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ABSTRACT
The paper deals with integration of abstract Henstock type.

Eleven derivation bases on the plane are investigated, those built with tri-
angles, rectangles and regular rectangles, and the approximate bases. The re-
lationships between the integration theories generated by them are found. Also
the nonabsclute integrals of Perron, Kempisty, Mawhin, Pfeffer, and Chelidze-

Dzhvarshelshvili are considered, and compared with the Henstock integrals.

Chapter 3 contains a generalized Fubini Theorem for the abstract Henstock
integral. This theorem kolds for any Henstock integral generated by a product
base, in particular for the Lebesgue integral, Kurzweil integral, and the integral

given by the approximate product base.
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NOTATION

R The set of all real numbers.

N The set of all positive integers.

P(A) The class of all subsets of a set A.

A° The interior of a set 4 C R? {in the natural topology).

A- The closure of A ¢ R?,

A The boundary of 4 ¢ R?,

d{A) The diameter of a set A ¢ R%.

A(A) The outer Lebesgue measure of A ¢ R,

AL(E) The outer Lebesgue measure of a linear set E.

D(z,r) Disk on the plane, centered at z, with radius r.

AAB The symmetric difference of A and B, i.e.,, (A\ B)u (B \ 4).
sgn z The sign of a real number z # 0, ie., [fl

%f—, %4; The approximate partial derivatives.

Ie]s X, The Cartesian product of a class {X,}.es.

" .

a-b For vectors ¢ = (a;,a3) and b = (b;,bz) this is their scalar

product a b, + agb,.
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INTRODUCTION

This work presents and compares various integration theories in the plane.
It is our inteation to put those theories in the framework based on the absiract

Henstock integral, presented in chapter 1.

We introduce eleven derivation bases on the plane, and the Henstock in-
tegrals generated by them. We also consider nonabsolute integrals of Perron,
Kempisty, Mawhin, Pfeffer, and Chelidze and Dzhvarshelshvili. The relationships
among them found are presented graphically in a diagram. In the diagram, inte-
gration theories are represented by the bases generating them, or by the names of
their inventors. Arrows point to the more general theories. +(condition) means
that the condition stated is necessary for the relationship. CSS denotes continu-
ity in the sense of Saks, SMC — special assumption on majorants and minorants

of theorem 4.5.4, and SDC — special decompaosition condition of theorem 5.5.5.

The following is the list of references for the relationships presented in the

diagram.

Lebesgue — A7, A7, A; AT, Aj, A} — Lebesgue 2.5.5,

AT, AL AT — Ay 2.3.4, 2.5.5,
As — Ay 2.3.4, 2.3.5,
A= A;4,— 4 2.3.4, 2.3.8,
A, — Perron; Perron — A 2.1.1,

A — Ay 2.3.4, 3.4.1,
Ay — Ay 2.3.4, 235,

Received by the editors Angust 19, 1985,

The results in this paper appear in the author’s doctoral dissertation given

at the University of Washington in 1985.
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Ay — Pleffer; Pleffer — A,

A; — Mawhip; Mawhin — A,

Kempisty —+ Ag

Ay (+CSS +5MC)} — Kempisty
Chelidze-Dzhvarshelshvili (+SDC) — Ay

Perron

e
—
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Chapter 1

HENSTOCK INTEGRAL

In this chapter we introduce the notion of a derivation base, and then all
the other notions fundamental for the whole work, such as: derivative, variation,

(Henstock) integral, and the variational equivalence.

We define basic properties of certain bases, including possessieg the par-
titioning property (which makes a base into an integration base), having local

character, being additive.

Finally, five equivalent ways to define the Henstock integral are presented,
including the classical one (a limit of Riemann sums), variational equivalence of

the integral and the integrand, and the definition of the Perron-Ward type.

1.1, Derivation bases.

1.1.1. Definitlon. Let X be a nonempty set and ¥ a nonvoid class of its subsets.
A pnonempty class

AcCP(Xx¥) . (1.1}

will be termed a derivation base on X. In specific cases, we will take X to be R
and ¥ to be the class of all nontrivial closed intervals, or (more often) X = R?

and ¥ — nondegenerate closed intervals, regular intervals, triangles, etc.

A more general setting is possible. In [1] an integration theory of Henstock
type in a locally compact Hausdorff space is presented. A space 4 equipped with
a class {7}, as in [8] and [57], is also a possibility. We will, however, concentrate

on R,
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The definition presented here is based ca the one in [53], and is slightly
different from that of {12]. The purpose of our choice is to get a deflnition closely
related to the Henstock integral.

A base A is called trivial if @ € A. Unless stated otherwise, all bases

considered are nontrivial.

Elements of a base A will be denoted by small Greek leiters (a, 8,7,...).

We will use the following notation:
a|lE|={(z.])€a:z€E},

(L2)
a(E)={(z,])€Ea:IC E}
fora € A, E ¢ X. We will also write:
A[E] = {alE]:a € A},
(L3}

A(E) = {a(E):a € A}.
1.1.2. Remark. We will assume that the class ¥ has the following property:
given o, Iy,..., [, €W, and I,,...,Jn C Iy,
h\(huhLu.. VL)=hURKUu...UJy (14)
where J;, Ja, ..., Jn are nonoverlapping elements of ¥ (since we concentrate on

R? the meaning of “nonoverlapping” will be clear).

1.1.3. Definition. We say that a fnite class D of elements of ¥ is & division if

its elements are nonoverlapping. If D is a division then

D)=L (1.5)
rep
A partition is a class x € P (X x ¥) such that
D={le®:(z,])ex} (1.6)

has exactly as many elements as = and is a division.

If x is a partition, we will write

o(r) = U I (1.7)

(z.1)ENx

Finally, D is a division of an element f of ¥ if #(D) = I. Similarly, » is a
partition of [ if o(x} = I.
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1.1.4. Definition. If F : X x ¥ — R and 7 is a partition then we will write
Fir)= ) F(al). (1.8)
(z,)EN
ItH: ¥ — R and D is a division then
H(D) =) H(I). (1.9)
ieb
1.1.5. Definition. A base A is filtering down if for every ay,az7 € A there

exists an o € A such that a C a; Nas.

A has the partitioning property it for every I € W and every a € A there

exists a partition 7 C a of I.

1.1.8. Definitlon. A base A is finer than a base A’ if for every a' € A’ there

exists an a € A such that o C o',
If A is finer than A’ then we write A < &'.
It A< A'and A » A’ then we will say that A and A’ are equivalent and

write A ~ A'.

1,1.7. Deflnition. A has a local character if for every {8} € [.cx A[{=}]
there exists an o € A such that for every z € X

o[{z}] € B {1.10)

A has a o-local character if for any sequence {X,} of disjoint subsets of X,
and for every {An} € [Iacn A[Xn| there exists an o € A such that for every
neN )

alXa| € Ja. (1.11)

Any base that has a local character must also have a #-local character,

1.1.8. Definltlon. A ignores a point r € X if there exists an o € A such that

al{z}] =0.
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1.2. Derivatives.

1.3.1. Definitlon. Let F,G : X x ¥ — R. Define the derivative of F with
respect to & (with respect to a derivation base A) as 3 number D F(z) such

that for every e > 0 there exists an o € A such that if (z,I) € a[{z}] then

g{:: g <e, (1.12)

DAF(,'[Z) e

The upper and lower derivatives are defined as follows:

= . F(z,I)
DAF, = inf su .
aFola) aga (:.J)Iéa G(z.I)

. F(2,1)
D, F. =sup inf .
=a G(Z) aEg (z.0)€ax G(Z,I)

(1.13)

Note that if A ignores a point z then D 5 F(z) = —c0 and D 4 F(2) = +oc.

