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CHAPTER 10

DESCRIPTIVE STATISTICS FOR

BIVARIATE DISTRIBUTIONS
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In the last chapter we discussed statistics that provided summary
measures of the properties of uéVariate distributions. Also, in our introduction
to the bivariate realm ( Chapter 8 ) the discussion was confined to an intuitive
understanding of statistical.relationships through the use of percentages

in analyzing contingency tables. In fact, without mentioning it as such, you
1
have already been exposed to a statistical index of association. After computing

percentages vertically ( in the direction of the independent variable) and

in

AElependent: variable, the

percentage difference is called epsilon (symbolized £). Any time g€ is greater

comparing (horizontally) across categories of the

than zero there is evidence of a rxelationship between the variables under
examination. The larger the ¢ the stronger the relationship, although the
association may not be large, statistically significant, nor practically
meaningful. Epsilon values range between 0 (which would indicate a state of

statistical independence in which case the variables do not covary) to 100

( which indicates maximum covariation and maximum association between variables).
Hence epsilon ranges on a scale from 0 to 100:

range of ¢ : 0 100

minimum ¢ maximum ¢

Epsilon is a convenient first step for discovering a relationship between

variables but its limitations are quickly seen in bivariate tables with larger

than 2 x 2 dimensions. In such cases there are several different percentage
comparisons that could be made. Secondly, this index of association does not
describe the relationships in the entire table. A third restriction occurs

when data are not in a contingency table format, in which case £ is not appropriate.
Under the latter circumstances, more powerful tools exist for ferreting out the

relationship between variables (quanitatively speaking) and its underlying meaning.
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Therefore, in this section we will introduce and explicate some conventional
statistical procedures for determining the precise numerical value of the
degree of correspondence between variables construed in a bivariate table.

Measures of association, commonly called correlation coefficients, are

founded upon two types of relationships that provide sufficient evidence that

T
the variables are associated: 1) the principle of the joint occurence of
1]

attributes and 2).the principle of covariation.2 In this section, the former

are
will be applicable since the dataApresented in tabular form and the measure-

ment level is nominal or, at best, ordinal. The term "attribute” is a clue to
the nature of the data being scrutinized.

Statisticians have developed, devised, and refined numerous statistical
indices of relationships. Since our purpose 18 to be synoptic rather than
exhaustive in treatment, only a few of these statistics will be introduced.

At the nominal level there is a family of correlational statistics that are
based upon a measure called chi square (symbolized xz). To develop the ra-
tional for the chi square based statistics let us turn to Table lop{.We know
that an association exists between political party preference and attitudes
toward the pardoning because epsilon 1s greater than zero (c=36).
Notice that in a fourfold table the absolute magnitudes of epsilon are ident-
ical for both row comparisons. Other than knowing this value falls about a

of the

thirdAway between the minimum and maximum epsilon value, we do not know the

overall association between the two variables. To calculate the numerical re-

lationship one strategy is to construct a model of no association. In other

words, if the two variables were not related what would bezgipected (or theor-
etically based) frequencies? The observed empirical frequencies of 225, 270,
602, and 156 have already been obtained. The logic underlying chi-square based
association is this: What would we expect the respective cell frequencies to

be if party preference and attitude were not correlated?
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Table 10.1
ATTITUDES TOWARD PARDONING BY POLITICAL PREFERENCE
Democrats Republicans Totals
n z n z
Pardon (''Yea') 225 27 ¢ = 36 270 63 495
No Pardon ('Nay') 602 73 €= 36 156 37 758
827 1007 426 1007 1,253

It might be tempting to say that if the total sample consists of 1,253,
then, if the two variables were not related, about ¥ or 313.25 cases (because
there are four cells in this table) of the total should be found in each
cell. The pitfall in this line of reasoning is that no account is made of
the actual number of Republicans and Democrats actually surveyed, nor the
number who said "yea" and ""nay". Not only are there almost twice as many Dem-
ocrats (827 vs. 426) but any observer of the political scene knows that a dram-
atic decision (first-time one at that) like this is affected by one's party

loyalty. To construct a model ., of no association necessitates taking into

account the actual marginal distributions (e.g., number of Republicans and

Democrats and number of yea-sayers and nay-sayers) of the data. Not only is
there an approximate 2:1 ratio between Democrats and Republicans, but there is
almost a 2:1 ratio between nay-sayers and rea-sayers.

With this as a backdrop statisticians think lilie this: If the total
sample is comprised of 753 nay-sayers, then (426/1253) (758) of the nay-sayers

(or 258) should be Republicans who chose "no pardon". Similarly, if 827 of the



393

total sample are Democrats and, again, 758 of the responsea are nay, then (758/
2153) (827) of the nay-sayers (or 500) should be Democrats. The same reasoning
applies to the other two cell frequencies. Specifically, one would expect that
426/1253 times 495 (or 168) of the Republicams to say "pardon" and 827/1253

times 495 ( or 327) of the Democrats to judge the decision correct. Notice that
the expected frequencies (the root of the model of no association) are gener-

ated using the empd.g\jéally obtained marginal distributions. In fact, a concise for-
mula for generating the expected frequencies (Ef) in a contingency table can

be forwarded and reads as follows:

E = row marginal total x column marginal total
f

grand total
or simply:

Ef= (row total) (column total)

N
For each of the cells in the contingency tables the Ef's would be:
ny1= (495) (827)/1253= 326.71
n, = (495) (426) /1253 = 168.29
nyy = (758)(827) /1253 = 500. 29
Ngy = (758) (426) /1253 = 257.71

2= 1253.00

These are the frequencies expected if, in fact, no relationship exists betweer
X and Y. Notice that the sum of Ef's is equal to the total sample size of
1253. Having established the Ef'S'we may use the following working table (Table 10.2)

to compute the chi-square value:
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Table 10.2

WORKING TABLE FOR
CONSTRUCTING A MODEL OF NO ASSOCTATION

Cell of Ef Of-Ef (0g-E¢) (e-EgY /B¢
ny; 225 326.71 -101.71 10344.92 31.66
n, 270 168.29  101.71 10344.92 61.47
n,, 602 500.29  101.71 10344.92 20.68
n,, 156 257.71 -101.71 10344 .92 40.14

S=1253 S=1253 Z=0 D =x2 =153.95

The respective E¢'s are subtracted from their counterpart Of's (producing a value

called delta, symbolized "A'), the difference 1s squared, and the squared differ-
ence is divided by Eg. When the last column is summed the quantity chi-square is
obtained. Conceptually, it represents the discrepancy between observed and expec-
ted frequencies, adjusting for expected cell frequencies. With this value an en-

tire "family" of statistics, appropriately called the chi square or delta based

statistics, appropriate for computing indices of association can be computed.

