CHAPTER 12

INFERENTIAL STATISTICS:

PARAMETER ESTIMATION

AND

HYPOTHESIS TESTING
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Descriptive statistics play an important role in data analysis when either
samples or population are studied., Nevertheless, the descriptive treatment of
data focuses only upon the entity (or entities) being confronted. Frequently the
analyst desires to go beyond the data at hand and generalize to some broader phen-

omenon, This implicit inferential process is the bedrock of statistical induction.

In brief, the purpose of statistical inference is to study a sample of elements

drawn from the population and from the knowledge of the sample alone make an intel-

ligent generalization about the universe of elements from which the sample was

selected. In this section we will look at the underlying logic of parameter es-

timation, one branch of statistical inference. In the next section the other branch

of inferential statistics will be pursued, namely, hypothesis testihg.

To understand the rationale of parameter estimation (and hypothesis testing) a

knowledge of sampling theory and probability theory is indispensable. Suppose our

task is to estimate the proportion of college students at University A that partic-

ipate in intereollegiate athletics. We decide to use a sampling fraction (proport-

ion of the population sampled) of 5%. If the university enrolled 20,000, it would
be necessary to select 1,000 students., How are the sample elements, i.e., students,
chosen? We decide to conduct the survey in one large building of the campus complex,
Unbeknown to us we choose the physical education building. Suppose 750 of the 1,000
interviewed individuals indicate they participate in intercollegiate athletics. In
proportion terms, .75 (or 75%) of the respondents responded affirmatively to the
sports participation query. In inferential statistics the crux of the matter is not
to simply determine the sample outcome, instead, the sample is instrumental in
telling us about the entire set of elements. In other words, we use the few, i.e. ,
sample, to predict the many, i.e., population.

Parameters and Statisticse.

A "good" sample is representative of the population from which it is chosen.

On the basis of our sampling findings we would expect, assuming the mini-version



481

were representative, that somewhere in the neighborhood of .75 (or 75%) of all
university students engaged in intercollegiate athletics. It quickly becomes
apparent that this projected population figure is out of line, While we are not
certain we're very, very sure that the true proportion--the parameter we're attem-
pting to estimate--is not near the .75 (or 75%) sample statistic. The purpose of
parameter estimation is to estimate a population parameter--a numerical indicator
of the entire population's characteristic(s)--on the basis of a sample statistic--
a numerical characteristic determined by the outcomes of a sampling experiment.
Since it is important to differentiate population and sample characteristics, it is
conventional to let Greek letters, e.g., ® (theta), o (sigma), s (mu), represent pop-

ulation values and Roman (or Latin) letters, e.g., t, .5 ,X. , sample values.

Probability and Non-probability Sampling.

Since our hypothetical estimation problem involved estimating the proportion
of all students who participated in collegiate athletics on the basis of a subset
of students, we may raise the question, "how good an estimate is p (sample proportion)
of IT" (population proportion)? The sample estimate is not a good estimator because
of the sampling design employed.

As we've seen there are two general bodies of sampling techniques:

1) probability, and 2) non-probability approaches. Within each of these broad

categories are further subdivisions, e.g., simple random, stratified, and cluster
sampling are components of probability sampling although differences exist among
them in terms of how the sample is selected, how much information one has about the
universe, etc; purposive, quota, and accidental samples are components of the non-
probability approach. For purposes of expositing the sampling statistics logic the
specific varieties of each need not concern us, rather the critical difference be=-
tween the two is sufficient. The virtue of probability sampling is that each po-

tential sample element in the universe has an equal or known probability of being

selected. This is abbreviated "EPSEM" meaning "equal probability of selection meth-

od", In contradistinction, the non-probability sampling approach can not make such
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a claim, Under theAFase, the investigator simply samples elements that are

convenient to do so until the sample reaches the designated or desired size.
In comparing probability and non-probability sampling techniques it is
not so much that the latter is automatically unrepresentative as it is that
one remains ignorant of its representativeness. More often than not, however,
such a sample ends up being biased because probability theory can not come
to its rescue. The hypothetical sample alluded to above is a non-probability
sample. The sample proportion is biased because the sampling procedure was
faulty. If one attempts to estimate the proportion of an entire university
engaged in a particular activity, like sports, one does not draw the entire
sample, however large, solely from the physical education building,

Sources of Error in Sampling

There are two important sources of error in samplir;g.2 First, what is

termed_systematic bias or error accrues in investigations when the sampling

design is faulty (as the case is here). Second, is what is termed random,

chance, or probability error, what statisticians simply call random sampling

error, Even in randomly drawn samples this second type of error occurs,.
Systematic bias can be virtually eliminated by employing appropriate sampling
techniques, which generally means some form of probability sampling. Sampling
error can not be eliminated even in random sampling but it can be measured,

It is the fact that we can quantitatively assess the magnitude of sampling
error thatmakes probability samples so important in inferential statistics.
Let us turn to how we might select a probability sample and measure the degree

of sampling error,

Using the simple random sample (SRS) as our model we know that, by defin-
ition, it is a_sample that gives each element in the universe an equal proba-
bility of selection. The mechanics of such a procedure might be described
as #ollows, Each element in the universe is given a unique number from 1 to N,
For example, if a student roster is available (assuming the roster is exhaustive

and accurate) we might number each student from 00001 to 20,000,
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Then we select students until the desired sample size is reached. The particu-

lar elements selected may be obtained by consulting a table of random digits

and using a field of five columns (since 20,000 would take up that many colums)
select those persons whose number appears as we move up and down the colum
headings. If our sampling fraction were 5%, after we randomly selected 1,000
persons we would have to locate them, Note that random sampling requires more
work (particularly in trying to track down students) but has so many advantages
that the time, energy, and cost usually outweigh the deficits., The use of

a table of random numbers provides an operational measure of a random sample,
that is, some elements (like those housed in the pe department) do not have a
greater chance of being selected; rather, each member of the entire student
body has the same probability of being included in the sample.

