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ABSTRACT

Applications of fuzzy set theory to property-liability and life insurance have emerged
in the last few years through the work of Lemaire (1990), Cummins and Derrig (1993,
1994), and Ostaszewski (1993). This article continues that line of research by providing an
overview of fuzzy pattern recognition techniques and using them in clustering for risk and
claims classification. The classic clustering problem of grouping towns into rating territo-
ries (DuMouchel, 1983; Conger, 1987) is revisited using these fuzzy methods and 1987
through 1990 Massachusetts automobile insurance data. The new problem of classifying
claims in terms of suspected fraud is also addressed using these same fuzzy methods and
data drawn from a study of 1989 bodily injury liability claims in Massachusetts.

Introduction

In 1961, Ellsberg presented the following paradox. An experiment was
designed with two urns, each containing 100 balls, of which the first one was
known to contain 50 red balls and 50 black balls, while no further information
was given about the contents of the other urn. If asked to bet on the color of
a ball drawn from one of the urns, most people were found indifferent as to
which color they would choose no matter whether the ball was drawn from the
first or the second urn. On the other hand, Ellsberg found that if people were
asked which urn they would prefer to use for betting on either color, they

Richard A. Derrig is Senior Vice President of the Automobile Insurers Bureau of Massachu-
setts and Vice President—Research for the Insurance Fraud Bureau of Massachusetts. Krzysztof M.
Ostaszewski is Associate Professor of Mathematics and Actuarial Program Director at the Univer-
sity of Louisville.

Krzysztof Ostaszewski has worked on this project at the University of Louisville with financial
support from the Actuarial Education and Research Fund, and this support from AERF is grateful-
ly acknowledged. The authors thank Jeff Strong and Robert Roesch of the Automobile Insurers
Bureau for invaluable help in programming and performing calculations involved in this project,
Herbert I. Weisberg for suggesting the fuzzy clustering of fraud assessment data, Ruy Cardoso for
helpful comments on an early draft, Julie Jannuzzi for production of the document, and one
anonymous reviewer.



448 The Journal of Risk and Insurance

consistently favored the first urn (no matter what color they were asked to bet
on).

What seems to be present in this experiment is the participants’ perception
of uncertainty. When we say “uncertainty,” the usual association is with “prob-
ability.” The Ellsberg paradox illustrates that some other form of uncertainty
can indeed exist. Probability theory provides no basis for the outcome of the
Ellsberg experiment.

Klir and Folger (1988) analyze the semantic context of the term “uncertain”
and arrive at the conclusion that there are two main types of uncertainty, cap-
tured by the terms “vagueness” and “ambiguity.” Vagueness is associated with
the difficulty of making sharp or precise distinctions among objects. “Ambigu-
ity” is caused by situations where the choice between two or more alternatives
is unspecified. The basic set of axioms of probability theory originating from
Kolmogorov, rests on the assumption that the outcome of a random event can
be observed and identified with precision. Any vagueness of observation is
considered negligible, or not significant to the construction of the theoretical
model. Yet one cannot escape the conclusion that forms of uncertainty repre-
sented by vagueness of observations, human perceptions, and interpretations,
are missing from probabilistic models, which equate uncertainty with random-
ness (i.e., a sophisticated version of ambiguity).

Several reasons may exist for wanting to search for models of a form of
uncertainty other than randomness. One is that vagueness is unavoidable. Giv-
en imprecision of natural language, or human perception of the phenomena
observed, vagueness becomes a major factor in any attempt to model or predict
the course of events. But there is more. When the phenomena observed be-
come so complex that exact measurement involving all features considered
significant would be impossible, or longer than economically feasible for
study, mathematical precision is often abandoned in favor of more workable
simple, but vague, “common sense” models. Thus, complexity of the problem
may be another cause of vagueness.

These reasons were the driving force behind the development of the fuzzy
set theory (FST). This field of applied mathematics has become a dynamic
research and applications field, with success stories ranging from a fuzzy logic
rice cooker to an artificial intelligence in control of Japan’s Sendai subway
system. The main idea of fuzzy set theory is to propose a model of uncertainty
different from that given by probability, precisely because a different form of
uncertainty is being modeled.

Fuzzy set theory was created in Zadeh’s (1965) historic article. To present
this basic idea, recall that a characteristic function of a subset E of a universe
of discourse U is defined as

x) = 1ifx e E
Xg(X ‘{Oifer.

In other words, the characteristic function describes the membership of an
element x in a set E. It equals one if x is a member of E, and zero otherwise.
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Zadeh challenged the idea that membership in all sets behaves in the man-
ner described above. One example would be the set of “tall people.” We con-
sistently talk about the set of “tall people,” yet understand that the concept
used is not precise. A person who is 5’11" is tall only to a certain degree, and
yet such a person is not “not tall.” Zadeh writes,

The notion of fuzzy set provides a convenient point of departure for the construction
of a conceptual framework which parallels in many respects the framework used in
the case of ordinary sets, but is more general than the latter and, potentially, may
prove to have a much wider scope of applicability, particularly in the fields of pat-
tern classification and information processing. Essentially, such a framework pro-
vides a natural way of dealing with problems in which the source of imprecision is
the absence of sharply defined criteria of class membership rather than the presence
of random variables.

In the fuzzy set theory, membership of an element in a set is described by
the membership function of the set. If U is the universe of discourse, and E is
a fuzzy subset of U, the membership function p:U—[0,1] assigns to every
element x in the set E its degree of membership pg(x). We write either (E,pg)
or E~ for that fuzzy set, to distinguish from the standard set notation E. The
membership function is a generalization of the characteristic function of an
ordinary set. Ordinary sets are termed crisp sets in fuzzy sets theory. They are
considered a special case—a fuzzy set is crisp if, and only if, its membership
function does not have fractional values.

On the basis of this definition, one then develops such concepts as set theo-
retic operations on fuzzy sets (union, intersection, etc.), as well as the notions
of fuzzy numbers, fuzzy relations, fuzzy arithmetic, and approximate reasoning
(known popularly as “fuzzy logic”). Pattern recognition, or the search for
structure in data, provided the early impetus for developing FST because of the
fundamental involvement of human perception (Dubois and Prade, 1980) and
the inadequacy of standard mathematics to deal with complex and ill-defined
systems (Bezdek and Pal, 1992). The formal development began with Zadeh
(1965) introducing the principal concepts of FST. A complete presentation of
FST is provided in Zimmerman (1991).

The first recognition of FST applicability to the problem of insurance under-
writing is due to DeWit (1982). Lemaire (1990) sets out a more extensive
agenda for FST in insurance theory, most notably in the financial aspects of
the business. Under the auspices of the Society of Actuaries, Ostaszewski
(1993) assembled a large number of possible applications of fuzzy set theory
in actuarial science. His presentation includes such areas as economics of risk,
time value of money, individual and collective models or risk, classification,
assumptions, conservatism, and adjustment. Cummins and Derrig (1993, 1994)
complement that work by exploring applications of fuzzy sets to property-
liability insurance forecasting and pricing problems.

Here, we present a method of fuzzy pattern recognition for risk and claims
classification. We apply fuzzy pattern recognition to two problems in Massa-
chusetts private passenger automobile insurance: defining rating territories and
classifying claims with regard to their suspected fraud content. Dubois and
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Prade (1980), Bezdek (1981), and Kandel (1982) provide overviews of fuzzy
techniques in pattern recognition. Zimmerman (1991) and Bezdek and Pal
(1992) provide other valuable references on the subject.

The concept of a fuzzy set and the mathematical algorithms needed to im-
plement classification using fuzzy techniques is described in the next section.
Grouping towns in Massachusetts into rating territories for risk classification
purposes is viewed as a fuzzy clustering problem because many towns can be
strongly related to two or more territories, thereby creating a border problem:
to which of several related territories should a town be assigned. We also
explore the influence of geographical proximity on the resulting fuzzy territo-
ries and classification of claims by their suspected fraudulent content. A final
section summarizes and provides some alternative and future directions for
FST in risk and claims classification problems.

