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CHAPTER 9

DESCRIPTIVE STATISTICS FOR

UNIVARIATE DISTRIBUTIONS






356

The purnose nf statistics 1is to assemble, describe, and in-

fer important numerical characteristics of data sets., 1In this
chapter a conncrete data set, formerly collected and analyzed by
this writer, will be subject to statistical scrutiny.

The focus of attention is on the dependent variable, in this

case the salaries of American League baseball "starters." When
explanatory or predictor variables are used, they are called in-

dependent variables., For the present we are concerned with the stat-

istical description of a single ("unilvariate") variable. The data

nriginally appeared in the popular press and listed annual salaries

of a national organization.

The Frequency Distribution.

Although statistical observations are frequently punched on

IBM cards and "run through' the computer (see chapter 7), an appre-
ciatinn of statistical prncessing 1is more easlly understood if we
assume "hand processing." In this manmer tiec 1l-3zical steps in the
analysis can be more easlily sgrasped, Table 9.1 contains the indiv-
idual salaries (in $1000's) of 138 employees.
A glance at this ungrouped data arrangement probably leaves y-m be-
fuddled. It would not be too much of an exaggeration to say that
numerical chans reigns. The initial step in dealing with raw data is
to bring some semblance of order to them (note that the term data
is plural; the singular of data is datum). Usually the data can

be reduced thrnugh the cnustruction of a frequency distribution,

an arrangement of data showing the frequeacy with which different
values of the variable occur,

(Table 9.1 here)



TABLE 9.1

SALARIES (in thousands of dollars) EARNED

BY 13g EMPLOYEES
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40 40 190 40 75 45 30 150 25 80
130 150 115 35 60 100 85 145 30 140
28 195 30 85 165 95 50 150 100 25
140 200 70 75 75 80 60 35 40 19
40 65 60 40 5G 150 30 20 75 30
60 150 30 19 150 40 250 20 50 27.5
55 40 40 90 50 60 200 20 80 25
160 50 160 45 135 45 60 75 85 19
19 80 35 50 175 32.5 135 20 19 19
180 200 125 45 19 45 135 50 200 19
160 60 35 90 140 40 120 100 100 30
175 50 70 40 40 165 100 40 100 90
80 200 75 75 120 30 250 30 50

125 175 35 100 70 25 95 - 19 110

These salaries are called "raw scores" or "ungrouped data."
TABLE 9.2
RANK DISTRIBUTION (Array) OF SALARIES SHOWN IN TABLE 1

250 165 135 100 80 60 50 40 30 20
250 160 135 100 80 60 50 40 30 20
200 160 135 100 75 60 50 40 30 20
200 160 130 95 75 60 50 40 30 19
200 150 125 95 75 60 45 40 30 19
200 150 125 99 75 60 45 40 30 19
200 150 120 90 75 55 45 40 30 19
195 150 120 920 75 55 45 40 28 19
190 150 115 85 75 50 45 35 27.5 19
180 150 110 85 70 50 40 35 25 19
175 135 100 85 70 50 40 35 25 19
175 140 100 80 70 50 40 35 25 19
175 140 100 80 65 50 40 32.5 25

165 140 100 80 60 50 40 30 20
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To begin the condensation process, it is helpful to order the data from
top to bottom or from the highest score(s) to the lowest score(s). This pro-

cedure culminates in what is termed a rank order distribution or an array such

as appears in Table 9.2, Although we still have as many score values as was
originally tallied, observation of the rank distribution (Table 9.2) already
makes it easier to grasp some important statistical features of the data., Some
of the meaningful statistical properties that can easily be identified from the
rank distribution are: 1) the largest score, sometimes called the maximum,
$250,000 in this distribution, can be noted; 2) the smallest score, sometimes
called the minimum, $19,000 in this distribution, can be pinpointed; 3) the
range (a measure of dispersion) can be determined by subtracting the smallest
score from thQ}argest score and adding one (e.g., the range for the salary data
is $232,000; L) the score which occurred most frequently, called the mode (a
measure of central tendency), can be identified by counting the score value
that was most frequent in occurrence. Here the mode is $40,000. In short, the
purpose of constructing frequency distributions is to make the data more meaning-
ful, manageable, and intelligible. The rank distribution is but one of several
types of data distributions statisticians employ. Other commonly constructed

ones are the ungrouped frequency distribution (Table 9.3) and the -grouped. fre~ -

quency distribution (Table 9.4).

(Tables 9.2 and 9.3 here)

A Grouped Distribution.