Measuring Sampling Error: .Central Tendency, Dispersion, and Form of the

Sampling Distribution.

How is sampling error m@asured and how is it used to the advantage of the
researcher? The answer to these queries is not only ingenius but necessitates

a discussion of the concept sampling distribution and the central tendency,

dispersion and form of the sampling distribution. The concept of sampling dis-

tribution is a theoretical construet but the empirical generation of one should
impregnate its statistical import. Recall that the purpose of statistical
estimation ian estimate the population characteristic of interest on the basis
of a sample. We do not know the parameter values but attempt to provide reason-
ably good estimators of them, For illustrative purpose we will assume that we
do know the population parameters and reveal how probability sampling allows us
to estimate what these values are. Our example will necessarily be simplistic
for didactic purpose but the same logic applies regardless of the complexity

of the matter. Our hypothetical universe contains five individuals with sal-
aries of $10,000, $12,000, $1k4,000, $16,000 and $18,000 whose mean annual

salary we want to estimate on the basis of a sample of size two (n=2).
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The population parameter,4{, is $1),,000 and the population parameter,(fz is
$2828,43. Usually only the central tendency and dispersion of the sampling
distribution is necessary to know in parameter estimation.

Now, if we take all possible samples of size two from this hypothetical
universe,we can compute the arithmetic mean and standard deviation of this distrib-

ution. A sampling distribution is the distribution of a sample statistic that

would occur if all possible samples of a given size were taken from a fixed universe.
A sample statistic, as used in the description above, is a summary statistical

index, like the mean, and does not directly refer to individual raw score values.

To conceptualize this distribution we will construct a matrix of sample statis-

tics for this example. This matrix contains each and every possible combination

of samples of size two from a universe of five and is presented in Table 12.1

TABIE 2.1

SAMPLING DISTRIBUTION OF ARITHMETIC MEANS FOR SAMPLES OF SIZE
TWO FROM A UNIVERSE OF FIVE ELEMENTS in $1,000's

10 12 14 16 18
1010 11 12 13 14
12(11 12 13 14 15
1412 13 14 15 16
16(13 14 15 16 17
18(14 15 16 17 18

The concept of sampling distribution implies sampling with replacement, i.c.,

each selected element is thrown back into the population from which it was drawn

after it has been selected. This contrasts with sampling without replacement which

means that the particular element chosen is not returned for potential re-selec-
tion, Ordinarily if the sample is large, like our sample of 20,000 students,

it makes little difference which sampling type is employed.
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In fact, sampling without replacement is often used when the universe is large.
Speaking in probabilistic terms this does not alter the probability of elements
being chosen since, for example, the probability of selecting the first person
in a universe of 20,000 is 1/20,000 or 0005, If the element is not returned
to the population pool the probability of the second element is 1/19,999 or
.0000500025; the third is 1/19,998 or .000050005; et'cetera. Practically speaking,
with a universe of this size it doesn¥t make a great deal of difference since by
the time the 1,300th person is selected the probability has become 1/19,000 or
.0000526316.
12.1

Notiice that the entries in Table A are sample statistics, all possible
sample arithmetic means of samples of size two. A sampling distribution is a
special kind of frequency distribution and earlier we said that the salient
statistical featuregof a univariate frequency distribution are central tendency,
variability, and form. Computing statistical indices for each of these prop-
erties of the sampling distribution will provide us with a very meaningful stat-
istical lesson regarding parameter estimation.

The Mean of the Sampling Distribution

M=

Conceptually, the mean of the sampling distribution, symbolized Ax might be
thought of as a mean of means. Here it is the arithmetic average of all possible
U=

sample means of size two from a popélation of 55.1 To computel\we may sum the

twenty-five entries (which are means) in Table A4 and divide by 25. Doing this

ue = IX/N = 350/25 = 14

If we compare tne mean of the sampling distribution of means with the previously

we have:

calculated population mean we have:

M= M =L

This identity suggests that the sample mean is an unbiased estimate of the pop-

ulation mean because the mean of the sampling distribution equalsAl.
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L
Notice that it is not true to say that any single sample mean is equal to/«be-

cause it obviously is not. Probability theory apropos parameter estimation
entails a large number of occurrences, not a single one. Moreover, it is our
knowledge of the sampling distribution of a statistic, the mean in this case,
not a specific mean or the universe's characteristics (which we generally do
not know anyway) that provides the basis for the legitimacy of our inference.

The Standard Deviation of the Sampling Distribution.

Conceptually, the standard deviation of the sampling distribution, symbol-
0%
imaif, indicates the degree of variability of sample means around the parameter
mean, It is a special type of standard deviation, the standard deviation of

the distribution of sample means. To calculate(fﬁ we have:
=\ [EX2 - (EX)2/N = \lsooo . (350)2/25 =
N 25

Oz lo g
If we now compare iwithnwe notice a slight discrepancy, na.mely,ogz is an under-

estimate of the actual standard deviation of the population. Mathematically
this virtually always occurs and leads statisticians to contend that the sample

standard deviation is & biased estimate of the population standard deviation

because the standard deviation of the sampling distribution of means is less
the

thanAPopulation standard deviation., Because of this the denominator in the

ultimate estimation formula will be n-1 to correct for this known discrepancy,

The Form of the Sampling Distribution

Form or shape implies two statistical indices: 1) skewness and 2) kurtosis.
The construction of a histogram (or polygon) enables us to visually capture
the shape of the distribution and describe these properties, Let us construct a
bar graph (seeFigureliif for the quantities in Table I¥.1 Notice that the form

of their distribution takes on the appearance of the normal curve,

2
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FIGURE 12.1

FREQUENCY GRAPH OF SAMPLE MEANS FROM TABLE 9.1

1 N

10 11 12 13 14 15 16 17 18
Sample Means
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Statistical Theorems

Having discussed the mathematical properties of a sampling distribution,
a pivotal concept in inductive statistics, let us directly raise the query,
"How does a knowledge of the central tendency, dispersion, and form of the sam-
ling distribution provide a sound basis for estimating population parameters?"
Or saying it differently, "What criteria are used in judging the accuracy of a
sample estimate when the population values may never be known?" A couple of
fundamental statistical theorems interwoven with the development of the previous
concepts will provide the statistical answer.