Algorithms for Fuzzy Classification

Lemaire (1990) and Ostaszewski (1993) point out that insurance risk classi-
fication often resorts either to vague methods—as in the case of using multiple
ill-defined personal criteria to identify good risks to underwrite—or methods
that are excessively precise—as in the case of a person who fails to classify as
a preferred risk for life insurance application because his or her body weight
exceeds the stated limit by half a pound. Kandel (1982), writing from a differ-
ent perspective, says: “In a very fundamental way, the intimate relation be-
tween the theory of fuzzy sets and the theory of pattern recognition and classi-
fication rests on the fact that most real-world classes are fuzzy in nature.” This
is exactly the reason that we propose to utilize the methodology of fuzzy clus-
tering in territorial classification and to extend that method to classifying
claims for suspected fraud.

Kandel (1982) classifies various techniques of fuzzy pattern recognition.
Syntactic techniques apply when the pattern sought is related to the formal
structure of the language. Semantic techniques apply to those producing fuzzy
partitions of data sets. According to Bezdek and Pal (1992), the first choice
faced by a pattern recognition system designer is that of process description.
The designer may choose from among syntactic, numerical, contextual, rule-
based, hybrid, and fuzzy process descriptions. Feature analysis is the next
design step, in which data (generally given in the form of a data vector con-
taining information about the analyzed objects) may be subjected to prepro-
cessing, displays, and extraction. Next, semantic clustering algorithms, generat-
ing actual structures in data, are identified. Finally, the designer addresses
cluster validity and optimality.

We use a fuzzy pattern recognition technique given by Bezdek (1981). In
the classification of Bezdek and Pal (1992), it can be described as a numerical
process description, fuzzy c-means iterative semantic algorithm. Because the
data we analyze are in the form of numerical vectors (i.e., vectors in a euclide-
an space), with a number of clusters sought predetermined, we consider the
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fuzzy c-means technique most appropriate. Bezdek et al. (1987) discuss the
convergence properties of the algorithm.

The task is to divide n objects, where n is a natural number, each represent-
ed by a vector in a p-dimensional euclidean space

X1 Xpeees X

(coordinates of the vectors are known as features), into ¢, 2 < ¢ < n, categori-
cally homogeneous subsets called clusters. The objects belonging to the same
cluster should be similar, and the objects in different clusters should be as
dissimilar as possible. The number of clusters, c, is specified in advance. If the
membership function of objects in clusters takes on fractional values, then we
have fuzzy clusters. The process is called clustering.

Any clustering method must answer two fundamental questions: which
properties of the data set should be used, and in which way should they be
used to identify clusters. Once the algorithm meeting those two conditions is
specified, there are, of course, more technical questions, such as whether the
algorithm 1is effective for all possible sets of data, as well as the question of
validity of clusters (see Kandel, 1982, and Bezdek and Pal, 1992, for a discus-
sion of this problem).

Risk classification seeks to distinguish risks for the purposes of rating and
underwriting. In claims processing, the purpose is to identify claims suspected
of fraud for special processing and route nonsuspicious claims through normal
adjusting channels. Insurance risks and claims are both described here by cer-
tain data patterns. The pattern recognition algorithm does the “detective work”
of finding clusters of similar risks and claims.

Let the data set be

X = {X}, Xppees X, )
X is assumed to be a finite subset of a p-dimensional euclidean space RP. Each
X = Xy s X Xip) kK =1,2,3,..,n

is called a feature vector, while each Xy j» where j = 1, 2,..., p, is the jth feature
of the vector x,.

A partition of the data set X into fuzzy clusters is described by the set of
membership functions of the clusters (note that such a description could also
apply to crisp clusters, with the membership function meaning simply the
characteristic function). The clusters are denoted by S, S,...., S. with the corre-
sponding membership functions By By woos pSC.In other words, we will con-

struct ¢ clusters that are fuzzy sets.
A ¢ x n matrix containing the values of the membership functions of the
fuzzy clusters

U= [pSi(xk)]izl,Z,w,c; K=12,...n
is a fuzzy c-partition if it satisfies the following conditions:
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C

Y pg(x) =1 for each k = 1, 2,..., n, (D

i=1

0<)Y pg(x)<nforeachi=1,2,..c 2
k=1 !

Condition (1) says that each feature vector x, has its total membership value
of one divided among all clusters, and condition (2) states that the sum of
membership degrees of feature vectors in a given cluster does not exceed the
total number of feature vectors.

Given the above definition, let us now present the fuzzy c-means algorithm
of Bezdek (1981), also used in Ostaszewski (1993). The iterative algorithm
consists of four steps; we add a fifth step to make the result operational. The
first step sets out a working definition of distance between feature vectors (the
vector norm) and an initial starting partition. The second step identifies the
center of each cluster in the partition. The third step recalculates the member-
ship functions of the partition as normalized distances from the step 2 centers.
The fourth step checks the distance between successive partitions to determine
if the iteration procedure should be stopped. The fifth step discards small
membership values (below some predetermined o, 0 < o0 < 1) to make the
partition operational. The five formal steps follow.

Step 1

Choose ¢, an integer between two and n, as the number of clusters into
which the data is partitioned. Choose a positive parameter m, and a symmetric,
positive-definite p x p matrix G. Define the vector norm | |; , using the
transpose operator T, by

%, = vl = %, - V)" G, - v)

3

Z & (xkj - vil)z'

1=

P
j=1

P
1
Set the iteration counting parameter { equal to zero, and choose the initial
fuzzy partition

~ (0)

0" i)

lSiSc,lSkSn.
Choose a parameter € > 0 (this number will indicate when to stop the iteration
process).

Note that the columns of the fuzzy partition matrix, numbered one through
n, correspond to data vectors, and each column gives degrees of membership
of the data point in clusters one through c. The matrix norm | | is suitably
chosen in such a way that two data vectors with great similarities are relatively
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close to each other, while dissimilar data are set apart. Although no perfect
measure of such relationship exists, we can adjust the scale of x, coordinates
by introducing appropriate diagonal entries, and any known correlations of
coordinates can be represented in the nondiagonal entries. The size of the
matrix G corresponds to the number of coordinates in data vectors.

The main idea of the algorithm is to produce reasonable centers for clusters
of data, and then group data vectors around cluster centers which are reason-
ably close to them. Unlike in standard crisp algorithms, fractional cluster mem-
bership is allowed, which gives us flexibility to adjust for any otherwise desir-
able phenomena.

Step 2
Calculate the fuzzy cluster centers {v.?}._ given by the following formu-
i i 1,2.,.A,cg y g
la:
n ® m
_1 (BU(x)) X
vo = et ) % )
n m
X kr (1s700)
fori=1,2,..,c.

The cluster centers are merely weighted averages of data vectors. Weights
are given by the mth powers of the membership degree. Bezdek et al. (1987)
discuss the influence of the scaling factor m, as well as convergence of the
resulting algorithm.

Step 3

Calculate the new partition (i.e., membership matrix)

~ 0+

U = {Ps(.“”(xk)] ’
i 1<i<c,1<k<n
where
. Ix-v O
us(f 1)(Xk) ) \ XVl (5)

m-1

C
2

wherei=1, 2,....,c,and k=1, 2,..., n.

If x, = v®,however, formula (5) cannot be used. In that case, we set
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lifk =1
(0+1) = ’ 6
bg (X {0 ifk=i,i=1,2,..,c ©

This step of the algorithm carries us from the previous membership matrix
(numbered () to the next one (numbered ¢ + 1). One can interpret formula (5)
as follows: if the vector norm measures the similarity of two data vectors, the
(m-1)st root of its reciprocal is a form of measure of dissimilarity, and formula
(5) assigns a new membership degree by relating the dissimilarity with a given
cluster center to the “total dissimilarity present.” Formula (5) is, however, a
result of a longer optimization procedure discussed further by Bezdek et al.
(1987).

Step 4

By using the natural matrix norm, or the extension of | |5 to the matrix
norm, or by choosing a different matrix norm more suitable to the problem,
calculate

A= ot - T
If A > g, repeat steps 2, 3, and 4. Otherwise, stop at some iteration count {*.

This “stopping procedure” is a standard numerical analysis technique—if yet
another iteration does not change much, the result is the best possible. Clearly,
the procedure rests on the assumption of the algorithm’s convergence, but
luckily the proof of that convergence exists, by Bezdek et al. (1987).