Another way we can reduce the 138 scores even further is to collapse the
scores into a range of values and indicate the frequency with which the scores
in the various groupings occur. This is exactly what a grouped frequency dis-
tribution is, a reduction of the original raw scores into a range of score
categories and then denoting how many scores take on the values encompassed

by the exact limits of the score categories. To accomplish this feat, stat-
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TABLE 9.3

UNGROUPED FREQUENCY DISTRIBUTION OF SALARIES FROM TABLE 1
WITH AS MANY CLASSES AS SALARY VALUES

Salary f Salary £
250 - 2 100 7
200 5 95 2
"195 1 90 3
190 15 85 3
180 1 80 . 5
175 3 75 7
165 2 70 3
160 3 65 1
150 6 60" 7
145 1: 55 2
140 3 50 10
135 3. 45 5
130 1 40 13
125 3 35 4
120 2 32,5 1
115 1 30 8
110 1 28 1
27,5 1

25 4

20 4

19 9

TABLE 9.4

Grouped Frequency DISTRIBUTION OF SALARIES FROM TABLE 1

Class Interval (1) f y 4 . F cum? Midpoirts
244=268 : 2 1.45 138 100,01 256
219-243 ' 0 0.00 136 98.56 . 231
194-218 6 4,35 136 98,56 206
169-193 - 5- 3.62 130 94,21 181
144-168 12 8.70 125 90.59 156
119=143 11 7.97 113 81.89 131

94-118 11 7.97 102 73.92 106
69-93 21 15,22 91 65,95 81
44-68 25 18.12 70 50.73 56
19-43 45 32.61 45 32.61 31

TOTAL 138 100.012
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isticians have advanced several guidelines that will be put forth in the form

of questions: 1) How many score categories, or class intervals as they are often

called, is desirable? The answer isthat it depends upon the range of scores,

and the meaningfulness of sub-classifying scores. However, it often turms out
that somewhere between 10 and 20 class intervals makes for a meaningful tabular
display of data. In the present case I decided upon 10 score capegories.

2) How wide (how many different scores) should the class intervals be? This

query is a function of the answer to question 1. In fact, both questions can

be answered by employing the following formmula:
class interval width = range of scores
number of class intervals

The quotient provides the appropriate width of the class intervals. Hence, for
our data the range of 232 is divided by 10 (desired number of score categories)
and the quotient tells us the approximate class interval width. That is,

232 = 23
10

There is nothing magical or final about the number of class intervals or the
width of the class intervals other than permitting a meaningful ordering of the
data. 3) Having answered items 1 and 2 the final question becomes, where do

we begin the class intervals and where do we end them? That is, what score do

we commence with and with what score do we terminate? Frequently, it is desir-
able to begin with a score one below the smallest datum collected or the smallest
datum itself and then proceed in multiples of the class interval size, For
example, the smallest salary score is 19. We will proceed in multiples of 25's
(rather than 23's) uhtil the highest score is contained within a class interval.
Table 9.4 is a grouped frequency distribution of 10 class intervals all of which
are 25 units wide.2 It is highly recommended that all class intervals be of
uniform size sinee statistical problems may occur when they are of uneven

widths,
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(Table 9.4 here)
Notice how more manageable and comprehensible the data are. Some of
the key statistical features that can readily be seen are the modal (most freq-

uently occurring class interval) class interval which ranges from 19-43. One

cautionary note is in order. Precision is sacrificed when data are grouped.

This loss of accuracy is termed grouping error (if you did not have access to

Table 9.1 you would not know exactly where the score values lie). However,

this loss is most often compensated for by facilitating statistical computations
as well as the construction of graphs (which typically necessitate a grouped
distribution) to pictorially represent the data.

The Important Statistical Properties of Frequency Distributions

Just as in any field of endeavor, to understand a phenomenon it is nec-
essary to know its nature., The same holds true for collections of data such as
that with which we are working. To better comprehend the nature of univariate
frequency distributions, statisticians ask three salient questions: 1) What is

the form or shape of the distribution? 2) What is the central tendency (or lo-

223122) of the distribution? 3) What isthe variation in the distribution?

These three queries capture the most important statistical concepts that apply
to univariate distributions. For each of these concepts--form, central tendency,
and variation--both conceptual and operational definitions (computational form-
ulae) will be provided. Computationally, each of these properties results in

a single index number that is then interpreted relative to the original distrib-

ution.

The Form of a Distribution: From Numbers to Pictures

The form or shape of a distribution can be readily grasped by converting

the numerical data into a pictorial display. That is, by constructing a graph,
a geometric image of a data set, the shape of the salary distribution can be

easily and clearly conveyed, There exist several different graphic techniques but
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three of the most important ones--polygon, histogram, and ogive--will enable us

to capture the statistical feature of the distribution known as form. Virtually
all graphic techniques use one quadrant, the first, of the Cartesian coordinate
system.3 Hence, two axes form a perpendicular and intersect at a point called
the origin. The vertical axis is called the ordinate and contains a listing of
frequencies (as in the polygen and histogram) or cumulative frequencies (as in
the ogive) while the horizontal axis is called theabécissaand contains a listing
of the midpoints of class intervals (as in the polygon), exact limits of class
intervals (as in the histogram), or upper exact limits of class intervals (as

in the ogive).h

Frequency Polygon.