For the ensuing discussion we are assuming random sampling., Conceptualizing
the distribution of sample statistics as a probability distribution it is sens-
sible and rational to assume that the probability of -selecting a sample of size
two with a mean of $10,000 to be 1/25 or .Oh. In other words, the probability
rnselgcting at random, acouple of individual observations with a mean of $10,000
wouldA§ﬁ4. Common sense as well as empirical verification combines to suggest
that the larger the sample size, the more individual elements included in the
sample, the closer the correspondence between the sample estimator and the pop-

ulation parameter. In more formalized terms this observation is known as the

law of large numbers and states: as the sample size n increases, the sample

statistics, e.g.,?iandfa will approximate more and more closely the population
(o}
parameters ,JX' and AP

The Central Limit Theorem

Our previous discussion of central tendency, variability, and form of the

sampling distribution is succinctlyexposited in the central limit theorem (CLT)

which describes what happens to the mean, standard deviation, and form of the
sampling distribution as n, the sample sige, becomes larger and larger (what
the mathematician calls "as the sample size is increased without limit").3 The CLT

b

has three ramifications:
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1) the mean of the sampling distribution,JL*) coincides
with the mean of the population, . That is, E(X )=aq,

2) the standard deviation of the sampling distribution,é%@

is computedcyéﬁf This expression says two things., First, the standard deviation
of the sampling distribution,é%K, is proportional to the population standard
deviation. Secondly, the standard error is also a function of n, sample size,
and as n becomes larger the corresponding standard error becomes smaller. But,
E(s ) #, making it a biased estimate.
191 3) the shape of the sampling distribution tends to normality,

(see Figureb?} i.e., takes on the appearance of the normal curve, as n is in-
creased regardless of the shape of the population from which the sample was
derived,

In a nutshell the central limit theorem states that as n becomes large
the shape of the sampling distribution tends to normality with mean,Jl;Q equal
toAA and standard deviation,frx, equal todAfmy

Point Estimates and Interval Estimates

There are two kinds of parameter estimates, When a single value is used
to estimate the corresponding population parameter it is said to be a point
estimate. When a range of values within which you estimate the population

parameter to lie is used it is called an interval estimate. For all practical

purposes estimating population proportions, i.e., the proportion in the popu~

lation that does something, votes a certain way, ad infinitum, and population
means, i.e., the mean income, height, age, etc. of the population, are the

only two types of parameter estimations with which we need to deal. In this
section the logic, computation, and interpretation of point estimates and confi-
dence intervals for a proportion and a mean will be highlighted using the prev-

ious discussion as a backdrop.
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Point Estimates are popular in the mass media basically because of (apparent)

ease of interpretation. To illustrate, at present a point estimate for the
proportion of unemployed workers is .07 (or 79, 't .07x100) while a point estim-
ate for the mean income of Americans is 653,000, These single value estimates

of the population of unemployed workers and the population mean income are fairly
easy to digest but provide no estimate of probable error (sampling error in stat-
istical vernacular). Returning to our earlier examples of estimating the pro-
portion of students participating in intercollegiate athletics and the (arith-
metic) mean income of five individuals, the proportion of .75 (750 out of 1000
students indicated affirmation of the query) and the mean of $11,000 (resulting
from randomly selecting (two) individuals with annual earnings of $10,000 and
$12,000) are single-value estimates. Both these statistical indices, .75 and
$11,000, are point estimates--single values--computed from a sample of
elements in the respective uhiverses. Statisticians prefer interval estimates

to point estimates because the former indicate the degree of accuracy or the
range within which the actual parameter values are likely to fall, Here's how
interval estimates, called confidence intervals, are constructed.

Interval estimates, like point estimates, are attempts to estimate an un~

known population parameter we'll call ©, theta. A random sample is selected

from the universe and an estimator of o, called‘g, (theta hat) a sample statistic,
is computed, This randomly selected sample value,'a, mary be thought of as a
random variable which is an estimator of 6. Like any random variable, the sample
estimate has a probability distribution, described in terms of central tendency,
dispersion, and form. Statisticians distinguish between unbiased and biased es-
timators, For example, both X and Md are unbiased estimates of the population
central tendency, i.e., E(X) and E(Md)=Al, However, the mean is preferable be-
cause it is more efficient than the median, that is, there is less variability of
sample means about the population mean than is the case with the median., In

statistical notation, 52 (X).s 2(Md).
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On the other hand, the sample variance is a biased estimator of the population
variance, because E (32) +d 2 instead, the E(s?) =\/n/n-167§2 Therefore, in
calculating the variance a modified formula is used (note the correction factor
of n-1) in the denominator , An interval estimate for a parameter may be written
as follows:

1 </ confidence limits for © are ® +k SE CY)
This equation means that the 95 and 99% confidence limits (1-.05=,95 and 1=,99 =
.01) for a parameter, 6, are determined by taking the estimate of the parameter,
labeled theta hat dg), adding to and subtracting from the point estimate a
constant (k) according to the desired confidence level. The standard scores
z=1 .96 and a z=2.58 dissect the normal curve so that 95% and 99% of its area
are contained within plus and minus values of that magnitude, times the standard
error (SE) of the sample estimator (3). A couple of illustrations will demon-
strate how the formula works.

