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(Communicated by Andrew Bruckner)

ABSTRACT. In this paper we complete the proof of the fact that the Hausdorff di-
mensions of graphs of density continuous functions vary continuously between
one and two. This result was announced in our previous paper, but the proof
there contained a gap and the construction given there should also be slightly
modified, This correction is done in this paper.

INTRODUCTION

B. Kirchheim [K] observed and pointed out to the authors that in the proof
of Theorem 2 in [BO] there is a gap. That proof shows only that functions f,
defined in Theorem 2 of [BO], are measure preserving. This property is not
sufficient for density continuity. In fact, in Theorem 1 of this paper we show
that functions f in Theorem 2 of [BO] are not necessarily density continu-
ous. This will also illustrate that there are measure preserving but not density
continuous functions. On the other hand, by changing slightly the definition
of f one can obtain density continuous functions. This implies that the Haus-
dorff dimensions of graphs of density continuous functions f: [0, 1] — R vary
continuously between one and two.

In this paper we shall use the notation of [BO]. Recall that a function f: R —
R is density continuous if it is continuous with respect to the density topology
on both the domain and the range. Our work [BO] contains a construction
of functions done in a manner resembling the way the first coordinate of the
Peano area-filling curve is obtained. Those functions are claimed to be density
continuous.

Theorem 1. The functions f constructed in Theorem 2 of [BO] are measure
preserving but not necessarily density continuous.

Proof. Assume that we use the construction of Theorem 2 of [BO, pp. 1040-
1041], with n =3, m=5,and / =2. Put ky = 0, and choose a sequence of
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integers k; >2 for j=1,2,... such that

4 ko+--+k; 1
1 o . k0+”'+kj—l el
() (5) > <3
holds forall j=1,2,....Put sy =, =1.If s;,_; and ¢,_; are given, let
3 J J
o 1 1
Si=Si-1t3 (3. 5)kot+ki—

and

1 1
b=bt 33 am s

Observe that f(s;) = ¢;. We define x and y in (0, 1) as x =lim;_s; and
y =lim;_ t;. It follows form the continuity of f that y = f(x). We also
put

! 1 |
=\ 3 (3 4. 5)k0+”‘+kj—1 B (3 . 4)kj s S
and

5 1
Jj = (tj_ gm, tj) .
Observe that f is linear on

1 1 I
VT3 By ) 2

with slope 5%++k-1+1 Hence it is easy to see that f(I;) = J;. Define

F=[0, 1\

j=1
and E= f~!(F). Wehave yc F and x € E. Since, f(I;) = J;, we also have
oo
En U Ij =g.
j=1
Then using the definition of the points #; and the facts

UZi=00,1\F,  Ji=[t1, ,1\F,
Jj=1

—tio Gy =t 4tk
] |/ 5 7
and
W—t)  tm—ty 4otk
1 1 5 7
one can easily see that y is a density point of F . Plainly,
o0

X ==Y (11— 8) < 2841 = 5j)-
1=j
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Using x € f~1(F) and (1) from

kot +k;
(x —s)) <2. Si+1 —Sj _ 2. (i) T . Skototki1 o %,
IZj1 |11 J

5

it follows that x is not a density point of E . This implies that f is not density
continuous.

On p. 1041 of [BO] it is verified that for any measurable E C [0, 1], f~!(E)
has the same measure as FE ; that is, f is measure preserving. This concludes
the proof of Theorem 1.

Theorem 2. The set of Hausdor(f dimensions of graphs of surjective density con-
tinuous functions f:[0, 1] — [0, 1] is dense in [1, 2].

Proof. Let n > 3 be arbitrary, 1 </ < n,and m € N be odd. Assume that the
functions ¢,n; are defined as in [BO, pp. 1040-1041]. Denote by e; the line
segment connecting the points (0, 0) and (1, 1), and denote by e, the line
segment connecting the points (4, £) and (1, 1). Consider the invariant set
of the affine functions system ¢, where 1 <r</—1and 1<j<m. We
remark that here we do not use the functions ¢; for k =1, ..., m. This is
the slight change in the construction of [BO]. The invariant set is not the graph
of a function defined on [0, 1]; however, it will become one if we add to it the
line segments e¢; and e,, and the countable collection of their images under
maps of the form ¢;, o¢;,0---0¢;, , where i; is an integer between m +1 and
Im foreach j=1,2,..., N. Denote by f the function obtained above.