A common fallacy is to think of the chi -square value itself as an indicator of
association. This is not true. It is actually a statistical measure of signif-
icance although it is used in the numerator of several different association

measures. 3

Before specifying specific association statistics, several additional words
apropos chl square are germane. First, chi square must be a positive number be-
cause the Of — Ef differences are squared. If no association exists (i.e.,
when Of and Eg correspond identically) chi square will be zero. Second, its
upper limit is a function of N (sample size) and k (number of categories) and
is expressed as follows:

upper limit of x% = N (k - 1)
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where k % number of rows or columns, whichever is smaller.
2
Hence the scale of values over which x can range in the present case i1s

charted as follows:

0 2 N (k - 1)
x_ = 153.95

¢

minimum value maximum value
(0) (1253)

2

For didactic purposes, we have located the maximum x“ value for our data along
with the computed value.

Before presenting several chisquare based statistics of association, a
brief review of the logic behind the xz computation is in order. When percentage
differences are employed, there are several different comparisons that could be
made and they geometrically increase with the r x c configuration of the table,

Similarly, in a two by two table.there are four delta values. Because of these

s
limitations statggicians desire a single summary measure describing the association

in the table as a whole. This aggregate summarization is produced as follows:

1) the delta values are squared, otherwise the algebraic sum would equal zero
(see colmumn 4 of 10.2) and this would be a most undesirable condition if further
computation is involved; 2) the respective squarquifferences,lsz, are divideéd
by the coreesponding cell frequenqiéSThe purpose of such a division is that a
particular deviation implies more of an association when the expected frequency
is small than when it is large; 3) the ratios aré summed over all cells

providing the researcher with a single number (which as we said earlier is

one reason for computing measures of association in the first place); and

2 2

4) because the upper limit of x“ is a function of N and k (see range of x
above) it is necessary to divide by N (which is itx maximum value in a fourfold

table) to take into account 1ts maximum possible value.
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NOMINAL MEASURES OF ASSOCIATION

There are several strains of this lineage of statistics., Again, rather
than be exhaustive, a select few indices will be chosen for illustrative
purpoees. Bear in mind that virtually all measures of association, particularly
those not discussed, are simple refinements to make allowances for mathematically
undesi?able propertieg of the other COEfficieqﬁé; Specifically , some
statistics do not have a maximum value of 1.00 which makes identification of a
perfect correlation difficult (the case with the contingency coefficient,C); and
some can exceed 1.00 in tables with more than 2 x 2 cellular arrangements (e.g.,
the phi coefficient, ¢).

_Phi. Although this statistic has a problem ( e.g., under certain conditiomns
its maximum value can exceed 1.00) it is a logical step from the computation of

the chi square value. The foer%: for @ and ¢2 is:4

Ny N = njon
¢ =\(x2/N or @2 = xZ/N or(n 1;n1° e 7
. 111012) (n21%022) (ny;40,4) (nyHn2:

Note that by dividing by N, the maximum value for x2 in a 2x2 table, the ratio
is an expression of the relationship between what we've obtained and what we
could obtain. In short, the phi coefficient is an attempt to norm the obtained
statistic to some standard. For our data, substituting into the @ formula, we

have:

¢ =[153.95 = \{.1299 = .35

1253
The problem with @ is that when r x ¢ is greater thgn two in both, the maximum
value can exceed 1.00 since the upper limit of x2 [? (k—li] can be larger
than N. In such situations it is best to use a different statistic. The maximum
value of ¢2 is k-1 where k is the smaller of the r or c.
Cramer's V. This statistic may be the best all-purpose nominal measure
of association because it overcomes most of the intrinsic deficits of the other

statistics. Computationally it is obtained via:

V= Vx /Nt
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it
Note that it too has x2 in the numerator ( the reason why we considegﬂa chi

square based statistic ) and a quantity called t along with N in the denominator.
t refers to the smaller of the two quantities: (r - 1) or ( e- 1). For the data
f1 Table 10.1, V is computed as follows:

[153.95 = \'.1229 =,35
(1253) (1)

V =

-—

Both phi and Cramer's V turn out to be identical. Often in 2 x 2 tables statistics
that would yield different values in larger tables are identical in 2 x 2 ones.5
Yule's Q. Another statistic of association is Yule's Q and will noW be
discussed because of its computational simplicity and an interpretation not
available with some chi - squared based statistics.6 It is special case of

another measure (gamma) and is restricted to use with 2 x 2 tables as the Q

where:
formula makes clear: Q=(AD-BC)/ (AD + BC) ‘\
Cell A (or ni1) Cell B (or n12) \
Q = ny¢yn - NqyaNl
njjnpp + nyyn2l CellC(orna)  CellD(or nzL\

Only the cross products in the diagonal cell frequencies are employed. With
raespect to the sign value of Q it is important to remember the general rule
that the sign of any nominal level coefficient is uninterpretable. For the
data in table 10.1, 0 is:

Q = (255)(156) - (270)(602) = 35100 - 162540 = 127440 = -.64

(255) (156) + (270) (602) 35100 + 162540 197640

Yule's Q possesses an interpretation known as the proportional reduction

in erroe ("PRE") interpretation. This means that so much variation in the
dependent variable can accounted for or explained by the independent variable.
Substantively for the Q of .64 we can say that 647 of the "error' in predic-
ting attitudes toward pardon is due to the association of attitudes
with political preference.

Lambda. Lambda, also known as Guttman's coefficient of predictability,
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has a PRE interpretation but is a different sort of association statistic.

Measures of association may be divided into symmetric and asymmetric types.