Estimating a Population Mean

Suppose a social welfare agency of a large metropolitan community wishes
to estimate the family income of persons living in the inner-city. While it would
be possible to survey the entire geographical area it would mot be practical to
do so, Hence, a random sample of 36 individuals is drawn and each of the persons
is consulted and requested to supply the agency the?r gross yearly income. The
arithmetic mean is computed to be $6,380 and the standard deviation, $1,100. The
agency is attempting to estimated], the population yearly income and the sample mean
is used to make such an inference, To construct the 95% confidence limits the
formula below is made specific for estimating the parameters, therefore:

T =k (S/¥H)

Since we don't knowa; the population standard deviation, it is estimated from
the sample standard deviation employing the corrected formula (for known bias):

(s)/Vn-1. Substituting the present values into the formula we have:
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= s/|/n-1 {6380 + 2.58 (185.9L)
= 1100/{[35 6380 + L79.72
= 185.94 /5900.28 to b859.72

Before interpreting the 99¢ confidence interval let us compute the 95% confi-
dence limits. The only change is in k, in which case it becomes 1.96 for
1-05. =,95. Substituting we have:

16380 + 1,96 (185.9L)

6380 % 3611,k

16015.56 to I67LL.LL
The 95% confidence limits for these data extend from $#6,015.56 to $§6,7hh.lk.

What do these confidence levels mean? How are they interpreted? For one

thing, the parameter one is trying to estimate is or is not within the con-
structed interval of values. It can't be 95%(or 99%) in and 5% (or 1%) out!
Recalling that statistical principles apply to long run events as well as large
numbers of events--not single occurrences--a confidence interval is interpreted
to mean that if repeated random samples were selected and a range of values
constructed around each point estimate, we would expect about 95% (or 99%, de-
pending on the confidence level selected) of the confidence intervals to contain
the parameter value we're trying to estimate.

Notice as one's confidence increases from 95% to 99% the interval becomes
larger because of the affect of k upon SE., In other words, one can be increas-
ingly confident but at the expense of a wider band of values within which the
parameter © may actually Lie.

Our confidence or "faith" resides not in-any particular interval, but in
the procedure which is based upon statistical/mathematical principles like
the central limit theorem and the law of large 'numbers.S

Estimating a Population Proportion.
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Suppose our concern is to estimate the proportion of potential voters
who will vote for a particular Presidential candidate., Call this population
parameter T{ . As is the case with any parameter estimate we draw a random
sample, compute a statistic: purportedly estimating the population value and
construct an interval around it, A sample of 1,000 is taken and 550 of the sam-
ple indicate a preference for candidate X. To convert the frequency into a
proportion we divide f by N or 550/1,000 = .55, The specific manifestation
of the generic confidence interval formula becomes:

p+k @p) = 551 Lki5 \Iprblh )= A5t Lk4S (\Ks's)(.qs)/'/ooof

According to the parameter estimate about 90% of the time the expectation would

be that the population parameter lies between .52l and .576. Pragmatically
speaking, the electionshould favor X although a "sure" winner would not be
completely possible to prognisticate,

Summarizing the inferential technique known as parameter estimation it can
be said that the purpose is to determine what samples, particular sample stat-
istics which are estimators of population values, can tell us about populations,
particularly population parameters, There are point estimates and interval es-
timates which may be made for either population means or population proportions.
The logic of statistical estimation is achieved by understanding and interrelat-
ing the concepts of sampling distribution and its properties (central tendency,
dispersion, and form), and the central limit theorem and law of large numbers.
These same concepts provide the rationale for the other branch of inferential
statistics, namely, hypothesis testing,

Hypothesis Testing

The purpose of hypothesis testing is to use statistical knowledge and reason-

ing to make decisions in the face of uncertainty. This contrasts with the

other side of inferential statistics, parameter estimation, in which the pur-

pose is to estimate population parameters.
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In testing hypothesis we use what are termed tests of significance to help us

make a decision as to whether or not chance factors--random sampling error--
could have produced the obtained results. The basic logic behind hypothesis
testing is something that most of us have been doing our entire lives, although
it is much more formalized than that which we use in everyday affairs.6 Let us
begin by providing a link between your intuitive use of decision making under
uncertain conditions and that of hypothesis testing.

Hypothesis Testing and Intuition

The fundamental concern in hypothesis testing is to make a decision con-
cerning the likelihood that an event will occur given certain assumptions about
the existing state of affairs. Informally we utilize this logic practically
every day. For example, you ask a charming individual _ for
a date and much to your dismay the person refuses you., The essential question
is: "How likely is it that this individual would refuse you if you . were
liked?"" With a sample of one (one request denied) we can't make too much of the
evidence but suppose a second, third, . . . sixth time the person doesn't ac-
cept your solicitation for a date. You ask yourself, "How likely is it that I'd
be turned down six times assuming the other party was interested? As the law
of large numbers implies, your answer to the question could probably be answered
with a bit more certitude, although, of course, you can never be absolutely sure.
Probably you would want to reject your original assumption that the person
cared for you, reasoning that it is highly unlikely that someone would deny
you a social occasion six consecutive times if they were truly interested in
your company.