We commence construction of this graphic device (and the other two)
by laying out twoperpendiculéi lines in such a manner that the vertical axis is
about 3/L4's the length of the horizontal axis. This convention

is known as the three-quarter high rule and is widely adopted in statistical

circles. The frequencies, labeled with a lower case "f", proceed from O at the
origin until we have a large enough one so that the largest frequency, L5 in

the present example, is included. The midpoints of each class interval are
uniformly spaced along the abscissa. The midpoint, the é@xact-center of a class
interval, is computed by adding one-half the class interval width to the lower
exact limyi of the class in.terval.5 A dot is placed at the intersection of a
specific class interval's midpoint and frequency of occurrence. This dot placing
is done for all class intervals and finally the dots are connected by a series
of straight lines from one adjacent dot to the next., To bring closure to the
frequency polygon it is muggested that a midpoint below the smallest midpoint
and a midpoint above the largest midpoint be addendedto the horizontal axis, and
connected with the adjacent dots to bring the graph to a close. Figure 9.1

represents the completed frequency polygon for the scores in Table 9.ue



Figure 9.1

363

45
40

35

30

56 8. 106 131 156 181 206 23l
Midpoints of Class Intervals

256 28l

X




364
(Figure 9.} here)

Any graphic procedure, like the frequency polygon, is generally not an end in
iteelf. Instead, it conveys to the researcher a sense of am important statis-
tical property of the distribution. What does the frequency polygon in Figure
9.1 tell us? In fact, the polygon provides us with a parsimonious view, albeit
not as precise as we will eventually come to see, of the properties of symmetry

(or skewness), kurtosis, central tendency, and dispersion.

Skew. If a curve is skewed it tells us that the scores are not evenly
distributed on both sides of the exact cemter, If you were to fold the curve
together at the highest point (the mode of the curve) the two sides would not
be identical. On the other hand, if one side of the curve was a mirror image
of the other the distribution would be permed symmetrical.(see Figure 9.2B).
Substantively, a skewed curve indicates scores piling up at one tail and a
sparser concentration at the other tail., Look at Figure 9.1. Notice the tendency
of scores to concentrate at the left end of the polygon and their tapering off
at the right end. Consequently, this curve is skewed (to the right) and is referred

to as a_positively skewed curve (note that the tail moves to the right side of

the abscissa and the mathmatician calls the left side negative and the right
side positive; see also Figure 9.2A).6 In terms of the salary scores this
graph tells us that the scores tend to be relatively low. The conceptual opp-

osite of a positively skewed curve is a negatively skewed curve as depicted in

Figure 9.2C, This is said td be a left skew and would indicate that the tend-
ency is for scores to concentrate at the upper end of the score categories.,
Finally, if the distribution were completely symmetrical, which means no skew
exists, the "smooth curve" frequency polygon wouldllclc;il}{e Figure 9.2B. We have

provided a verbal discussion and graphic representation of this property and

later on will provide a mathematical description of this same feature.
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(Figure 9.2 here)

Kurtosis. Kutosis refers to how peaked or flat a distribution is rel-

ative to the normal curve which is ysed as the standard for judgement., The nor-
mal curve, the symmetrical bell-shaped curve, is referred to as mesokurtic (see
figure 9.34). If a curve is more peaked than this one it is said to be leptokurtic;
(see Figure 9.3C) if more flat or depressed it is said to be playkurtic (see
Figure 9.3B). Look at Figure9.3 for visual displays of three curves differing

in kurtosis. ILater on a statistical index for kurtosis will be computed and

it will provide us with more precise mathematical description of kurtosis,

(Figaraloncizere) it
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Central Temdency. This characteristic of a distribution is commonly

called the average, a most ambiguous term because several different measures
of location actually exist. Central tendency is the score or scores around
which the distribution tends to cluster. The highest point on the curve is the
location measure called the mode, the 19-l43 class interval in the present case.

The other two common measures of central tendency--the arithmetic mean and the

median--can not be exactly determined by inspection of the graph. However, it
is possible to determine the relative position of these three indices from ex-
amining the graph., More specifically. in a symmetrical distribution the three

will bg pulled in the direction of the tail with the median inbetween the mean
statistics will coincide; in a positively skewed curve the mean and the mode

A
(which is always at the highest point of the curve); in a negatively skewed
curve the mean will be farthest to the left (in the direction of the tail)
and the median Iibetween the mean and mode., See the relative positions of mean,
median, and mode in Figure 9.h for symmetrical, positively and negatively skewed
curves,
(Figure 9.4 here)

By inspecting Figure 9.1 we observe the mode to be 31 (the midpoint of the most
frequently occurring class interval) and the mean to be larger than the median
because the curve is skewed to the right. This intuitive approach will be cor-
roborated shortdy when indices of central tendency will be calculated.

