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Integer Coloring

Fundamental Definitions 3/28

Definition

An integer coloring takes in the the integers from 1 to n, we call this
[n], and assigns to each integer a particular color. This work most
commonly uses only two colors: {a, b}.

Example

Let’s define∆ : [15]→ {a, b} as given below:

∆: b b a b a a b a b b a a a b a

For example,∆(1) = b and∆(5) = a.
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Definition

Let S be an integer coloring of [n] and {a, b} be our colors. Then
A ⊆ [n] ismonochromatic if every element inA is associated to the
same color.

Example

Let∆ be the coloring below andQ = {3, 5, 6, 8, 12}.

∆: b b a b a a b a b b a a a b a

Q

Notice that each element ofQ are all colored with a, so the setQ is
monochromatic.
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Definition

LetB andB′ be subsets of [n].

Then B precedes another set B′ (denoted B <p B
′) if the biggest

element in the first set (max(B)) is smaller than the smallest element
in the second set (min(B′)). That ismax(B) < min(B′).

Example

LetB = {1, 4} andB′ = {6, 8}.

The biggest element inB is 4 and the smallest element inB′ is 6.

Since 4 < 6,B precedesB′, orB <p B
′.
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Definition

Let C ⊆ [n]. Then the diameter of a set C is the di�erence of its
largest value and smallest value.

Example

Let’s say thatC = {9, 11, 14, 15}.

So the diameter ofC is dm(C) = 15− 9 = 6.
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Definition

An integer coloring [n], coloredwith r colors, is (m, r, t)-permissible
if there exist t subsets of [n] such that

each set is monochromatic,
all the sets have the same size (cardinality),m,
the sets can be ordered by precedence, and
in that order, the diameters of the sets are nondecreasing.
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Example

Back to that 2-coloring of [15] (r = 2):

∆: b b a b a a b a b b a a a b a

B1 B2 B3

Letm = 3 (set size) and t = 3 (number of sets).

ConsiderB1 = {1, 2, 4},B2 = {5, 6, 8}, andB3 = {11, 13, 15}.

The sets B1, B2, and B3 are t = 3 sets which are monochromatic,
B1<pB2<pB3, all of sizem=3, and have nondecreasing diameters.

So∆ is (3, 2, 3)-permissible.
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What exactly is f(m, r, t)?

m, r, and t are all positive integers.
describes the least positive integer n such that every r-coloring
of [n] is (m, r, t)-permissible.
f(m, r, t) is well-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).



The Function: f (m, r, t)

Fundamental Definitions 9/28

What exactly is f(m, r, t)?

m, r, and t are all positive integers.
describes the least positive integer n such that every r-coloring
of [n] is (m, r, t)-permissible.
f(m, r, t) is well-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).



The Function: f (m, r, t)

Fundamental Definitions 9/28

What exactly is f(m, r, t)?

m, r, and t are all positive integers.

describes the least positive integer n such that every r-coloring
of [n] is (m, r, t)-permissible.
f(m, r, t) is well-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).



The Function: f (m, r, t)

Fundamental Definitions 9/28

What exactly is f(m, r, t)?

m, r, and t are all positive integers.
describes the least positive integer n such that every r-coloring
of [n] is (m, r, t)-permissible.

f(m, r, t) is well-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).



The Function: f (m, r, t)

Fundamental Definitions 9/28

What exactly is f(m, r, t)?

m, r, and t are all positive integers.
describes the least positive integer n such that every r-coloring
of [n] is (m, r, t)-permissible.
f(m, r, t) is well-defined. It follows as a consequence of van Der
Waerden’s Theorem (1927).



Prior Results 10/28

Prior Results



Prior Results

Prior Results 11/28

The values of f(m, r, t) can be found by (relatively) simple counting
if one of the parameters is 1.

f(1, r, t) = t

a b c a a b a

f(m, 1, t) = mt

a a a a a a a a

f(m, r, 1) = (m− 1)r + 1

= The length guaranteed to havem identical symbols.
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Most work in this field has fixed r (the number of colors) and t (the
number of sets), allowingm (the size of the sets) to vary.

