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INTRODUCTION TO MULTIVARIATE ANALYSES

In this chapter four of the most common multivariate statistical
methods for assessing the meaning of variables will be discussed: (1) the
procedure known as elaboration is popular when data are presented in a
contingency table format. Generally the level of measurement of such

variables is nominal or, at best, ordinal; (2) partial correlation is a

statistical procedure whereby the effect of a third variable on a bi-

variate relationship is mathematically removed; (3) multiple regression

entails constructing a multiple regression equation in which the value of
a dependent variable can be predicted from several independent variables;

and (4) multiple correlation enables an analyst to determine how much of

the variation in a single dependent variable is explained by a host of in-
dependent variables. The latter three techniques are ordinarily reserved
for interval-ratio level measurement data.

The examination of bivariate relationships is ordinarily an inter-
mediate phase between univariate and multivariate data analyses. The next
step is to ferret out the substantive implications of the outcomes so that
some causal inferences can be made. So salient is this implicit cause-
effect framework that the terms "causal analysis" and "multivariate analysis"
are often used synonymously. To impregnate the need for multivariate
analysis let us briefly review what a bivariate relationship, like the
Pearsonian r, tells us. Assuming the underlying scores are linearly related,
r tells us if an association exists, the magnitude of the association,
and the direction of the association. No matter how strong (or even perfect)

the correlation is, without the systematic introduction of other variables
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(sometimes called control variables or test factors) into the analysis

we cannot authoritatively decide if the original covariation is real or
spurious. In other words, a causal connection between two variables is
only one possible explanation among others.

To illustrate the importance and necessity of multivariate analysis
suppose the following facts were reported to you: (1) In those regions of
Europe with many storks the birth rate is high. The greater the number of
"birds" the higher the number of births. Would it be sensible for me to
argue that storks are responsible for babies? (2) The amount of property
damage resulting from a fire is associated with the number of fire engines
ending up at the fire. Could we conclude the fire engines cause the damage?
(3) The death rate is much higher among hospitalized patients than among
nonhospitalized peopl;. Should we conclude that when sick it would be ill-
advised to goto the hospital? The answer to all three queries would be an
emphatic no. To say yes would be illogical and at the same time contradict
common sense. In a statistical sense we would search for additional variables
to help explain the original correlation since the bivariate associatioms,
no matter how convincing, are not sufficient to assume a causal connection
between them.! There are at least six possible explanations for the cor-
relation between two variables. Let us briefly review these.

Possible Explanations for the Association
between Two variables X and Y.4

1. The Causal Explanation. It may turnout that Y(the dependent

variable) is a function of X(the independent variable), that is, that one

variable (X) is the cause of the other (Y). Take, for example, Boyle's law
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in thermodynamics: the pressure of a gas kept at a constant temperature
varies inverseily with the volume of the gas. In the social sciences one
is hard pressed to discover similar invariate relationships, associations
that are termed determinate. Even those explanations that are of the causal
typé are ;;ually stochastic in nature, that is,the relationship between X
and Y generally holds, or most of the time is witnessed, but rarely is the
connection invariate. The relationship between formal education and annual
income, social class and political party preference, age and conservatism
tend to be stochastic. For simplistic sake the connection between X and Y
which takes on this causal form may be diagrammed as:

X—>Y

2. The Joint Result Explanation. Sometimes X and Y are related be-

cause both are associated with a third variable. Hence, X and Y are

correlated because a third factor is the common cause. A classic illustra-

tion is the observed relationship between the number of fire engines (X)

and the dollar damage (Y) of the fire. It is not that one causes the other,

but that both are jointly affected by the same third variable (Z), namely,
or actual

the anticipatedAseverity of the fire. 1In short, if the fire is severe many

fire trucks are sent to the site and, at the same time, the potential

dollar damage is quite great. Schematically we have the following situation:

Y

3. The Intervening Effects Explanation. Superficially (and statistically)

this explanation resembles the former one. It differs from the joint explana-
tion in terms of the temporal placement of the third variable. Rather than

the third variable being antecedent to both X and Y, the third wvariable (Z) comes



431

between (i.e., intervenes) the original two. For example, political be-
havior (voting) is correlated with social class. Specifically, the higher
one's social class the greater one's tendency to vote. A third variable

which has proven to alter the original association is political interest.

In other words, if political interest is held constant (controlled in the
language of statisticians), then the original correlation is dramatically
reduced. Substantively this means that there is little difference among

members of different éocial strata when comparisons are made between/among
people with the same interest in politics. In time sequencing, political
interest comes after social class and before voting behavior making it an

intervening variable. In schematic form:

X- > Z > Y

4. The Interacting Effects Explanation. With the interacting effects

explanation the third variable may antecede or intervene X and Y but unlike

the former reasoning, Z has differential effects on the X-Y nexus. In

other words, only under certain conditions of Z does X have a particular
effect. For example, it has been demonstrated that there is a positive
correlation between socio—-economic status and sexual permissiveness. How-
ever, when church attendance is controlled, (i.e., divided into high and
low church attenders) the relationship is small or non—-existent for the
frequent church attenders (Zj;) and positive for the infrequent church
attenders (Zl)' In short, attitudes toward sexual permissiveness interact

(are differentially influenced) with church frequenting. Diagrammatically:

x< Zl\Y

Zy
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5. The Chance or Sampling Fluctation Explanation. It is always possible

that the correlation between variables is due to the idiosyncrasies of the
sampling process, even when probability samples are drawn. This is a per-
vasive explanation for the bivariate association but can be minimized with

a knowledge of sampling theory.

6. The Related Observations Explanation. An axiom underlying statis -

stical theory is that observations must be independent of each other. 1If,
for example, one studied various features of the income tax system in many
different states, the correlations between the states would be undoubtedly
high, if not perfect, not because the inter-state comparisons were causally
connected but because they were part of a common system, namely, the same
federal tax system.3 In brief, observations must not be related to each
other in this fashion but be genuinely independent.

The purpose of multivariate analysis is to clarify and elaborate the
meaning of bivariate associations. Literally, "multivariate" implies the
analysis of many ("multi") variables ("'variates"). In practice it refers
to a minimum of three<variables with which the researcher works. Multi-
variate analysis is used to determine which of the six possible explanations
listed above is plausible. To decide which of the six explanations is most
"correct" we use multivariate analysis for the first four possibilities, a
knowledge of sampling theory for deciding if the outcomes are due to the
nuances of sampling, and assure ourselves that the observations are inde-

pendent to avoid the sixth possibility.4 The major functions of multivar-

iate analysis are: 1) control, 2) interpretation, and 3) prediction.
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The first function, control, is statistical in character. In quasi-exper-
imental designs (e.g., sample surveys) where experimental and control groups
are not feasible, statistical control is substituted for experimental control.

The second function, interpretation , is achieved by studying the time order

of the X, Y, Z variables in order to decide which is antecedent, intervening,
and consequent. The third function, prediction, 1is used when we wish to
explain (the variation in) the dependent variable from a host of theoreti-
cally salient explanatory (independent) variables.”? The manner in which each
each of these functions is statistically carried out will be discussed.
Control

In laboratory experimental designs control is achieved by physically
allocating subjects to two or more groups. Ordinarily each subject is ran-
domly placed in either the control or experimental group. In brief, control
is built right into the research design of the investigation. In quasi-ex-
perimental designs, it is highly impractical and often impossible to exert
this same kind of manipulation. To accomplish its equivalency, control is
instituted after the Aata have been collected during the data analysis stage
of the study. In this latter instance control is statistical vis-a-vis physical.
Two different traditions of quantitative control exist in the statistical

literature, 1) subgroup comparison (sometimes called sub-classification) and

6

2) partial correlation.

Crosstabulation

Subgroup comparison is typically accomplished through the cross-
tabulation of variables. Crosstabulatinn techniques may be conceptually equated
to matching procedures in experimental methodologies. Under the latter circum-

stances variance control is achieved by comparing groups that are presumably the
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sames Through such matching the groups under examination are made more or less
equivalent prior to the introduction of the experimental stimulus (independent
variable). In quasi-experimental procedures this "matching" takes place at the
analytical phase and entails dividing the subjects into homogeneous subgroups
according to the categories of the control variable. Generally, only control
variables correlated with the independent and dependent variables are selected
as controls and the original bivariate association is reexamined within each of
the control variable's subdivisions.