Statisticians inthe course of hypothesis testing formalize this kind of
thinking and provide precise numerical cut off points for accepting or rejecting
one's assumption about the initial state of affairs, Consider the following

example.7
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A large industrial firm has a job training program to train new employees,

Past data have indicated that it takes an average (arithemetic mean) of 2L

days to accomplish this on-the-job training program with a variability index
(standard deviation) of 1.8 days. The company is contemplating purchasing new
equipment which is quite costly but wantSto be sure that the new materials
significantly reduce the length of the training program. A random sample of 30
new employees serves as an experimental group for determining the effectiveness
of the new appratusesg. This new group of recruits reaches maximum productiv-
ity in 19.6 days. The board of trustees wants to know if 19.6 days (mean) is
significantly different from 20 days. In other words, the board decides that
unless the mean number of training days is 20 or less the equipment would not
be financially pragmatic to buy. In hypothesis testing the following steps are
taken:

1. The hypothesis to be tested must be phrased! in such a manner that evi-
dence can be brought to bear enabling it to be accepted or rejected. The reas-
on the hypothesis cannot be directly substantiated is that it is much easier
to disprove an hypothesis than to; prove it. For example, if a coin is tossed
100 times and 55 heads are flipped, do we have sufficient evidence to reject
the assumption that the coin is unbiased., The answer is probably not, even
though theoretically we'd expect 50 heads and 50 tails in 100 coin flips.,

What if 80 heads occurred on 100 tosses? Is the coin fair? While it is possible
to obtain such an outcome it is unlikely if the coin were, in fact, unbiased.
In short, it is easier to suggest that probably the coinisn't"honest" than
to conclude that it is "honest'",
Statistically speaking, we achieve this goal by formulating what is called

the null hypothesis, symbolized HO’ an hypothesis one ordinarily wants to reject

or "nullify", TFor the present example, Hg would be expressed as:
HO:G =85

Hl =AL= 20
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Notice that the null hypothesis is made with regard to parameters. In other
words a particular sample is not our concern, rather our interest is with the
probability that the sample reflects the actual state of affairs in the larger
population from which it has been selected.

The counter hypothesis, the hypothesis against which we compare the null, is

called the alternative hypothesis, symbolized Hy (or Hi). The alternative hy-

pothesis can take on three possible forms. Generically the three possibilities

are: 1) © # 8y (this is called a two tailed hypothesis or two tailed test of

significance); 2) < 90 (this is called a left-tail test in which you propose

that the parameter is less than a certain value); and 3) 9760 (this is called

a right-tail test in which you propose to test whether or not the parameter is

greater than a certain value). Sometimes these latter two conditions are called

one .tailed (or directional) hypothesis, in contrast to two tailed (or_non-direc-

tional) hypothesis. In order to decide which of the three alternative hypotheses is
most sensible the consequences of our decision must be considered. The figure

below summarizes the consequences,

If Hy is: action taken when Hj is rejected
Al >20 not buy (ok)
M.<20 buy (mistake)

If the alternative hypothesis is, in fact,JJL>2O, and we rejected the null,
the company would decide not to purchase the new equipment. Such a decision
would be ok because the criterion set by the company, namely, that only if the
new materials reduced the training period to 20 days would the expenditures be
justified. On the other hand if Hl were JA. < 20, and we rejested Hp, the de-
cision would be to buy the equipment but this would bea.mistake from the criter-
ion set. Therefore the decision is to use a one-tailed test, particularly a

left tail test.



497

or p value
2) The second step is to decide upon a level of significance &at which

the data will be tested. In rhetorical form the level of significance issue
raises the question, "How big a risk is one willing to take in rejecting Hp
when it is correct?" Again in visual form we may consider the following chart

which contrasts the conditions of with the decision to accept or reject it.
Decision Regarding H,

Accept Reject
Actu:i,l State of true ok type I error (o()
Affairs regarding
Hp false type II error ok
(B ) }

As can be seen from the chart, if Hois true and we accept it, or when Hpy is
false and we reject it the decision is correct ("ok"), But, if HO is true

and rejected we make an error (called a type I or alpha error) or if Hy is

false and we accept it we also make an error (called a type II or beta error).

Since type II errors are more complex and because statisticians prefer to avoid
type I errors it is the type I error we wish to establish as the major decision
criterion,

Common values of alpha are .05, .Ol. and .001, These levels of significance
are really policy, not statistical, matters per se. The chosen level depends
upon the consequences of making the errors themselves. Substantively an alpha
of .05 means the researcher is willing to take the risk of rejecting Hg when
HO is true 5% of the time. If this risk is too great then either the 01 or
.001 levels of significance may be employed since the probability of type I
errors is reduced to 1% of .1%, respectively. Alpha and beta errors are inverse-
ly related, you can reduce one of them only at the expense of increasing the other.
For example, in the present illustration the consequences of @ type I error means
that the company will waste money in purchasing the equipment; the consequences
of making a type II error mean that productivity will be Iost. Couching alpha

and beta errors in dollars and cents terms serves to underscore the practical

policy making nature of these decision criteria.
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3) The third step is to select a test statistic 8 (which is an estimate
of the parameter). It is imperative that the distribution (what we've previously
called the sampling distribution of the test statistic) of © be known when the
null hypothesis is true because it is only when this condition is met that
any possibility of rejecting Hy exists. Then we proceed in this fashion. The
sampling distribution of the test statistics @ is divided into two parts:

1) the region of acceptance (of Ho), and 2) the region of rejection (of Hy)e

If © falls in the critical region, the region of rejection, H, is automatically
rejected. The statistician reasons that if the null hypothesis were true and
a value of this magnitude occurs, it is highly improbable, although possible,
that the initial statement of the null was correct. As we indicated in step
two there is a remote possibility, specified by the level of significance,

that our reasoning is erroneous and H0 is, in fact, correct., However, we play
the odds and 95% vs. 5% is probably a sufficient betting strategy.

i) The fourth step involves the decision criteria. The diagram below

is the sampling distribution of the test statistic. Five percent (405 of the
sampling distribution's area) of the curve is blocked off on the left, If the

test statistics value falls in that area H. will be rejected. In other words

0
the null hypothesis will be rejected if: X -M/J/{/Z(zz.os
z= ~,645

critical
region Y

5) The final procedure is to compute the test statistic's value.