Theorem (Bialostocki, Erdös, and Lefmann, 1995)

Ifm ≥ 2, then f(m, 2, 2) = 5m− 3.
Ifm ≥ 2, then f(m, 3, 2) = 9m− 7.

Theorem (Grynkiewicz, 2005)

Ifm ≥ 2, then f(m, 4, 2) = 12m− 9.

Theorem (Bernstein, Grynkiewicz, and Yerger, 2015)

Ifm ≥ 2, f(m, 2, 3) is known.
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Something Di�erent

Our Work 14/28

We decided to do something a little di�erent.

This work instead fixesm and r, allowing t to vary.

We setm = 2 and r = 2.

The goal is to find an exact value for f(2, 2, t).

The first step towards our goal: establishing a lower bound!
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Lemma (O., Schroeder)

If t ≥ 1, then f(2, 2, t) > 5t− 5.

Sketch of Proof

We did this through induction and contradiction using the coloring
∆ = (ababa)t−1 as a counterexample.

For the base case, t = 1, this is trivial.

For t = 2... try it! ∆ : a b a b a

When t ≥ 3, it can be shown that dm(B2) ≥ 3 and that dm(Bt) = 2.
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Now, wemust find an upper bound.

Bialostocki et al. were able to produce an upper bound for f(2, r, t).
That is, f(2, r, t) ≤ (r(t− 1) + 1)(r + 1).

So for our work, this means that f(2, 2, t) ≤ 6t− 3.

We created a computer program to find the following values for
f(2, 2, t):

t 1 2 3 4 5 6 7
f(2, 2, t) 3 7 12 16 21 26 31

From this data, it appeared that when t ≥ 4, f(2, 2, t) = 5t− 4.
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Theorem (O., Schroeder)

If t ≥ 4, then f(2, 2, t) = 5t− 4.

Proving this directly was di�icult, so we showed the following,
slightly weaker, lemma first:

Lemma (O., Schroeder)

If t ≥ 1, then f(2, 2, t) ≤ 5t− 2.

In fact, any 2-colored string of length 5t− 2 has t permissible pairs
with maximum diameter 2.
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Proof by Example

If t = 4, then a coloring∆ : [18]→ {a, b} is one of two types:

∆: b b a b b a b a b a a a b a b b a b

B1 B2 B3 B4

∆: a b a b b a b a b a a a b a b b a b

B1 B2 B3 B4
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Suppose∆ is a 2-coloring of [5t− 4] and is NOT t-permissible.

We establish some properties of∆:

∆ contains t alternating substrings
restrictions on the lengths of substrings
cannot start or end with a triple
at most, there is 1 triple
conditions on the substrings around the triple
∆ ends with a substing of length 1 or 2
conditions on the last three or four substrings

Establish that the END of∆ falls into one of 12 cases:

(τ, 2) (τ, 1, 2) (2, 4, 2) (8, 1) (2, 2) (2, 1, 2)
(2, 1) (2, τ, 1) (7, 2) (τ, 4, 2) (5, 1) (5, τ, 1)

For example, ending with (5, τ, 1): ∆ = · · · babab bbb b.

Show that in each case,∆ is actually t-permissible.
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Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Incrementingm and r

Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Incrementingm and r

Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Incrementingm and r

Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Incrementingm and r

Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Incrementingm and r

Future Work 27/28

Let t ≥ 1. Then f(2, 3, t) ≥ 7t− 6.

Proof. Using the coloring (abcabca)t−1.

Let t ≥ 1. Then f(3, 2, t) ≥ 9t− 8.

Proof. Using the coloring (ababababa)t−1.

There is a combined result for the two, but the proof has been
elusive.



Future Work 28/28

THANK YOU!
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