In the remainder of this section we take F, G to be arbitrary functions from

X x ¥ into R, and r € X. We have the following, easy to prove, statements.

1.2.2. Proposition. If A does not ignore z and is filtering down ther
D aFs(z) 2D aFg(z). (1.14)

1.2.8. Proposition. (i} If A does not ignore z aud is flitering down, then the
existence of D5 F(z) implies the equality

I_)AFG(::) = 5AFG(3). (1.15)
DaFg(z) is then equal to the extreme derivatives,

(ii}) If A is Bltering down then (1.15) implies the existence of DaFe(%)

which is then equal to the extreme derivatives.
1.2.4. Observatlon. If A < A’ and A' ignores z, then A iguores z, as well.

1.2.5. Proposition. If A < A’ then

DaFg(z} 2 DaFg(2), (1.18)
D-AFg(Z) S 6AIFG(I). ‘1.17)
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1.3. Henstock integral.

i.3.1. Definition. Let I, € ¥, F: Xx¥ — R. We define the Henstock integral
of F with respect to A over I as a number (A) [, F such that for every ¢ > 0

there exists an a € A such that for every partition # C a of I

<e. (1.18)

F(r) - (&) [IF

The wpper and lower Henstock integrals are defined as

(a) [ F = inf sup F(r), (1.19}
Iq aEd *Co

(A) F = sup inf F(r). (1.20)
’ I oEA FCor

Obviously, if A does not partition [, the definition becomes void, and

(A)/h.r=+oo, (A) /—10 = ~o0. (1.21)

1.3.4. Proposition. If A has the partitioning property and is fltering down
then

(a) ]:,,F > (a) f:., F. (1.22)

Proof. Let ¢ > 0. Find a;, ag € A such that

sup F(r) < (A)f F +e,
ACa, 1

{1.23)
inf F(z) > (A) / F—e
A ag 7 Iy
Let a € A be such that o € a; Nay. Then
(Aa) [ F 42 sup F(x} > sup F(x) >
Io wCa, Ca (1.24)

it F(x) 2 it Flx)2 () '/’lnF e

Since £ was arbitrary, (1.22) follows.
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1.3.5. Proposition. (i) If A has tke partitioning property and is fitering down
then the existence of (A) f; F implies the equality

(A)jIF=(A)f!F=(A)/;F. (1.25)
(ii) If A is Bltering down then the equality
(A) /! F=(a) ]l F (L.26)

implies the existence of (A) f, F which is then equal to the extreme integrals.

Proof. (i) Let £ be arbitrary. There exists an a € A such that for all # C «,
partitions of Iy

F(z)-e < (a) j, F<F(r)+e (1.27)
This implies "
(A)-/IF-ES[A)/;FS(A)'[’F+S, (1.28)
which together with 1.3.4 gives (1.25). -
(i) Let
A=(A)/’F=(A)/’ F. (.29)
Let s > 0 be arbitrary. Choose al,—ag € A so that
sup F(r) - e < A< inf F(x)+s. {1.30)
Coy Cay

Find an a € A which is contained in a; N a;. For every r C a, a partition of r,
we have

Flr)—s S A< F(x) +s, (1.31)

so that

(a) | F=a. (1.32)
fo

1.3.8. Observation. If A X A' and A bas the partitioning property then A’
bas the partitioning property.



HENSTOCK INTEGRATION IN THE PLANE 9

1.3.7. Proposition. If & < A’ then

@ [ rzanf F (L33)

and

(A) f Feaf F (L34)

To
Proof. We will prove only (1.33), as (1.34) may be shown in the same manner.
By 1.3.6 we can assume that both A and A’ have the partitioning property
{ctherwise the inequalities becomes trivial). Let & > 0. There exists an o' € A’

such that for every 7 C o', a partition of I

F(r) < (&) f e (1.35)

Let @ € A be such that @ C o', Then, for any partition x C a of Ip, (1.35) is

satisfled too, so that

(a) f F< (A']f F+e (1.36)
1 Io
This ends the proof. - -

1.4. Variation.

1.4.1. Definitlon. Let A be a derivation base and FF : X x ¥ — R. The

variglion of F over a € A is defined as
V{F,a) = sup |F|(x), (1.37)
TCa
where x C a are partitions.

The variation of F over A is

V(F,A) = inf V(F,a). (1.38)
a€l

The vanational measure of a set £ C X is defined as
Fa(E)=V(F,AlE)). (1.39)

It is not necessarily a measure in the ordinary sense of the word (see [53], p. 161).
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1.4.2. Definltion. For any F : X x ¥ — R its variation generates a fanction

from ¥ into R which can be called a veariation of F, namely
¥ 31— V(FA[D). (1.40)
We will write Vs for that function.

1.4.3. Note that any function H : ¥ — R may be viewed as H : X x ¥ — R by
taking H{z,I} = H{I} for any z.

1.4.4. Deflnition. A function H : ¥ — R will be termed
(i) sdditive,

(ii) sxbadditive,

(iii) ewperadditive,

if for any division 2 C ¥ such that #{D2) = T € ¥ we have
() B (2) = (1),

(i) H(D) > H(1),

(i) #(0) < H(I),

respectively.

We will denote by ¥, the class of unions of finite elements of P(¥).

A function H : ¥ — R which is additive, extends naturally to an additive
H M w.g. —R.

1.4.5. Proposition. Suppose A has a o-local character and F : X x ¥ — R.
Then for any sequence {E, } of subsets of X and Ey  |J o En we have

+co
Fa(Ee) € 3 FalEw)- (L41)

n=1
Consequently, for A with a ¢-local character, Fa becomes a gennine outer mea-

sure,

Proof. We can assume without loss of generality that the sets E, are disjoint.

Let & > 0 be arbitrary. For every n € N there exists an element ¢, of the base
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A such that

V(F,0n[Eal) € Fa(En) + o5 (1.42)

Since A has a e-local character and E,'s are disjoint, there exists an o € A such

that

alEn} C an {1.43)

for every n € N.

Let = € a[Eo] be an arbitrary partition, set
ro={{z.])er:2€E,}. (1.44)

We have

+00 +a¢
[Fl(x) = Z [F|(ma)} < Z V(F,anlEa]) <

+o0

3o (FalEa) + 57)

n=t

(1.46)

so that

+oa
Fa(Eo) SV{F,alEoJ} €Y Fa(E.) +e. (147}

a=1

Since £ was arbitrary, this ends the proof.

1.5. Varlational Integral.

-

1.5.1. Definitlon. Let us denote the class of additive H : ¥ — R by A. Fur-
thermote, let A stand for the class of all subadditive H : ¥ — R, and A — for

the collection of the superadditive ones.

I K is any of the above defined classes of functions, and [, € W, then K(Ip)
will denote the set of all H € K defined only for I C I,.

K* will stand for all those H € K which are nonnegative.
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1.5.3. Definltion. If F;, F : X x ¥ — R, we say that F; and F; are varis-
tionally eguivalent (written as Fy ~ Fy) on Iy € W if for every £ > O there exists
ap @ € A and 1 € A+ (depending on a) such that Q%) < ¢ and for every
(z.1) € aIp)
(2 0) - Fafa. )| < 0(2). (1.48)
We say that F; and Fy are varistionally eguivalent if they are variationally
equivalent on every J, € W.

It is easy to see that the variational equivalence is in fact an equivaience

relation, because A + is an additive class.