The relevant information for performing the test is:

Hy = 20 o& = .05
Hy s <20 T = -1.6U5
Therefore,
19.6 - 20.0
= =1.33

1.8/Y 30
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Does a 2z=-1.,33 lie in the region of rejection? It does not and we are obliged to
retain the null hypothesis, This means that we have not accumulated sufficient
information to believe that the new training equipment achieves the policy level
decision necessary warranting the company to purchase it. This test is called

a single sample test of significance in which a sample statistic is compared

with known population parameters, Often the parameters are not known nor is

a single sample test practical; under these circumstances a two sample test of

the differences between means may be employed.

Suppose we have two groups of students, social science majors and physical
science majors, who take a current events test. A random sample of 50 (nq)
social science majors is -selected with the social science students achieving a
mean (i;).= 500 and a standard deviation (s) = 21. A random sample of 50 (np
= 50) physical science majors is drawn and their mean (i;) is 490 with a stan-
dard deviation (Sp) of 19. The question becomes: "Is there a significant
difference between the two mean scores on the current events test?"

and physical science students

The null hypothesis is that the mean of social science studentsAis equal,
The alternative hypothesis is that the means are different. Recalling that
Hy and Hy are always specified in terms of parameter values we have:

Hosbym Mg
Hog;ﬁ#.kiik
The 405 level of significance is set, The test statistic is that of the differ-

ences between means symbolized,Jq;Xa-The standard error of the difference be-

tween means is computed to be Jgrsf . 52
n, : n, :
The sampling distribution, the normai curve, is divided into two regions of
(Table A in Appendix)
rejection since the alternative hypothesis simply predicts a difference without

indicating the direction (or tail) of the difference. Substituting the present

values we have:

500 ~ 490
= 10 - 2.5
12127+ 19° L

/50 50
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Does a z= 2,5 lie in the critical region? It does and therefore we reject

the null hypothesis and conclude that there is a statistically significant
difference between the mean current events scores of social and physical science
majors.

The Chi Square Test.

In the previous section we discussed two interval-ratio level tests of

significance, the: 1) z single sample test, and 2) z two sample test. In

this section we will consider two nominal level tests, the: 1) chi square

single sample test, and 2) chi square two sample test. Chi square is one

of the most versatile and widely used tests of statistical significance when
data are nominal in nature.

The Chi Square Single Sample Test. The chi square single sample test is

also known as a test of the goodness—of-fit. The researcher collects empirical

data and then determines how close the data "fit'" some predetermined theoretical
or hypothesized distribution. When this chi square test is used the research
analyst is attempting to determine whether an observed data distribution differs
from a theoretical one. To illustrate, if a coin were completely 'honest' one
would theoretically anticipate exactly half heads and half tails. Therefore,

if a penny were tossed 30 times we would expect 15 heads and 15 tails on the
basis of chance. Although it is improbable that we would obtain exactly 15
heads and 15 tails the chi square goodness—of-fit test would enable us to deter-
mine if the results actually obtained would frequently occur by chance if the
coin were '"fair'". If we obtained 16 heads and 14 tails, or 14 heads and 16

tails we would certainly not be disturbed about the honesty of the coin. However,
if we obtained 25 heads and 5 tails, or vice-versa, we'd surely begin to doubt
the honesty of the coin (ruling out some deception upon the coin flipper's part).
The application of this test of significance would permit us to determine the

particular outcomes that would seriously lead us to doubt the coin's honesty.
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Consider the following example from sport sociology. The World Series is
a best of seven series of baseball games. The first team to win four games is
declared the winner. Suppose there
have been seventy-six Series played. Thirteen of these have been won in four
games, 17 have been won in five games, and 15 and 31 have been won in six and
seven games, respectively. Statistically speaking, we want to know if the
observed number of games the World Series has lasted differs from chance. If
the Series was as likely to go 4 as 5 as 6 as 7 games we would expect 19
games to have lasted 4 games, 19 to have lasted 5 games and 19 to have lasted
6 and 7 games. To determine the expected frequencies we would divide N by K
where N = the total number of World Series contests and k = the number of pos-
sible games the series could last. Having presented the logic for deriving
the number of expected frequencies for each Series if one outcome was as like-
ly as another we present the chi square formula:

x2 =éi (0f - Ef)2
Eg

Where: O

f = observed frequency

E

£ expected frequency

Z

summation operator

The observed frequencies (O;) are those actually obtained through the data
collection procedure.8 The expected frequencies (Ef) are those generated under
the assumption that the Series is as likely to be of the duration 4, 5, 6, and
7 games. Translating these abstract statements into the null and alternative
hypothesis we have:

Hy: the World Series is as likely to
last 4 as 5 as 6 as 7 games

Hl: the World Series is not as likely
to last 4 as 5 as 6 as 7 games
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ef = .05
The following working table (Table 12.2) is helpful for computing the chi

square goodness-of-fit statistic.