Variability. The scores are not all concentrated at the central tendency
but disperse or scatter from the distribution's center point, Variability in-
dices measure the degree of spread among the scores in the distribution. One
index of variation already discussed is the range, the distance between the
largest and smallest scores in the distribution plus one. The range provides
us with an indication of the variability of scores. In the frequency polygon
the variation a la the range is 232, Like central tendency, there are a var-

iety of statistical indices of variability and these will be shortly discussed

and computed.
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These are the four properties of a distribution to which statisticians
are attuned.h A rough estimate of their values can be obtained by inspecting
a graph 1ik:A;;eqnency polygon. We can and will be more exact when specific
formulae are employed to determine their precise mathematical value. Before
turning to the operational side of these characterisbics it behooves us to
construct and discuss two other commonly utilized graphic techniques.

< Histogram. A frequency or percentage histogram, like the frequency polygon,
7

conveys an intuitive appreciation of the shape of a distribution of scores.
It differs from the polygon insofar as bars or rectangles rather than points
connected by sbraight lines are constructed according to the frequency or per-
centage of cases in the respective class intervals. The ordinate scale contains
the number or percentage of cases, commencing with zero at the graph's origin
and terminating with the largest frequency or percentage that exisbs in the
empirical distribution. The abscissa scale contains the exact limits of the

respective class intervals. ILet us construct a percentage histogram. To

illustrate, the lowest class interval in Table 9.4 is 19-43. The lower exact
limit is 18.5 and the upper exact limit is L3.5. A rectangle encompassing the
exact limits of that interval is constructed with the height corresponding to
the percentage of cases in that particular class interval (see % colum in
Table 9.L4). Notice that the upper exact limit of a given score category is
coterminous with the lower exact limit of the next higher class interval.
Figure 9.5 contains the completed percentage histogram for these scores. It
conveys and contains the same information as the polygon (i.e., provides the
reader with an appreciation of skewness, kurtosis, central tendency, and dis-
persion). Ordinarily not both of these graphic representations of data are
constructed since one generally suffices,

(Figure 9.5 here)
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Ogive. A  cumlative frequency or cumlative percentage polygon, or

ogive, conveys a different picture of the data distribution than the other two.
It enables us to determine the mumber ( cumlative frequency) or percentage
(cumulative percentage) of cases above or below specified score categories in
the distribution. By inspecting it we can tell how many players scored above
and below certain points. To construct an ogive from the data in Table 9.h

requires some additional steps. Since the graph reflects cumulative percentages,

we must construct a cumulative percenbage column by successively adding the in-

dividual class interval percentages (see cumulative % column in Table 9.1)e Cum-
ulative percentages are denoted by "cumZ." In the fifth column of Table 9.Li we
indicate the cumulative percentages. To obtain them we begin the cumulation
process with the smallest class interval. It has a percentage of 32.6 and we
locate 32.6 in the columm labeled "cumZ.® <1hen we add to that cum@ the simple
percentage in the above adjacent column. The LL4-68 class interval has a percen-
tage of 18.2 and that 18.2 is added to the former cumulative percentage to make
50.8 and 50.8 is placed in the cumf column across from LL4-68., We proceed in this
manner until the last simple percentage is added to the previous cumilated per-
centage. As a double check the cumf? at the top of the table must correspond to
100% (although "rounding error" may yield a percentage slightly higher or lower
than 100), The top cumf in Table 9.4 corresponds to 100%.

To construct a percentage ogive, cumilative percentages are located along

the ordinate from O to 100 and the upper exact limits of the respective class in=-

tervals are located on the abscissa. A point is placed above the upper exact
limit of each class interval in accordance with the cumlative percentage of
that score category. The dots are then connected by a series of straight lines.
Ler us inspect the completed cumlative frequency polygon in Figure 9.6. It
tells us such information as 51% of all salaries fall below $68,500; 7L% of

all sa%%ies fall below $118,500; nearly 9lP#f of all salaries are less than

$193,500; etc.



Cumvulative P@.V‘C&ﬂ‘?:aﬁcg

Figure 9.6

2 CUMULATIVE PERCENTARE OK/IVE
m ( PRRNUONS. 1, N, SV ¥ Nt . PR ol SRR R NS PR % Shsie .
\/

_lll-. Y
435 685 935 185 (435 |L6S 1935 285 2435 2685
Upper Exact Lwits of Class TTnervals' -



374
(Figure 9.6 here)

In summary, the raw scores (original data) appearing in Table 9.L
have been transformed into pictures, called graphs. There are many different
kinds of graphic techniques but among the most common are those discussed and
constructed here, the frequency polygon, percentage histogram, and cumulative
percentage polygon (ogive). In general, graphs--such as the first two--convey
to us the shape or form of the distribution of scores. The form of a distribu-
tion is one very important statistical property. Usually form means skew and
kurtosis but the picture of the data also allows us to make inferences about
both central tendency and dispersion. These, then, are the important properties
of frequency distributions in which statisticians are interested: 1) symmetry

(or skew), 2) kurtosis, 3) location, and l) variation. In the next section

mathematical formulae for computing statistical indices of these properties will
be presented.