1.5.3. Lemma. Suppose Hy, Hy : ¥ = R, H,,Hs € &, and H, = Hy with
respect to a base A which possesses the partitioning property. Then Hy = H;.

Proof. Lete>0and J, € ¥. There area € A, 2 € A+ such that 0{fp) <«
and for each (2,1} € a(ly)

[H:(1) - H:(D)] < 0(7). (1.49)

Let x € « be a partition of I,. Then

[Hi(L) - Ha(l)| S Y (1) - Ha(D)] S
(z.1)€Ex
> an<ah) <.
(z,1)Ex

(1.50)

Since ¢ and I, are arbitrary, this ends the proof.

1.5.4. Defnltlon. The variational integral of a function F : X x % — R on
Iy € ¥ [with respect to a derivation base A} is the number H(lp), where H :
¥ — R is additive and variationally equivalent to I,

We will also refer to H as the variational integral of F.

As long as A has the partitioning property, the variational integrat is, by
lemma 1.5.3, uniquely defined.
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It might be interesting to note that, although the above definition originates
from Henstock (see [13], [14], [19], and [22]), a similar approach is presented in the
classical paper [28| of Kolmogorov. For a modern treatment of the Kolmogorov

integral, see [11].

1.6. Various ways to define the Henstock integral.

1.8.1. Theorem. Let A have the partitioning property and be 8ltering down.
Let F: X x W% — R, Iy € ¥. The following are equivalent:

(i) F is Henstock integrable on Iy;

(ii) For every € > 0 there exists an o € A(lo) such that forevery I C o, I € ¥
aad for every ¥ C «, & partition of |

l(A)j’F-F(:r) <6 (151)

(iii} There exists an H € A(I,) such that V(H —~ F, A(ly)) = 0;
{iv) There exists an H € A(I;) such that H = F on Iy;
(v) For every € > 0 there exist an a € A, A€ A, and B € 4 such that

AlL)-B(L) <« (1.52)
and for every (z, I} € a{ly)
A(I) 2 F(z,1) 2 B(D). (1.53)

Proof, (ii)={i} is obvious.

(i)=(iii). Let £ > 0. Choose a € A(Jy) so that for every partition ¥ C o of
L
<e. (1.54)

(4) _/; F - F(x)

Let I, ¢ Ip, I, € ¥,. Let x’, ¥ C a be arbitrary partitions of I;. By

11.2, L, = Lhulu...Ul, forsome [3,...,I, € ¥, where I}, I;,...,1, are
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nonoverlapping. Since A has the partitioning property, there are 7, 73 € a,
partitions of Iy such that
o= {(I,I) em:Ic I;},

(1.55)
= {(Z,I) EXg I c I]}
We can assume that x, \ #' = 53 \ #". Then
|F(x'} = F(x")| = |F{x:) = F ()} < 2, (1.56)
by (1.54).
Set
H{I) = (4) jf F (1.57)
for I C Iy, I € 9. (1.56) implies
|H{1) ~ F(x)| < 4e (1.58)

whenever x C a is a partition of J € Iy, € ¥. Now if I' and I” are nonover-

lapping and contained in Ip, then by {1.58)
|B(F U1’} - H(I') - B(I")| < 12¢ (1.59)
Counsequently — H is additive.
We will show now that
V(H - F,A(lLb)) =0. {1.60)
Take a as before, and r € & — a partition of Jo. Write

' ={(2,])ex:H(I)- F(z,I) 2 0},
' ={(z7)er: H(I)- F(z,I) <0},

{1.81)
E' =o(x'),
E" = a(z").
The estimates made before give
|H - Fi(x) =|# - F|(«'} - |H - F|(z") =
(1.62)

|H(E') - F{x')| + |{H(E") - F{x")| < 8s
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30 that
V(H-F a) <8 {1.63)

and consequently — (1.60}.
(iii}=>(iv). For each a € A set
Q) =V (H - F,a(l)), (L.84)
forIclp, TV

If I,, I; are nonoverlapping, then

0(L) + 0{I) =V{H - F,e{h) Ua(h)) <

(1.85}
V(H - Fa(lju I,)) =0 U IL),
so that 7 € A. Obviously, O is nonnegative, and
[H(N) ~ F(z,1)| < 0(I). (1.66)

We can make (o) < ¢, because V{H ~ F,A(lp)) = 0.
(iv}=({v). Let ¢ > 0. Choose an a € A{l;) and ©? € A so that for all
(z,])€a
[H{I) - F(z,1})| < 0(1). (1.87)

For I C I, set
AN =)+ H(I),

(1.88)
B{I)=-Q{I)+ H(I).
We have A € 4 and B € 4. Moreover,
A(fy)— B(l) £ 2;. (1.89)
Finally, if (z,7) € a thea by (1.67)
Ay =0}y + H(I) >F(z,1) >
(1.70)

—0(2) + H{I) = B(I).

(v)=>(iii) Set
H(I) = int A(I) = sup B(J), (L.71)
A B



16 KRZIYSZTOF M. OSTASZEWSKI

where inf and sup are taken over all possible A aud B in (v}, The function H is
well-defined, and it is easy to show that it is additive. If ¢ > 0 is arbitrary and
a € A is chosen as in (v) {with A, B chosen, too) then for ¥ C a, a partition of

Iy, and
# = {(z ) e x: H( 2 Flz, 1)},

(1.72)
' ={(z])ex:H(I) < F(z,1)},
we have
|8 - Fl(e) =(H - F) (') - (F - H)(+") <
(A= F)(=') = (F - B){x"} < )
(4- B)(#) ~ {4 - B)(«") =
(A-B)(z) <.
Thus
V(H - F,A(DL)) =0. (L74)
(iii)=(ii) Let ¢ > 0. Choose an o € A(Z,) so that
V(H - F,a) <. (1.75)
Let I C Iy, and let x C « be a partition of I. Then by (1.75)
A1) - Flx)| = |(& - F)(x)] <. (L70)

This implies that (A) f, F exists and is equal to H{I), and also that (ii) is

satisfied.
The proof is ended,

Note that neither the statement nor the proof of (iii) <« (iv)«(v) uses the

partitioning property of A.
1.8.2. Lemma. Let £\, E;C X and F: X x % — R. Then

Fa(E1U E3)} € Fa(E\) + Fa(Es) {1.77)
for any base A which is fltering down.

Proof. This can be proved just as 1.4.5 was — we do not need the assumption

of A having a #-local character, since there are only two sets considered.
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1.8.3. Lemma. Let A have 2 local character and the partitioning property. Let
AeAY(L)forloeW. Forsa f: X — R, He A(L), F= fA, and

E={z€lo:DaHs(z) = f{z)} (1.78)

we have

V(H - F,A(L)[E]) =0. (1.79)

Proof. Let £ > 0. For every z € E there exists an a; € A such that for

(z.1) € as{{z}]

%I—(%! ~ flz)| < e, (1.80)
ie.,
|H{I} = F(z,I)| < eA(). {1.81)

Let « € A be such that for every z€ F
al{z)] € as[{a}]. (182)
Let x C a|E] be a partition. Then from (1.81) and (1.82) we get
|H - Fl(x) < eA(7) < sA (D). (1.84)

Therefore
V(H - F,a) € eA(I,). (1.85)

Since £ is arbitrary, this ends the proof.

1.8.4. Propositlon. Let A bave s local character and the partitioning property,
Lew,Ac At (L), f: X =R, He€ A(l,), and F = fA. Suppose for E defined
as is (1.78) we have

V(H-FA(L)\E) =0 (1.86)

Then F is Henstock integrable on Iy and H is its Henstock integral.

Proof. This is a consequence of 1.6.3, 1.6.2, and 1.6.1.
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1.7. Additive bases.