Symmetric statisttcs like @#, V, and Q produce identical numerical values
regardless of how the two variables are arranged in the contingency table.
In other words, it does not matter—for the coefficient's sake--which variable
is across the heading or which is down the stub. Asymmetric statistics, lile
lambda, are influenced by the particular tabular arrangement since the purpose
is to predict one variable from a knowledge of the other. Consequently, which
variable is the predictee and which variable 1s the predictor may alter the
computed coefficient's value. Lambda is a particularlz:zzgziiation measure
when there exists a clear-cut independent and dependent variable. As one
might surmise, the causal variable will be used as the predictor and the effect
variable as the predictee.

For the data in Table 10.1 it is clear that the causal variable is

political party preference and the attitude toward the pardoning the effect

variable.. Calling the former X and the latter Y the lambda formula reads:

Avx = %f1 - S5a

N - €£d
where: fi= largest cell frequency within each
category of the independent variable
fd= largest marginal frequency of the
dependent variable totals

N= total number of respondents
The system of double subscripts means that the first notation (Y) to the right
of the Greek symbol () is the effect variable and the second notation (X)

is the causal variable. Substituting the data into the formula:

/Q = 6024 270 - 758 = 114 = ,23
1253 - 758 495



399

This is interpreted to mean that by knowing the empirical relationship between
X and Y the magnitude of prediction error can be reduced by 237 (.23 x 100)

over what could be achieved by knowing only the marginal totals.

Lambda as a Proportional Reduction in Error (PRE) Measure.

The generic PRE formula reads:
E; - Eg
E1

where: E, = "errors' made by rule number 1
E, = "errors' made by rule number 2

Rule 1 (for E,). By knowing only the dependent variable totals the best
prediction ('best’ in the sense that it will produce the fewest number of "errors"
in the long run) would be the mode of that variable. Since the mode in Table
10.1 is "nay" that would comprise the better predictor.

Rule 2 (for E.). By having the cross—classification of two variables--
attitude toward pardSning and political preference--the best prediction would
be that of the mode within categories of the independent variable.

Prediction Errors. For rule 1 we would make 495 errors by predicting
"nay". This is so because by predicting nay we would incorrectly predict the
response of the 495 subjects who said "yea". For rule 2 we would make 381
errors (225 by predicting "nay" for Democrats and 156 by predicting 'yea"
for Republicans).

in
Definition of Measure. The proportional reductionAerror achieved by
using rule 2 rather than rule 1 is:

El_EZ
= 495 - 381 = ,23
El 495

The PRE basis of lambda can be reiterated as follows. If all you knew
were the marginal totals ("yea" = 495 and "nay" = 758) of the dependent variable
your best single prediction for each response would be '"nay'. Employing such a
procedure would result in 495 "errors'. By adding a second variable (political
preference) your best single prediction for Democrats would be "nay" while your
best single prediction for Republicans would be "yea'". Employing this pro-
cedure you would make a total of 381 "errors'" (225 for Democrats and 156 for
Republicans). Therefore, by having additional information, that is, the dis-
tribution of responses for both Republicans and Democrats, you would make
114 fewer errors, Hence, the proportion by which you could reduce prediction
errors is .23 (495-381:495). '
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Some Important Observations on Statistics of Relatiomship.

It stands to reason that if two variables are independent of each other
the index of association should yield a value of zero. Similarly, if two vari-
ables are perfectly correlated then the measure of relationship should reflect
this fact and produce a value of +1.00 1f they are perfectly positively associ-
ated and a value of -1.00 if they are perfectly negatively associated. How-
ever, the meaning of a perfect relationship can occur in at least two different

ways.7 We will call these two procedures: 1) the stringent model of perfect

correlation, and 2) the less stringent model of perfect correlation.

1) The Stringent Model of Perfect Correlation.

Let us consider the simplest case, that of a 2 x 2 contingency table.
When all the cell frequencies fall into the diagonals of the table, and by
extension, no observations are registered in the other cells, the conditions
for a perfect correlation using the stringent model are met: For example, a

perfect positive correlation would take on the following appearance:

Variable X
High Low
High 10 0
Variable Y 0=100-0 _ . = g,
_ N Low 0 10 J(10)(10) (10) (10)

This situation involves two dichotomous variables, each subclassified into high
and low categories. Notice that each value of variable X is associated with
only one value of variable Y (e.g., all high variable X values are in the high
variable Y category and all low variable X values are in the low variable Y cat-
egory).

Similary, a perfect degative correlation would take on the following

form:
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Variable X
High Low
High 0 10
Variable Y =0 - 100 = - 100 = - 100 = - 1.00
v(I0) (10) (10Y10) |TIO000 100
Low 10 0

Again all high variable X values are in the low variable Y category and all low

variable X values are in the high variable Y category.

2) The Less Stringent Model of Perfect Correlation.

Let us also consider the simplest case, that of a 2 x 2 contingency table.
If one of the cell frequencies has no observations in it and, corollarily, the
other three register some observations, then the conditions for the less strin-

gent model of perfect correlation are met. To illustrate, a perfect positive

correlation would take the following appearance:

Variable X
High Low
High 10 10
Variable Y Q =100 - 0= _100 = 1.00
100 + O 100
Low 0 10

Notice that only one cell contains no observations.

For a perfect negative correlation the table would take the following

form:
Variable X
High Low
High 10 10
Variable Y Q=0-100 = -100 = -1.00
0 + 100 100
Low 10 0

Again only one cell fails to contain any frequencies.
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A significant query becomes: When do we use statistics based upon the strin-
gent model of perfect correlation and when do we use statistics based upon the less
stringent model. A guideline can be advanced. If the categories of the indepen-
dent variable are known or thought to Influence the dependent variable, then sta-
tistics based on the first model (e.g., @) are probably most appropriate. Regarding
our previous example (Table 10.1) we would expect political preferance--both Repub=-
lican and Democrat~-to affect attitudes toward the pardoning. On the other hand, in
certain types of experimental research where, for example, those innoculated with a
flu vaccine are expected to have a reaction while those not vaccinated are not ex-
pected to have-a reaction, statistics based on the second model (e.g., Yule's Q)
would probably be best to employ.