In this section we have enumerated the salient statistical properties
of data distributions and have conveyed these characteristics through the con-
struction of graphs to represent the data. Both the construction of frequency
distributions and the graphic display of them have served the function of data
reduction. The data hawe been condensed and distilled so that, as a whole, they
become more comprehensible., For each of the properties of data sets-~form,

location, variation--there exist computational formulae which provide an even

more succinct numerical description of the collected observations. In the next

section we will focus upon the computation of what are called statistical in-

dices of form (divided into skewness and kurtosis measures), central tendency,
and variability,

Statistical Indices for Describing Form, Central Tendency and Dispersion.

The form or shape of a data set is reflected in two different statistical

concepts: (1) symmetry (or skew) provides an indication of the symmetrical or asym-

metrical nature of a distribution; and (2) kurtosis describes the peakedness
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or flatness of a curve using the symmetrical mesokurtic normal curve as a criter-
ion. Since an intuitive appreciatidén of these characteristics was developed
in the last section, here mathematical formulae will serve as a cross-check on
the verbal presentation as well as providing a more precise and exact indicator
of the property in question.

Skewness. The index of skewness is called beta—-one and is symbolized
Byj. Computationally, it is determined by dividing the square of the third mo-
8

ment by the cube of the second moment or, in notation form:

beta-one (By) = m23/m32

where: my =3x2 - E3£X§X2/§l+ EZ(ZX)B/NQ

n? =$x2 - EX)°/N
N

Using this formula a By value of o942 is produced. The skewness index runs from
0 (representing symmetry) to minus (representing negative skew) to plus (repre-

senting positive skew) values, Diagrammatically:

- values 0 + values

negative skew symmetrical positive skew

To interpret the skewness index several guidelines are in order. If
a data set were perfectly symmetrical there would be no skew to the curve by
definition, and both the third moment and beta-one would be zero. On the other
hand, if the curve is negatively skewed, By will be negative; and if the curve
is positively skewed By will be positive.9 In short, if the sign is positive
the skew isto the right whereas if it is negatiwe the skew is to the left., Our
calculation of beta-one for the scores in Table 9.1 produced a value of +.9L2.
The actual graphing of the data, albeit grouped, in Figure 9.1 displayed a con-

centration of scores at the low end of the scale and tapering off at the upper end.
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Consequently, the graphic representation énd the statistical index of skew
are consistent with the index being more exact than the verbal analog.
Kurtosis. The index of kurtosis is called beta-two and is symbolized
Boe Computationally, it is determined by dividing the fourth moment by the
square of the second moment or, in notation form:10
beta=two (Bp) = mh/m.z2

where: m, = Ext -[LTXEOA) + 6ENZELA° -
D3@x)ta’]

N

m, =£x2 -Nax)z/n

Using this formula a By value of -.0L42 is produced.

To interpret the kurtotic property we can imagine a continuum with a
middle point of three (which represents a symmetrical, mesokurtic, distribution).
Values below three represent a playtykurtic (flatter than normal curve) distrib-
ution while those above three represent a leptokurtic (more peaked than normal

curve) distribution. Hence, in diagrammatic form:

values<3 3 values)3

platykurtic mesokurtic leptokurtic
The frequency polygon in Figure 9.l was judged to be platykurtic. The actual
numerical index of kurtosis just computed produced a value of =.042 (slightly
platykurtic) which is consistent with our inspection of the graphic representa-
tion of the data.

Central Tendency. Not one but several indices of central tendency are

available. The most popular measures are the arithmetic mean (symbolized X),

the median (symbolized Md or Mdn), and the mode (symbolized Mo). The choice

among these statistics is guided by three features: 1) the level of measure=-

ment of the data. Strictly speaking, the mean is generally only appropriate for

intervai—ratio data; the median for ordinal (and interval level data); and the
mode is appropriate for
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&—— data at any level of measurement; 2) the characteristics, particulary the
form, of the data. While the mean is geared to extract relevant statistical in-
formation from interval/ratio level variables, regardless of the measurement level,
when excessive skew exists the median is more appropriate. This is because the
median is a positional measure, and is not affected by extreme scores (which is

what produces the skew in the first place); and 3) the purpose of the statistic.

Arithmetic Mean. To be precise this location measure is called the "arith-

metic" mean because other less commonly used means (e.g., harmonic, geometric, and
countra-harmonic means) exist. For the raw scores in Table 9.1 the arithmetic

mean is computed using the following computational formula:

where: = the summation operator directing one to add
what follows

I, =a generic mathematical noun referring to
each and every score in the distribution

N = the total number of cases

Substituting our data into the formula for the data in Table 9.1, we have:

X =11,32, = 82,06
138

The arithmetic mean for our data is 82.06., Note, though, that thesd summary
values are in $1000's,.