1.7.1. Definition. We will say that A is addstivc if Vi € A forany F: Xx ¥ —
R.

1.7.3. Definitlon, Conpsider the case when X = R2®. We will say that A is
additive in the sense of Henstock if for every I € ¥ and every 4 = (A1, fa) €
A(I) x A(X \ I°) there exists an o € A such that

oG AU ps. (1.87)

1.7.3. Propositlion. IfA is fitering down and additive in the sense of Henstock

then it is additive.
Proaf. If I, and I; do not overlap, then for o« € A
V{(Fa{ly)ua(l)) =V(F,a(l1)) +V(F,a{l)) {1.88)
so that
V(F,e{lyul3)) 2V (Fa{h)) + V(F,a(h)). {1.89)

Let & > 0. Choose an a € A such that
V(Falhhulh)) SV(FA(LLUL)) +s. (1.90)

Then
V(F,A(Liul) +e 2V (Fa(lul)) 2
V(F,a(h)) + V(F,a(h)) 2 (1.91)
V(F,A(L)) +V(F, A(ls)).
Thus Vr i3 superadditive (and this is true for any base, not only for one which

is additive in the sense of Henstock).

For A additive in the sense of Henstock, we have also

V(F,A(hu L)) SV(F,A(L)) +V(F, A(B)). (1.92)
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To prove that, take an arbitrary ¢ > 0. Let a; € A be such that
V(F ai(5) SV{F A(L)) +¢, (1.93)
and ag € A such that
V(F aa(la)) SV(F,A(Z)) + e (1.04)
Choose 8; € A, for i = 1,2, such that
Bi Cai(l)uai(X\ 7). {1.95)
Let & € A be such that
aC U (1.96)
Because of (1.95) and (1.96)
ol uly) = a(ly) Ua{fy). (1.97)

Thus
V(F,a(lyulh)} =V (F,a{l,)) +V (F a{l3)}) €

V(F,A(N)) +V(F, fa(fa)) £
V(F,O’;(I])) +V(F,ag(fq)) S
V(F,A(I;]) + V(F, A(Ig)) + 2¢,

(1.98)

and this implies (1.92).

1.7.3. Propoaition. Suppose A is additive, has the partitioning property, and
is fltering down. Let F' be integrable on two nonoverlapping f;, I3 € ¥. Then
F is integrable on It U I3.
Proof, Let H be an additive function such that

V{(H - F,A(L)) =0 (1.99)
and

V(H ~FA(l) =0 (1.100)

— because of additivity of H we may assume that it is the same function on [;
and J3. Since A is additive

V(H-FALUL))=V(H ~FA(L))+V(H ~FA(L)) =0, (1.101)

so that F js integrable on J; U [y,



Chapter 2

DERIVATION BASES ON THE PLANE

We start by proving that the Henstock integral on the plane is equivalent to

the Perron integral.

Then we introduce seven bases on R® — A, 31, A7, Ay, A, Ag, and A,

and the Henstock integration theories generated by them,
The star-bases yield the Lebesgue integral.

The bases A, and A, generate a theory which is equivalent to the classical
Perron integral. The integration process generated by Ay is less general than the
one of Ay, but it is rotation-invariant [A,-integral is not). Aj-integral is more

general than A, -integral

We also consider continuity of interval functions. We show that the common
notion of continuity, used in classical monograph of Saks on the theory of integral,
is less general than three, equivalent to each other, notions derived from derivation

bases,

2.1. Perron integral.

2.1.1. Theorem. Let X = R?, f: Iy — R, F(z,I) = f(z)MI). Let A be a
base on X that is filtering down. The followieg are equivalent:
(i) For every € > 0 there exist « € A, and A € A, B € 4 (depending on a) such
that

A{l)-B{l) < ¢ (2.1)

and
A(l) 2 F(2,I) 2 B(I) for every [z,I) € &, (2.2)

20
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(i) For every € > O there exist A € A, B € A such that (2.1) kolds and

QAA,\(I") > f{z) > ﬁAB,\(Z) forz e Io. (23)

Proof. (i)=(ii). Let o, A, B be given for ¢ > 0 as in (i). We have then from

(2.2)

A(D) B()

e, Ny 22 e Sy @4
(2.4) implies
e A . 8(1)
Sup Lt p 2@ 2 8t sw S (25)
ie., {2.3).

(iij=-{i). (2.3) implies the existence of a’, a” € A such that for all (2',I') €

ﬂ': (Z"' II!) E an
A(I') +6MI') 2 f(2)Mz) and B(I") +eA(I") < f(z)A(I").  (2.6)

Choose ap & € A such that o C o' N a”. Write

Ay(T) = A(D) + eX(3),

(2.7)

B\ (1) = B{I} ~ eA(]).

Then A, € 4, B, € 4 because A € A. We also have
AN 2 Flz, )2 B(I) for(e,]) €a, (2.8)
Ai(lo) - Bi(ho) < e(L + A(K)). (2.9)

This completes the proof.-

2.1.2. Definition. The functions 4, B of theorem 2.1.1 are called a majorant
and a minoranf (respectively) for f. A function f which satisfies the condition

(i) of theorem 2.1.1 is called Perron-integrable,
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2.1. Specific bases on the plane.
2.2.1. Definition. Let ® stand for the class of all nondegenerate closed intervals
in R*. Take X =R and ¥ = ®.

Let P be the class of all real-valued, positive functions on R*.

The Kurzwed bare A, consists of all a,, where p € P and

o= {1 R x@:2€1, I CD(zp(z)}. (2.10)

If we drop the condition “z € I™ in (2.10), we get A}, which will be called
the weak Kurzweil base.

I we replace “z € I" in {2.10) by “z is a vertex of I”, then we get A, which
will be called the modified Kurzwed base.

2.2.2. Definltion. Let I € ®. We define its norm n(I) as the length of its

longer side.

It {I,...,I.} is a finite subclass of & then the rorm n{{f,...,I,}) is
deflued to be the greatests of all n{l) for F € {I\,..., . }.

3.2.8. Definltion. Let I € &. We deflne its regularity as the number

)
(n(D))?

(2.11)

r(I) =

(see [52], p. 108).

It is easy to see that 0 < r{I} € 1.

Let ¢ € (0,1). We will say that I is g-regular if #(J} > . And we will write
%, for the class of al! elements of $ which are g-regular,
2.2.4. Definitlon. Now let ¥ = ®,, and X = R”.

Forpe P let

af={(z1)€R* x 8,:2€ 1, I c D(z.5())}, (2.12)
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and

AZ={al:pe P} (2.13)

We will call Ag the Kempisty g-base. If we drop the assumption “z € " in
(2-12), we get the weak Kempisty g-base A"

We will usnally fix a g € (0, }} and write Ay and A} instead of A] and AZ™,

2.2.5. Definltion. If we replace intervals in the deflnition 2.2.1 by triangles
(compare this with the work in [42], [43], [45], and [48]), the base so obtained
will be called the Pfeffer base {weak Pfeffer base) and denoted by Ay (A3).

The class of all nondegenerate triangles in R? will be denoted by T.

2.3. Baslc properties of the bases defined.

2.3.1. Observation. All of the bases A;, A7 (i = 1,2, 3) and Z\l are fltering

down, have a local character, and ignore no point.

3.3.2. Proposition. All of the bases A; and AY (i =1,2,3) and 31 have the
partitioning property.

Proof. For the base Aj, this is proved in {48]. And this implies the assertion
for A;.