Ordinal Measures of Association

Spearman's Rho. When data hagebeen ranked (i.e., conform to ordinal level

measurement assumptions) a useful, accurate, and computationally sifaple measure

of association called Spearman's rho (r ) is appropriate. To compute this coeffi-
s

clent requires one to subtract the difference between two sets of ranks, square
and sum these differences, and finally substitute the summed difference into the
formula:

g =1- 6fD2

N (u- 1)

For the data in Table 10.2 the eponymous rho will be computed. Each of the
universities in the '"Big Ten" are located down the far left hand column and in
the adjacent columns appear the predicted finish and the - actual finish.
Our job 1is to determine the association between the two sets of ranks. A third
column "B" (difference between ranks) is addended and the difference between
a given team's rank is recorded. Notice that the algebraic
sum of the D column must be 0 and this should be used as a check on your work.

Each of the "D" values is squared and placed in an adjacent celumn labeled
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Zn is summed and the sum substituted into

vp2", Finally, the "D
the r, formula. The denominator "N" refers to the number of ranked cases,

teams in this case. Performing this:

rg = 1 - 6(45.5) =1 - 273 = .724
10(102-1) 990

Spea_rman's rho may be interpreted exactly as Pearson's r, that is, in terms
of sheer magnitude and in terms ;)f the proportional reduction in error since
it is a product moment association coefficient for rank-ordered data? The
value of rho will fall between=-1.00 (a perfect negative association) and
+1.00 (a perfect positive associatbn). A value of zero indicates no as-

sociation between ranks.

TABLE 10.2

FOOTBALL ACTION PREDICTIONS

Team Rank X Rank Y D DA
Michigan 1 2 -1 1
Ohio State 2 1 +1 1
Minnesota 3 4 -1 1
Michigan State 4 3 +1 1
Indiana 5 10 -5 25
Purdue 6 7 -1 1
Illinois 7 5 +2 4
Northwestern 8 8.5 -.5 .25
Wisconsin 9 6 3 9
Iowa 10 8.5 1.5 2.25

2D=0 =£D2=45.5
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Goodman and Kruskal's Gamma. Another useful measure of association for

correlating ranks is gamma (G). Suppose we're interested in the correspondence
automation, for five business enterprises. Each of the organizations and

between two variables, job dissatisfaction anqhéts workers have been studied

and ranked on these two dimensions. Table 10.3 contains these hypothetical
organizations are placed in their natural order (from 1 to n) for one variable the ranks
ranks. Operationally, after the ranks of thﬁAsecond variable are located in of the
juxtaposition. Then two new columns are addee%d: 1) agreements and 2) in-
versions. To determine the frequency of agreements exclusive attention is paid

to the column not arrayed in perfect order. We ask: '"How many ranks above it

(e.g., General Telephone) are smaller?" Since there are no ranks above General
Telephone, a O is entered in the agreement colummn. Then we move to the second
organization, Illinois Agricultural Association,'and ask the same question.

Since there is 1 rank above it that is smaller (e.g., General Telephone has a

rank of 1,) we place a one in the agreement column. We proceed in this fashion

until the last organization is examined. Since two ranks abcveClay Dooley

are smaller (e.g. General Telephone and State Farm Insurance Company,) we place

a 2 inthe column adjacent to Clay Dooley. Finally we sum the number of agree-

ments, which is 6 in the present case.

TABLE 10.3

RANK OF FIVE ORGANIZATIONS ON
AUTOMATION AND JOB DISSATISFACTION

Organization Rank on Rank on Agree- Inversions
Automation Job Dissatisfaction ments

General Telephone 1 1 0 0
Illinois Agriculture 2 5 1 o
Association

State Farm Insurance Co. 3 2 1 1
Illinois State University 4 4 2 1
Clay Dooley Mfg. 5 3 2 2

££a™0 £
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In the final column ("inversions') we again pay exclusive attention to the
ranking;;mperfect order but this time ask: 'How many ranks above it are larger?"
Since there are no ranks above General Telephone, we place a 0 at the juncture.
Since no ranks are larger than Illinois Agricultural Association we also place
a 0 in the inversion column. This process is continued for all organizations
until Clay Dooley is reached. It has two ranks above it which are larger and
a 2 is placed in the appropriate column. Finally, the sum of inversions is
determined, in this case 4. These summed frequencies are substituted into the

following formula:

G=%f_ -8Nf = 6-4 =2 =.,20
_a& i 0

ifa +Ey

The correlation between the two sets of ranks is ,20, a low positive association.
Substantively, this éppears to be a modest correlation between automation and
ﬁob dissatisfaction. Gamma will vary between - 1.00 (a perfect negative as-
sociation) and +1.00 (a perfect positive association). A value of zero would
indicate no association between ranks.

Gamma is also a widely used statistic of association when ordinal level

data appear in a contingency table format. Consider the data in Table 10.4.

BEHAVIOR Cheated

TABLE 10.4 10
INCIDENCE OF CHEATING BEHAVIOR BY PRESSURE FOR SUCCESS
Pressure for Success
Low Moderately Low Moderately High High
Cheated 3(20%) 6(22%) 5(25%) 13(81%)
Possibly 1(7%) 5(19%) 5(25%) 1(6%)
No Cheating 11(73%) 16(59%) 10 (50%) 2(13%)

15 100% 27 100% 20 100%: 16 100%
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Computationally, gamma is obtained with the following formula:ll
G=ng; - ng
ng + ng

where ng = the number of same-ordered pairs
n; = the number of different-ordered pairs

To obtain ng, the number of same ordered pairs (sometimes called concordant
Eairs),we first locate the positive diagnol. The positive diagenalis the omne
in which high pressure and cheated coincide (nj,;) and low pressure and no
cheating coincide (n31). To calculate the number of concordant pairs we
multiply the frequency in each cell of the table by all frequencies above and
to the right. Thus,
11(5+6+5+5+1+13) + 1(6+5+13) + 16(5+5+1+13) + 5(5+13) + 10(1+13)
+ 5(13) = 11(35) + 1(24) + 16(24) + 5(18) + 10(14) + 5(13)

= 385+24+384+90+140+65

= 1088
To obtain ny, the number of different-ordered pairs (sometimes called discordant
pairs),we first locate the negative diagonal. The negative diagonal is the one
in which low pressure and cheating coincide (nll) and high pressure and no
cheating coincide (nj4). To calculate the number of discordant pairs we multi~
ply the frequency in each cell of the table by all frequencies above and to the
left. Thus,

2 (5+5+5+6+1+ 3)+1(5+6+3)+10 (5+6+1+3)+5(6+3)+16 (1+3)+
5(3)=2(25)+1(14)+10(15)+5(9)+16 (4)+5(3)
=50414+150+45+64+15
=338

Substituting ng, and ny into the gamma formula we have:

1088-338 750 _
1088+338 1426 °

52

Substantively, the correlation coefficient tells us that a moderate cos?lation
exists between pressure for success and the incidence of cheating behavior.
Cheating is more likely to occur when pressure is high and less likely to occur
when pressure is low. This same observation can be inferred from examining

the percentages in Table 10.4. By examing the percentages in the table's
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most "extreme'" cells we notice that 73% of the time low pressure produced no
cheating whereas 81% of the time high pressure produced cheating behavior.