Denote fy(x) = x for x € [0, 1], and let fy:[0, 1] - [0, 1], N € N, be
the function whose graph is the union of the images of the graph of f; under
the mappings ¢;, o ¢;,0---o¢;, , where i; is an integer between m+1 and /m
foreach j=1,2,..., N, and the union of e;, e;, and their images under
the maps of the form ¢; o¢;, 0---0¢;,, where 1 < N’ < N and i; is an
integer between m + 1 and I/m for each j = 2,..., N'. It is easy to see
that the continuous functions fy converge uniformly to f, and hence f is
continuous.

Assume that [a, b] x [c, d] = ¢;, o pi, 0 --- 0 ¢;, ([0, 1] x [0, 1]), where i;
is an integer between m + 1 and I/m foreach j=1,2,..., N. Then it is
easy to see that b—a = 1/(mn)Y and d —c=1/n". Put y;: [0, 1] — [a, b],
wi(x)=(b—-a)x+a and y,: [0, 1] — [c, d], ya(x) =(d — c)x + c. Observe
that fl[a, b] = yao foy[ ', where by f|[a, b] we denoted the restriction of
f onto [a, b]. An argument like the one presented in [BO, p. 1041] can show
that f is measure preserving, i.e., for every measurable E C [0, 1] we have
|f~1(E)| = |E].

Assume now that E C [c, d] is measurable. Then |f~'(E)N [a, b]| =
|(flla, B))~H(E)| = ly1 o f~'y; '(E)|. Plainly, |y; '(E)| = |E|/(d =¢), |f™'o
w; '(E)| = |E|/(d - ¢), and finally |y o f~'oy; (E)| = (b—a)-|E|/(d-c)
|E|/m" . Therefore, we proved that

@) B nla, bl = 22 )

Denote by F; the invariant set of the affine functions system ¢.pyj, 1
r<l-1,1<j<m,andby F, the projection of F; onto the x-axis.
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Assume that E C [0, 1] is measurable, y, is a point of density of E, and
X0 € [~ (vo).

If xo ¢ F>, then it follows from the definition of f that there exitsa J >
0 such that f is nonconstant and linear on the intervals (xp — J, xp] and
[x0, Xo + J) . Therefore, xo is a point of density of f~!(E).
" Assume now that x; € F,. Then there exists a sequence i;, iz, ..., in, ...
such that (xo, yo) = Ny~ $i © bs, © -+~ © diy([0, 1] x [0, 1]), and iy is an
integer between m + 1 and /m for each nonnegative integer N. We also
choose ay, by, ¢y, dy such that

lan, byl x [en, ANl = di-1 0 iy 04+ 0 ¢y ([0, 1] % [0, 1]).

Since m < iy, <Im < (n—1)m, we have

(3) X0 € (an +

by —- an by — aN]
, by =
n
for N=1,2,....
Let ¢ > 0. Since yg is a density point of E, we can choose an Ny such
that if yo € [¢, w] C [cn, » dn,], then

(4) Ilg, w\E| < e-(w—q).
We obtain from (2) easily that

llan, bvI\f~H(E)| < &(bw — an)

holds for any N > N, . From (3) it follows that x; is the open interval (an, by)
for any N, and hence we can find a dy > 0 such that (xo — dg, Xo + dp) C

(aNo ) bNo) . !
Assume that 0 < d < dp. Choose N > Ny such that (xo —3J, xo +9J) C
[an, by] and (xo—0, xo+0) & [an+1, by+1]. Using (3) with N+ 1 we obtain

byi1 = anyi by — anyi
Xo € aN+1+"_—n_‘,bN+l el

This and (xp—J, X0+ ) ¢ [an+1, by+1] imply 6 > (bys1 — any1)/n, that is,
bni+1 — ans1 < 0, , and hence
(X0 =6, X0+ &\S/~H(E)| < |lan, bAI\S"'(E)| < &(bn — an)
=enm(byy1 — any1) < enm - né.

Thus for every ¢ > 0 there exists dy such that for every 0 < Jd < dp we have

[(xo = d, xo+ )\ f~1(E)| <8”2m
20 2

Therefore, x, is a point of density of f~!(E). This concludes the proof of the
fact that f is density continuous. :

The calculation of the Hausdorff dimension of f is similar to the one pre-
sented in [BO, p. 1042]. One obtains that the Hausdorff dimension of f equals

-1
In(/-1) Inm
log,,, n —
logn;m Inn + Inm+Inn’
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It is also clear that

{li(z;l—z:neN, n>3, 1<l<n, leN}
Inn

is dense in [0, 1]. This implies (cf. [BO]) that the set of Hausdorff dimensions
of graphs of the functions f is dense in [1, 2]. This completes the proof of
Theorem 2.

Note that Theorem 2 of this paper together with Corollary 2 of [BO] im-
ply that the set of the Hausdorff dimensions of graphs of density continuous
functions equals the entire interval [1, 2].
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