Let A stand for any of the bases A,, 3., Ag, A}, A3. Let Iy be an element
of the corresponding ¥. Suppose that [y is such thiat A does not partition [y,

i.e., there i3 an @ € A not partitioning Iy,

Divide Iy into four subintervals by splitting its sides into halves. Then o
does not partition at least one of so obiained subintervals — call that subinterval
I.

Apply the same procedure to f;, and obtain I Iy, etc.

If we stop after a finite number of steps, then J; will be partitioned.
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Otherwise, we obtain a decreasing sequence of intervals {I,}, such that nei-
ther of them can be partitioned by a, and A{J,) — 0, as n — co.

Let nuEN I, = {zo}. There is an n € IN such that I, is contained in
D(za,p(zg)), where o = a, and pE P. A = A or A = Af fori = 1,2,
then we already get a contradiction, since {(zq,f,)} is a partition of [, which is
contained in o.

A= 3;, then divide I, into at most four subintervals, each of which
has a vertex at zo. Let {J;} be those subintervals (§ can run tkrough any of
the following sets: {1}, {1,2}, {1,2,3,4}). Then {(20,J;)} is a partition of I,

contained in o, aud that is a contradiction.

2.3.3. Observation. None of the bases A;, A} (i = 1,2, 3} is additive in the

sense of Henstock. A 1 is additive in the sense of Henstock.

2.3.4. Observation.
Ai < AT fori=1,23,
~ (2.14)
Apx A, ATZ A, A r A

2.3.5. Proposition. Let f: I — R, F(z,1) = f(z)A(I), for I, € ®. Then

of P=@f = (2.5)
I Ia 7 ]
(a.)[l F={.§.;)[’ F (2.18)
Proof. We will show only (2.15), as the proof of {2.16) is similar. Since Ay < Ay,
we have
(a) [ F<@yf F (2.47)
< Iy M fo
0

(3,)/1 F=-x (2.18)
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then we already get (2.15). Otberwise, for every € > O there exists an & € A;

such that for every partition ¥ C & of [ we have

F(#) > (&.)jr F-e {2.19)

Let & = &, for a certain p € P. Take @ € A, which is generated by the same
p€ P. Let r C a. For every (z,7) € x divide J into at most four subintervals
having a vertex at z. For each of such subintervals J make (z, J) into a pair. By
collecting all such pairs for all (z, ) € x we obtain a partition ¥ contained in &.

On the other hand, because F(z,I) = f(z)A(I) and X is additive, we have
F(z}) = F(%). (2.20)

Combining {2.20) and (2.19) we obtain

Fir) 2 (&) f Fs. (2.21)
I
Therefore

(Al)flqu(El)[InF—s. (2.22)

This, together with (2.17), gives (2.15).
2.3.8. Corollary. Under the same assumptions as in 2.3.5, forevery I C I

V(F, A1) =V (F A (). (2.23)

Proof. For Fy(z,I) = |f(z)|A(]) we have

V(F,AI(I})=(A1}[’F“ ( )
2.24

V(FA(D) = (Za)jlﬂ.

so that (2.23) is a consequence of (2.16).
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2.3.7. Corollary. A, is additive.
Proof. This follows from 1.7.3, 2.3.3, agd 2.3.6.

2.3.8. Corollary. The Henstock integration theories for functions of the kind
presented in 2.3.5 generated by A; and Z&. are not only equivalent to each other,

but also equivalent to the classical Perron integral of [34].
Proof. The integral of [34] is defined by the condition (i) of the theorem 2.1.1.

2.3.9. Definltion. We will say that a derivation base A on R? is compatible
with the Ewclidean topology on R? if for every set (7, open in the Euclidean
topology on R?, there exits and a € A such that o|G} € o{G).

2.3.10. Observation. Each of the bases A;, AT (i = 1,2,3), A, is compatible
with the Euclidean topology.

Proof. This follows easily from the fact that if G € R? is open, then for every
z € G there exists a disk D(x,p(z)) € G.

2.3.11. Proposition. Let & be any of the bases A;, AT (i = 1,2,3), or 3,.
Then for every E C R?
Aa(E) = A(E). (2.25)

Proof. Let E ¢ R? be bounded. Since A has the partitioning property, for any
o € A there exists a partition x C oE] such that E € {J, /¢, I. We have then

Y. M2 XE). (2:28)
(z.0)E™
Consequently
Aa(E) 2 ME). (2.27)

If E is unbounded, {2.27) is true, as well, since both A and A, are outer measures.

Now assume again that E is bounded. A is compatible with the Euclidean

topology. If G is an arbitrary open set containing E, then we can choose an
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a € A such that
a[G] C a(G). (2.28)

{2.28) implies that
Aa(6) £A(@). (2.20)

Since (7 was an arbitrary open set containing E, (2.29) implies
Aa(E) € inf A2 {G) < inf MG) = A(E). (2.30)
G G

The case when E is unbounded may be handled as before.

The proof is ended.

3.4. Absolute Integration.

2401, Let T, € 8, f: Io — R, and F(z,7) = /{z)A(J). I A is a derivation
base, and (A) f, F exists, we will write (A) [, fdA for that integral. We will
also say that f is A-integrable, if F is so.

2.4.2. Definition. Let A be any of the bases A;, A7 (i = 1,2,3), or A,. Let
a € A and let xy, 72 C o be partitions of an interval Iy. Write D,, D; for the
corresponding divisions of I,. Let D be a division that refines both D, and D;
(we form it, of course, with the elements of the corresponding ¥). Set
#t={(z,):1€D and 3I(z;, ;)€ m suchthat z=z,, /¢ Il},
#*={(z,f):feD and 3I(r3,[;) € m; such tl:at t=2z3,1 C I} (23}
Then x' will be called a mz-refinement of x;, and #? — a r,-refinemeni of

.
The divigion D will be called a refining dizision for r, and =5,
We are going to use the notions defined only for the bases listed. But the

refinements may be deflned for other bases as well, as long as a reflning division

exists.
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2.4.3. Definltion, We will say that a base A is refining if for any o € A, 71,
¥3 C o — partitions of an I € ¥, and #! — a xy-refinement of z;, ¥* — a

x1-refinement of xy, we have x! C a and 7% C a.

3.4.4. Lemma. If ] € % and g € (0,1) then there exists & division D of I with

elements of B,.

Proof, Let I = [a;,b;] x [eg,baf. Choose a £ > 0 such that

2
1-¢
—__>) > 2.32
(1+€) ¢ (252)
Then flnd integers ¢, 3 such that
by —63 6 ‘
e S [ 2 2.33
by—ay ¢ ( )
Set
- By —
I =[a1 +Ibl - al‘al +(i+ l)lc—al]x
1 1
(2.34)
b2 —a . by —a
[02+J o 2,61+(J+l)_2—(;'—2]
fori<¢-land j< -1,
Clearly, the intervals I;; form a division of I and
by—a; ba—ay
!’I.“ =_ 13 ¥ ] >
(2:) n(l;P ~
2
B by—g; bg-—a
(mm(_:_;.l..;'.n.a_z)) L gya (2.35)
> .
(1+e) >e

(o))

2.4.5. Corollary. If € ® and g € (0,1), then for every & > O there exists a
division D of I, D C ®, such that n(D) < «.

Proof. First divide I inio subintervals of small norm, and then apply 2.4.4 to

divide those with g-regular intervals.
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3.4.8. Corollary. Refining divisions exist for all the bases on R® defined in this
chapter.

Proof. The only nonobvious cases are Ag and A7 — but then 2.4.6 follows from

2.4.5.
2.4.7. Observation. A7, A, A; are refining. A, 51, Ag, and A4 are not.