Gamma as a Proportional Reduction in Error (PRE) Measure.

The same generic PRE formula appearing earlier can be used for inter-
pretating gamma.

Rule 1(for E;). Since gamma involves predictions for pairs of cases,

we want to predict whether a given pair is same-ordered(i.e., similar)

or different-ordered(i.e., dissimilar) in terms of its rankings on two varia-
bles. By knowing only the dependent variable totals we ar&@not certain how to
predict the orders of pairs. In other words it may be best to assume that
concordant and discordant pairs are equal in number. For gamma we predict
all pairs to be either same-~ordered or different ordered. However, theoreti-
cally, we would make errors about 50% of the time.

Rule 2(for E,). With an additiomnal variable cross-classified with a

dependent variable we would predict same-order for all pairs if concordant
pairs outnumbered discordant pairs.

Prediction Errors. With information on the order of one variable without

knowledge of the order on another variable a random guess of order on the

second variable is about the best we could do. However, in using this rationale
the number of prediction erré% would amount to one-half (or fifty percent) of
the total number of ng and ng pairs. Since the total number of concordant and
discordant pairs is 1426  and % of 1426 is 713, a total of 713 prediction errors
would be expected. Thus, for rule 1 there would be 713 errors. With know-
ledge of a second variable we predict same order because the number of
concordant pairs (1088) exceeds the number of discordant pairs(338). For
rule 2 the number of prediction errors would be the smaller of the ng or n,

pairs. TFor the present o4 is smaller than ng; hence the number of prediction

errors. would be 338,
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Definition of Measure. The proportional reduction in error achieved

by using rule 2 rather than rule 1 is.

Ey-Ep = 713 - 338 = .52
E1 713

Comments ow Gamma and Related Statistics. Gamma represents the pair-by-

(see endnote #1)
pair comparison procedure, for determining if two variables are associated.

A

To fully comprehend the nature of gamma it is necessary to think in terms of

pairs of cases rather than in terms of individual observations. Furthermore,
gamma entails the computation of untied pairs only. In a contingency table

of two ordinal level variables there are a variety of tied pairs. For example,
there are pairs tied on X (the independent variable), Y (the dependent variable) .,
and on X and Y (both the independent and dependent variables). Moreover,

there exists the total number of pairs for the table as a whole. Let us il-
lnstrate the computation of these other pair types.

To compute the number of pairs tied on X,_E§l we multiply the frequencies
in each column by the sum of all cell frequencies below them. Thus, for the
data in Table 10.4:

ty = 3(1+11) + 1(11) + 6(5+16) +5(16) + 5(5+10) +5(10) + B(1+2) + 1(2)
= 36 + 11 + 126 + 80 + 75 + 39 + 2
= 419

Similarly, to compute the number of pairs tied on Y, ty, We multiply the

frequencies in each row by the sum of all cell frequencies across from them.

Thus, for the data in Table 10.4:

t 3(6+5+13) + 6(5+13) + 5(13) + 1(5+5+1) +5(5+1) + 5(1)+ 11(16+10+2) +

y
16(10+2) + 10(2)

72 + 108 + 65 + 11 + 30 + 5 +308 + 192 + 20

= 811
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To compute the pairs tied on bothX and Y, tyy, We employ the formula:

ny(ng - 1)/2 for each cell.
-1)/2= 3

nll
n12
13
14
oL
n22
n23
n24
n31
n32
n33

A34

3( 3
6{ 6
5(5
13(13
1(1
5(5
5(:5
1(1
11(11
16(16
10(10

2( 2

2
1)/2
1)/2
L)%
1)/2
1)/2
1)/2
1y72
1)/2
1)/2

1)/2

Finally, the total

tained by n(n - 1)/2 or

= 15

= 10

= 78

= 0

= 10

= 10

= 0

= 55

=120

= 45

0

Thus, for the data in Table 10.4:

=347
number of pairs, T, for the data in Table 10.4 is ob-

78(78 - 1)/2 = 3003.

When the various palr types are listed along with their respective values

note that they sum to the total number of pairs in the contingency table:

n 1088

S
ng = 388
£ = 419

ty = 811

32= 347

T = 3003

Various other measures of ordinal association (e.g., tau-a, tau-b, and tau-c)

can be calculated from these combinations of pair types.12 However, they are

beyond the scope of this book.
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Interval-Ratio Level Measures of Association

When both sets of observations conform to the assumptions for interval/
ratio level measurement one of the most sophisticated and well-developed stat-

istics of association, the Pearsonian product-moment correlation coefficient

(r) can be aomputed. Figure 10.1 presents three different sets of bivariate data
that will be employed to illustrate the nature of Pearson's r.

This coefficient measures the linear relationship between variables and
assumes linearity in addition to the measurement level assumption noted above.
To determine if the correspondence between the two data sets 1s approximately

described by a straight line (i.e., a condition known as linearity or rectilin-

earity), a recommended practice is to comstruct a scattergram for the data. A
scattergram is a graphic technique employed with bivariate data just like the
polygon, histogram, and ogive were constructed for univariate data. In such
instances the proper construction of this graph enables the analyst to visual-
ize the distribution of scores, in the present case the joint distribution of
scores.