Introduction to Elaboration

This section is devoted to a perspective for multivariate anal-
ysis that is particularly appropriate for survey data analysis. The technique
is referred to as "the Columbia school”, "the Lazarsfeld method",''the elaboration
model" or "the interpretation method". This varied nomenclature derives from
the fact that the goal is to elaborate the empirical relationships among variables
in order to interpret that relationships in the manner developed by the late
Paul Lazarsfeld (1900-1976) at Columbia University. The purpose of the elabor-
ation model, generally a non-mathematical procedure, is to comprehend the assoc-
iation between two variables, a bivariate relationship, through the simultaneous
introduction of theoretically relevant variables. It was developed primarily
through the medium of contingency tables, but the logic is both applicable and

useful with other statistical techniques.7

Steps Involved in Elaboration.

Table elaboration entails a systematic procedure involving three steps:8

(1) Two variables, generally an independent (causal) and dependent (effect),

are cross-classified. While the number of categories, levels, or
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conditions in each may vary, for heuristic purposes we will confine all
variables to dichotomies (i.e., two sub-divisions in each). This creates
what 1s called a 2 x 2 table (two categories of the independent variable
and two categories of the dependent variable). The analyst assesses the
relationship between X and Y by percentaging the table appropriately and/
9

or computing an appropriate measure of association.

(2) A third variable (Z), called a test factor or control variable,is intro-

duced and the original relationship is decomposed into two partial tables,
one for each level, category, or condition of the control variable. This
procedure is called stratifying the 2 x 2 table and creates a 2 x 2 x 2
table when dichotomized again. The selection of thg third variable is

based upon the researcher's theoretical framework and is a logical operation.

(3) The analyst evaluates the effect of Z. Two types of comparisons can be

made: (1) Compare the relationships in the partial tables with the original.
(2) Compare the relationships in one partial table with the relationship in

the other. 1In evaluating the effect of Z several different patterns can emerge.

Patterns of Elaboration.10

Depending on the strength and direction of the relationships revealed in
the zero order, conditional, and marginal tables several statistical patterns
(called cases here) may occur.ll In the cases that follow Q will be used as
the association coefficient although other correlation coefficients could be
used. Yule's Q was chosen for its computational simplicity as well as appro-
priateness for the subsequent variables' levels of measurement.12 The notation

X, Y, Z refers to the independent, dependent, and control variable, respective-

ly.
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Cose Lt Qvx = Qyxzy = Yy g,

If this pattern of relationships emerged we would conclude
that X and Y are independent of or not associated with or
affected by Z. If this configuration were to occur after
many different control variables or test factors were intro-
duced we would conclude the X was causally linked to Y. On
such occasions the X-Y relationships is upheld whether we
observe it with Z (or Z's) varying or held constant. Hence the

magnitude of the association in the partial tables (Q d

vX.2; 27
QYX.ZZ) is equal to the magnitude in the zero-order oné (QYX).

7
As Figure 11.1 indicafes, iflthe partial éssociatioﬁs ére the same as
the original one, a condition termed replication is manifest, regardless of
whether the test factor is antecedent (comes before X) or intervening
(comes between X and Y). If the original association was upheld with the

introduction of various control variables we would ultimately conclude the

initial correlation was genuine and not spurious.
(Figure 11.1 here)

Case 2: QYX 0

Qyx.z,=Qvx.z,™0

When this pattern is manifest we conclude that X and Y are either

joint results of Z or that Z is an intervening variable with regard

to X and Y. Without further evidence we cannot tell which of these
two possibilities is the more plausible one. The reason is that the
two possible explanations differ according to how X and Z are related.
In other words, nothing is known about the causal ordering or causal
linkages between the variables from the statistical results them-

selves. To make some sense out of this pattern a theoretical frame-
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work or model is invoked. The time ordering of X and Z provide

a clue. Referring to Figure " 11.1, whén the partial associa-
or

tions compared to the zero-order one are less thanAequal to zero

two patterns of elaboration can be identified: 1) explanation

and 2) interpretation. Which of these two operates is a function

of the test factor's time placement (i.e., whether it is ante-
cedent or intervening).

1) explanation. This is the term used to describe a spurious
relationship between X and Y since, when X is controlled, the ori-
ginal association is "explained away' or 'washed out". Two condi-
tions are required for this: 1) the test factor must be antecedent"
to both X and Y, and 2) the partial relationships must be zero or

substantially less than was found in the original. 2) interpretation.

The statistical results for both interpretation and explanation

are identical. Our theoretical reasoning allows us to differentiate
one from the other. Does Z come before both X and Y? If it does
"explanation" is the appropriate term. If, on the other hand, 2
comes "in between' or intervenes we have "interpreted" the mech-
anism through which the relationship occurs or the variable which
mediates the X-Y nexus.

Case 3: QYX + 0

Y.z, 5

Q -
YX.2, =0

This situation is referred to as interaction or specification.

It reveals a direct relationship between X and Y only when Z

has a certain value. It not only matters whether Z is held
constant or not, but also matters at what level Z is held
constant. In short, at one level of Z (Z; in example) we observe

a relationship between X and Y but at another level (Z in example)
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there is none. This would be revealed if the Q value in one partial table
was approximately O but in another was significantly greater than O.

As Pigure 11.1 denotes, regardless of whether or not the test factor is ante-
cedent or intervening, if the partial relations are split (i.e., one partial the
same or greater, the other less than or zero when compared with the origimal) a
pattern known as interaction has occurred, Two forms of interaction are revealed:

(1) specification when the test factor is antecedent to X and Y, and (2) prediction

when the test factor intervenes between X and Y. The term "specification" is
self-descriptive. The researcher has specified those circumstances (under that
level of Z) under which the relationship holds or does not. The label "prediction"

denotes the interaction between X and Y when Z is intervening.

Tabular Examples For Each of The Elaboration Patterns.

Example 1

Suppose we take a random sample of 156 U.S. communities to determine whether
race (X) and delinquency rates (Y) are correlated.14 Assume we provide "good"
operational definitions of our variables and ultimately categorize- race into two
subcategories--white and black--and delinquency rate into "high" and "low". Using
the principle of the joint occufence of attributes as our underlying rationale
(Chapter [0Wwe simultaneously classify the units of analysis into Table 11.1. This
is a 2 x 2 frequency and percentage contingency table. Our task is to determine if,

how much, and the direction of the association.

(Table 11.1 Here)

As a first step in untangling the bivariate relationship, percentages, appropri-
ately computed, should be entered and compared. Since race is the independent

variable and delinquency the dependent variable the column marginal totals, 69
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TABLE 1l1.1 Zero-order or Original Table

CROSS-TABULATION OF DELINQUENCY RATES BY RACE

Race (X)
-Black White
n % n %
High 45 65 30 34
Delinquency
Rates (Y)
Low 24 35 57 66

69 1007 87 100%

E = 31%
Q= .56

TABLE 11.2 First Order Partial or Conditional Tables

CROSS-TABULATION OF DELINQUENCY RATES BY RACE AND SES

a. High SES (Z4) b. Low SES (Z,)
Race (X) Race (X)
Black White Black White
n A n % n % n %
High 3 14 9 14 42 87.5 21 87.5
Delinquency
Rates (Y)
Low 18 86 54 86 6 12.5 3 12.5

21 100z 63 100%Z 48 1007 24 100%

E = 0Z E = 0%
Q=20 Q=0
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and 87, will be the percentage base and the comparison will be made across
categories of the independent variable.As can be seen in the table, epsilon (R),
the percentage difference value, is 31l. Because it is greater than zero we
know an association exists but we do not know how strong it is. To assess the
correlation one of the nominal measures of association would be.desirable

(e.g., ¥, V, Q). Suppose we use Q, substituting the cell frequencies here into
the formula in endnote #12. The association in the whole table is computed:

Q= (45) (57) -~ (30) (24) 2565 - 720 = 1845 = .56
145) (57) + (30) (24) = 2565 + 720 3285

The next stage is to decide if the association is "real™ or perhaps explained
away by another variable (recall there are six different ways to account for a
relationship between X and Y). Theory should serve as a guide at this juncture.
Social scientists are well aware that socio-economic conditions affect many
défferent pathological conditions (like delinquency) and know that both historical
and contemporary socio-economic conditions of whites and blacks- are far from
identical. In line with this rationale socio-economic status is introduced as
a control variable with two categories, high and low.15 Since the control var-
iable is dichotomized we will examine the original association under two differ-
ent homogeneous circumstances; (1) delinquency rates for whites and blacks from
high SES's will be compared (Table 11.2a) and (2) delinquency rates for whites
and blacks from low SES's will be compared (Table 1l.2bJfhese two new tables are

called partial tables;"partial” since they represent only part of the whole) or

conditional tables ("conditional®” since they display separate conditions of the :

third variable) because when the same cell frequencies in each are added together
they will produce the identical frequency that appeared in the original (sometimes

called zero order) table. For example, summing n11(3) in the high SES table and
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nll(42) in the low SES table for blacks yields a total of 45 which is cell fre-~

quency nll in the origimal table.
(Table 11.2 Here)

To determine the appropriate explanation for the original association the
same kinds of procedures are applied to the partial tables as were applied to
the original table. First, percentage the table appropriately and compare in the
opposite direction that the percentages total 100. Second, compute a measure of
association to determine the correlation in the entire table. Performing these
operations we discover that epsilon-equals zero in the "high SES" partial table (Table 11.
and zero in the "low SES' partial table

ACT&B}e 11.2b). Whenever=£;equals zero we are informed that no association exists.

As a check we go ahead and compute Q. Substituting the table data into the Q

formula:
Qg = (3)(54) - (9)(18) = 162-162 =0 =0
(3) (54) + (9)(18) 162+162 324
Qr, = (42) (3) - (21) (6) = 126-126 = 0 =0

(42) (3) + (21) (6) 126+126 252

How do we interpret this combination of outcomes? Before answering this query

directly let's again consider the range of alternatives that could occur when
comparing a zero-order table with partial tables. There are three possible

configurations that could emerge: 1) the partial associations may be identical

or nearly so to the zero order association, 2) the partial associations may vanish,

and 3) the partial associations may be different from one another. Suppose alter-

native number 1 had occured (i.e., Q = Qzl = 0z, = .56) . Since the Q values are

identical it appears that the control variable has no influence upon the X-Y nexus,

a condition called replication. If the introduction of many different control
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variables reveals the same outcome the conclusion would be that X and Y are
causally related. A researcher can never be absolutely sure this is true
because the number of control variables is theoretically infinite. However,
for the present, if several control variables yielded values identical ( or
nearly so) to the original bivariate association one could not logically say
they had an impact upon the initial relationship.

Suppose alternative number 2 occured which, in fact, did. The original
correlation of .56 completely disappeared in both partial tables. What are
we to make of this pattern? In answering this query one must decide on the
time order of the variables under examination. Technically a distinction is made
between antecedent (that variable which comes first), intervening (that variable
that comes in-between the two variables), and consequent (that variable whose
variation you wish to examine, most often this is the dependent variable) var-
iables. The consequent or dependent variable is delingquency rate (temporally,
logically, and theoretically this comes after the other two). Next we must
decide, which comes first: race or socio-economic status? Race, of course, is
fixed at the time of conception and does not change during one's lifetime while
one's socio-economic status can be altered. Hence, race is antecedent and SES
intervening. Because the control variable completely accounts for the initial
relationship between race and delinquency (no difference exists between X and Y
within each category of Z) we take refuge in the intervening effect explanation.
Conceptually, race has its influence through the medium of social class. The
original relationship cannot be labled spurious because race is still temporally
prior to SES. What is critical in explaining the association in situation number

two is the temporal sequencing of X, ¥, and Z.
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TABLE 11.3 Marginal Table

CROSS-TABULATION OF SOCIAL CLASS BY RACE

Race (X)
Black White

n VA n %

High 21 30 63 72
SES (Z)
Low 48 70 24 28

69 100z 87 100%

E = 427
Q e -071

TABLE 1l1.4 Marginal Table

CROSS-TABULATION OF DELINQUENCY RATES BY SES

SES (Z)

High Low

n % n %

High 12 14 63 87.5
Delinquency

Rates (Y)
Low 72 86 9 12.5

84 100Z 72 1007

E = 73,5%
Q e -095
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To illustrate a spurious connection between X and Y suppose we commenced
the analysis with SES and delingquency rates cross tabulated. Table 11.4 pre-
sents this arrangement. The question is: Does SES affect delinquency? Are
the two variables associated? The same principles of contingency table analysis
are applied. The percentage difference here is 73.5 and Yule's Q = -.95. SES
and delinquency are highly correlated. Is the correlation real? We introduce
race as a control (Table 11.2) and compare the association in the original table,

Q = -.95, with the association in the two partial tables.l® The Q's in the par-

tial tables are both 0. What does this configuration mean? The answer depends
upon the time sequencing of the variables. Because race is antecedent to SES
and delinquency and because the associations disappear in the partial tables
we say the original relationship is spurious. It is spurious because the
control variable which antecedes the original two completely causes the original
association to vanish. Contrast this situation with our illustration of the
relationship between racé and delinquency with SES controlled. Even though
the correlation disappeared the time ordering of the X, ¥, Z variables is
different leading us to a different substantive conclusion. The spurious out-
come is called explanation whereas the intervening outcome is called interpre-
tation.

Suppose the third alternative occurfed, that is, the partial tables' values

were different from each other. Had this been witnessed the interaction effects

explanation would have been invoked. This means that the control variable and
the antecedent variable interact in such a fashion that under differential
conditions of the control variable different outcomes occur. If Z is antecedent
to X and this pattern occurred the technical explanation would be called spec-

ification; if 2 is consequent to X the pattern is referred to as prediction.
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Results and Interpretation for Example 1.

The bivariate association betwene X (race) and Y (delinquency rates) is
# 0 since Q = .56 and € = 31. The association between X and Y in both partial
tables is = 0 since Q = 0 and EJ-O. These results highlight that elaboration
case #2 is operating. There is no direct correlation between X and Y but a re-
lationship appears in the zero-order table because both X and Y are associated
with Z. The correlation between X (race) and Z (SES) produced a Q = -,71 (Table
11.3) while the correlation between Y (delinquency rates) and Z(SES) produced a
Q = -,95 (Table 11.4). Hence it matters a great deal whether we observe the
relationship between X and Y with Z varying (as in the zero-order table) or with
2 held constant (as in the conditional tables). In particular, the relationship
between X and Y will only appear when 2 is allowed to vary. Since race antecedes-
-comes before--SER it would not be proper to arque that SES causes race. Instead,
race affects SES which in turn affects delinquency rates.

(Tables 11.3 & 11.4)

In our three variable examples, even though SES "washed out” the original
association (refer to partial tables 1ll.2a & 11.2b) race is still temporally prior
to SES. Hence, SES helps us "interpret" the original association but does not
make it spurious.

The Lazarsfeld Accounting Formula.

Paul Lazarsfeld has advanced an equation for helping us summarize and grasp

the meaning of many multivariate problems.l7 It reads as follows:

AYX =pAYX.Z1 + 8YX.Z2+ N AXZAYZ
(N1) (N2)
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This formula tells us that the original association between X and ¥ (AYX) can be
accounted for by the conditional or partial associations (AYX.Zl1 and AYX.Z2) plus
the marginal associations (AXZ and AYZ) and a ratio between the total N and the
N's in the partial tables (N/(Nj) (N2).

The formula is presented in terms of deltas (A's) which represents the dif-
ference between observed and expected cell frequencies ( Chapter 10). In a 2 x 2
table all deltas are identical except for their sign. Although the formula is
not primarily for computation--it is provided since it facilitates understanding
multivariate problems--we will demonstrate its application. 1In all cases, the
substituted delta value will be the one produced in cell njj; of the respective
tables. Hence,

11.82 = 0 + 0 +[ 156 ] (16.15) (28.38)
(84) (72)
11.82 = 11.82

The accounting formula tells us that X and Y are not related to each other
except through the fact that each is related to Z. In this situation A¥X.Zl
and AYX.Z2 equal zero and vanish from the equation. However, each variable is
related to Z and because of this the marginal tables display a departure from
independence (as can be seen by the Avalues of 16.15 and 28.38)., Such a sit-
uation allows us to conclude that Z and Y are not causally related or that their
association is spurious. It might also be said, however, that X and Y are re-

lated only to the extent that they both measure the same thing, namely, 2.