G

Step 5

The final fuzzy matrix U “ is structured for operational use by means of the
normalized o-cut, for some 0 < o < 1. Quite simply, all membership function
values less than o are replaced with zero and the function is renormalized
(sums to one) to preserve partition condition (1). For small o, the resulting
partition is still fuzzy; for large o (or max-cuts, where the largest membership
value is set equal to one all others are zero), the resulting partitions are likely
to be crisp.

Automobile Rating Territories in Massachusetts

As Conger (1987) points out,

In Massachusetts, the past ten years have witnessed the evolution of an increasingly
sophisticated system of methodologies for determining the definitions of rating
territories for private passenger automobile insurance. In contrast to territory
schemes in other states, which tend to group geographically contiguous towns, these
Massachusetts methodologies have had as their goal the grouping of towns with
similar expected losses per exposure, regardless of the geographic contiguity or non-
contiguity of the grouped towns.
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Note the ambiguous nature of “similar expected losses,” a decidedly fuzzy
concept.

The methodology used for territorial rating results in a final combined five-
coverage pure premium index for each of the 360 towns (or, more precisely,
350 towns and ten areas into which Boston is divided for automobile rating
purposes). A complete description of the empirical Bayes procedure for deter-
mining the biennial individual and combined coverage town indices from four
years of data is given in DuMouchel (1983). The indices, which are numbers
relatively close to 1 representing expected losses in relation to those of the
entire state expected losses, are then ordered and territories are created by
partitioning that linear ordering.' Because frequent switches from one territory
to another are undesirable but inevitable, numerous restrictions on moving
towns from one territory to another exist in actual regulatory practice. Once
territory clusters are set for a rating year, five individual coverage rates are
determined using that single clustering, one which may or may not be appro-
priate for each coverage, but which is assumed to be equitable overall.

Such difficulties and imprecisions in groupings warrant an investigation of
fuzzy clustering. Resulting fuzzy clusters would be much more flexible, be-
cause a town belonging partially to two or more territories could be assigned
to one of them if regulatory limitations dictate unique assignments of towns to
territories. Although stability of territory assignment is desirable and conve-
nient, the system of clustering towns into territories should meet the standard
responsiveness criterion for risk classification. Towns have an incentive to
reduce their relative loss costs by maintaining their roads, safety engineering,
and law enforcement, if those actions bring about lower premiums. When the
system is not responsive, or slow to respond, the incentives can be diminished
or lost.

The pure premium indices are calculated for the following coverages for all
350 towns: bodily injury liability (A-1 and B), personal injury protection (A-
2), property damage liability (PDL), collision, comprehensive, and a sixth
category comprising the five individual coverages combined. We use those
values as the coordinates of vectors x,, k = 1, 2, 3,..., 350, representing the
towns in the data space. This implies that we treat the data space as six-dimen-
sional, as six parameters are used to describe towns. In our calculations, we
use either the five coverage indices (five-dimensional vectors) or the combined
index (one-dimensional vectors) but not both. The data for the 1993 indices
(based on the 1987 through 1990 data) for towns in Bristol County are given
in Appendix A. Data for all 350 towns and Boston are available in Automobile
Insurers Bureau (1992) or from the authors. We begin by illustrating the algo-
rithm for a manageable set of towns: the twenty towns of Bristol County,
Massachusetts.

"In general, the partitioning is accomplished by grouping towns within five to six percent
intervals on either side of the statewide average index of one.
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The Bristol County Algorithm
The initial clustering for Bristol County is the indicated 1993 territory as-

signment groupings relabeled one to five.> The initial five-coverage partition
matrix is
["’J(O) _ [ps(.O)(x )]
1

k b
1<i<5,1<k<20

where p/”(x,) represents the membership of town x, in cluster S;, and it
1

equals one if the town is in the territory, or zero if it is not.
We also set the stopping parameter € = 0.05, and m = 2. The initial cluster
centers are calculated as

X X
© = k=1 (psi ( k)) k (7)
' 20 2
Z ket (ps(im(xk))
fori=1, 2,..., 5. We proceed to evaluate the new partition matrix
go - [Ps(»l)(xk)] , 8)
! 1<i<5,1<k<20
where
1
5 on
Z -1 & ((xk) - (Vi( )>
n(x,) = J pl i ©)

5 1
X )
1 o0, - o)
> o1 & (0, — (v,
where the subscript p refers to one of the five pure premium coordinates of a

town,and i =1, 2,...., 5, k=1, 2,..., 20, and g, are weights representing the
distribution of losses across coverage.’

If x, = v©, however, formula (6) must be used. In that case, we set

2 For illustrative purposes, the town of Fairhaven, which was assigned to 1993 Territory 9, is
included with those towns in Territory 8. Fall River is included with New Bedford. Actual 1993
rating territories are subject to judgmental adjustments and capping and are not always those
shown here.

*The coverage weight distribution, using 1990 exposures times four-year pure premiums, is
[(g:) = (0.2229, 0.1109, 0.2048, 0.3210, 0.1404); (g) = 0if i = j, 1 < i, j < 5)].
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1if k

=1
ps(il) (Xk) = {0 if k #1i,

K =1, 2...20, i=1, 2.... 5.

Now we calculate the distance between the initial partition matrix U © and the

.. . ~ (1 . . .
new partition matrix 158 ), by taking the simple matrix norm

520
A - J 1) = 1O (1o
ES J J

If A < e = 0.05, the process is stopped. Otherwise, the iterative algorithm
continues. The results of the calculation, with an o-cut of 0.2, are presented in
Table 1.
Table 1
Fuzzy Town Cluster Membership Values
for Bristol County, Massachusetts

Membership Values

Initial
Town Name Cluster H, Hs, U, U, Ky, Sum
Mansfield 1 1 0 0 0 0 1
North Attleborough 1 1 0 0 0 0 1
Dighton 2 0.32 0.22 0.46 0 0 1
Rehoboth 2 0.40 0.23 0.38 0 0 1
Norton 2 0.58 0 0.42 0 0 1
Freetown 2 0 1 0 0 0 1
Berkley 2 0 1 0 0 0 1
Raynham 2 0 0 1 0 0 1
Seekonk 3 0.25 0 0.43 0.32 0 1
Easton 3 0 0 1 0 0 1
Attleboro 3 0 0 1 0 0 1
Dartmouth 3 0 0 1 0 0 1
Somerset 4 0 0 0 1 0 1
Swansea 4 0 0 0 1 0 1
Taunton 4 0 0 0.37 0.63 0 1
Westport 4 0 0.37 0.30 0.33 0 1
Acushnet 4 0 0 0 1 0 1
Fairhaven 4 0 0 0 1 0 1
Fall River 5 0 0 0 0 1 1
New Bedford 5 0 0 0 0 1 1
Sum 3.54 2.82 6.35 5.29 2 20

Note: C-means fuzzy clustering algorithm, with five-coverage data pattern, ninth iteration stopping
parameter 0.0499 < 0.05, a-cut = 0.2, no geographical variables.

Figures 1 and 2 display the results of the transition from initial territory
clusters to final fuzzy clusters. Figure 1 displays the 20 Bristol County towns
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Figure 1
Initial Territorial Town Clustering by Combined Index Territory
for Bristol County, Massachusetts
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Figure 2
Fuzzy Town Clustering by Five Coverage Indices
for Bristol County, Massachusetts
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grouped into their initial clusters in increasing combined index order. For
example, Town 1 (Mansfield) has the lowest combined index value (0.8018)
and is in the lowest ranked territory, while Town 20 (New Bedford) has the
highest index (1.2977) and is in the highest ranked territory.



Fuzzy Techniques of Pattern Recognition in Risk and Claim Classification 459

Figure 2 shows the fuzzy clustering results that provide for the incorpora-
tion of five-dimensional data (individual coverages), as well as the fractional
assignments (fuzziness) to the clusters. With fuzzy clustering, towns tend to
become associated with nearby clusters as well as with their “home” cluster.

Town 8 (Raynham) becomes associated with fuzzy cluster 3 and has little
association (less than 0.2) with its original home cluster 2. Town 5 (Norton)
with home cluster 2 splits into fuzzy clusters 1 and 3. These movements are
typical of fuzzy clustering results.