To construct a scattergram scores on the Y variable are located along the
ordinate and scores of the X variable are placed along the abscissa. Then a dot
corresponding to the ihtersection of each (pair of X-Y coordinates) X and Y
score is plotted. The overall configuration of dots in the scattergram permits

an intuitive appreciation of the existence, direction, and degree of correlation

between the variables being studied. Scattergrams and Pearson r values for each
of the three hypothetical distributions have been completed and appear in Figure

10.1.
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FIGURE 10,1
BIVARTATE DATA AND SCATTERGRAMS REPRESENTING PERFECT
POSITIVE, PERFECT NEGATIVE, AND CURVILINEAR RELATIONSHIPS

a. X Y Y
1 1 5 e
2 2 4 !
3 3 3 s perfect positive:
4 4 2 * r = +1.00
5 5 1le
0 X
1 2 3 4 5
b. X Y Y
1 5 5| e
2 4 4 = .
3 3 3 . perfect negative:
4 2 2 r=-1.00
5 1 1 *
0 X
"1 2-3 4 5
c. X Y Y
1 1 5
2 2 4
3 3 3 ¢ curvilinear
4 2 2 ¢ = relationship:
5 1 1 ° . . r = 0.00
0 X
1 2 3 4 5
Example 1. The data in columns X and Y in Table 10.5 are the values for
twelve nations on the percentage of women aged 14 and above who are

economically active and the crude birth rate (defined as the number of births
in a given year per 1000 of the population).13 To determine if the data are
linearly related we construct a scattergram, Figure 10.2. The plotted points
provide evidence that X and Y are linearly related and, at the same time, indicate

a negative slope and association.
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FIGURE 16.2

SCATTERGRAM FOR DATA IN TABLE 10.5

Y' = 45.7 - .8X

5 10 15 20 25 3N 35 40 45 50
Percent of 'lomen Economically Active
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To compute the coerelation between the two sets of measurements both a
conceptual and computational formula will be provided. The former formula en-
ables one to think or conceptualize the mathematical rationale behind r while
the latter usually faciliigtes computations when some e;;tronic device (e.g.,

hand calculator) is used. The '"thinking formula" reads as follows:

r=3-EF-Y) = Zxy

Ns

S
ZRSY. Ny o
T

The numerator should have a familiar cast to it. Heretofore in computing the
standard deviation we computed mean deviation wvalues, that is, the extent to
which a raw score deviates from the mean of its distribution. With r we first
obtain the mean deviates for each score on each variable, multiply the mean de-
viates together, and finally sum the mean deviate products. The numerator is
called the covariation and the covariance when divided by N. The denominator of
the formula is nothing more than the number of observations (N) multiplied by the
standard deviation of X (sx) and the standard deviation of Y (sY). Performing
(see working format, Table 1Q,5)
these operations and substituting,\into the r formula we have the following
correlation coefficient

r = 1807.42 = -.856
(12) (12 95) (12.08)

Let us double check the conceptual formula with a computational formula:
r=N&XY - (SX(£Y)
Fex?- =07 [z sn?]

r=_12 (6022)-(287)(319) = -,857

\[E2(8875)-(287)ZJ 22(10,231)-(319)2_’]

The two computed r's are, as expected, virtually identical.
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TABLE 10.5

AND CRUDE BIRTH RATE (Y) FOR 12 NATIONS
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Nation X Y X2 Y2 XY
Algeria 2 48 4 2304 96
Argentina 19 21 361 441 399
Denmark 34 14 1156 196 476
East Germany 40 11 1600 121 440
Guatemala 8 41 64 1681 328
India 12 37 144 1369 AN
Ireland 20 22 400 484 440
Jamaica 20 31 400 961 620
Japan 37 19 1369 361 703
Phillipines 19 42 361 1764 798
United States 30 15 900 225 450
USSR 46 18 2116 324 828
Total 287 319 8875 10,231 6022

S x2 =T x2-(gx)2/N=8875-(257)2/12=2010.92

sy2 =£v2_(3v)2/N=10,231-(319) 2/12=1750.92

S xy = EXY-(2X) EY) /N=6022-(287) (319) /12=1607.42

]

]

]l

=[ 3x% = 12.95
N

2
=[ 2y~ =12.08
N

= ZX/N = 287/12 = 23.92

= 3Y/N = 319/12 = 26.58
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To interpret r we have recourse to several guidelines. The Pearson product-
moment correlation coefficient measuresthe degree of linear relationship between

variables. It is possible for a correlation to exif; and r to be nil when the
scatterplot is curvilinear. One can imagine the computed r to fall at some point

along the correlational scale that runs the gamut from -1.0 through 0 to +1.0.
The closer to 1.0, regardless of sign, the more perfect the degree of linear fit.
Although perfect cosélaitons are rare as are r's of 0.0, a perfect positive asso-
ciation would be denoted by a sign and value of +1.0 and a perfect negative asso-

ciation by -1.0 with no linear relationship showing a value of r = 0.0.

-1.0 0 +1.0
(perfect negative r) ( no linear (perfect positive r)
correlation)

Another interpretation involvea the square of r (rz) rather than the raw corre-

lation coefficient and is called the proportional reduction in error interpreta-

tion. When r is squared the resulting value is known as the coefficient of deter-

mination and indicates how much of the variation in Y (dependent variable) is ex-
plained by X (independent variable). In short, it provides insight into the explan-
atory power of the presumed causal variable. When variables are not construed in a
causal framework as 1s the case with height and weight, the former interpretation

is probably more salient. When unity is subtracted from r2 (1.e., l—rz) a concept

called the coefficient of non-determination is produced. This latter coefficient

indicates how much of the variation in Y is not accounted for by X, or by inference,
how much variation in Y is attributable to other factors not included in the anal-
ysis (to determine and assess the contribution of other factors takes us tmto the
multivariate realm). Again, this feature is most applicable when cause-effect
connections are being explored. For illustrative purposes, the coefficients of

determination and non-determination for the data in Table 10.5 are (-.857)2=.73
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(or 73% when multiplied by 100) and .27 (or 277 when multiplied by 100), respective-
ly. Note that the two proportions total 1.00 and, similarly, the two percentages
total 100.

Simple linear Regression. Whereas the Pearsonian r measures the degree and

direction of the correlation between variables, regression analysis enhances
understanding the form of the relationship. The concept of regression implies
prediction, predicting the values of the dependent variable from a knowledge of
the values of the independent variable. Linear implies the two variables can be
described, at least roughly, by a straight line as opposed to a curved line in
which case curvilinear regression would be appropriate.