Example 2.
Suppose we examine the relationship between the numbsr of fire engines (X)

and the amount of fire damage (Y),18 Computing an association coefficient (Table

11.5) indicates a positive correlation, Q = .54. Substantively, the more trucks

that respond the greater the damage, One might hastily assume the trucks them-

selves caused the damage. However, an antecedent test factor (Z), the size of
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TABLE 1ll.5 Zero Order or Original Table

CROSS-TABULATION OF AMOUNT OF DAMAGE BY NUMBER OF FIRE ENGINES

Number of Fire Engines (X)

One Two or More
n % . .n %
Under $10,000 1050 70 287 41
Amount of
Damage (Y)
$10,000 or More 450 30 413 59
1500 100% 700 100%
E = 29
Q = .54

TABLE 11.6 First Order Partial or Conditional Tables

CROSS-TABULATION OF AMOUNT OF DAMAGE BY NUMBER OF FIRE ENGINES AND NUMBER OF ALARMS

a. One—-Alarm Fire (Z,) b. Two or More-Alarm Fire (Zz)

Number of Fire Engines (X) Number of Fire Engines (X)

One Two or More One Two or More
n % n VA n % n %
Under $10,000 950 95 190 95 100 20 100 20
Amount of
Damage (Y)
$10,000 or More 50 5 10 5 400 80 400 80
1000 100% 200 100% 500 100% 500 100%
E=20 E=0

Q=20 Q=090
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TABLE 11.7 Marginal Table

CROSS-TABULATION OF NUMBER OF ALARMS BY NUMBER OF FIRE ENGINES

Number of Fire Engines (X)

One Two or More
n % n %
One 1000 67 200 29
Number of
Alarms (Z)
Two or More 500 33 500 71
1500 100% 700 100%
E = 38
Q= .67

TABLE 11.8 Marginal Table

CROSS-TABULATION OF AMOUNT OF DAMAGE BY NUMBER OF ALARMS

Number of Alarms (Z)

One__ Two or More
n % n_ %
Under $10,000 1140 95 200 20
Amount of
Damage (Y)
$10,000 or more 60 5 800 80

1200 100z 1000 1007

E=175
Q= .97
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Le
the fire measured in terms of the number of alarms, explains away the original
association since both partials (Tables ll.6a and 11.6b) have Q's = 0., The
marginal tables, X with Z (Table 11.7) suggest that the more severe the fire
the more fire engines that respond (Q = .67) and the larger the fire (Z) the
greater the damage (Y), Q = .97 (Table 11.8).
(Tables 11.5, 11.6, 11.7, and 11.8 Here )
Since the size of the fire is temporally prior to X we say that the original

association is causally spurious, that is, we've "explained" the X-Y association.

Example 3.
Our third example begins with a slight association between anomia and residency,

Table 11.9, Q = ,05,19 We decide to introduce race (2) as a test factor since

there is reason to believe that race is associated with both residency (X) and
anomia (Y). The original table is decomposed into two partial tables, one for
each condition of race, Tables 1l.10a and 11.10b.

When this is done we observe that among whites, urban dwellers are more likely
te experience anomia than rural dwellers, Q = .36. The same is not true among
blacks. Here, rural blacks are slightly more likely to experience anomia, Q = -.06.
When the pattern of size and/or direction differ in the conditional tables we
say we have specified the relationship.

(Tables 11.9, 11.10, 11.11, and 11.12 Here)
Sunmary

The above exposition is a brief introduction to multivariate analysis using
cross tabulation as a surrogate control mechanism because with certain kinds of
research designs (i.e, sample survey) the physical allocation of subjects is
either impractical or impossible. The patterns of elaboration just discussed
are "ideal typical" in character. In actual empirical research the results are

generally not so convincing since the relationship between two variables is often
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CROSS-TABULATION OF ANOMIA BY RESIDENCY

Residency (X)

Urban Rural
o 4 n
High 257 41 116 39
Anomia (Y)
Low 369 59 184 61
626 100% 300 100%
E=2
Q = .05
TABLE 11.10

CROSS-TABULATION OF ANOMIA BY RESIDENCY BY RACE

a. b.
Whites (Z]) Blacks (Z.!)
Urban Rural Urban Rural
n A n % n Y4 n %
High 70 37 19 21 187 43 97 46
Anomia (Y)
Low 120 63 70 79 249 57 114 54
190 100% 89 100% 436 100% 211 100%
E =16 E=3
Q= .36 Q = =.06
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TABLE 11.11

CROSS-TABULATION OF RACE BY RESIDENCY

Residency (X)

Urban Rural
m n %
White 190 30 89 30
Race (Z)
Black 436 70 211 70
626 100% 300 100%
E=0
Q= .02
TABLE 11.12
CROSS-TABULATION OF AMOMIA BY RACE
Race (Z)
White Black
o % n _Z
High 89 32 284 44
Anomia (Y)
Low 190 68 363 56
279 100% 647 100%
E =12

Q= -.25
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accounted for by several variables, rarely is a single one so profound in its
affect. Furthermore, while the focus has been upon first order partial tables
it is possible to have second, third, and nth order partial tables in which case
two or more variables are simultaneously controlled. In any event, the analyst
would control for all relevant variables and the selection of these factors is

a logical and theoretical consideration, the only statistical guideline being
that the control variable be related to both the independent and dependent var-
iables.

Elaboration is a multivariate technique for ferreting out the meaning of the
relationship between two variables by systematically introducing variables thought
to be in part, or in whole, responsible for the initial association.

The meaning of the outcomes is explained in terms of the elaboration paradigm
presented in Figure 11.1.

For those who wish to pursue the subtleties and nuances that have purposively
been neglected ygur attention ig called to Morris Rosenberg's classic book The Logic

Of Survey AnalysisaQ .

PARTIAL CORRELATION
The second tradition of statistical control is commonly referred to as partial
correlation, a statistical technique that mathematically adjusts the original bivar-
iate covariation so that the influence of the control variable(s) is/are removed.
Partial correlation provides a single summary index of association to describe the
relationship between two variables while adjusting for the effects of one or more

additional variables. The additional variables are called control variables.

Conceptually, partial correlation is somewhat analogous to cross-tabulation with

test factors. However, the nature of control, as we will see, is different. The
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as
same generic query is asked hereAin elaboration, namely, what influence does

variable Z have upon X and Y? Whereas multivariate cross-tabulation procedures
can be employed with observations at any measurement level, partial correlation
is generally reserved for interval/ratio level data. Moreover, cross-—tabulation
is limited by the (often) severe reductionjin cases since each partial table will
have only part of the total number of cases. When the variables contain several
categories this attrition of cases can sometimes become statistically problematic.
With partial correlation, this liability does not occur.

Like elaboration, partial correlation can be used in a variety of ways to un-
derstand and clarifiy the relationships between three or more variables. For ex-
ample, partial correlation techniques facilitate disclosing spurious relation-
ships, locating intervening variables, and are useful in helping the researcher
make certain kinds of causal inferences.

The Logic of Partial Correlation. The formula for the most basic partial

correlation coefficient, technically a first order partial correlation, reads:

\]u-ryz% (1-r2)

In statistical notation, Y = dependent variable, X = independent variable, and
Z = control variable. The formula tells us that we want to know the correlation
21
between Y and X witSE_controlled or held constant.
Let us decompose the partial correlation formula to better see what each term

represents.22 The numerator involves:
I'Yx"‘ (rYZ) (er)

Note that the product (ry,) (ry4), resembles a combined measure of the effects of
Z on both X and Y, is subtracted from the original XY correlation. While not

exactly true, the product term is a kind of average r2, indicating the average
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proportion of variation in X and Y accounted for by Z. This implies that we only
consider the covariation of X and Y for the portion of the respective variances
that remains after Z has operated on both X and Y.