Proof. It suffices to note that for a™ € A7, Aj, or A§, (#,/)€a*, and I'C I,
we have {z,I') € a™. And this does not hold for A,, 51, Az, and A,

2.4.8. Lernma. Let [ be a function as in 2.4.1. The following conditions are
sufficient for f to be A-integrable on Iy:
(i} For every ¢ > 0 there exists an o € A such that if #,, #; C & are partitions

of Iy and D is their refining division then

Y OX X (rw- f(Iz))MI)| <e.  (236)

(z1.01)Ex, (23,02)EM, Jc.llle.fc.',

(ii) For every € > O there exists an a € A such that if ¥, x3 C a are partitions

of Iy and D is their refining division then

> Y Y ) - el <. (2.37)

(z1. I YEX: {z3.05)EX, -'Cllf’nc-’:

Proof. (ii) implies (i), so it suffices to show that (i) implies integrability. In
fact, (i) is equivalent to integrability, as by additivity of A we have

XY Y (e =T =

(z.1)€x1 (23,13)€x, ‘c,'f.l’ch (2.38)

Yo ) - Y Hz(h).

(1l'|!l)eﬂ'l {1:.!1]6!:

2.4.9. Lemma. If the condition (ii) of 2.4.8 bolds then |f| is also A-integrable.

Proof. This is obvious, because

()l = 1£(za)l| £ 1£(21) = £(=a)l- (2-39)
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2.4.10. Theorem. Let A be a reflning base, and f as in 2.4.1, In order for f
to be A-integrable it is necessary and sufficient that the condition (i) of lemma

2.4.8 is satisfled.

Proof. It is enough to prove necessity, and in order to do that we will show
that the condition (i} of lemma 2.4.8 implies the condition (ii} in this case. Let

@, 71, and 73 be given as in (i), and let z', x? be their refinements. Define
oy ={(z,1):3(z, 1)) €5 325, 1) € 71 suchthat I, =1 =1,
and z=2z, if f(z;) 2 f(z2), (2-40)
PN otherwise},
o3 ={(z,1):3(z, L) €x' 3(za,03) €x® suchthat [y =10 =1,
and z=az3 if f(z3) 2 f{z), (2.41)

z=2z; otherwise}.
Because A is refining, oy and o5 are contained in a, so that for F(z, J) = f(z)A(])
|F(o1) - Fles)] < s. (2.42)

On the other hand
|F(e1) - Flea)| =

> OX X M) - sEa), (2.43)

(z.0)€r (2d)€ma , [f€F

and this, together with (2.42), gives (ii).

3.4.11. Definitlon. Let I, € ® and J: [ = R. Write f+ = 1(/ +/|) and
[~=fr-1

2.4.12. Corollary. If A is refining then A-integrability of f implies A-integra-
bility of | f].

Proof. This follows from 2.4.9 and 2.4.10.
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2.4.18. Corollary. If A is refining, then f is A-integrable if and only if both
ft and [~ sre A-integrable.

Proof. This follows from 2.4.12, we just need to note that f = f+ - f~ and
Sl=rt+1-

2.4.14. Corollary. Fori =1,2,3, f is Al-integrable if and only if both f* and
/= are AY-.integrable.

2.5. Lebesgue integral.

2.5.1. Proposition. A function f is Aj-integrable on Iy € ® if and only if it is
Lebesgue-integrable on I.

Proof. This is shown in [38] (theorem 13.6, p. 45).

2.5.2. Lemma. Let f be as in 2.4.1. We have:

(A;)/:, fdx 2 (A‘;)[h fdx > (A;)[h 1A (2.44)
and

(A1) [ Jas(a) _j s (83) ] o (2.45)

Proof. It suffices to show (2.44). The inequality

() | raz(8) / e (2.48)

is obvious, since A7 X Aj.

We can assume that {A]) f,n JdA > —co, becanse otherwise there is nothing

to prove., To show

(AK).[I fdx > “‘T’f, 7d3, (2.47)
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take an ¢ > 0 and find an a5 € A} such that for every 73 C «aj, a partition of

I, we have

(43) f . jdx +e2 Y f(a)M(I).

(z,0)ENrs

(2.48)

Let ¢vy be generated by a p € P. Take an a; € A} which is given by the same

pE P. Let x; C oy be a partition of I,. For every (z,I) € x;, I can be divided

into at most four triangles with a common vertex at 2. By assigning z to each

of those triangles, we obtain a partition x5 € as. Therefore (2.48) holds for that

partition. On the other hand, by additivity of A

Yo faan= Y f(2A0),

(2.0)Exe (z.)ex,

50 that

{a3) f . fax +e 2 Y. @M.

(z,1)Ex

Since m; C o) was arbitrary, we obtain
(A;)] fdA +¢ 2 (A'{)] JdA
I Iy
which implies (2.47).
3.5.3. Theorem. Under the hypotheses of 2.5.2 we have:

(a3) ]lo fdx = (A3) ]h 1da,

and
a1 f | Jx=(83) [
Proof. It suffices to show lh;t )
(a}) ] N JdA £ (A7) f " JdA.
It _
@) f  far=-eo

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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then (2.54) is obvious. Otherwise, for an & > 0 take an oy € A} such that for

every parution ¥3 C ag of [y we have

@[ fmeex T, (2.56)

(z.0)Emy
Let ap be generated by a p € P. Take an «a; € A given by the same p, Let
7, C a; be an arbitrary partition of Iy. For (z,]) € 7, I can be divided into a
finite number of g-regular intervals (see lemma 2.4.4). Let J7, «ons Ji, be those

intervals, Then .
n= J U]} (2.57)
(2, 0)Ex, i=1
is a partition of [, contained in ;. Therefore (2.56) is satisfled. On the other
hand

Yot = Y 12D, (2.58)
(z.0)Er] (z.0)€x,
30 that _
(A7) j frre> T flaa). (2.59)
To (=€

Since x; and £ are arbitrary, this implies (2.54).

2.5.4. Proposltion. A function f is Aj-integrable if snd only if it is Aj-in-
tegrable, with both integrals equal when they exist.

Proof. By corollary 2.4.14 we can assume that f is nonnegative. And by lemma

2.5.2 it suffices to show that every Aj-integrable tuaction is also Aj-integrable.

Let f be Al-integrable. Let ¢ > 0. By théorem 1.6.1 we can choose an
ay € Aj so that for every I' € 4, I' € I, and x; C a, a partition of I', we

have

S 1w - @b [ raf< e (2.60)

(z.d)€Ers
And by proposition 2.5.1 there exists an g > Osuch that it I' € ;. and A(J') < n
then

(A7) f: < e (2.61)



34 KRZYSITOF M. OSTASZEWSKI

Let p € P be the function generating ay, and let ag be an element of A] which
is given by the same p. Let 3 C a; be an arbitrary partition of I;. Take an
arbitrary (z,7) € ry. [ is a triangle. We can find a finite number of intervals
If,..., If_contained in the interior of I which are nonoverlapping and such that

if s is the number of elementis of x3, we have

k.
. c
1(z)A (-’ \ ‘=U1 A ) ‘o (2.62)
and .
,\(r\mulr,f) <1 (2.63)
Let
ks
a= U Utamy (264
(x.0)Exy i=1
Then 7} is a partition of #{x}) € ¥, and x} C a,. Furthermore
A(Io \o(r, )°) <n. (2.65)

Choose x7, a partition of I\ o{x])" (an element of ®.}, x{ C a;. We have then

Y o) - 5 fean|<ie by (262,  (260)
4

(z.1}€nu (z.0)ex
Y. slEAl) - (A3) ml <t byeen), (z67)

(2.0)ExT fo\o(x{)® 1

/ sir<ie  by(261) and (265), (2.68)
fo\e(x!)® 4

(a7) j; - Y f(z)A(I)I <% by (2.60). (2.69)

(s, NEx LAY

Combining (2.66), (2.67), (2.68), and {2.69) we get

<e, (2.70)

Y fa)A) - (43) f[ fdA

{3.0)Exs

so that f is Aj-integrable, as desired.