Linear Functions. Given the goal of regression, there are several additional

formulae which could be used to describe how the dependent variable Y-chaneces
as a function of the independent variable . Here we confine ourselves to the
simplest class of such mathematical formulae, those corresponding to linear
functions.
The formula YI = a + bX expresses the dependent variable Y as a linear
function of the independent variable X, with a slope b (beta) and Y-

intercept a (alpha). a and b are referred to as regression coefficients

and are constants for a given data set.

The algebraic equation for a linear function (straight line) is Y = at+ bx
where Xi stands for the value of the dependent variable one is predicting,
a is the Y-intercept, the point at which the regression line intercepts the Y
axis (also the value of Y when X = 0), and b is the regression coefficient
representing how much a change in Y ias produced by a unit change in X (also
called the slope value of the regression equation).

The task becomes one of computing the two regression constants a and b.
Several computational formulae are available but * show the ccrrespondence

between correlation and regression we will use formulae that enable us to sub-
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1o

stitute the values already computed in Table 10.5. Therefore, for determining

the Y-intercept and regression coefficient the following formulae will be used:

b =%xy = 1607.42 = -.80
$x2 2010.92

b=Y-b%=26.58 - (-.80)(23.92) = 45.7
The regression equation for these data would be expressed as:

Y' = 45.7 - .8%
This is plotted on the regression line in Figure 10.2. A word on interpretation
is in order. Because the slope (b) is negative, the relationship between the
two variables is also (this consistency must always be the case). In general,
the larger the percentage of females economically active, the smaller the crude
birth rate tends to be. Specifically, b = -.8 indicates that (on the average)
an increase of one in the percentage of economically active women correspuonds to
a decrease of .8 in the crude birth rate. This implies that if one nation has
207 of its females in the labor force and anotier has 30Z, the first nation has
8 more births per 1000 (10 x .8 = 8) population.17

How well does the prediction fit the data? Consider Algeria with an actual

crude birth rate of 48. The prediction equation is Y' = 45.7 - .8X where X = 2.

Hence, 45.7 - 1.6 = 44.1. The prediction error is the differences between actual

and predicted values. For Algeria the prediction error is 3.9. The prediction
errors are commonly referred to as residuals, " A "positive'" residual is one in
which the prediction is too small, a "negative'" residual is a prediction too large.
Notice that the algebraic sum of residuals is zero (or nearly so). Table 10.6
contains all residual errors for the twelve nations. The smaller the absolute
value of the residuals ( or the smaller the sum of the squared residuals) the
better the prediction. Graphically, the residual for an observation can be repre-
sented by the vertical distance between the actual observation and the regression

line. Figure 10.2 displays this notion.
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TABLE 10.6

PREDICTIONS ON CRUDE BIRTH RATE AND CORRESPONDING RESIDUALS

Nation Percent of Econom- Crude Predicted Crude Residual Resiqpal
ically Active Women B/R Bjrth Rate (7-Y) 2
X Y v245.7-.8% v-v
Algeria 2 48 44,10 3.90 15.21
Argentina 19 21 30.51 -9.51 90.44
Denmark 34 14 18.52 -4.52 20.43
East Germany 40 11 13.73 -2.73 S 7.85
Guatemala 8 41 39.31 1.69 2.86
India 12 37 36.11 .89 0.79
Ireland 20 22 29.71 ~7.71 59.44
Jamaica 20 31 29.71 1.29 1.66
Japan 37 19 16.13 2.87 "8.24
Philippines 19 42 30.51 11.49 132.98
United States 30 15 21.72 -6.72 45.16
USSR . 46 18 8.93 9,07 82.26
Total =0 4 =466.92

Method of Least Squares. There is a residual for each observation im a data

set. The algebraic sum of all residuals (i.e., £ (Yi - Y')) equals zero (see
column 5 of Table 10.6). The usual way to summarize the size of the residuals is
to calculate the sum of squared prediction errors.18 This quantity, denoted by.SSE,
is produced by the formula:

SSE = Z(Yi -1."H?2
In short, for each score the residual is found, squared, and the SSE is computed
by summing all squared residuals. The measure SSE is referred to as the error

sum of squares or the residual sum of squares. The better the prediction equation

the smaller the residuals and the smaller the summary measure SSE tends to be.

The prediction equation here is the one with the smallest value of SSE out of all
possible linear prediction equations. The criterion used in choosing the best
prediction equation is the one which yields the smallest sum of squared prediction
errors. In Table 10.6 (column 6) the residuals are squared and we obtain SSE =

466,92, This value is the smallest value produced by any prediction equation.
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Pearson r. The value of r can be interpreted as a ''standardized slope."
It will vary between -1.8 and +1.0 and does not depend on the units of measure-
ment (e.g., pounds, ounces, grams; yards, feet, inches, etec.). The standardiza-
tion is accomplished by multiplying the b value by the standard deviation ratio of

X and Y. r is related to the slope by the formula:

In the special case where the standard deviations of X and Y are equal, r = b.
The value of the Pearsen r can be obtained using a variety of formulae

(see endnote 15). Using the one above:

sy = 3,2 = [ 2010.92 = 12.95
N 12

s = S’zz = [T 1750.92 = 12.08
Y N 12

r =f12.95\ (-.80) = -.857
2.08

The Pearson r as a Proportional Reduction in Error Measure.

The generic PRE formula reads:
El-Ez

Ey

Rule 1 (for E,). Suppose we know the distribution of Y values without knowing

which Y value corresponds to a specific observation of X. The best predictor would
be ?; the mean of the Y variable because the mean possesses that property around
which the squared deviations will be minimal (i.e., IE(Yi - ?}2 = minimum).

Rule 2 (for E,). If we knew the relationship between X and Y, then the

best predictions for the Y values would be those using the prediction equation:
Y' = a + bX. TFor each observation we could substitute the approximate X value to

obtain the predicted Y value.
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Prediction Errors. TFor rule 1 we could obtain prediction errors by sub-~

of
tracting each Y value from the meanhg, square the mean deviates and sum the
squared mean deviates. In formula form, Z(Yi - ?)2 = errors by rule number 1

(this is called the total sum of squares, abbreviated "TSS™), or (43 - 256.583)2

+ (21 - 26.58)2 ... + (18 - 26.58)2. Or, more simply, we could obtain the total sum

of squares via: in - giY)z or 10,231 - §31922 = 1750.92,
N 12 =

For rule 2 we obtain SSE by subtracting the predicted values (Y' i) from the
actual values (Yj), square and sum. For the present data this would amount to:
2.(23 - T)?% or (48 - 44.10)%+ (21 - 30.51)2... (18 - 8.93)2. This operation
would produce a SSE of 466.92. Graphically, the computation of TSS and SSE is

represented in Figure 10.3.