The denominator of the formula is a geometric mean representing the average

value of the coefficients of nondetermnination:

V@ -5 (1 - £, 2)

The coefficient of nondetermination is the proportion of unexplained variation,
{e.qg., l-rxz2 is the proportion of variation in X not explained by Z while l-rYz2
is the proportion of variation in Y not emplained by Z). This means that the
partial correlation between X and Y controlling for Z is the corkelation between
the residuals of the regressions of X on Z and Y on Z.

A graphic illustration should clarify these statements. Figures 11.2a and
11.2b represent the regression of X on Z and Y on 2, respectively. The vertical
lines from the points to the regression line represent residuals or variation un-
explained by Z. Suppose we plot new points for X and Y taking the distandce of
points from the regression lines as new scores for X and Y. These "new gcores”
are residuals and are plotted in Figures 1l.3a and 11.3b. By constructing a new
scattergram for "residual Y" on "residual X" scores we would produce Figure 11.4.
Because the points in the scattergram represent the same cases, we can compute a
correlation coefficient for these residual scores. This correlation coefficient
is the partial correlation coefficient, rYx.z'

It is unnecessary to complete the process of finding the residual scores and
then computing r for them since the computing formula does exactly that. The
purpose of illustrating this process is to give you a better appreciation of what
it means to remove the influence of Variable Z. Reflecting on this process should

convince you that Z is not held constant in the same manner as it was in con-

tingency table elaboration. The test factor Z is allowed to vary and is taken
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FIGURE 11.2

REGRESSIONS OF X ON Z AND Y ON 223

X-Variable Y-Variable

Z-Variable Z-Variable

FIGURE 1l1.3

RESIDUAL X AND Y SCORESZ%

a.

b.
Residual X's Residual Y's
+ i + 4
0 -: 0 d0
: :
FIGURE 11.4

SCATTERGRAM FOR RESIDUAL Y ON RESIDUAL X25

Residual 0
Y-Scores

Residual X-~Scores
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into account by asqgssing the correlation between X and Y for only that component
of their correlation that remains after Z has had its affect. While the techniqué
for computing the partial r is different, the same result is obtained as that for
table elaboration (i.e., Z is held constant).

Example 1. Table 11.15 presents hypothetical data (although these data are
modeled after an actual empirical investigation by Ritterband and Silberstein) on
mean achievement level (X, the independent variable), number of disorders (Y, the;
dependent variable), and percent blacks in the student body (Z, the control vari-
able).26 Since the partial correlation formula assumes the Pearson product moment
r's have already been calculated, the first step is to obtain zero-order coeffi-
cients for Tyxr rYz, and rxz. While we will not demonstrate the actual computations,
a simple computing formula for r will be presented so the reader can verify the
vatues presented here. The formula reads:

r = NEXY - (£X) (5¥)
\Exzxz - &x?] [ner? - @n?

The right hand side of the Table 11.13 presents the three zerosorder correlation
coefficients. A zero-order correlation coefficient is one containing no control
variables. A brief explanatory note is in order. The correlation, r, between mean
achievement level (X) and number of disorders (Y) is -.36. This moderate negative
correlation suggests that disorders are more frequent in those schools with low
achievement levels and the converse. The correlation between percentage black

(Z) and the number of disorders (Y) is +.54. Apparently, the larger the black
population the greater the number of disorders, and the converse. The correlation
hetween the percentage black (Z) and mean achievement level (X) is -.63 and indicates

that where the black population is large, the mean achievement level is low, and

vice versa.
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MEAN ACHIEVEMENT LEVEL (X), NUMBER OF DISORDERS (Y), AND PERCENTAGE
BLACK (Z) IN TEN HYPOTHETICAL scroorns27

School Y X Z Zero-order correlations:
£Y=35 A S 65 72 rYX- -.36
$72=173 B 2 72 55 -
) o - -363
¥=3.5 c 8 90 60 Xz
sY-2.25 D 4 76 92 Ty~ +.54
4 X=912 E 1 97 38 Standardized & understandardized
2 coefficients:
4X“=85,946 E 5 105 59 b*¥X.Z= -~,03
X=91.2 G 5 84 93 b*YZ.X= .52
sx-16.65 H 3 93 12
b = ,004
£27=539 I 2 121 24 .
2 ac - N
£.2°=35,723 J 0 109 34 sz;x ,045
Z=53.9=
89=25.83

Given this configuration of co¥relation coefficients, we suspect that the

original association between school achievement level (X) and frequency of dis-
orders (Y) is spurious. Why? Because both mean achievement and percentage black
are correlated with the number of disorders in the student body, r= -.36 and

r= +.54, respectively. To statistically determine the validity of our suspicion
it is necessary to compute the correlation between X and Y with the effects of

Z removed. This is done through the partial correlation formula presented
earlier. Substituting the appropriate values into the formula, we have:

ryx.z= =.36 - (.54)(=.63) = -.03

\“g-(.sa)z]&l- -.63)2]
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The partial correlation reveals a dramatic reduction in the magnitude of the
original association. When Z was permitted to vary r= -.36; when Z was held
constant, it diminished to virtually O (r = -.03).

What are we to make of this? Before concluding that the bivariate associa-

tion is spurious (which is implied in the statistical result) we need to make
certain assumptions about the causal structure linking the three variables. As
with the elaboration paradigm, the time ordering of the variables becomes im-

portant. Let us consider via diagrams (Figure 11.5) three possible causal strue-

tures.
FIGURE 11.5
THREE POSSIBLE CAUSAL STRUCTURES LINKING X, Y, AND 228
Model a:
X > z > Y
(achievement level) (%Z black) (frequency of disorders)
Model b: '
Y > YA > X
(frequency of disorders) (Z black) (achievement level)
Model c:
4——_—_———__~__? X (achievement level)
Z

(¢4 black)«—-\\*‘—-\‘f> Y (frequency of disorders)

Consider model a first.Note that this model would assume achievement level
affects the percent black. This reasoning would be plausible if students were

permitted to choose the high Schoolsthey attended and if black students were
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disproportionately prone to select schools with low academiec achievement. Such
conditions as these are unrealistic and this allows us to dismiss the first
alternative.

Model b implies that the frequency of disorders affects the percent black.
This 1s contrary to what we know since the black population anteceded the dis-
orders. Hence, this causal structure is also judged untenable.

Model c assumes that the percentage black preceded and is related to both
the achievement level of the school as well as the frequency of disorders. This
model is both theoretically and statistically compatible with our results.
Theoretically, the percentage black in each school affects the average achieve-
ment in the respective schools and the percentage black also affects the frequency
of disorders. Statistically, the original correlation (between X and Y) virtually
disappears when percent black is controlled. Consequently, it is appropriate to

conclude that the original assoclation is spurious.

Example 2. This illustration reveals the manner in which partial correlation

can aid in identifying explanatory variables,

To illustrate, consider the following correlation matrix ——a table containing

the correlation values among variables—— showing Pearson'r's between combinations

of eunomia, education, and income (Table 11.14).

TABLE 11.14

CORRELATION MATRIX FOR EUNOMIA , EDUCATION, AND INCOME

(¢9] (X) (Z) —
Eunomia Education Income X -]
(Y) Euncmia 1.00 .40 025 13.3444 2.4197
(X) Education 1.00 47 10.0629 3.7367

(Z) Income 1.00 5718.2 314.31
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Eunomia, a psychological state of well being, correlates with education and
income to the tune of .40 and .25, respectively. We want to determine the r
between eunomia and education with the effect of income removeq and the r '
between eunomia and income with education statistically controlled. Sub-
stituting the simple r's from the correlation matrix into the formula we
have:

YX.Z = .40 -(.25)(.47) =33

\[ - 292 [ - end

Before interpreting this partial correlation, let us compute the r between

eunomia and income with the effect of education removed. The same computing
formula may be used with the appropriate substitutions for the new control

variable. Hence,

"YZ.X = .25 - (.40)(.47) =.08

\[i - w02 i - can?]