Geographical Proximity

We also perform a calculation adding two more features for each town—its
geographical coordinates divided by the coordinates of the town with the larg-
est Massachusetts coordinates, Nantucket (the division is performed to adjust
the scale and to match the other features, which are all close to one).* By
performing the algorithm on these vectors, including geographical coordinates,
we increase the chance of arriving at clusters that are not only actuarially
similar, but relatively close geographically.

This calculation is performed in the same manner as before, but with seven
feature variables. We show results for pure premium data weighted 50 percent
and geographical variables 50 percent, but any relative weighting scheme can
be used to reflect the modeler’s preference for geographic dependence of terri-
tories. The 50/50 results are presented in Table 2. Note that a full 50 percent
weight on the two geographical coordinates produced only slight differences
from the five variable centers shown in Table 1. Recall that other states use
geographical proximity as an important factor in determining rating territories
(DuMouchel, 1983, p. 76). A map of Bristol County is shown in Appendix B.

After the inclusion of geographical location, all towns retained nearly identi-
cal membership values within each of the five clusters.” A comparison of the
cluster centers shown in Table 3, with and without the geographical variables,
reveals how little effect the geographic variables had on the pure premium
cluster centers. Either the geographical variable is already accounted for in the
five-coverage pattern or it is relatively weak in relation to the pure premium
patterns, at least for this data set.’

*In this application, the fourth root of the ratio is used to bound the geographical coordinates
between 0.49 and one, making them more comparable in scale to the pure premium indices. This
is equivalent to applying a dilation operator to the simple coordinate comparison to Nantucket in
order to produce comparable fuzzy membership values (see Lemaire, 1990, p. 44, and Cummins
and Derrig, 1993, p. 452).

% Although the membership values for Dighton appear to be quite different in Tables 1 and 2,
the actual pre 0.20-cut values for Dighton are 0.205 and 0.199.

¢ The inclusion of location variables to cluster is not necessarily limited to geography. Brockett,
Xia, and Derrig (1995) provide two-dimensional location variables that are topographically faith-
ful neural networks for the fraud data discussed below.
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Table 2
Fuzzy Town Cluster Membership Values with Geographical Variables
for Bristol County, Massachusetts
Membership Values

Initial
Town Name Cluster U, M, U, U, U, Sum
Mansfield 1 1 0 0 0 0 1
North Attleborough 1 1 0 0 0 0 1
Dighton 2 0.39 0.20 0.61 0 0 1
Rehoboth 2 0.38 0.22 0.40 0 0 1
Norton 2 0.60 0 0.40 0 0 1
Freetown 2 0 1 0 0 0 1
Berkley 2 0 1 0 0 0 1
Raynham 2 0 0 1 0 0 1
Seekonk 3 0.25 0 0.44 0.30 0 1
Easton 3 0 0 1 0 0 1
Attleboro 3 0 0 1 0 0 1
Dartmouth 3 0 0 1 0 0 1
Somerset 4 0 0 0 1 0 1
Swansea 4 0 0 0 1 0 1
Taunton 4 0 0 0.38 0.62 0 1
Westport 4 0 0.37 0.28 0.35 0 1
Acushnet 4 0 0 0 1 0 1
Fairhaven 4 0 0 0 1 0 1
Fall River 5 0 0 0 0 1 1
New Bedford 5 0 0 0 0 1 1
Sum 3.62 2.59 6.52 5.27 2 20

Note: C-means fuzzy clustering algorithm, with five-coverage and two-geographical coordinate data,
eleventh iteration stopping parameter 0.03 < 0.05, coverage and geographical data equally weighted.

We calculated the fuzzy clusters based only on the geographical variables.
The resulting territory clusters were crisp at o = 0.2. Table 4 shows those
geographic town/territory clusters.

Fuzzy Combined Index Clusters

The fuzzy territories shown in Table 1 provide a refinement to the simple
territory clusters in use in Massachusetts both by incorporating the five-dimen-
sional patterns and by allowing fractional (fuzzy) membership. In order to isolate
the fuzzy effect, we perform one additional clustering exercise using the single
combined index variable. The results are displayed graphically in Figure 3.
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Table 3
Comparison of Fuzzy Cluster Centers
for Bristol County, Massachusetts

Property
Damage
Final Cluster A-1&B A-2 Liability  Collision Comprehensive Y-Map X-Map

Fuzzy Cluster Centers, Loss Data Only

1 0.80 0.72 0.84 0.87 0.81 — —
2 0.83 0.88 0.78 091 1.10 — —
3 0.89 0.85 0.92 0.92 0.94 — -
4 1.09 0.97 0.97 0.94 0.93 — —
5 1.33 1.33 1.22 1.13 1.48 — —

Fuzzy Cluster Centers, Loss and Geographical Data

1 0.80 0.72 0.84 0.87 0.81 0.88 0.90
2 0.83 0.88 0.78 0.91 1.10 0.92 0.92
3 0.90 0.84 0.92 0.92 0.94 0.90 0.91
4 1.09 0.97 0.96 0.93 0.93 0.93 0.92
5 1.33 1.33 1.22 1.13 1.48 0.94 0.91
Table 4
Fuzzy Town Clusters
Geographical Variables Only
Final
Cluster Town Name and Initial Cluster Number

1 Mansfield (1), N. Attleborough (1), Norton (2), Easton (3)

2 Berkley (2), Raynham (2) Taunton (4)

3 Dighton (2), Rehoboth (2), Seekonk (3), Attleboro (3)

4  Freetown (2), Somerset (4), Swansea (4), Acushnet (4), Fall River (5)
5  Dartmouth (3), Westport (4), Fairhaven (4), New Bedford (5)

Note: C-means fuzzy clustering algorithm, with two-geographical coordinate data, tenth iteration stop-
ping parameter 0.03 < 0.05, a-cut = 0.2.

The power of fuzzy clustering to handle towns that are related to two or more
territories is demonstrated by the three towns in the fourth cluster. Somerset
(64/36), Swansea (63/37), and Taunton (47/53) have been partially reassigned
to Cluster 3 although they were members of Territory Cluster 4.

Fuzzy Clustering of 350 Towns

The application of the fuzzy clustering algorithm to the entire set of 350
Massachusetts towns produces results similar to those for Bristol County. Fig-
ure 4 illustrates the results of the fuzzy algorithm applied to the one-dimen-
sional combined index variable currently used to set the 20 indicated territory
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Figure 3
Fuzzy Town Clustering by Combined Index
for Bristol County, Massachusetts
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boundaries in Massachusetts.” The current cluster boundaries are identified in
Figure 4 by the vertical territory cluster (TC) delineations. The ability of the
fuzzy clustering to model the town association with more than one territory by
using partial membership values is clearly evident. The fuzzy clusters also
reveal that the current territory boundaries come close, but do not satisfy, the
minimum euclidean distance to the centers condition of the algorithm. The
fuzzy clustering also reinforces the Automobile Insurers Bureau recommended
separation of the first three clusters, which are now combined for rating in
Massachusetts.

Figure 5 displays the fuzzy clusters using the five-dimensional feature vec-
tors for all 350 towns. Although the fuzzy clusters retain the general pattern of
increasing combined index order, the partial membership values reveal much
greater dissimilarity among towns that had been grouped together. Fuzzy clus-
ters typically spread across five territory clusters; conversely, each territory
cluster typically spreads across four or five fuzzy clusters for the bulk
(325/350) of the towns. The remaining high index towns generally retain their
dissimilarity. The spread of the membership values across fuzzy clusters indi-
cates the imperfectly correlated nature of the relationship of the five coverage
relativities (one town can experience high comprehensive pure premiums be-

’ Twenty non-Boston territories are indicated in the Automobile Insurers Bureau (1992) filing.
Those territories include a split of current territory 1 into three parts (TC1, TC2, TC3 in Figure
4) and a split of three towns (Lowell, Somerville, and Springfield) into two additional indicated
territories (TC16, TC18).
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Figure 4
Fuzzy Town Clustering by Combined Index
for Twenty Territories in Massachusetts
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Figure 5
Fuzzy Town Clustering for Massachusetts by Five Coverage Indices
Membership Value Cut at 0.1, No Geographic Variable
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cause of a singular theft problem while another town can experience high
bodily injury claims experience because of fraudulent claims).

