all positive integers.

= describes the least positive integer n such that every r-coloring
of [n] is (m, 7, t)-permissible.
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The Function: f(m,r,t)

What exactly is f(m,r,t)?

= m,r,andt are all positive integers.

= describes the least positive integer n such that every r-coloring
of [n] is (m, 7, t)-permissible.

= f(m,r,t)iswell-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= fLrt)=t

a b C a a b a
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The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= i) =t
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= i) =t

OO+
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= i) =t

ORI
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= i) =t

OOOOOOE
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

OOOOOOE

= f(m,1,t) =mt
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

OOOOOOE

= f(m,1,t) =mt
a a a a a a a a
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Prior Results
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The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.
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= f(m,1,t) =mt
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

OOOOOOE

= f(m,1,t) =mt
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

OOOOOOE

= f(m,1,t) =mt
[a al |a al |a al |a a|

= fim,r,1)=(m-—1)r+1
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Prior Results

The values of f(m,r,t) can be found by (relatively) simple counting
if one of the parametersis 1.

= f(1,rt)

ololclolololo

= f(m,1,t) =mt
[a al |a al |a al |a a|

= fim,r,1)=(m-—1)r+1
=The length guaranteed to have m identical symbols.

Prior Results 11/28



Prior Results

Most work in this field has fixed r (the number of colors) and ¢ (the
number of sets), allowing m (the size of the sets) to vary.
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Prior Results

Most work in this field has fixed r (the number of colors) and ¢ (the
number of sets), allowing m (the size of the sets) to vary.

Theorem (Bialostocki, Erd6s, and Lefmann, 1995)

If m > 2,then f(m,2,2) = 5m — 3.
If m > 2,then f(m,3,2) =9m — 1.
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Prior Results

Most work in this field has fixed r (the number of colors) and ¢ (the
number of sets), allowing m (the size of the sets) to vary.

Theorem (Bialostocki, Erd6s, and Lefmann, 1995)

If m > 2,then f(m,2,2) = 5m — 3.
If m > 2,then f(m,3,2) =9m — 1.

Theorem (Grynkiewicz, 2005)

If m > 2,then f(m,4,2) = 12m — 9.
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Prior Results

Most work in this field has fixed r (the number of colors) and ¢ (the
number of sets), allowing m (the size of the sets) to vary.

Theorem (Bialostocki, Erd6s, and Lefmann, 1995)

If m > 2,then f(m,2,2) = 5m — 3.
If m > 2,then f(m,3,2) =9m — 1.

Theorem (Grynkiewicz, 2005)
If m > 2,then f(m,4,2) = 12m — 9.
Theorem (Bernstein, Grynkiewicz, and Yerger, 2015)

ifm > 2, f(m,2,3)is known.

Prior Results 12/28
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Something Different

We decided to do something a little different.
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Something Different

We decided to do something a little different.

This work instead fixes m and r, allowing ¢ to vary.
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Something Different

We decided to do something a little different.
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Something Different

We decided to do something a little different.
This work instead fixes m and r, allowing ¢ to vary.
Wesetm =2andr = 2.

The goalis to find an exact value for f(2,2,t).
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Something Different

We decided to do something a little different.

This work instead fixes m and r, allowing ¢ to vary.
Wesetm =2andr = 2.

The goalis to find an exact value for f(2,2,t).

The first step towards our goal: establishing a lower bound!
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Lemma (0., Schroeder)

Ift > 1,then f(2,2,t) > 5t — 5.
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Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) > 5t — 5.
Sketch of Proof

We did this through induction and contradiction using the coloring
A = (ababa)!~! as a counterexample.
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Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) > 5t — 5.
Sketch of Proof

We did this through induction and contradiction using the coloring
A = (ababa)!~! as a counterexample.

For the base case, t = 1, this is trivial.
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Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) > 5t — 5.
Sketch of Proof

We did this through induction and contradiction using the coloring
A = (ababa)!~! as a counterexample.

For the base case, t = 1, this is trivial.

Fort = 2...
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Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) > 5t — 5.
Sketch of Proof

We did this through induction and contradiction using the coloring
A = (ababa)!~! as a counterexample.

For the base case, t = 1, this is trivial.

Fort =2..tryit! A:ababa
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Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) > 5t — 5.
Sketch of Proof

We did this through induction and contradiction using the coloring
A = (ababa)!~! as a counterexample.

For the base case, t = 1, this is trivial.
Fort =2..tryit! A:ababa

When ¢ > 3, it can be shown that dm(Bz) > 3 and that dm(B;) = 2.

Lower Bound 16/28



Upper Bound



Now, we must find an upper bound.
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Now, we must find an upper bound.

Bialostocki et al. were able to produce an upper bound for f(2, r, t).
Thatis, f(2,7r,t) < (r(t—1)+1)(r + 1).
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Now, we must find an upper bound.

Bialostocki et al. were able to produce an upper bound for f(2, r, t).
Thatis, f(2,7r,t) < (r(t—1)+1)(r + 1).

So for our work, this means that f(2,2,¢) < 6t — 3.
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Now, we must find an upper bound.