The r between eunomia and education is .40. When the influence of

income Is removed from the bivariate association the r between eunomia and

education is reduced to .33. Resorting to the PRE interpretation, we may say

that educatlion accounts for 16 % (r2 =.402 =.16) of the variation in eunomia

but when the effects of income are removed producing an r = .33, we say

that 11% ( r 2= (.33)2 = ,1089) of the variation ineungzégzis explained by

education afié;zremoving the influence of income. Thus, some of the bivariate
to income

association between education and eunomia Is dueAbuf the relationship is not

greatly altered when income is systematically controlled.

The r between eunomia and income is .25. When the influence of education

is partialled out from the original correlation the r between eunomia and
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and income Is .08. Whereas income originally accounted for about 6% (.25%=.0625)
of the variation in eunomia, when the influence of education is removed only
about 3% (.082 = .0064) of the variation in eunomia is explained by Income.

Thus, income as an explanatory variable does not have a great deal of
independent. influence on Y. On the other hand, since the r betseen ed-

ucation and eunomia is upheld when income is controlled, we begin assessing

i+s direct causal influence on the dependent variable.

Guidelines for Interpreting Partial Correlation Coefficlem's.29 Certain

statistical conditions can be identified which will make a partial r zero or
prohibit It from being zero. Three such "ryles of thumb" will be advanced:

1) When the sigh of ryy (+he original zero-order correlation) is not
consistent with the sign of the (ry;)(ryz) product, ryx z cannot be zero.
= -,25. The product of (rXZ)(rYZ) = (.30)

XZ YZ

Suppose rY = ,45 and r__ = .30; r
X
(-.25) = —.G75. The partlal r = .57 (.45 - (.303(=.25)/ \[i- (.300L[1- (-.25%].

Of course, if one, but not both of the product terms is negative, the product
must also be negative (e.g., (rxz)(rYZ) = (,30)(-.25) = -.075). If rYx is posi-
t+ive, the numerator (when r's display different signs, on the right) becomes the
sum of two posltive quantities and hence eannot be zero. Similariy, if both

rxz and ryy are negative or if both are positive, the product (rxz)(r ) must be

YX
positive. |f "y is negative and when Fyz and rYZ have different signs, the
numerator on the right becomes the sum of two negative numbers and, again,
cannot be zero. This discussion suggests that scrutinizing the signs of the
zero-order correlations may suffice to determine some circumstances when the
partial r cannot be zero.

2) 1f ¢ Yr )Y=r, , thenr =0. |f the product term equals the

Yz Xz YX YX.Z
same value as the original bivariate association, then the partial correlation
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will be zero sincethe left+-hand side of the equation is subtracted from the
right hand side. For example, iIf rYX = .60 whereas rxz = ,20 and Fyz = .30,
then the numerator of the formula must equal zero (l.e., .60 - (.20)(.30) =
.60 - .60 = 0). In practice, then, when rYX and (rYz)(rxz) are about equal,
the partilal association itself will be approximately zero. Of course, the
denominator must also be taken into account. Since the denominator--the geo-
metric mean of two coefficients of nondetermination--is virtually always less
than unity(1.00), the numerator alone yields an underestimate of the first order
partial (except when rYZ and rXZ =0). Also,the numerator alone underaestimates
the first-order partial-correlation coefficient more when the correlations of
X and Y with the control variable Z are strong than when they are weak.
- 3 = S
3) The partial correlation rYx.z"rYx ifr Oor if Fyz 0. This

XZ

{s so since the numerator is just Fyy Ifr X7 =0, rYZ

the numerator of the partial r would be: .70 - (0)(.50)

.50, and ryx =,70

.70 - 0 - .70.
Furthermore, if one, but not both, of the correlations of the two variables
(X and Y) is zero, one of the terms in the denominator is |.0 and the other
will be less than |.0. If r_ is divided by a quantity less than |.0, the

YX

quotient must exceed Fyy s For example, .70-(0)(.50)
= ,90 = .90 = .90

\](l-oz)u-oZ) Jaoay

The implications of this configuration of correlationcoefficients is that
control variables uncorrelated or é6nly weakly correlated with either or both the
original variables cannot produce a first-order partial significantly different
from the initial bivariate association.

Higher-Order Partial Correlation Coefficients.

The partial correlation coefficients computed above involve a single con-
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trel variable and are termed first-order partials. The order of the partial

correlation is determined by the number of control variables. |f more than a
single control variable is introduced, the order of the control is determined
by the number of control variables. For example, with two variables it is

called a second order partial correlation, with three control variables it is

called a third order partial correlation, efc.

A formula for a second order partial correlation coefficient looks Iike
this:

rYX.ZW = TYX.Z - (TYW.Z) ("XW.Z)
2

Q (1-TYW.Z2) (1-TXW.Z%)
Notice that this "higher-order" partial is based on the same principles as the
first-order partial. The generic formula can apply to partials of any order.
However, partial correlation coefficients beyond the third order are rarely
used for two major reasons: (1) it is unlikely that four non-interacting
variables can be isolated, and (2) higher order partial correlations tend to
be cumulatively affected by measurement error.
Summary

An important difference between partial correlation techniques and those
of cross-tabulation is that in the former, unlike the latter, a single statisti-
cal index reflecting the degree of correlation between two variables control ling
tor a third (in a first order partial correlation) is produced. In cross-
tabulation, there are as many summary indices as there are categories of the
control variable. One disadvantage of the partial correlation approach is when

the partial associations vary from one level of the control variable to the next.

This condition is known as statistical interaction. In these circumstances, the

‘partial r averages out the different _partial correlations and may be detrimental
to the substantive meaning of the data. Like the elaboration paradigm presented

in the discussion of cross-tabulation the same interpretation, depending upon the



465

partial correlations in comparison to the original and the time order of the
control variable in relation to the independent variable, is applicable.

MULTIPLE REGRESSION AND MULTIPLE CORRELATION

In most social science research it is insufficient and overly simplistic
to predict the values of a dependent variable with just one independent vari-
able. For a more complete and realistic model most situations require using
several independent variables. For example, demographers have noted that
population growth in a particular geo-political region is explained by four
variables: 1) birth rate, 2) death rate, 3) immigration rate, and 4) emigration
rate. Similarly, a sensible explanation of college grade point average (GPA)
would include several indices as predictors (e.g., high school GPA, college
entrance exam scores, IQ scores, etc.).

The simultaneous influence of multiple explanatory wvariables on a single

dependent variable can be assessed by deriving a multiple regression equation.

Such a model facilitates describing the linear relationship between the depen-
dent and independent variables. The multiple regression equation is an exten-
sion of the simple bivariate model (Ch. 10) and reads:
Y'=a+ b3X+DbyZ . .. by X
Where: byX = controlling for Z . . . Xg (holding their values fixed),
Y is linearly related to X, with slope bl
boZ = controlling for X . . .Xg, Y is linearly related to Z,
with slope by
a =Y intercept (i.e., the value of Y when X . . . Xy = 0)
Y' = predicted value of Y given known values of the independent
variables
bl and b2 are called partial regression coefficients or the
regression line for each independent variable, controlling for

the other variable(s).
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Prediction. Our earlier discussion of simple linear regression will serve

as a prelude to the more complex procedure known as multiple (linear) regression.

Regression implies prediction once again while multiple denotes that more than
one predictor variable is employed in the data analysis. This regression equa-

tion is referred to as a linear, additive model. It is additive because the

effect of X (b1X) is added to the effect of Z (bzz). The property of additivity
is most salient (and will be demonstrated later in this section) since it means

that X and Z do not interact in their effects upon Y.3O

The task is to predict
the dependent variable's values from a knowledge of several (from two to K) in-
dependent variables' values. In both social research and the practical affairs
of everyday life more often than not, more than one variable is accountable
for the variation in another variable (Y). Through the construction of a multi-
ple regression equation the simultaneous effects of several independent variables
on a dependent variable can be assessed. This equation, which describes the
amount of linear relationship between the causal and effect variables, can be
more elaborately written:

Y' = ay gy, * byx.zX + byz.x2 - - .
In this equation Y' = the dependent variable, X and Z = independent variables,
ay xz = Y-intercept, and bYZ.X = partial regression coefficients (slopes) of the
regression line for each independent variable, controlling for the other variables.
Like its simple regression counterpart, the mathematical constants a and b are
estimated so that the average square error in prediction is minimized using the

least squares criterion.

