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ABSTRACT. The dersity topology on the real line consists of all measurable sets
whose all points are their points of Lebesgue density one. A real-valued function
of a real variable that is continuous with respect to the density topology on both
the domain and the range is termed density continuous. By constructing graphs
of density continuous functions as invariant sets of systems of affine maps on
the unit square we show that the Hausdorff dimensions of graphs of density
continuous functions vary continuously between one and two.

The density topology on the real line consists of all measurable sets E such
that every point of E is its Lebesgue density point (see Oxtoby [13, p. 90]). It
is a completely regular refinement of the natural topology.

The functions f:R — R which are continuous with respect to the density
topology on the domain and the range are termed density continuous.

Bruckner [2] and Niewiarowski [10] investigate homeomorphisms of the real
line whose inverses are density continuous. Ostaszewski [11, 12] studies local
behavior of density continuous functions. Ciesielski and Larson [4], and inde-
pendently Burke [3], show that all analytic functions are density continuous.

Ciesielski, Larson, and Ostaszewski [7] show that all density continuous func-
tions are in Darboux Baire* 1 class, and the class of continuous, density con-
tinuous functions is of the first category in the space of continuous functions,
equipped with the topology of uniform convergence. In fact, Ciesielski, Larson,
and Ostaszewski [6] show that the class of density continuous functions when
equipped with the topology of uniform convergence, is of the first category in
itself. Thus the space of density continuous functions is, topologically speak-
ing, rather small. On the other hand, it does include most functions studied in
calculus.

We will show that despite the rarity of density continuous functions among
the continuous functions, there are enough of them to produce graphs of all
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possible Hausdorff dimensions for real functions of a real variable.

Let 7 =[0, 1]. Maly [8] constructs a density continuous function f:I — I
such that there exists a set 4 of measure zero with |f(4)| = 1. The function
f is actually the x-coordinate of a Peano area-filling curve. As an illustration
to the proof of Theorem 2 we will first recall Maly’s construction and show that
the function constructed has a graph of the Hausdorff dimension 1.5.

First let g:[0, 9] — [0, 3] be defined as follows: g(0) = 0, g(1) =1,
8(2)=0, gB3)=1, g4) =2, g(5)=1, g(6) =2, g(7) =3, g(8) =2,
g(9) = 3, and let g be linear in each interval of the form [i, i + 1] where
0 < i< 8. Define

filx) =

Forevery neN, keN, 0<k<9",0<t<97" let

o () = () e (1 (5) - (8)

Maly [8] shows that the sequence {f,},.n converges uniformly to a continu-
ous, density continuous function f:I — I. Note that Ciesielski, Larson, and
Ostaszewski [7] show that the function constructed by Maly is nowhere approx-
imately differentiable.

The graph of the function f may also be realized as the invariant set of an
iterated system (see [1, p. 82]) of nine affine maps of the plane. In fact, let

g(§x).
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Let G stand for the graph of the function f. Then

9
G=J¢(G
i=1

We will denote by dim(FE) the Hausdorff dimension of a set E in a Euclidean
space.

McMullen [9] determines the Hausdorff dimension of a family of planar sets
which are generalizations of the classical Cantor set in R. His main result is:

Theorem 1. Given positive integers n > m and a set R consisting of pairs of
integers (i, j) with 0<i<n and 0< j < m, define the set R by

{(; Zyk) xk,yk)eRvkeN}

Then the Hausdorff dimension of R is given by

m—1
dim(R = log,, (Ztlog" )
j=0

where 1 is the number of i such that (i, j) € R.
Proof. McMullen [9, Theorem, p. 1].

Note that R is the invariant set of the iterated function system (see [1,
p. 82)) f,, f5, ..., f,, where r is the number of elements of R, and each f,
is an affine map contracting the plane by a factor of »n horizontally and m
vertically. In other words

,
R=U/M®

i=1

for those affine maps.

Corollary 1. The Hausdor[f dimension of the first coordinate function of the Peano
area-filling curve (i.e., the function f defined above) equals 1.5.

Proof. In Theorem 1,let n =9, m =3, r =9. It follows from Theorem 1
(and the discussion of its equivalent version above) that the Hausdorff dimen-

sion of G equals
2
log, (Z e‘°g93) =15
j=0

We will now proceed to prove that a construction similar to the one above can
produce a density continuous function with a graph of any desired dimension.
We will start by noticing that it suffices to show that Hausdorff dimensions
of graphs of density continuous functions form a dense subset of the interval
[1,2].
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Lemma 1. If E, is a sequence of subsets of a Euclidean space then

dim (U En> =supdim(E,).

nEN neN
Proof. This can be verified easily using [14, Theorem 9, p. 17].

Corollary 2. If'the set of dimensions of graphs of density continuous functions is
dense in [1, 2] then it equals the entire interval [1, 2].

Proof. Let s € [1, 2]. Assume that {s,},.y is an increasing sequence of di-
mensions of graphs of density continuous functions f, , such that lim,_, s, =

s . Without loss of generality we may assume that each f, is a surjective map-
ping of [0, 1] onto [0, 1] such that £, (0) =0 and f,(1)=1. Define

1 n+1 1 1 1 1 1 1
f(X)——an<2 (X—<§+Z+"'+2—n>>>+§+§+"'+2—n

for

1 1 1 1 1 1
sttt sSX<sta+ gt e
and
f(x) =2f, (%)
for

Then [ is density continuous and the Hausdorff dimension of its graph equals
s by Lemma 1.