One measure of the true extent of the dispersion is the distribution of maxi-
mums of town membership values as shown in Table 5.

Table 5
Fuzzy Town Clustering for Massachusetts

Town Maximum Membership Values

Max Value 0-20% 21-40% 41-60% 61-80% 81-100%

Number of Towns 88 189 48 16 9
With Geographic Variables

Number of Towns 147 157 31 9 6

Figure 6 shows the resulting fuzzy clusters using a max cut rather than a 0.1
cut. The graph reveals that the dispersion among fuzzy clusters is fundamental
to the algorithm applied to this data.

Figure 6
Fuzzy Town Clustering for Massachusetts by Five Coverage Indices
Membership Value Cut at Max, No Geographic Variable
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Table 5 also shows the dispersion using 50 percent weighted geographic
variables. Unlike the Bristol County examples above, the geographic variables
do affect both the cluster centers and the membership values (compare Figures
6 and 7). This result is due to the fact that low territory cluster towns are
situated in rural western Massachusetts as well as in eastern Cape Cod. Those
town groups have similar five-dimensional pure premiums but have very dis-
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Figure 7
Fuzzy Town Clustering for Massachusetts by Five Coverage Indices
Membership Value Cut at Max, Geographic Variable Included
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similar geographic variables that affect the final fuzzy clusters (compare final
fuzzy clusters 2 and 3 in Figures 6 and 7).

Claim Clustering for Suspicion of Fraud

One vexing problem of property-liability insurance is claim fraud. Individu-
als and conspiratorial rings of claimants and providers unfortunately can and
do manipulate the claims processing system for their own benefit. When that
manipulation violates prevailing law, those actions are called “hard” or crimi-
nal fraud. In the criminal sense, we can define fraud as a clear and willful
attempt proscribed by law to obtain money or value under false pretenses.
More often, the information presented in support of an insurance claim bears
a vague or ambiguous relationship when measured against the details of a stat-
ute or regulation. Unnecessarily prolonged medical treatment and inflated car
repair bills to “bury the deductible” are two instances of this so-called “soft”
fraud or build-up.

Clarke (1990) catalogues the general responses to fraud and build-up in
eight Western industrialized nations including the United States. According to
Clarke, all insurance claim frauds share the common characteristic of not being
self-disclosing. “Their essence is to appear as normal and to be processed and
paid in a routine manner. It follows that insurers will only have an idea of the
extent of such frauds if they take specific measures to detect them.” Clarke’s
review of anti-fraud activities in the United States is limited to listing various
national organizations and data bases, such as the National Auto Theft Bureau
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(now National Insurance Crime Bureau) and the Index System, and to discuss-
ing the formation of Special Investigative Units (SIUs). Other than the SIU ac-
tivities, there is no mention of how the claims processing system deters or
detects fraud.

Weisberg and Derrig (1991, 1992) study automobile bodily injury liability
and personal injury protection claims in Massachusetts both for their underly-
ing structure and for their fraud and build-up content. They derive a practical
definition of fraud in the auto context as an attempt to obtain compensation for
the alleged consequences of an injury that never happened or was unrelated to
the accident. Build-up is defined as an attempt on the part of the claimant
and/or health provider to inflate the damages for which compensation is being
sought. Those studies of 1985/1986 and 1989 bodily injury liability claims
found that the overall level of suspected or apparent fraud was about 10 per-
cent of the claims, while the apparent build-up level was 35 percent in the
earlier data and 48 percent of the claims in the later data.® The study reveals
that, although about 10 percent of the claims were apparent frauds, only 1
percent were judged to be candidates for criminal prosecution, under the be-
yond-a-reasonable-doubt standard, while 2 percent were potentially deniable by
the insurer, under the weaker preponderance-of-the-evidence standard. The use
of the terms suspected and apparent is deliberate and meant to reflect that the
numerical estimates of fraud and build-up levels come from judgmental assess-
ments by experienced claims handlers.

Ideally, one would like to construct a screening device that could be applied
by claims adjusters in real time and that would sort incoming claims into vari-
ous types. Table 6 displays an illustrative categorization of claims and their
approximate distribution in Massachusetts bodily injury claims according to the
Weisberg-Derrig (1992) study. The difficulty in constructing a fraud/build-up
claim screen lies in the ambiguous information (with respect to fraud) provided
in support of the claim and subjective categorizations by the claims adjusting
observer. Initial attempts at replacing the subjective fraud/no-fraud judgments
by objective facts or patterns of information in the claim file proved unsuc-
cessful (Weisberg and Derrig, 1991).

A follow-up study clearly demonstrates the unreliability of a single
observer’s black-and-white, zero-one, fraud/no-fraud judgment and proposes to
use numerical scales of suspicion of fraud as a better quantification of the true
underlying reality—the coder’s perception (Weisberg and Derrig, 1993). A
total of 387 Massachusetts claims was assessed by two independent coders for
apparent fraud; one reviewed the bodily injury (BI) file and the other reviewed
the personal injury protection (PIP) file. Table 7 shows the wide variation in
perception of fraud, with only 1.8 percent of the sample claims perceived as
fraudulent by both prior coders.

® The Auto Insurance Reform Law of 1988 replaced the previous $500 medical damage tort
threshold with a $2,000 one, providing greater economic incentive to build up claims. A short
summary of Weisberg and Derrig’s (1992) study of post-reform law 1989 claims can be found in
“The System Misfired,” Best's Review, December 1992.
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Table 6
Massachusetts Bodily Injury Liability Claims

Approximate Claim

Claim Type Count Percentage
Apparent Fraud Referable for Criminal Investigation 1.0
Apparent Fraud Only 9.1
Apparent Fraud or Build-up 48.3
Valid 51.7
Table 7
Suspicion of Fraud by Two Sets of Claims Coders

Fraud Suspected by Number Coded Percent of 387 Sample
Personal Injury Protection Coder Only 27 7.0
Bodily Injury Coder Only 28 7.2

Both Coders 7 1.8
Neither Coder 325 84.0

The fraudulent claims handling problem reflects the fact that suspicion of
fraud is a perceptually fuzzy concept and, therefore, a natural candidate for
fuzzy set theoretical analysis. We begin by using the fuzzy classification algo-
rithm described above in an experiment to quantify the level of ambiguity of
judgment prevailing in the 1989 study claims.

The 1993 Fraud Study Data

The 62 claims deemed fraudulent by at least one BI or PIP coder (Table 7)
were supplemented by 65 claims that were representative of the remaining 325
claims in order to study the characteristics of each subsample (Weisberg and
Derrig, 1993, 1994). From discussion with claims experts, it was determined
that claims investigators would have a different perspective on fraud than
insurer adjusters. Thus, parallel coding of the 127 claims was arranged using
experienced claims managers (to reflect adjuster perceptions) and senior per-
sonnel from the Insurance Fraud Bureau of Massachusetts (to reflect investiga-
tor perceptions). Each claim was evaluated by one claims manager and one
investigator, giving a total of four independent evaluations of each claim (in-
cluding the two original BI/PIP study coders).

Figures 8 and 9, from the 1993 Weisberg and Derrig fraud study, illustrate
graphically the contrasting perceptions among the four independent views of
the same set of claim files.” The general equivalence of overall results shown
in Figure 8 belies the actual disparity among coders. For example, not one of
the 127 claims was coded as fraudulent by all four of the coders. Figure 9

% Strictly speaking, the 1993 study coders reviewed the entire combined bodily injury and
personal injury protection files, while the prior coders, with some exceptions, reviewed one file
or the other but not both.
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Figure 8
Subjective Assessments of Fraud:
Sample Design vs. Coder Results
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shows the decomposition of adjuster and investigator fraud codings by type of
bodily injury and personal injury protection coding. Although continued agree-
ment on the bodily injury and personal injury protection no fraud is generally
evident, there is a wide disparity of views on the previously coded fraud
claims.