To interpret the arithmetic mean we may say that the typical or average
salary is $82.06. It can be thought of as the point on the scale of scores that
out the data in much the same way that a fulcrum on a teeter—totter balances
bala.ncesAthe two ends of the board., It has two mathematical properties not pos-
sessed by the other indices of central tendency. In symbolic form these proper-

ties are:

1) S(X, =X) =0 (the algebraic sum of deviations about the arithmetic
- mean equals zero )

2) 2(%5 - f)z = minimum (the sum of squared deviations about the
mean is smaller than the sum of squared
deviations about any other number)
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Median. Two typical circumstances warrant using the median as the
index of location: 1) when data are ordinal in nature, and 2) when a data
distribution is characterized by inordinate skew. Under the latter circumstances
the fact that it is a positional measure (i.e, based upon the middle position
alone) suggests that the skew has little or no affect upon the statistic. The
median is that statistical value that bisects a distribution of scores at the
exact center so that one-half the scores fall above (i.e., are equal to or high-
er than) and one-half the scores fall below (i.e., are lower than) that point.
Notice that we're talking about the number of scores rather than the arithmetic
value of scores. This fact makes it an ordinal statistiec. To compute the
median in Table 9.1 we rust first rank order the scores from high to low or
vice versa as was done in Table 9.2, Once the scores are arrayed, if the
number of scores is even, as it is here, the median is midway between the
two middle scores. The two middle scores are 60 and 65. Substituting our data:

Min = 60 + 65 = 125 = 62.50
2 2

Suppose we had an odd number of scores (Ceges oOne more 250 which means the to=-
tal number of cases is now 139). To compute the median for an odd number of

observations the following formula is used. Hence,
an of
Mdn forhodd numberAscores =n ; 1l =139 ; l= 120 = 70th g .ore

To interpret the median we may say that one-half the scores are above
the 7O0th score and one-half the scores are below the 70th score. This interpre-
tation should make clear why it is referred to as a positional statistice.

Mode. The measure of central tendency called the mode is the easiest
to determine. In fact, although refined formulae exist, it does not demand
calculation.11 One merely inspects the distribution and determines the score,
category, or value that most often occurs. In Table 9.1, since the score of
LO occurred most often, it is the mode of the distribution. In a grouped dis-

tribution (Table 9.L) the mode is the midpoint of the most frequently occurring
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class interval or 31. The mode is sometimes called the probability average in

the sense that it is that value most probable or likely to be observed. Notice that
a score of 50 occurred almost as frequently as did a score of 19 and 30. In fact,
the distribution is almost bimodal (two score values that occurred with equally
large frequencies ). Distributions of large data sets are sometimes trimodal

(three scores that occurred with equally large frequencies) or even multi-modal

(more than three scores have equally large frequencies).
Variability. There are several different genre of variability indices

too. The most popular one is the standard deviation (symbolized s), but others

such as the range, interquartile range (Q), average deviation (AD), and index

of qualitative variation (IQU) are appropriate under certain conditions,.

Standard Deviation. This statistic is appropriate to use with interval/

ratio level data and has an interpretation possessed by no other index of var-
iability which makes it so special. Additionally, a derivative of s, the
variance (symbolized s2 and suggesting the relationship between the two) is
most frequently used in advanced statistics. To calculate the standard devia-
tion the three-step method will be introduced. This approach enables one to

see the interrelationships among three salient statistical concepts: 1) the sum

of squares (symbolizedi:x.z),l2 2) the variance (sz), and 3) the standard devia-

tion (s).

Conceptually the sum of squares is the sum of the squared deviations

about the mean. The operation X - X produces what is called a deviatien x

or mean deviate and is symbolized by the lower case x. Using this precedent the

sum of squares quantity can be expressed in notation form as zxz.
“hen the sum of squares is divided by the total number of observations,
N, the quotient is called the variance. Computationally,
% = Ex?/N
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The variance does not relate the dispersion in a data set in terms of the
original units by virtue of the squaring process. To revert back to the
original units the square root of the variance is derived ylelding the
statistic known as the standard deviation. Operationally,

s =NE 2/

For 'the data in Table 9.1 the sum of squares, variance, and standard devia-

tion will now be computed. Using the above formula would be most cumbersome
since the arithmetic mean would have to be subtracted from every score, then
squared, and finally all squared deviations added. Instead of employing
these operations a simpler computational formula for the sum of squares will
be employed, namely,
3 x® = Zxe- ()P

This operational definition directs us to square and sum all raw scores, sum
and divide it by the total number of cases. Finally the latter quantity
all raw scores and square that quantitXAis subtracted from the former and
produces the sum of squares value for this data set. Performing this opera-
tion for the data in Table 9.1l:

Zx2 = 1,359,970.5 - ‘111=§2“2 = 1,30,746,0L

To obtain the variance this quantity is divided by N or

L30,746,04 = 3,121.35
_'_6'13 = g

¥inally, the standard deviation is computed by extracting the square root of

s = \‘3,121.35 = 55,86

The standard deviation for the salary data is $55.86.