HENSTOCK INTEGRATION IN THE PLANE 35

2.5.5. Theorem. The following are equivalent:
(i) f is Lebesgue-integrable on Ip;

(ii) / is Aj-integrable on Iy;

(ili} f is Aj-integrable on Iy;

(iv) f is Aj-integrable on I;.

The integrals are equal if they exist.

Proof. This follows from 2.5.1, 2.5.3, and 2.5.4.

2.6. Comparison of nonabsolute Integrals.

2.6.1. Observation. Let f: I, — R for an Iy € ®. Then

(As)fh fdA ?.(Al)./‘—h JdA > (Aa)jh JdA (2.11)

and

(Aa)_/’n fdA s(m)!h fdr < (A,)!’. fda (2.72)

Proof. This can be shown in the manner similar to the one used in the proof

of lemma 2.5.2.

2.6.3. Definitlon. We will say that a base A on R? is rotation invariant if for
every A-integrable function f and a rotation R of the plane, foR i3 A-integrable

-

as well,

It is easy to see that the class T has the property: R(Y} = T for any rotation
R.

Therefore, the Ay- and Aj-integrals are rotation-invariant. This way we
also obtain a surprizing proof of the well-known fact that the Lebesgue integral

is rotation-invariant. But the part which is more important now is the following.

2.6.3. Observation. The As-integral is rotation-invariant.



36 KRZYSZTOF M. OSTASZEWSKI

2.6.4. Example, Let I, = [0, 1] x [0,1],

a,:l--zl; forn=0,12,..., (2.78)

by = -:': forn=12,..., (2.74)
and forn € N

K, = [an—1.6a] X [Gn-1, 2a}; (2.75)

Ly ={(u,v) € Kn:v <u}. (2.16)

For each n € N construct a function f, : Ko — R such that
(i) Ju is continuous on K,, and f, =0 on dK,;
(1) fa 2 0 on Ly;

(iii) folu, v) = = fo(v, u) for every (u,v) € Kn;
{iv) J fa(u,v)dudv = b, (Lebesgue integral).
Ln

If we now define f: Iy — R by

o= (o) e nEN

thexn it is not hard to show that

(a} f is not Lebesgne-integrable on Iy;

{b) f is A,-integrable on Iy (we apply theorem 8.9 from [30] when showing this);
(c} if a rotation by ¥ is applied, then [ fails to be Ay-integrable.

2.8.5. Corollary. The A,-integral is not rotstion-invariant.
2.6.8. Corollary. Aj-integral is strictly less general than A,-integral.

2.6.7. Remark. A;-integral is less general than Ag-integral. It will be shown
in chapter 3 {example 3.4.1) that they are not the same.
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9.7. Differentlation of integrals.

3.7.1. Proposition. Let f be Ag-integrable on Iy, let

H(I) = (As) j fda (2.18)
I
forI c Iy, F € ®. Then
DaHy(z) = f(z) se only. (2.79)
Proof. Let
E, ={z€l: Da,Hilz) = ()} {2.80)
and E = Iu \E]_-

If x € E then there exists an ¢, such that for every ¢« € Ag there is an
(z,1) € [{2}] suck that

H(I)
m - f(z)| 2 2. (2.81)
Forn=2,3,4,... let
. 1
E,.—-{.rEE.czz;l-}. (2.82)

Choose an ¢ € {0, 1) and find an ay € Ay such that for every x C ayp, & partition
of In,

> @A) - B < 2 (2.83)

(z,0)Ex

Let R be the family of all p-regular intervals I C Iy such that (z;,7) € ao[Ex]

-

for some zy.

By (2.81), R covers E,, in the sense of Vitali. By the Vitali Covering Theorem
(see [52], theorem 4.3.1, p. 109) there exista a sequence {Ii;} of disjoint intervals
such that

AMEA Y &) =0. (2.84)

k€N

Since Aq has the partitioning property, every

{(zr. 1)y (20 1i)) (2.85)
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is a subset of some partition # C o of Io, so that by (2.81), (2.82), snd (2.83)

ik(f.-) < nZlf(z;.-]a\(Is) —H(l)| <e. (2.86)

=k =1

Since & was arbitrary, A(E,) = 0 for every n > 2, and consequently A(E) = 0.

2.7.3. Remark. The analogue of 2.7.1 for the A, base does not hold. In fact,

we have the following classical “rarity” theorem of Saks {see [51}).

Theorem. Consider the class £ of all Lebesgue-integrable functions f on [0, | x
|0, 1}, with its patural topology (making it into a Banach space). For f € £, and
Iclo1)x[0,1],Te®let

Hy()= ff(u, vjdudv  (Lebesgue integral). (2.87)
I

Then the class F of all € £ such that
Da,Hi(z) <+00  at some point z € [0,1] x [0, 1] (2.88)
is of the first category in L.

Proof of this theorem is given in [12] (theorem 4.2.1),

As we can see gow, sipce A; does not even differentiate the Lebesgue integral,

it does ot differentiate the more general A,-integral.

3.8. Continuity of interval functions.

2.8.1, Definition. If A is a derivation base and H : % — R then we say that
H is A-continwons at z¢€ X if
v(zal{=)) =o. (2.89)

We say that H is A-conlintoss on a set E if it is A-continuous at every

point of E.
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2.8.2. Observatlon. Let A be a derivation base on R? with the partitioning
property and Bltering down. Suppose that F{z,I) = f(z)A(I) is A-integrable on
I, € % and H is its integral. Then H — fX is A-continuous on I,.

Proof. This is a consequence of the theorem 1.8.1 {part (iii)).

2.8.3. Corollary. Let A be any of the bases A;, A} (i = 1,2,3), or A, If
f:I; = R and we define for [ C I,

H(I) = (4) j fd (2.90)
I
then H is A-continuous on [.

Proof. It is not hard to see that fA is A-continuous, so that 2.8.3 follows from

2.8.2.

2.8.4, Definltion. A function H : & — R is continuous in the sense of Saks if
for every ¢ > 0 there exists a § > 0 such that |H(I})| < ¢ whenever A(I) < 4.

If we consider H as defined only for I < I, for a certain Iy € ® then we call

it contingous in the vense of Saks in I,.

We will say that H is g-regularly continxous in the rense of Saks if for every
& > 0 there exists a § > 0 such that |H(I)| < ¢ whenever A(J) < § and I € ¥,.

These definitions are based on the definition of continuity in [52] (p. 59).

2.8.6. Definition. A function H : & — R is metrically continuous if for every
& > 0 there exists a § > 0 such that if [, [, € ®, and A([,Al;) < 4, then
|H(L) - H()| <e.

Just as in 2.8.4, we can talk about functions which are metrically continvous

in a certain [y € @,

2.8.8. Definition. H : ® — R will be termed A-continuous in the sense of
Burkill at z if for every & > 0 there exists an « € A such that if (z,7) € a[{z}]
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then |H(I}| < «. H is A-continsous in the sense of Burkill on o set E if it is

A-continuons in the sense of Burkill at every point of E.

This definition is based on the definition of continuity of interval functions

in [4).