Fuzzy Clustering of Suspicion Measures

Our experiments now focus on the subjective measures of suspicion of fraud
that allow for fuzzier identifications than simply zero-one, fraud/no fraud. Each
of the adjusters and investigator coders were asked to record their suspicion of
fraud on a zero to ten scale. These responses were grouped into five initial
clusters based upon adjuster suspicion levels: none (0), slight (1-3), moderate
(4-6), strong (7-9), and certain (10). Given that four coders had reviewed each
claim, a “fraud vote” equal to the number of reviewers who designated the
claim fraudulent provided a third suspicion measure, scaled zero to three, for
comparison purposes.'® The claim data vectors in order are shown in Appen-
dix C.

Similar to our town/territory exercise above, we begin with the initial one-
dimensional clustering of claims by adjuster suspicion levels. We apply the

10 Although the obvious maximum is four, no claim was coded fraudulent by all four coders.
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Figure 9
Subjective Assessments of Fraud:
Sample Design vs. Coder Results
Plus Decomposition of Adjuster and Investigator Codings

100 T
90 +
80 \
Fraud \

1
70 \\

\ AN
\ Fraud - PIP }

50 -+ raud - A

Percent

30

° \

Sample Design BI & PIP Adjuster &
Study Coders Investigator
Fraud Study
Coders

same fuzzy clustering algorithm to the three-dimensional feature vector: the
adjuster suspicion value, the investigator suspicion value, and the fraud vote.
As with the town/territory exercise, the final fuzzy clustering illustrates both
the added dimensions (more information about each claim) and the fractional
cluster membership. The fuzzy clusters are shown in Appendix D.

Figure 10 shows graphically how the 127 claims initially clustered by the
adjuster suspicion levels are clustered by the fuzzy algorithm using the investi-
gator and fraud vote data and an o-cut of 0.2." Figure 11 shows the fuzzy
clusters at the somewhat higher level a-cut of 0.3, demonstrating the major
effect of the multidimensional data pattern rather than the fractional member-
ship values. Only five claims retain partial membership at o = 0.3. In using o
= 0.3, we do, however, mask the uncertainty present in 27 other claims. That
uncertainty may be operationally important for claims handling decisions.

The fuzzy algorithm arranges the claims into clusters of no perceived fraud
(center (0,0,0)), little perceived fraud by the adjusters (centers (1,4,1) and
(1,8,2)), and strongly perceived fraud by adjusters (center (7,5,2) and center

"' For illustrative purposes in Figures 10 and 11, the claim pattern data shown in Appendices
C and D have been reindexed into three-dimensional lexicographical order. The initial clusters are
determined by the adjuster suspicion levels (first feature) zero, 1-3, 4-6, 7-9, and 10.
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Figure 10

Fuzzy Claim Clustering by All Suspicion Scores:
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(7,8,2)). Because it is unlikely that an insurer practically can have all claims
assessed by four coders, or even assessed in some other multidimensional way,
it is especially encouraging that the agreed upon strongly suspicious claims
(final clusters 4 and 5) are fully contained within the adjuster suspicion levels
4 and above (initial clusters 3, 4, and 5). This result supports the hypothesis
that adjuster suspicion levels can serve well to screen suspicious claims despite
the inherent ambiguity in observer perceptions.

Fuzzy Clustering of Fraud Assessment

Each adjuster coder was asked to give an overall judgmental assessment in
terms of fraud content for each of the 127 claims. The assessment categories
were planned fraud, opportunistic fraud, build-up only, and no fraud/build-up.
Each claim was also coded for the level of suspicion (zero to ten) for each of
six components of the claim: the accident, the injury, the insured, the claimant,
the medical treatment, and the wage loss. An application of the fuzzy cluster-
ing algorithm allows us to relate the suspicion scores to the fraud assessment
in a manner analogous to a regression model. Appendix F contains the feature
vector data.

Our five initial clusters are the four fraud assessment categories but with the
build-up category divided into two parts: build-up claims with injury suspicion
level less than five (IC2) and greater than or equal to five (IC3). Appendix G
shows the numerical fuzzy clustering results. Figure 12 shows the results of the
application of the fuzzy clustering algorithm and the final cluster centers.
Fuzzy cluster 1, with center (0, 0, 0, 0, 0, 0) is clearly the valid nonsuspicious
claims. Fuzzy cluster 2 represents treatment build-up only, probably without
the involvement of the claimant. Fuzzy cluster 3 has moderate suspicion levels
for the injury, the claimant, and the treatment consistent with a deliberate
build-up of a minor injury for the purpose of filing a tort claim. Fuzzy cluster
4 shows high suspicion levels for the injury, claimant, and treatment, but not
the accident or the insured, consistent perhaps with nonexistent injury and
treatment. Fuzzy cluster 5 has high suspicion levels for the first five features
consistent with planned fraud. The sixth feature value, wage loss, is zero in all
cluster centers reflecting a very low incidence of suspicious wage loss claims.
The results of the clustering algorithm provide for alternative groupings of
claims by suspicion levels rather than by overall, perhaps vague, assessments
of build-up and fraud.

Conclusion

This article explores the usefulness of fuzzy pattern recognition techniques
when applied to insurance territorial classification and claims classification
problems. We consider the ratemaking problem of grouping towns into territo-
ries and the operational problem of grouping claims according to their suspect-
ed fraud content. Each problem has some degree of ambiguity and judgment
in current practices that can be illuminated by fuzzy pattern recognition tech-
niques. The same fuzzy clustering algorithm was applied to Massachusetts data
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Figure 12
Fuzzy Clustering of Fraud Study Claims by Assessment Data:
Membership Value Cut at 0.2

Centers

51 . o aebesseens | (78788,0)
o] y IS SO 70770

B U P (14.0460)

Final Clusters
W

21 . .. . e e LRI . 01,0130

1 ..... . (0,0,000,0)

Initial Cluster 1 Ic2 Poes ic4 i oIcs

T B o L I S e B s B A Rmaa T
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Claim Fecture Vector ID

4 = Full Member @ = Partial Member =02

sets representative of the two types of problems to illustrate the universality
and flexibility of the fuzzy approach.

One of the problems of the current automobile insurance rating territories
system in Massachusetts is the possibility of frequent switching of certain
towns from one territory to another. The fuzzy algorithm is capable of discov-
ering fractional degrees of membership, which may indicate towns strongly
related to two or more territories, towns with transitional behavior, or a need
to accommodate the data by increasing the number of clusters. A fuzzy cluster-
ing algorithm, by indicating newly developed or increasing fractional member-
ship in another cluster, would provide an early warning of a change occurring.
By including a geographical proximity variable, fuzzy clustering should not
change locally (county level) but can change with statewide data.

In the case of claim classification by suspected fraudulent content, we found
fuzzy clustering to be an excellent tool in evaluation of the data provided by
claims adjusters. As such data is necessarily of subjective nature, modification
of it given by the clustering algorithm allows for softening of the sharp distinc-
tion (suspicious/not suspicious) which adjusters are forced to make. The inher-
ent ambiguity of suspicious claims labeling processes is well modeled through
fuzzy set techniques.

We do not conclude that fuzzy set theory is either the only way or the best
way to analyze fraud-related data. Indeed, Weisberg and Derrig (1993) used
regression methods to parse or cluster claims according to discrete model out-
come values based upon the presence or absence of so-called fraud indicators.
Brockett, Xia, and Derrig (1995) apply a neural network model to the arrays
of fraud indicators without using any of the subjective assessment variables.
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With the relatively new, and ambiguous, fraud-related data, fuzzy set theory
can be one tool in the analytic arsenal to detect claim fraud.