TABLE 12.2

Working Table for Chi Square Goodness of Fit Test

# of Games 9£ Eﬁ. Of - Ef (0f - Ef) (0f - Ef)2/E¢
4 13 19 6 36 1.89
5 17 19 2 4 .21
6 15 19 4 16 .84
7 31 19 12 144 _7.58

< =10.52 = x°

The chi square value for this data set equals 10.52. What does it mean?
We consult the chi square sampling distribution (Table B in the Appendix
of the text) to assess its interpretation for the matter at hand. Along the

far left hand column of the table are listed df (degrees of freedom) values

from 1 to 30 and along the top are listed various probability levels (differ-
ent levels of significance). For the chi square goodness-of-fit test the
degrees of freedom are found by: k-1 where k = the number of categories and

1l is a constant. For the present data there are four categories (4, 5, 6,

7), hence df = 4 - 1 = 3, There exist three degrees of freedom in the present
case. At the outset we decided to test the null hypothesis at the .05 level

of significance. The value in the body of the table where df = 3 and probabil-

ity = .05 intersect is the critical value. The critical value (critical since

of the computed value equals or exceeds it the null hypothesis is rejected) is
7.815. Since the computed value is larger than the critical value, (that is,

10.52 > 7.815) the null hypothesis is rejected. The rationale for the decision
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is this: if, in fact, the null hypothesis were correct only 5 times in 100
would a chi square value of 7.815 or larger be obtained. Since 95 times out
of 100 you would not get a value of that magnitude the researcher decides to
reject the null and accept the alternative. Substantively speaking, the World
Series is significantly more likely to last a certain number of games than
others. By percentaging the various number of games the Series has lasted

we can see that 417 of the time the Series went 7 games, 22% of the time it
lasted 5 games, and 207% and 177 it went 6 and 4 games, respectively.

Thus we say that the outcome is statistically significant. To say that
the outcome is statistically significant is to imply that it is implausible
that the null hypothesis is true at the preselected level of significance.
Using statistical symbols we'd write: p&05. This means that the null hypothesis
would be expected to be true less than 5 times in 100.

The Chi Square Two Sample Test. The chi square two sample test assumes

that two randomly and independently drawn samples have been selected and the
researcher wishes to test whether the two variables are independent of each
other in the populations from which they have been selected. The data for

such a test typically appear in a contingency table. Suppose we selected a
random sample of 100 Republicans and 100 Democrats. Each individual is asked
whether they approve or disapprove of President Obama’s handling of the Iranian
affair. When the data are cross-tabulated the following contingency table

(Table 12.3) emerges.

TABLE 12.3

Attitudes Toward Obama’s Handling of the Iranian Crisis by Political Preference

Republican Democrat
Approve 40 (a) 75 (b) 115
Attitude
Disapprove 60 (c) 25 (d) 85

100 100 200
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The null hypothesis may be expressed as follows: Attitudes toward

handling of the Iranian affair are independent of political preference. The
alternative hypothesis would be: Attitudes toward handling of the
Iranian affair are related to political preference. The level of signifi-
cance is set at .0l.

The expected frequencies for the chi square two sample test are generated
using the row and column marginal totals. 1In Table 12.3 there are two row
marginal totals, 115 and 85, and two column marginal totals, 100 and 100.

To generate the expected frequencies under the truth of the null hypothesis
we multiply the row marginal total common to the cell (for which we want to
determine the expected frequency) by the column marginal total common to the
cell (for which we want to determine the expected frequency) and divide by N.
For cell a we multiply 115 by 100 and divide by 200. This process produces

an Ef for cell a of 57.5. This procedure is employed for all cells in the

contingency table. More simply, the expected frequencies in any size contingency
table are generated as follows:

Ef = (row marginal total) (column marginal total)
N

Table 12.4 contains a working format for calculating the chi square test of

independence's statistical value.

TABLE 12.4

Working Table for Computing Chi Square

Cell O¢ Eg 0 - E¢ (Of - Ef)2 (O - Ef)Z/Ef
a 40  57.5  -17.5 306.25 5.33
b 75 57.5 17.5 306.25 5.33
c 60  42.5 17.5 306.25 7.21
d 25  42.5  -17.5 306.25 7.21

<= 25,08 = x2
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We again ask, what does a chi square value of 25.08 mean? We consult the

chi square sampling distribution (Table in the Appendix), determine the
degrees of freedom for the data, and find the critical value at the inter-
section of df and the predetermined level of significance. For a chi square
test of independence the degrees of freedom are determined by: (r - 1) (c - 1)
where r = number of rows, ¢ = number of columns, and 1 (inside each set of
parentheses) is a constant. Since we have two rows and two columns, making
our table a 2 x 2 one we have 1 degree of freedom (2 - 1) (2 - 1) = 1. At
the intersection of 1 df and the .0l level of significance is found the
critical value of 6.635. This value means that if the null hypothesis were
true only 1 time in 100 would a value of 6.635 or larger be obtained. Since
our computed value is considerably larger (25.08 2 6.635) we reject the null
hypothesis at the .0l level of significance and claim that, indeed, there

is a relationship between attitudes toward handling of the Iranian
crisis and political preference. Substantively, the data in Table 12.3 tell
us that Democrats (757%) are more approving _ than are Repub-
licans (40%). Such a finding is said to be statistically significant and

is symbolized p £ .01.

The same procedure for determining the chi square test of independence's
statistical value is used regardless of the size of the table. A table could
be 7 x5, 3 x4, 6 x 8, etc. Nevertheless the same working format and process
for generating the expected frequencies would be used. Then the chi square
sampling distribution would be consulted according to df and level of signi-
ficance to determine the critical value. If the computed value is equal to
or exceeds the critical value at the chosen level of significance the null
hypothesis is rejected.