The Mechanics of Computing the Multiple Regression Equation. Two distinct

stages are ordinarily entailed in computing the regression coefficients. First,
from the raw data themselves we calculate all possible pairs of correlation
coefficients among the variables.3l This would be achieved by utilizing any of
the various computing formulae for the Pearsonian r. In the present, we will

commence discussion with the r's having already been determined. Second, we use
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the correlation coefficients to obtain the various values needed for the multiple
regression equation. The raw data and related statistics appearing in Table 11.13
will be used.

For illustrative purposes we will take a hypothetical three variable case
involving mean achievement level (X), number of disorders (Y), and percentage
black (Z) in ten high schools. Our task is to predict the number of disorders
(the dependent variable) from a knowledge of mean achievement level and per-
centage black (the independent variables). To construct the multiple regression
equation, we need computing formulae to determine the standardized regression
constants (denoted by b*). To calculate b*yy , we may use the following formula
which uses the correlation coefficient among variables:

b*yx.z = Tyx ~ (ryz) (rxz)
1- (rxz)2

Conceptually, b*yx.z is a standardized regression value indicating how much of
the variation in Y is accounted for by X when the contribution of Z is removed.
In this sense b* coefficients are like partial correlation coefficients in that
the contribution of other variables is held constant or controlled.32 Generic-
ally, the first variable to the right of b* is the dependent variable (Y), the
second variable (X) is the independent variable, and the variable uséaﬁs a
control (Z) is to the right of the dot. Hence, the general formula depicts a
standardized regression formula for X and Y with Z held constant.

To compute b*yy 7 we substitute as follows:

b = -.36 - (.54)(=.63) = —.0198 = -.03
1X.2 1 = (.—63)2 6031

The other regression coefficient, b*yy x, is computed as follows:

bry, x = Tyz — (Fyx) (rgs)
1 - (rgg)®

b*YZ.X = .54 - (=.36)(=.63) = .3132 = .52
1 - (-.63)% 6031
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As a double check on our computations, a set of normal equations (not

related to the normal curve) predicting the correlation between each variable
and the dependent variable, are solved for the known b*'s. For a three vari-
able problem, the normal equations are:

bryx.z * (Txg) (O*yz x)= T

-.03 + (-.63)(.52) = -.36

(rgz ) (b*yx,z ) + DYy x = Tyz

(-.63)(~.03) + (.52) = .54
The normal equations confirm the accuracy of our original computations. Note
that the respective r's in Table 11.13 are identical to these.

The standardized regression equation using percentage black and-meam achieve-

ment level as predictors of the number of disorders would be expressed:33

Yé = ~-.03%7 + .52Z7 (the subscript Z indicates the values
are expressed in standard deviation units)

With a standardized regression equation two things are accomplished: 1) the
relative importance of the independent variables' explanatory power can be de-
termined (e.g., in predicting Y, Z is a more important variable than X). Addition-
ally, we can estimate the best prediction equation for the vatriables under scrutiny.

Interpreting the b* coefficients. The b* coefficients enable an analyst

to compare the relative importance of one variable with the contribution of other
variables in the regression equation. Since b*YZ.X is larger than b*Yx.Z we know
that a given change in the former regression value would produce a larger change
in the dependent variatle (in z score units). In fact, it is over seventeen
times (.52 # .03 = 17.33) as potent as the latter variable. For the present case
we can say that for every increase of one standard deviation unit in the per-
centage black, the number of disorders increases by .52 standard deviation units;

and with an increase of one standard deviation in mean achievement level, the
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number of disorders decreases by .03 standard deviation units. When the relative
importance of the two predictor variables are considered, it is evident that per-
centage black contributes more (b* = ,52) to explaining student disorders than
does mean achievement level (b* = -.03).

Unstandardized Regression Coefficients. The disadvantage of standardized

regression equations and coefficients is that we cannot make predictions on Y
in terms of the original score units. Fortunately, it is relatively easy to

convert standardized values into unstandardized values in the following manner:

b.

YX.ZESY/SX (b*YX.Z) = 2,25/16,65 (-.03) = -.004

byy "Sy/8; (b*y, 4) = 2.25/25.83 (.52) = .045

ay xz = Y - byx,zX ~ byz xZ

= 3,5 - (~.004)(91.2) - (.045)(53.9)

3.5 - (-.3648) - (2.4255)

1.44

Having computed both the unstandardized and the standardized regression

coefficients (sometimes called beta weights) we may check our calculatioms by

computing the standardized beta weights using the unstandardized regression

coefficients.

bh L =b o (a) = .ooa(6 )

(Sy)

b*yz.x = byz.x (sz) = .045 Qi‘ﬁ)- 52
(SY) )

Consequently, the double check confirms the originally computed standardized
beta values.
The unstandardized multiple regression equation reads:
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Substantively, this multiple regression equation means that schools with an in-
crease of one unit in the mean achievement level will witness a drop of .004

in the number of disorders. However, with an increase of one unit in the per-
centage of blacks the number of disorders will increase .045. The Y - intercept
value, 1.44, indicates how many student disruptions to expect if there were no
blacks and no mean achievement level. Practically speaking it would be virtually
impossible to have a school system with no achievement. Nevertheless, mathemat-
ically, this is the manner in which the intercept value is interpreted.

Multiple Correlation. Multiple correlation, symbolized by a capital R,

is the correlation between the dependent variable and all independent variables
used in the analysigégd is symbolized as RY XZ° The variable to the left of the

dot is the predicted (or dependent) variable. Like the simple coefficient of

determination (rz), r2 (the coefficient of multiple determination ) tells us how

much variation in the dependent variable is explained by all independent variables

in the multiple regression equatiom. Similarly, 1-R2, the coefficient pf multiple

non-determination, indicates how much of the variation in Y is due to other var-
jables not included in the multiple regression formulation. Once the standardized
regression coefficients have been determined the multiple correlation coefficient

can easily be calculated from the simple r's and the standardized regression betas

via the following formula:

2
R =(b#* Y (r ) + (b* ) (r ) = (-.03)(~.36) +(.52)(.54)=.29
Y.XZ ¥X.2  wx YZ.X  YZ
The coefficient of multiple determination for our data is computed to be:
RZ  =.29
Y.XZ

To interpret this value, we may aay that 297(.29 x 100= 29%) of the
variation in Y is accounted for by X and Z.

R2 can also be directly calculated from the zero—order correlations themselves

using this formula:
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2 -
R2y ¢7= T2yy * Tyz 2 Tyx Tyz Txz
1- r2xz

(=.36)% + (=.54)2 - 2(=.36) (.54) (=.63) =

1- (-.63)2

.1296 + .2916 - .2449 = .1763 = .29
.6031 .6031

This figure corroborates the earlier one using simple r's and standardized beta
weights. R? reaches its maximum value when the independent variables are not inter-

correlated. When multi-collinearity exists, that is, a high degree of association

between the independent variables exists, the multiple R will not be much larger
than that of the largest zero-order correlation. Ideally, although rarely the
case in practice, the explanatofy variables in the regression equation should be
independent of each other (r = 0) if maximum predictive power is to be achieved.
If the correlation between the independent variables is zero, the formula reduces
to RZY.XZ = rzYx + rZYz (and this notion can be extended to any number of inde-

pendent variables in regression analysis).

R2 can also be computed from a combination of zero-order and first-order par-
34

tial correlations as in the formula:

R2 r2

+ (1-r = (.36)2+B1-(-.36)~_z_‘-(.432) - .29

” 2 ) £2
Y.XZ X X YZ .X
The R and 32 Values. As with the simple r we may resort to the PRE interpre-
tation which indicates the percentage of variation in the dependent variable
(e.g., number of disorders) explained by all the independent variables (e.g.,
mean achievement level and percentage blacks) in the regression equation. To use
this interpretation R must be squared (just like r had to be squared) . R2 is
called the coefficient of multiple determination and its 1 - R® counterpart the

coefficient of multiple non-determination. The relationship between R and r2 is,
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of course, R2 ={R.