Theorem 2. The set of Hausdorff dimensions of graphs of surjective density con-
tinuous functions f:[0, 1] — [0, 1] is dense in [1, 2].

Proof. Let n € N be arbitrary, 0 </ < n, and m € N be odd. Define the
following maps of the unit square into itself:

o[]=[% 310
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Furthermore, let

o S -
X X 1

D1 ] = ¢, _y_+_%_’
[x ] (x] [ZL ,

Smei |y | =8|y | F|E],  (ASr<i-lIsjsm)
L o L J L n

Consider now the invariant set of the above affine functions system. It is not
necessarily the graph of a function defined on [0, 1]; however, it will become
one if we add to it the line segment connecting the points (//n, //n) and (1, 1),
and the countable collection of its images under maps of the form ¢ i, © qsl.z o
--quiN , where i; is an integer between 1 and Im foreach j=1,2,...,N.
Denote by f the function obtained above. One can easily visualize f as a
uniform limit of the following continuous, piecewise linear functions {fy|N €
N}. Denote fy(x)=x for x €[0, 1], and let fy:[0, 1] — [0, 1], N eN be
the function whose graph is the union of the images of the graph of f, under
the mappings ¢ o¢ o- °¢l~ , Where 1 is an integer between 1 and /m for
each j =1,2, N and which is 11near in the intervals where the above
definition does not extend (i.e., we gradually add the linear “pieces” appearing
in the graph of f). It is easy to verify the uniform convergence of f, to f.
This implies that f is continuous.

We claim that for any measurable E C [0, 1], f~ ( ) has the same measure
as E.

We shall prove that |f_ (I)| = |I] for I of the form ’U/Nk /Nk
v, N, k € N. Since intervals of this form generate the ¢ algebra of measurable
setsin [0, 1] this w111 imply that for any measurable set E we have |f ( )| =
|E|. Obviously | f0 (I)| = |I| for any interval /. Observe that f (x) = x for
any x € [I[/n, 1]. Thusif I c [I/n, 1] then |fl_l I)| = |I|. One can easily see
that f, is mapping each 1nterva1 of the form [(r—1)/n, r/n] r=1,2,...,1
into itseif. If I = ((v—l)/n v/n ) and (r—l)/n <v/n < r/n then fl ( )
will be a subset of [(r—1)/n, r/n]. In fact f1 (I = U] 1¢r_nll+] I). Itis easy to
check that |f1( x)|=mif 0<x <//n and x # t/nm fora t € N. This implies
that |¢., (I)] = [I|/m for j=1,..., m. Thus 17D = m-1|/m = I|.
A similar, slightly more comphcated argument can show that | fN I)| =|I| for
every N € N.

Recall that the definition of the functions f,, implies that f,_, maps an

interval of the form [(s =1 /(nm)N_1 , s/(nm)N_l] into an interval of the

form [(¢t — 1)/n t/nN 1, t,s € N if and only if f, is also mapping

[(s— 1)/(nm)N_1 , s/(nm) ] into [(f— 1)/nN_1 , t/nN_l]. That is, the graph



1042 ZOLTAN BUCZOLICH AND KRZYSZTOF OSTASZEWSKI

of f, and in fact the graphs of f,,, M > N on the interval [(s— 1)/(nm)N"1 s
s/(nm)"™'1 will remain in the rectangle [(s — 1/ (nm)¥t, s/ (nm)¥'x
[(z=1)/n""", t/n™""]. Observe also that forany y € R, N € N the set £, ' ()
is finite. Therefore f5'(I) equals f; ' (I\(fy ' (v=1)/n")ufy (v/n")) if N >
k and I = ((v - 1)/nk, 'U/nk). Since f =lim,_, __ f, we obtain that i
equals fk"l(I ) minus countably many points and hence |f _1(1 )N = j;(_l(l )| -
This, together with | fk'l(I )| = |I| implies that |f~'(I)| = |I| and proves our
claim.

The claim in turn implies that f is density continuous.

Now we will show that by varying the parameters m, n, k we can have the
Hausdorff dimension of the graph of f in any subinterval of (1, 2] (note that
f(x) = x is density continuous and its graph has dimension 1).

In fact, let G be exactly the invariant set of the iterative function system
b5 by5 --es By, (i€., without the linear pieces added). The Hausdorff dimen-
sion of the linear pieces equals one. Thus the Hausdorff dimension of the graph
of f equals the maximum of the two numbers: one and dim(G).

Theorem 1 implies that the Hausdorff dimension of G equals

-1
1
logn Z m °gmn n y
Jj=0

as the functions ¢ ; are contracting the plane by a factor of nm horizontally

and n vertically; t,=m for j=0,1,...,/—1 and 1= 0 otherwise. Let d
denote the unknown dimension of the set G. A simple calculation gives

In/ Inm
=—
Inn Inm+Inn

d

Obviously
{M:neN, [<n, leN}
Inn
is dense in [0, 1]. Since
. Inm
lim ——m—— =1,
m—oo Inn +Inm
we conclude that
In/ Inm

[1,2lNn{—+———:n,meN, I<n, [eN
Inn Inm+Inn

is dense in [1, 2]. This completes the proof of Theorem 2.
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