FIGURE 10.3

GRAPHIC REPRESENTATION OF RULE 1 AND El’ RULE 2 AND E,

RULE 1 RULE 2
Y
¥ {
pred. error (Y-?) pred. error (Y -Y')
v 4~
Predictor for
1 T 1 Rule 1
‘ IR ' = a +bX
Predictor for
Rule 2
sum squared d v, ) sum squared errors ]
TSS = E; ! X SSE = E,
X
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Definition of measure. The proportional reduction in error achieved by using

the prediction equation instead of Y is called the coefficient of determination

and denoted by r? The PRE formula for r is:

= TSS - SSE
El TSS

Substituting the present values into the above formula yields r? = .733, or

1750.92 - 466.92 = .733
1750.92

We interpret r2 = ,73 as follows: Using the prediction equation Y' = 45.7 - .8X
the amountngror (as measured by the sum of squared errors) is 73% smaller than
when Y is used as the predictor. Equivalently, the amount of error using the
prediction formula 1s only 277 as large as the amount of error using Y as the

predictor (TSS = 1750.92; SSE = 466.92; 466.92/1750.92 = ,27).
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Summary

Descriptive statistics for bivariate distributions have been discussed in
this chapter. To understand the statistics of relationships we began with a
consideration of the most intuitively grasped procedure, that of percentaging
the table in the direction of the independent variable and comparing across
categories of thej?épendent variable. The resulting value--epsilon or the
percentage change index--indicates whether there is an association but is lim~
ited insofar as it fails to provide an exact numerical indicator of the magni-
tude of the correlation. While the epsilon procedure is a convenient first
step its limitations become particularly noticeable when researchers deal with
tables containing more than 2 x 2 dimensions. To overcome these liabilities
indices of association for the entire table are desirable.

A family of correlatiomal statistics based upon chi square were addressed.

These measures are premised on the basis of a model of no association, that is,

the obtained frequencies are systematically compared with those frequencies ex-
pected if there were no relationship between the variables. Both the phi coef-

ficient and Cramer's V were computed and interpreted as chi square or delta-based

measures of association. Another nominal level coefficient--Yule's Q--was dis-
cussed as was lambda. Since phi and Q are based upon different conceptions of
perfect relationships, special attention was paid to two distinct models of per-
fect relationships:

1) the stringent model, and 2) the 1less stringent model.

For ordinal level data two representative indices of association--Spearman's

rho and Goodman and Kruskal's gamma were presented. Examples entaliling computa-

tion and interpretation of the respective statistics were included. The elegance
of these statistics resides in their proportional reduction in error interpreta-
tion. The logic of the PRE interpretation was unfolded, particularly for gamma

computed from data in a contingency table.
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The Pearson product-moment correlation coefficient (r), another PRE statistie,

is ideally suited to use with interval-ratio level data. Since this coefficient
measures the linear relationship between variables and assumes linearity, guide-
lines for assessing this property of data sets were considered. Specifically, a
scattergram, a graphic device for bivariate data, permits the analyst to judge the
nature of the data. Calcutating and interpretating r (using PRE procedures) followed
an illustration.

Since simple regression is an extension of correlation, the linear regression
equation--Y'= a + bX--was determined and interpreted for a given set of data.
The manner in which the regression equation is used for predictive purposes was
highlighted.

Finally, since methodologists have derived and refined numerous statistics
of redationships it was necessary to be selective rather than exhaustive in
treatment. Coefficients of association with the PRE interpretation were given

special attention.

Important Concepts Discussed in This Chapter

Epsilon Gamma

Principle of the Joint Occuﬁénce. of Attributes Concordant Pairs

Principle of Covariation Discordant Pairs

Model of No Association Pairs Tied on X

Chi Square Pairs Tied on Y

Observed Frequencies Pairs Tied on X and Y

Expected Frequencies Total Numier of Pairs

Delta Pearson's r

Phi Scattergram

Cramer's V Coefficient of Determination
Yule's Q Coefficient of Non-determination

Lambda (coefficient of predictability ) Simple Linear Regression
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The Stringent Model of Perfect Correlation a (Y intercept)

The Less Stringent Model of Perfect Correlation b (slope)

Spearman's rho Proportional Reduction in Error
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Chapter 10 Endnotes

1There are several procedures for determining if two variables are related
to one another. Robert Weiss (Statistics in Social Research, N.Y.: Wiley.

has suggested five general procedures for establishing relationships bLetween
two variables. They are:

1) Departure from independence between two variables. By constructing a
model of no association (i.e., determine what the data would look like if no
relationship existed)and comparing the empirical distribution with it, one can
determine if an association exists.

2) Magnitude of subgroup differences. Assuming a cross-classification of
data one can determine if an association exists as well as its magnitude by direct
comparisons of subgroup proportions or percentages (e.g., epsilon or the per-
centage difference value).

3) Summary of pair-by-pair comparisons. Another procedure entails forming
all possible comparisons of one member of the sample with another. 1In each of
these comparisons one must decide whether the two factors occurred together or
not. When all results of the pair-by-pair comparisons are made the association
would be measured by the preponderance of concordant (same-ordered) or dis-
cordant (different ordered) pairs.

4) Proportional reduction of probable error. We first determine the
number of prediction errors by knowing emly the marginal totals of the dependent
variable. Then, with another variable, we determine the number of prediction
errors also. The more we are able to reduce prediction errors with the addéd
knowledge of the second variable the stronger is the association between the two.

5) Extent to which increments in one variable occur together with increments
in another variable. We take as our measure of association the extent to which
increases in one variable are accompanied by increases in the other, or decreases
in one by decreases in the other.




A Guide for Interpreting Coefficients of Association: Guilford’s Table

Magnitude of Raw Coefficient* Degree of Relationship
Less than or equal to .20 Slight, almost negligible
+.21to*x .40 Low correlation, definite but small
*41tox .70 Moderate correlation, substantial
+71tox .90 High correlation, marked
+91 to*1.00 Very high and dependable

*This assumes the coefficient is statistically significant!