R2 as a Proportional Reduction in Error Measure.35 The coefficient of mul-

tiple determination (and its counterpart the coefficient of multiple nondetermin-

ation) is an analogue of the coefficient of determination (and its counterpart .the
coefficient on nondeterminatfon) produced via simple correlational analysis. The
generic PRE formula reads:
E; - Ey
Ey

Rule 1 (for E;). The dependent variable is predicted in the absence of know-
ledge of other independent variables (e.g., X, Z, . . . k). The best predictor for
each case would be the mean of Y, Y.

Rule 2 (for E,). To include data for the independent variables in the analy-

. \J -
sis the multiple regression equation: Y' = ay xz + bYX.ZX + bYZ.XZ

By substituting the appropriate X and Z values a prediction, Y', for each case can
be obtained.

Prediction Errors. For rule 1, a prediction error is Y - Y. The total pre-

diction error is summarized by the sum of squared prediction errors. For the
present data, this would be (5 - 3.5)2 + 2-3.59%+. .. (0 - 3.52. or,
equivalently','ZY2 - (ZY)Z/N. The total sum of squares, the prediction errors for
rule 1, equals 50.5. For rule 2, a prediction error is Y - Y'. Table 11.15
displays the entire process, resulting in the sum of squared errors (SSE), the
residuals squared and summed, equal to 35.7239.

Definition of Measure. The proportional reduction in error obtained by using

the linear multiple regression equation Y' = a + biX + bzz instead of Y as a pre-

dictor is:

2
R = TSS - SSE
TSS

or

50.5 - 35.7239 = .29
50.5
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Not. only does this discussion highlight the PRE logic of the multiple correlation
coefficient, it also provides another computing formula for RZ.

When RZ is computed from a sample, there is a tendency toward inflation of its
value. Hence, to correct for this known bias, statisticians recommend a correction
factor (ch) be applied which tends to reduce the original RZ value. The correction

factor is:36

ch =1-N-1Q@- &%)
N=-K-1

Substituting the present data into the formula, we have the following substitutions:
N = sample size, 10; k = the number of independent variables, 2; R2, (.29)2 = the

original uncorrected coefficient of multiple determination; therefore,

ch =1-10-1( - .29) = .09
10-2-1

The shrinkage in the corrected R2

value is due to the fact that both N and K are
small. This reduction is less substantial when N and K are large.
TABLE 11.15

ILLUSTRATING COMPUTATIONS OF SUM OF SQUARED ERRORS (RESIDUALS), SSE

Predicted Y Value
Using multiple regression

Observed Y equation: Y'=1.,44 + Residual Residual Squared
School __ Value (=.004)X + .045Z Y -Y' (¥ -¥n)2
A 5 4.42 0.580 0.3364
B 2 3.627 ~1.627 2.6471
c 8 3.78 4.220 17.8084
D 4 5.276 -1.276 1.6281
E 1 2.762 -1.762 3.1046
F 5 3.675 1.325 1.7556
G 5 5.289 -0.289 0.0835
H 3 1.608 1.392 1.9377
I 2 2.036 ~0.036 0.0013
J 0 2.534 -2.534 6.4212

=0 4 = 35.7239
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Summary

Multiple regression analysis is a statistical procedure whereby the simul-

taneous influence of multiple explanatory variables on a single dependent var-
iable can be assessed. It is an extension of simple bivariate regression and is
added to the effect of another (or others) in order to predict a dependept var-
iable‘’s value. Both standardized and unstandardized procedures and interpretations
for the multiple regression equation were discussed.

Multiple correlation, the association between a dependent variable and all

independent variables used in the analysis, was considered. Multiple correlation
coefficients can be computed from simple r's and standardized regression coeffi-

cients, simple correlation coefficients alone, and simple r's and partial correl-
ation coefficients. Each of these procedures was demonstrated. The interpreta-

tion of a multipie R is a PRE one. The proportional reduction in error interpre-

tation of R was clearly demonstrated. Two vital concepts—— (1) coefficient of

multiple determination (analogghs to the coefficient of determination for r), and

(2) coefficient of multiple non~determination (analogous to the coefficient of

nondetermination)--were considered.

Important Concepts Discussed in This Chapter

Multivariate Distributionmns Interacting Effects Explanation

Elaboration Chance or Sampling Fluctuation Explanation )
Partial Correlation Related Observations Explanation

Multiple Regression Control

Multiple Correlation Interpretation

Causal Explanation Prediction

Joint Result Explanation Subgroup Comparison

Intervening Effects Explanation Crosstabulation
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Important Concepts Discussed in This Chapter (cont.)

Patterns of Elaboration Partial Correlation Coefficients
Replication Multiple Regression Equation
Explanation Linear, Additive Model
Interpretation Standardized regression coefficients
Interaction (specification) Unstandardized regression coefficients
Prediction Coefficient of Multiple Determination
Partial Table Coefficient of Multiple Non-determination
Conditional Table R as a proportional reduction in error measure

Zero-Order Table
Chapter 11 Endnotes

1Methodologists maintain that to establish causality, four conditions must be
met: 1) there must be an association between the variables (e.g., cigarette smoking
cannot be the cause of lung cancer if the incidence of lung cancer is essentially
the same when smokers and non-smokers are compareé! 2) the presumed causal variable
must precede . in time . the presumed effect variable (e.g., if people developed
lung cancer before ever having smoked it would be ridiculous to argue the smoking
was the responsible agent); 3) the original association must not be spurious, that
is, "explained away" or "vanish" when examined in the context of additional variables;
and 4) there should be a theoretical rationale explicitly 1linking the variables
together. Each condition is necessary in the sense that it must be present, but
all must be simultaneously present to claim a cause-effect nexus. When all four

are present we have the sufficient conditions for positing a cause/effect relation-

ship between variables.
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llthe terminology for the various tables is as follows: a zero-order table is the
original table in which X and Y have been crosstabulated; the partial tables are
those which display the original X/Y relationship . within categories 6f the test
factors; the marginal tabtes are zero order tables in which the control variable
is cross-tabulated with X (one table) and Z (another table).

leuppose we lahel a 2 x 2 contingency table as follows:

X
3 X

- Yy {nmy1{ m2
Y2 inpy | np2

njj refers to the number of observations at the intersection of row 1 and colummn 1;
0y, refers to the number of observations at the intersection of row 1 and column 2;

in general nrc stands for the number of cases at the intersection of a particular
row and a particular column. Using these designations the formula for Q reads:

Q=(AD—-BC)/(AD +BC) OR (ni1) (n22)/ (n12) (n21)
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32The gimilarities and differences between standardized beta weights (b*'s) and
partial correlation coefficients (r 2" ) are noteworthy. Both reflect the
effect of an independent variable on a dependent variable when the effects of
other independent variables are mathematically adjusted. The numerator of the
standardized beta weights (sometimes called path coefficients) and the partial
correlation coefficients is identical. b*, on the one hand, indicates the amount
of change in the dependent variable (in standard score form) associated with a unit
change in the independent variable when other independent variables are mathemat-
ically controlled. Hence, b* is an asymmetric measure. ryy 7 oOn the other hand,
is a symmetric measure which expresses the relationship between two variables with
the effect of another (or others) statistically removed. In short, the partial
correlation coefficient provides a measure of the accuracy of prediction while
beta coefficients provide an indicator of the relative importance of a variable in
prediction. (Loether, H.J. & McTavish, D.G. Descriptive and Inferential Statistics:
An Introduction, 317.

33ye have expressed X, Y, and Z not as raw scores, but as standard scores (Z scores.)
Thus, the multiple regression equation can be denoted as: Y'z = b¥%, X, + Zy etc.
When the regression equation is expressed in standard score form theré is no need
for an intercept constant, a, since ¥, = 0 (the mean of z-scores equals zero).
Furthermore, the notation Y; actually refers to the predicted z-score value of the
dependent variable Y, and Xz and Z, refer to variables X and Z in standard score
terms, respectively.

347he partial correlation coefficients are computed as follows:

rYx.z = -036 — (_.63)('54)' - -00198 - -.03

J (-6 ][-¢.563 e

[i-(-.367] [1-(-.69)] 345

yz.X