8@ =

the variance or

To interpret this family of variability measmures two different tactics

2

will be used. First of all, both s and s“ will be zero if the scores were

all concentrated at the central tendency (mean) of the distribution (a rare

phenogenon indeed) and reach a maximum when the scores are divided between
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the scale's extremes. When the above remote conditions are non-existent,
the variance can be interpreted in terms of a continuum ranging from a
minimum value determined by dividing the range by the square root of twice
the sample size to a maximum obtained by dividing the range squared by four.l3

In diagrammatic forms

minimum s2 maximm s2
2
—_—t2nge _:%?EEL__
I 2(N)

The standard deviation could be interpreted in terms of a continuum ranging

between values which are the square root of those above. For many distribu-
tions the total range encompasses about six standard deviation units. For
the present data the following specific values may be substituted into the

continuum and then our s or 82 located on the scale of possible extreme

values.
o 2 : 2
minimum s~ maximum s
232 = 13.97
\2(138) 2322 = 13,156
minimum s maximum s

\, 13.97 = 3.7 \i 13,156=116

The second mode of interpreting the standard deviation necessitates a cur=-
sory discussion of one of the most important éurves in statistics, the

normal curve (N.C.). Most statisticians prefer to think of this bell-shaped

curve in terms of standard scores (or z scores) rather than in terms of the

original measurement units (e.g., tons, years, dollars). When conceptual-

ized in this manner, the term standardized normal curve is applied to its

description making it of mch more general use than would otherwise be the

case. DBefore discussing the properties of the normal curve apropos the
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standard deviation, we must know what standard scores are and how they are
used. Conceptually, a z-score represents the magnitude and direction a raw
score deviates from the mean of a distribution in shagdard deviation units.
Operationally, the following formula is used to obtain z-scores:
z-score = X3 - X
s

For example, players with salaries of 140, 26, and 36 would have z-scores of:

z =(L0 - 82.06/55.86 = +1.0L

z = (26 - 82.09/55.86 = -1.00

z = (36 - 32.04/55.86 = -0.82
Note that the standard scores represent how far above (e.g., + 1.0L) or
below (€.gey = 1.00; = .82)the mean a raw score lies in standard deviation units.

Figure 9.7 presents a standardized normal curve illustrating several
important characteristics. The curve is gymmetrical (i.e., possesses no skew),
mesokurtic, and the three measures of cgntral tendency coincide at the maximum
height of the curve. It is described in terms of two parameters (g_ggggg;
eter is a characteristic of a population of elements) the arithmetic mean (W)
and the standard deviation (65 and contains a total area (approximately)
equal to one (1.00), unity, or 100 percent (when converted into percents).
Finally, the N.C. is asymptotic, meaning the tails (right and left) extend
to infinity without ever touching the abscissa of the graph.
(Figure 9.7 here)
Although the normal curve has a variety of uses, one important one is

to think of it as a probability distribution. To illustrate, if a distrib-

ution of scores is perfectly symmetrical then a constant proportion (or
percentage of cases) of the curve's area will fall between different points

on the curve. Specifically, approximately 3L% of the curve's area will lie



FIGURE 9.7

Relationships among Raw Scores, z Scores, and Percentiles
of a Normally Distributed Variable

34.13% | 34.13%
13.59% 13.59%
oo ] 2.15% _ _N._uﬁ _
20 30 40 50 60 70 80
Raw Scores
T T T T l i !
-3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0
z Mmoqom
T T T T T T T
13 228 15.87 50.00 B4.13 97.72 99 .87

Percentiles



384
between a +lz (or +ls) or a -1z (or -ls) of the mean (or avout 68% of its
area between + 1z (or + 1s). About 13.6% of the area will lie between +1
and +2z (or -1 and -2z) and a little more than 27% of the curve's area
between a +1z and a +2z or a -1z and a -2z, Finally, between a +2z and +3z
or -2z and -3z there lies about 2% of the curve's area. For all practical
purposes, nearly the entire area (99%+) lies between + 3z or + 3s. In this
sense, the standard deviation is interpreted in relation to the N.C. and is
useful in defining the characteristics of the curve.

Since the distribution of salaries is not completely symmetrical, the
exact percentages presented above would not hold., Nevertheless, they are
fairly good representations of the actual empirical distribution of scores
obtained from the data set. b

In terms of the four statistical properties of data sets the standar-
dized N.C. has a skew value (beta-one) of O, a kurtosis value (beta-two)
of O, a mean of O and a standard deviation of 1, It has two primary uses in
statistics. First, many empirical distributions are approximately normally
shaped when graphed; second, and a very important consideration in inferential

statistics, is the fact that many sampling distributions of statistics are

normal (or approximately) which means the properties of and the knowledge
we have about this special curve can be used in a probabilistic fashion.
Range. The index of variation known as the range does not require any
detailed calculations. In most instances, it can readily be obtained by
subtracting the extreme scores in the distribution and adding one as was
previously done for the salary scores in which the maximum was 250 and the
minimum was 19, Computationally, the range may be defined as the difference
between the smallest score and the largest score plus one. Hence for our

data:
250,00 = 19,00 + 1 = 232
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One of the limitations of the range is that it only uses two scores, and two
extreme scores at that. For this reason it is sometimes called the total

or inclusive range. Because of this liability statisticians sometimes prefer

to compute intermediate ranges such as the interquartile range or the inter-

decile range. For illustrative purposes the interquartile range (Q) will

be computed and interpreted.