Future research should separate the relative advantages of five-dimensional
versus one-dimensional town clustering by comparing classical (crisp) cluster
techniques to their fuzzy counterparts. Accuracy of resulting town rates should
be the determining criteria. Suspicious claims clustering should be tested on
multidimensional data generated, not by several observers as we do here, but
by several components of the claims process, fraud indicators being prime
examples. A

We conclude that fuzzy clustering is a valuable addition to the methods of
risk and claims classification, in the areas studied here, as well as in further
possible applications.
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Appendix A

Pure Premium and Geographic Indices for Bristol County, Massachusetts

Pure Premium Indices by Coverage

Property
1993 Territory Damage Compre-
Town Name TerritoryCluster  Combined A-1 & B A-2 Liability Collision hensive Y-Map X-Map
Mansfield 5 1 0.8018  0.7755  0.6849 0.8115 0.8666  0.7699  0.8739 0.9036
North Attleborough 5 1 0.8029  0.7630  0.7170 0.8611 0.8166  0.8167 0.8739 0.8842
Dighton 6 2 0.8613 0.8557  0.8207 0.8217 0.8691 09171  0.9036 0.9036
Rehoboth 6 2 0.8650  0.8756  0.7256 0.8215 0.9450 09251  0.9036 0.9036
Norton 6 2 0.8705  0.7335  0.7839 0.8852 0.9505  0.7962  0.8739 0.9036
Freetown 6 2 0.8754  0.8330 0.9214 0.7524 0.9235 1.1653  0.9306 0.9219
Berkley 6 2 0.8775 0.8662  0.8640 0.7647 0.8900 1.0825 0.9036 0.9219
Raynham 6 2 0.8806  0.8408  0.8407 0.8799 0.8786  0.9408 0.9036 0.9219
Seekonk 7 3 0.9092 09010  0.6828 0.9609 09149  0.8236 0.9036 0.8842
Easton 7 3 09108 09172  0.8286 0.9349 0.9443  0.9529 0.8739 0.9036
Attleboro 7 3 09171 0.8493  0.8384 0.9577 0.9219  0.9366 0.9036 0.9036
Dartmouth 7 3 0.9215 1.0212  0.9357 0.9162 0.9089  0.9520 0.9554 0.9219
Somerset 8 4 0.9546 1.1093  0.9566 0.9588 0.8826  0.8316  0.9306 0.9036
Swansea 8 4 0.9551 1.1388 09171 0.9552 0.8620  0.9440 0.9306 0.9036
Taunton 8 4 0.9612 1.1071 0.9660 0.9975 0.9278  0.9331 0.9036 0.9219
Westport 8 4 0.9896  0.9876  0.9602 0.8895 0.9444 1.2262  0.9554 0.9219
Acushnet 8 4 0.9978 1.0150  0.9956 0.9447 09770  0.9412 0.9306 0.9219
Fairhaven 9 4 1.0366 1.0991 1.0444 1.0250 1.0182  0.9875 0.9554 0.9391
Fall River 12 5 1.2382 1.3310 1.2587 1.2034 1.0752 1.4572  0.9306 0.9036
New Bedford 13 5 1.2977 1.3281 1.3958 1.2340 1.1817 1.5076 ~ 0.9554 0.9219

Note: The pure premium indices are ratios of empirical Bayes estimates of town loss pure premium to statewide averages using 1987
through 1990 accident year data (Automobile Insurers Bureau, 1992). 1993 Territories are those prior to capping. Geographical coordinates
are map identifications, 1 <y < 12, 1 < x < 18, divided by the Nantucket coordinates (12, 18) then exponentiated to fourth root for
comparability with the pure premium indices.
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Appendix C
Suspicion Measures for 1993 Massachusetts Fraud Study Claims
Adjuster Investigator  Fraud Adjuster Investigator Fraud Adjuster Investigator Fraud
Observation  Value Value Vote Observation  Value Value Vote Observation Value Value Vote

1 0 0 1 44 1 0 1 87 0 0 0
2 0 3 1 45 5 8 1 88 0 0 0

3 10 5 3 46 8 6 2 89 0 0 0
4 0 5 2 47 5 8 2 90 5 9 1
5 8 8 3 48 0 0 1 91 0 0 0
6 0 10 2 49 0 3 1 92 0 0 0
7 7 0 1 50 1 6 1 93 0 0 0
8 0 0 1 51 7 8 3 94 5 0 0
9 8 5 2 52 5 8 2 95 6 8 0
10 2 10 2 53 0 0 1 96 0 0 0
11 0 2 1 54 6 9 1 97 0 3 0
12 7 10 3 55 4 5 1 98 5 5 0
13 3 10 2 56 1 0 1 99 1 0 0
14 0 3 2 57 3 9 2 100 4 5 0
15 5 5 2 58 0 2 1 101 8 9 2
16 2 9 1 59 8 5 2 102 0 0 0
17 0 1 1 60 1 8 2 103 2 0 0
18 2 0 1 61 10 9 2 104 8 5 1
19 8 7 2 62 7 0 1 105 0 0 0
20 2 9 3 63 0 0 0 106 0 0 0
21 8 8 2 64 2 9 0 107 0 4 1
22 3 0 1 65 0 0 0 108 0 0 0
23 3 5 1 66 0 0 0 109 1 0 0
24 2 9 3 67 4 5 0 110 0 4 0
25 0 0 2 68 0 0 0 111 2 7 0
26 0 0 1 69 0 1 0 112 0 0 0
27 8 10 3 70 5 0 1 113 3 2 1
28 0 6 2 71 0 0 0 114 0 0 0
29 0 9 1 72 0 0 0 115 0 0 0
30 8 9 3 73 2 0 0 116 5 10 1
31 5 9 3 74 0 8 1 117 4 7 0
32 8 5 2 75 1 5 1 118 8 0 1
33 0 7 1 76 0 0 0 119 0 0 0
34 7 6 2 77 1 8 1 120 5 8 0
35 2 8 3 78 3 2 0 121 1 7 1
36 0 9 2 79 0 9 0 122 0 0 0
37 7 10 2 80 0 0 0 123 6 3 0
38 8 8 2 81 3 0 0 124 6 10 1
39 8 8 3 82 0 0 0 125 0 0 0
40 7 7 3 83 5 0 0 126 0 0 0
41 8 7 3 84 1 0 0 127 0 0 0
42 6 6 2 85 0 5 0
43 5 8 2 86 0 0 0

Note: Adjuster suspicion and investigator suspicion values are judgmental assessments of the presence of fraud on a zero (no fraud) to ten
scale. Fraud vote value is the sum of coders with judgmental assessment of fraud on a zero to four scale. Sample of 1989 Massachusetts
bodily injury claims overweighted for fraud judgment (Weisberg and Derrig, 1993).
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Fuzzy Claim Clustering by Suspicion Scores
a-cut = 0.2
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Cluster

Adjuster
Score

Initial Cluster U (0)

Final Cluster U (24) [0.2 Cut]

Final Center

1

0

4-6

7-9

1,2,4,6,8, 11, 14, 17, 25, 26, 28,
29, 33, 36, 48, 49, 53, 58, 63, 65,
66, 68, 69, 71, 72, 74, 76, 79, 80,
82, 85, 86, 87, 88, 89, 91, 92, 93,
96, 97, 102, 105, 106, 107, 108,
110, 112, 114, 115, 119, 122, 125,
126, 127

10, 13, 16, 18, 20, 22, 23, 24, 35,
44, 50, 56, 57, 60, 64, 73, 75, 77,
78, 81, 84,99, 103, 109, 111, 113,
121

15, 31, 42, 43, 45, 47, 52, 54, 55,

67, 70, 83, 90, 94, 95, 98, 100, 116,

117, 120, 123, 124

5,7,9,12, 19, 21, 27, 30, 32, 34,
37, 38, 39, 40, 41, 46, 51, 59, 62,
101, 104, 118

3,61

1, (0.35)7, 8, (0.48)11, 17, 18, (0.71)22,
25, 26, 44, 48, 53, 56, (0.48)58, (0.35)62,
63, 65, 66, 68, 69, (0.40)70, 71, 72, 73,
76, (0.45)78, 80, (0.74)81, 82, (0.42)83,
84, 86, 87, 88, 89, 91, 92, 93, (0.42)94,
96, 99, 102, 103, 105, 106, 108, 109, 112,
(0.42)113, 114, 115, 119, 122, 125, 126,
127

2, 4, (0.52)11, 14, (0.29)22, 23, (0.57)28,

(0.31)33, 49, (0.58)50, (0.45)55, (0.52)58,
(0.48)67, (0.28)70, 75, (0.55)78, (0.26)81,
(0.28)83, 85, (0.28)94, 97, (0.48)100, 107,
110, (0.28)111, (0.58)113

6, 10, 13, 16, 20, 24, (0.43)28, 29,
(0.26)31, (0.69)33, 35, 36, (0.24)45,
(0.42)50, 57, 60, 64, 74, 77, 79, (0.32)90,
(0.72)111, (0.36)116, (0.43)117, (0.29)120,
121