Bialostocki et al. were able to produce an upper bound for f(2,r,t).
Thatis, f(2,7r,t) < (r(t—1)+1)(r + 1).

So for our work, this means that f(2,2,¢) < 6t — 3.

We created a computer program to find the following values for

f<27 27 t>:

t 1 ] 213 4] 5] 67
F220) | 3 [ 7 [ 1216 | 21| 26 | 3
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Now, we must find an upper bound.

Bialostocki et al. were able to produce an upper bound for f(2,r,t).
Thatis, f(2,7r,t) < (r(t—1)+1)(r + 1).

So for our work, this means that f(2,2,¢) < 6t — 3.

We created a computer program to find the following values for

f<27 27 t>:

t 1 ] 213 4] 5] 67
F220) | 3 [ 7 [ 1216 | 21| 26 | 3

From this data, it appeared that whent > 4, f(2,2,t) = 5t — 4.

Upper Bound 18/28






Theorem (0., Schroeder)

Ift > 4,then f(2,2,t) = 5t — 4.
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Theorem (0., Schroeder)
Ift > 4,then f(2,2,t) = 5t — 4.

Proving this directly was difficult, so we showed the following,
slightly weaker, lemma first:
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Proving this directly was difficult, so we showed the following,
slightly weaker, lemma first:

Lemma (0., Schroeder)

Ift > 1,then f(2,2,t) < 5t — 2.
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Theorem (0., Schroeder)
Ift > 4,then f(2,2,t) = 5t — 4.

Proving this directly was difficult, so we showed the following,
slightly weaker, lemma first:

Lemma (0., Schroeder)
Ift > 1,then f(2,2,t) < 5t — 2.

In fact, any 2-colored string of length 5¢ — 2 has ¢ permissible pairs
with maximum diameter 2.

Theorem! 20/28



Sketch of Upper Bound Proof

Proof by Example
If t = 4,then a coloring A : [18] — {a, b} is one of two types:

A b babbababaaababdalbd
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Proof by Example
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> r A

Bl Bg Bg B4
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Sketch of Upper Bound Proof

Proof by Example

If t = 4,then a coloring A : [18] — {a, b} is one of two types:

A bbabbababaaabalbdalbd

Lr r =
Bl Bg Bg B4
| | I | || | | I |

1
A ababbababaaabalbdalbd

Theorem! 21/28



Sketch of Upper Bound Proof

Proof by Example
If t = 4,then a coloring A : [18] — {a, b} is one of two types:

A bbabbababaaabalbdalbd

> r A

Bl Bg Bg B4

| 11 1 | 11 1
A ababbababaaabaldbdald

AP A TN
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Sketch of Upper Bound Proof

Proof by Example
If t = 4,then a coloring A : [18] — {a, b} is one of two types:

A bbabbababaaabalbdalbd

> r A

Bl Bg Bg B4

| 11 1 | 11 1
A ababbababaaabaldbdald

AP A TN

B By Bs By

Theorem ! 21/28
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We establish some properties of A:

A contains ¢ alternating substrings

O

restrictions on the lengths of substrings
cannot start or end with a triple
at most, thereis 1 triple
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conditions on the substrings around the triple
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Sketch of Proof

Suppose A is a 2-coloring of [5¢t — 4] and is NOT ¢-permissible.

We establish some properties of A:

-

mE mE mm mm mm

-

A contains ¢ alternating substrings

* restrictions on the lengths of substrings

cannot start or end with a triple

at most, thereis 1 triple

conditions on the substrings around the triple
A ends with a substing of length 1 or 2
conditions on the last three or four substrings

Establish that the END of A falls into one of 12 cases:

For example, ending with (5, 7,1)

Proving the Theorem

(r,2) (r,1,2) (2,4,2) (8,1
2,1) (2,7,1) (7,2) (7,4,
A=

) (2,2) (2,1,2)
2) (5,1) (5,7,1)

-+ - babab bbb b.
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Sketch of Proof

Suppose A is a 2-coloring of [5¢t — 4] and is NOT ¢-permissible.

We establish some properties of A:

= A containst alternating substrings

* restrictions on the lengths of substrings
cannot start or end with a triple

at most, thereis 1 triple

conditions on the substrings around the triple
A ends with a substing of length 1 or 2

OO

= conditions on the last three or four substrings

Establish that the END of A falls into one of 12 cases:
(1,2) (7,1,2) (§L4,2) (8,1) (2,2 @,1,2)
(2,1) (2,7,1) (7,2) (7,4,2) (5,1) (5,7,1)
For example, ending with (5, 7,1): A = - - - babab bbb b.
Show that in each case, A is actually t-permissible.
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Short Sketch of Proof

Use contradiction.
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Short Sketch of Proof

Use contradiction. [ |
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Incrementing m and r
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Incrementing m and r

= Lett > 1.Then f(2,3,t) > 7t — 6.

Proof. Using the coloring (abcabca)!~!.

= Lett > 1.Then f(3,2,t) > 9t — 8.
Proof. Using the coloring (ababababa)'~1.

There is a combined result for the two, but the proof has been
elusive.
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THANK You!
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