The One-Sample Runs Test. The one-sample runs test is geared to help

the researcher determine if a sample of observations is randomly distributed
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or not. Computationally, it entails a statistical procedure based on the

order or sequence of the empirical data. A run in the present context is

defined as a series of particular observations which are followed or pre-
ceded by different observations or by no specific observatioms at all. Con-
sider the following illustration.
Once again we will congider the outcomes of the World Series,

0f the seventy-six games played 46 (60 %%) have been won
by the American League representative and 30 (39 %7%) by the National League
pennant winner. To utilize the one-sample runs test the observations must
be of a dichotomous nature. A systematic tabulation of winners produced
the following sequence (A = American League team won; N = National League
team won).9 We will determine whether or not the distribution of winners
occurred in a random sequence. The data are as follows:

i 2 3

| £~

s & 1 8

o
'_l
o
H
]—l
i—l
N

AAA  NNN AAAA N AAAA N A NN AA NN  AAAA N

13 14 15 16 17 18 19 20 21 22 23 24 25
A NN AAAAA N A N A N A N AAAAAAA NN A
2 217 28 29 30 31 32 33 34 35 36 37 38 39
N A NN AA NNN A N A N A N AAA NN N

In this example there are 40 runs. The total number of runs (designated r)
permits us to determine whether or not a sample of observations (World Ser-
ies victor) is random.

The null hypothesis is that the sequence of World Series winmers occurs
in a random order. The alternative hypothesis is that the sequence is not
random. Let us choose the .05 level as the significance criterion. The sam-
ple size is 76 (the number of World Serieq%

Table C in the Appendix contains the critical values of r for the rums test
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under the truth of the null hypothesis. Notice that the rums table
(actually two different tables) includes the number of runs that are

too few as well as too many to reject H One or the other, but not

0
both, would be used for one-tailed tests (depending on the direction
specified in the alternative hypothesis). Both tables would be used

for a two-tailed (non-directional) alternative hypothesis.

To calculate r let N; = the number of American League teams who
have won the Series (Nj = 46) and Ny = the number of National League
teams who have done the same (N, = 30). To employ the one-sample runs
test we determine the sequence in which the Ny and N2 items occur and
count r, the number of runs. In our example there are 40 runs where
Ny = 20 and N9 = 20. These are indicated in the listings above. 1In the
runs tables we locate the value at the intersection of Ny and N2 and dis-
cover that an r of fourteen or less or twenty-eight or more is sufficient
to reject the null hypothesis at the .05 level.

Notice that if the observed number of runs is equal to or smaller
than 14 or equal to or larger than 28 we can reject the null hypothesis
that the World Series winners are randomly arranged. Since our r = 40 we
can reject HO and consequently conclude that the sequence of World Series
winners is not random insofar as American and National League pennant

winners are concerned. In notation form, p £ .05.

Summary
In this chapter we have briefly discussed the two branches of infer-

ential statistics: 1) parameter estimation and 2) hypothesis testing.

Parameter estimation entails selecting a random sample of population elements

and using the sample statistic(s) to estimate the population parameter(s).

Hypothesis testing involves procedures for either accepting or rejecting




508

the null hypothesis in comparison to some alternative hypothesis.
Both subdivisions of inferential statistics are based upon one's

knowledge of the sampling distribution (the distribution of all possible

sample statistics that would occur if one were to choose an indefinite

number of random samples from a fixed universe) of the statistic in ques-

tion. The nature of an empirical sampling distribution was exemplified

and special attention was paid to the correspondence between the mean and
standard deviation of both the sampling distribution and population. Research-
ers do not have to generate the sampling distributions of most statistics

since this has already been done. Instead, the analyst must know the rele-
vance of sampling distributions and how to use them.

There are two varieties of parameter estimators: 1) point estimates,

and 2) interval estimates. Point estimates are single values which have been

determined through the selection of random samples. Interval estimates consist

of a range of values within which it is probable that the parameter would
lie if a large number of confidence intervals were constructed. We demonstrated
the construction of two interval estimates, one for a proportion and a second
for a mean.

Hypothesis testing makes use of statistical knowledge and reasoning to
make decisions in the face of uncertainty. The logic of hypothesis testing
was demonstrated with special attention focused on such statistical concepts

as:. null and alternative hypotheses, level of significance, one vs. two

tailed tests, type 1 and 2 errors, region of rejection, critical value, sampl-

ing distribution, and the test statistic value. There are many different

specific tests of significance. Many statistics books give a fuller treat-
ment of the available techniques. Since our scope is to be representative
rather than exhaustive we discussed tests appropriate for the nominal, ordinal,

and interval-ratio measurement levels. For interval-ratio level data we
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illustrated the application of a z single sample test and a z two sample test.

For ordinal level data we applied the one sample runs test and for nominal

level data the application of the chi square single sample test (the goodness-

of-fit type) and the chi square test for two independent samples. These tests

should be sufficient to convey to the reader a feel and flavor for hypothesis

testing procedures.

Important Concepts Discussed in This Chapter

Inferential Statistics
Parameter Estimation
Hypothesis Testing
Parameter
Statistic
Sampling Fraction
Probability Sampling
Non-probability Sampling
Systematic Bias or Error
Random, Chance or Probability Error
Sampling Distribution
Central Tendency
Dispersion
Form
Sampling With Replacement
Sampling Without Replacement
Biased Estimate
Unbiased Estimate

Central Limit Theorem

Point Estimate

Interval Estimate

Estimating a Population Proportion
Null and Alternative Hypothesis
One-tailed test (directional test)
Two-tailed test (non-directional test)
Level of Significance

Type 1 and 2 Errors

Region of Rejection

Test Statistic Value

Critical Value

z single sample test

z two sample test

Chi Square One Sample Test (goodness-of-fit)
Chi Square Two Sample Test

Observed Frequency

Expected Frequency

Degree of Freedom

One Sample Runs Test

Run