(0.66)3, (0.65)7, 9, 15, (0.35)19, 32, 34,
(0.30)40, (0.33)41, (0.75)42, (0.23)45,
(0.75)46, (0.55)55, 59, (0.26)61, (0.65)62,
(0.52)67, (0.32)70, (0.30)83, (0.30)94,
(0.32)95, 98, (0.52)100, 104, (0.29)117,
118, (0.26)120, 123

(0.34)3, 5, 12, (0.65)19, 21, 27, 30,
(0.74)31, 37, 38, 39, (0.70)40, (0.67)41,
(0.25)42, 43, (0.53)45, (0.25)46, 47, 51, 52,
54, (0.74)61, (0.68)90, (0.68)95, 101,
(0.64)116, (0.28)117, (0.45)120, 124

0,0,0

(1,41

(1,8,2)

(7,5,2)

(7,8,2)

Note: C-means fuzzy clustering algorithm, with three suspicion measure data patterns for 127 study claims (Appendix C), 24th iteration
stopping parameter 0.049 < 0.05, a-cut = 0.2.
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Appendix E
Fuzzy Claim Clustering by Suspicion Scores
a-cut = 0.3
Adjuster
Cluster Score Initial Cluster U (0) Final Cluster U (24) [0.3 Cut] Final Center
1 0 1,2,4,6,8, 11, 14, 17, 25, 26, 28, 1, 8, (0.48)11, 17, 18, 22, 25, 26, 44,48, (0,0, 0)
29, 33, 36, 48, 49, 53, 58, 63, 65, 53, 56, (0.48)S8, 63, 65, 66, 68, 69, 70,
66, 68, 69, 71, 72, 74, 76, 79, 80, 71,72, 73, 76, (0.45)78, 80, 81, 82, 83,
82, 85, 86, 87, 88, 89, 91, 92, 93, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96,
96, 97, 102, 105, 106, 107, 108, 99, 102, 103, 105, 106, 108, 109, 112,
110, 112, 114, 115, 119, 122, 125, (0.42)113, 114, 115, 119, 122, 125, 126,
126, 127 127
2 1-3 10, 13, 16, 18, 20, 22, 23, 24, 35, 2,4, (0.52)11, 14, 23, (0.57)28, 49, (1,4, 1)
44, 50, 56, 57, 60, 64, 73, 75, 77, (0.58)50, (0.52)S8, 75, (0.55)78, 85, 97,
78, 81, 84, 99, 103, 109, 111, 113, 107, 110, (0.58)113
121
3 4-6 15, 31, 42, 43, 45, 47, 52, 54, 55, 6, 10, 13, 16, 20, 24, (0.43)28, 29, 33, (1,8,2)
67, 70, 83, 90, 94, 95, 98, 100, 116, 35, 36, (0.42)50, 57, 60, 64, 74, 77, 79,
117, 120, 123, 124 111, 117, 121
4 7-9 5,7,9, 12,19, 21, 27, 30, 32, 34, 3,7,9, 15, (0.35)19, 32, 34, 42, 46, 55, (7,5,2)
37, 38, 39, 40, 41, 46, 51, 59, 62, 59, 62, 67, 98, 100, 104, 118, 123
101, 104, 118
5 10 3, 61 S, 12, (0.65)19, 21, 27, 30, 31, 37, 38, (7,8,2)

39, 40, 41, 43, 45, 47, 51, 52, 54, 61,
90, 95, 101, 116, 120, 124

Note: C-means fuzzy clustering algorithm, with three suspicion measure data patterns for 127 study claims (Appendix C), 24th iteration
stopping parameter 0.049 < 0.05, a-cut = 0.3.
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Appendix F
Fraud Assessment and Adjuster Suspicion Levels for Fuzzy Claim Clustering

Suspicion Level

Suspicion Level

Lost

Overall
Injury  Treatmen: Wages Overall

Observation Assessment Accident Claimant  Insured

Lost

Injury  Treatment  Wages

Overall
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127
Note: Overall assessment codes are valid claim (1), build-up (2), opportunistic fraud (3), and planned fraud (4). Suspicion levels are on

a zero to ten scale.
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Appendix G
Fuzzy Claim Clustering of Assessment Data by Suspicion Scores
o-cut = 0.2
Adjuster
Overall
Cluster Assessment Initial Cluster U (0) Final Cluster U (21) [0.2 Cut] Final Center
1 Valid 1,2,6,8, 11, 14,17, 25, 26,29, 1,2, (0.25)4, (0.65)6, 8, 11, 14, 17, (0,0,0,0,0,0)
35, 44, 48, 49, 56, 63, 65, 66, 68,  (0.31)22, 25, (0.56)26, (0.25)28, 29,
71,72, 73, 77, 79, 80, 82, 84, 86,  (0.26)35, (0.30)36, (0.30)44, 48, 49,
87, 88, 89, 91, 92, 93, 96, 97,99,  (0.25)50, (0.25)53, 63, 65, 66, 68,
102, 105, 106, 107, 108, 110, 114, (0.25)69, 71, 72, (0.26)73, (0.25)76.
115, 119, 122, 125, 126, 127 (0.30)77, 79, 80, 82, (0.25)84, 86, 87, 88,
89, 91, 92, 93, 96, 97, (0.47)99, 102.
105, 106, 107, 108, 110, (0.25)112, 114,
115, 119, 122, 125, 126, (0.57)127
2 Buildup 4,10, 13, 16, 18,22, 23, 28,33,  (0.75)4, (0.35)6, (0.67)10, (0.51)18, 0,1,0,1,3,0)
(Injury 36, 43, 47, 50, 53, 55, 58. 60, 64,  (0.37)22, (0.63)23, (0.31)24, (0.44)26,
Suspicion 67, 69, 74, 76, 78, 85, 100, 103,  (0.75)28, 33, (0.74)35, (0.70)36, (0.26)43,
Level Less 109, 111, 112, 113, 117, 120, 121,  (0.70)44, (0.33)47, (0.75)50. (0.75)53, 56,
Than Five) 123 58, 60, 64, (0.75)69, (0.74)73, 74, 75,
(0.75)76, (0.70)77, (0.26)83, (0.75)84, 85,
(0.53)99, (0.62)100, (0.51)103, 109. 111,
(0.75)112, (0.68)120, (0.38)121, (0.43)127
3 Buildup 7,31, 37,42,45,54,57,62, 81,  (0.33)10, 13, (0.59)15, 16, (0.49)18, 20, (1,4,0,4,6,0)
(Injury 83, 94, 95. 98, 116, 124 (0.32)21, (0.32)22, (0.37)23, (0.69)24, 31,
Suspicion (0.38)32, (0.27)37, (0.33)42, (0.47)43,
Level (0.40)45, (0.67)47, (0.33)54, 55, (0.68)57,
Greater 67, 70, 78, 81, (0.49)83, (0.33)90,
Than or (0.59)94, (0.33)95, 98, (0.38)100, (0.49)103,
Equal to 113, (0.52)116, 117, (0.32)120, (0.62)121,
Five) (0.54)123, (0.52)124
4 Opportunistic 5, 9, 12, 15, 19, 20, 21, 24, 30, 5,7,9, (0.41)15, (0.33)21, (0.70)30, (1,7,0,7,7,0)
Fraud 32, 34, 40, 46, 52, 59, 61, 70, 75,  (0.62)32, 34, (0.29)37, 40, (0.67)42,
90, 101 (0.27)43, 46, (0.42)52, (0.67)54, (0.32)57,
59, (0.44)61, 62, (0.25)83, (0.67)90,
(0.41)94, (0.67)95, (0.48)116, (0.46)123,
(0.48)124
5 Planned 3,27, 38, 39, 41, 51, 104, 118 3, 12, 19, (0.35)21, (0.30)30, 27, (0.45)37, (7.8,7.8,8,0)
Fraud 38, 39, 41, (0.60)45, 51, (0.58)52,

(0.56)61, 101, 104, 118

Note: C-means fuzzy clustering algorithm, with six suspicion measure data patterns for 127 study claims (Appendix F), 21st iteration
stopping parameter 0.044 < 0.05, o-cut = 0.2.