Interquartile Range. This intermediate range (Q) measures the distance

encompassed by the middle 50% of the scores. Tt is appropriate to use with
ordinal or higher level measurement data and provides the analyst with an
jndication of the range within which one-half the cases lie. Furthermore,
it belongs to the same family of statistics as the median and is computed
using a modification of that formula, Whereas the median score (actually Q2)
was obtained by N/2, the first quartile (Q;) is determined by N/L and the third
quartile (QB) by 3N/Lh. The difference between these two numbers is the inter-
quartile range, i.e.,

Q=Q-QU
For our data in Table 9.l:

Q = 120 - LO= 80
The middle 50% of the cases contains a range of 80.

Index of Qualitative Variation. This measure of variability is designed

for use with nominal level data. It enables the researcher to guage the

spread or dispersion in attribute or qualitative data. .The IQV provides

us with a ratio between the variation that does exist to the maximum pos-
sible variation that could exist. To compute it the following formula is
employeds

QV =| X x 100 i#j

K(E-1) /N)2
-2 (K
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To obtain the actual number of differences that exist ( the numerator in the
formula) we multiply each attribute frequency (fA) by every other attribute
frequency (#3) and sum (2.) their products. To illustrate, we will calculate
and interpret IQV for the following gender data. Suppose there were 43 and
105 males and females, respectively. To obtain the number of observed dif-
ferences, we multiply 43 x105 producing a value of 4515, To obtain the den-
ominator, we substitute the appropriate values into the bottom half of the
formula (e.g., K = number of categories and N = total number of cases):

2(2 - 1) Qge)?- = 5476

4515 = .82 x 100= 82%.

SL76
The index of qualitative variation for these data is .82 or 82%. To inter-
pret it we imagine a continuum ranging from O (which represents no variation)
to 100 (which represents maximum variation). We then make a judgment of the
variability that does exist to what could exist in the data. It should be
obvious that the interpretive features for this nominal-level coefficient
lack the rigor and precision in comparison to say the standard deviation.

IQV range: 0% 10 20 30 LO 50 60 70 80 90 100%

1\

no variation maximum variation
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Sumary

In this chapter some of the most commonly used descriptive statistics

for univariate distributions were discussed. A concrete data set formerly

collected and analyzed by this writer was subject to statistical scrutiny.
Beginning with a collection of 138 raw scores it was shown how the

scores can be meaningfully assembled by constructing a frequency distribution,

a rank order distribution (array), an ungrouped frequency distribution, and,

finally, a grouped frequency distribution. Conventiocns for construction

such distributions were enumerated.

Once data are meaningfully arranged the researcher typically attempts
to identify their important statistical properties. To comprhend the nature
of a univariate distribution (or frequency distribution) statisticians ask

three salient questions: 1) What is the form or shape of the distribution?

2) What is the central tendency (or location) of the distribution? and

3) What is the variation in the distribution?
To answer query number 1, it was shown how the construction of various

graphic techniques (e.g., polygon, histogram, and ogive) facilitate deter-

mining the data distribution's form or shape. Guidelines for constructing
and interpreting these common graphic devices for univariate data were
considered. From them an intuitive appreciation of form, central tendency,
and variation could be inferred.

Because graphic devices generally lack the precision of specific stat-
istical indices, various statistics for identifying the exact value of form,
central tendency, and variation were discussed along with their computational
formulae. Statistically speaking, beta-one (a skewness index) and beta-two
( a kurtosis index) provide specific numerical values from which the form

of the distribution can be assessed. The arithmetic mean, median, and mode

were calculated and interpreted for their role in determining the central

tendency of a data set. Similarly, the standard deviation, variance, inter-

quartile range and index of qualitative variation were computed and inter-




388

preted since they are among the commonest indices of variability or dispersion.

Because the normal curve plays such an important role in statistics (both

descriptive and inferential) the manner in which z-scores (standard scores)

are related to it were considered.

Also, the properties of the standar-

dized normal curve where discussed with suggestions of how these properties

can be efficiently utilized by the social researcher.

Important Concepts Discussed in This Chapter

Statistics

Frequency Distribution
Rank Order Distribution
Maximum

Minimum

Range

Class Intervals
Central Tendency

Form or Shape
Variation

Polygon

Histogram

Ogive

Positive Skew

Negative Skew
Symmetrical Curve
Asymmetrical Curve

Grouped Frequency Distribution

Arithmetic Mean
Median

Mode

Cumulative Frequencies
Exact Limits

Graphs

Skevwness

Kurtosis

Beta«one

Beta-two

Sum of Squares
Variance

Standard Deviation
Standard Scores (z=-scores)
Normal Curve

Parameter

Sampling Distribution
Interquartile Range

Index of Qualitative Variation
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