2.8.7. Proposition. Let H : ® — R be additive. It is continuous in the sense
of Saks in Iy if and only if it is metrically continnous.

Proof. First suppose H is metrically continuous. Let ¢ > 0 be arbitrary and §
be the number given by the metrical continaity. Take an I such that A(J) < 4.
Extend it in one direction so that to obtain an interval I; containing 7 and such
that

I =(n\I)” (2.91)

is also an interval. Then we have

I:,Afg = [] \Iz, (292)
and thus
Al Al;) < 8, (2.93)
Consequently
lH[Il)—H(IRH < 8. (2.9‘)
But
H{L) —Hiz) = H{I) (2.95)

by additivity of H. Therefore H is continuous in the sense of Saks.

Now assume that H is continuous in the sense of Saks. Let ¢ > 0, ind a §
such that
H(I) < % whenever A(I} < 4. (2.95)

If we have two intervals I, [;, then I, Al; can be written as a union of at most

six nonoverlapping intervals J;. Now suppose I, I; € & are chosen so that
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MI Al) < 8. Then for 1Al = lJ; %, we have A(J;) < A(J,Alg) < § for every
i. Consequently
\Z (1) - B(B)| =[S 6l () + B n ) - BN )| <

: (2.96)
SiE(R)] < e% _p

(where §; = +1). Thus H is metrically continuous.

2.8.8. Proposition. IfH : & — R is additive then it is continuous in the sense
of Saks in Iy if and only if for every ¢ > 0 and every z € I there exists an
n{z) > 0 such that whenever I € @, z € I, and n(I) < 1(z) then |H(I})| < e.

Proof. This is shown in [4].

2.8.9. Proposition. Let H : & — R be additive. The following are equivalent:
(i} H is A,{I)-continnous.
{ii) H is Ay([o)-continuous in the sense of Burkill on Io.

(iii) H is A}{lo)-continuous in the sense of Burkill on I,.

Proof. (i)=(ii). This is obvious.

(ii)={iii). We wil show that A;(Jo}-continuity in the sense of Burkill at a
point z implies A}(Jo)-continuity at the same point. Let £ > 0. Choose plz)>0
so that if I € D(z,p(z)), and z € 7, then |H(I)| < 1e

Take an arbitrary I' € D(z,p(z)) and if it does not contain z, consider [
— the smallest interval containing both z and I'. It is easy to see that I C
D(z, p(z)). We have either I = I’ U I; for some I, containing z, nonoverlapping
with 7*, and contained in D(z, p(z)), ot I = I'UI, UI; for some I1, Ip containing

z, nonoverlapping with I, and contained in D(z, p(z}).
In the frst case
[ = B - ()| <25 <. (2.97)
And in the second case

()] = |BU) ~ H(L) - H(G) + H(LUB) <43s=e  (298)
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so that H is Aj-continuous in the sense of Burkill.

(iii)=>(i) Let z € Iy. Choose an a* € A], a” given by a certain p € P such
that if (z,I) € a*[{z}] then |H(I)| < £. Let a € Aj the the one generated by

the same p € P. If 7 C a[{z}] then x consists of at most four elements, so that

3 |HE(I) <. (2.99)
(z,D)Ex
Consequently
V(H,a) L. (2.100)

Therefore H is A,(lp)-continnous,

2.8.10. Proposition. Let [, € ®. If H : & — R is additive and continuous in

the sense of Saks then it is A,{lo)-continuous,

Proof. Let n be chosen so that A(J} < g implies |H{I)| < } s. Let z € Iy, and
choose a p(z} > 0 s0 that
7(plz))" <n (2.101)

(to avoid confusion let us note that x stands this time for the number =), The

function
z — p{z) (2.102)

is an element of P and so it defines a certain element a € A,. If ¢ C [{2}] is
a partition then o consists of at most four elements (one point cannot belong to

more that four nonoverlapping intervals} and for (z,I) € &

A1) < x(p(2))* < n, (2.103)
so that
3 |B)| <4 % =c. (2.104)
(zf)}EC
Consequently
V(H, A [{z}]) =0. (2.105)

Since z was arbitrary, this ends the proof.
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2.8.11. Proposition. If H : & — R is additive and A}{I;)-continuous in the
sense of Burkill on I, € ® then it is g-regularly contintous in the sense of Saks

in Iy,
Proof. Let ¢ > 0 be arbitrary. For every z € I there exists a p(z) > 0 such
that if z € I, I € D(2,p(2)), then |H{I}| < «. The class

= {D(:,p(:]) iz € Io} {2.108)

is an open cover of a compact metri¢ space [y. Applying the well-known Lebesgue
Lemma (see [9], theorem 11.4.5, p, 234), we obtain a number n > 0 such that for
every z € Iy there exists an 2’ such that

D(z,n) c D(z',p(:’)). {(2.107)

Let 5 = ¢n*//2 and suppose I C Ip, A(J) < 6, and I is g-regular. Then for z
being the center of [ d{I) < 5 3o that I C D(z,5). Therefore there exists an
2 € Ip such that

IcD{,plz) (2.108)

and consequently — {H(I)[ < ¢, This shows that H is continuous in the sense of
Saks.

3.8.12. Example. Let I, = {0, 1] x [0, 1], and for I = [a,b] x [e,d] C Iy,

_fd—¢ ifa=0,
"= {0 ifa>0 (2.109)

Then H is additive and A,{J;}-continuous buf it is not continuous in the sense

of Saks.
2.8.13. Example, Let

1
p=1-— n=0,12..., (2.110)
1
n = E(aﬂ—l + a’n)r n= 1!21 ey (2‘111)

c,.=%. n=12..., (2.112)
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I = [0,1] x [0, 1], (2.118)
In = [8a-1.8s] X [Br—1,8n], n=12..., (2.114)
My = [bn,0,] X [an-1,0n], n=12..., (2.115)
No = |@n=1,ba] X [bn,8a], n=12.... (2.116)

For every n € N let f, be a Lebesgue-integrable function on [, such that
I Ia(@)dz = cu, fa(v,4) = —fu(u,v), and fo = 0 on 8M, and off M, U N,.
Mu

We can choose f, to be continuous.

Define

f,v) = {g..(u,u) :)fﬂ(::;:); Is, forsome neN, (2.117)

The function f is very similar to the one in example 2.6.4. It is A, -integrable
on Iy, but not Aj-integrable. Let, for I C Iy

AU = (A) ]’ fda. (2.118)

Then H is A;-continuous by 2.8.3. However, H is not A}-continuous. No matter
what disk around (1,1) we take, all but finitely many (say, for n > n,) of M,"s
will be in it, and for any s > 0

m

Y B (M)] 2 e (2.119)

for sufficiently large m.



Chapier 3

GENERALIZED FUBINI THEOREM

The following chapter contains the natural generalization of the Fubini The-
orem for the Henstock integral. The theorem, however, holds only if the base

considered is a product base — this notion is newly introduced here.

In particular, we get ap alternative proof of the Fubini Theorem for the
Lebesgue integral (in Euclidean spaces) and the Aj-integral.

In chapter 5 another example of a product base, for which the theorem is

true, will be given.

Since the Fubini Theorem does not hold for the Aj-integral, we show that
the Ag-integral is strictly more general than the A,-integral.

3.1. Product bases.

8.1.1. Definition. Let A! be a derivation base on X and A? —abaseon V.,
Assume that A! and A? have local character. Let ¥* ¢ P{X) and ¥? C P(Y)

be the corresponding classes of “intervals”,
Set
¥={(IxJ:Te¥', Je¥?} and Z=XxVY. (3.1)

A C P(Z x W) will be termed the prodsct base of A® and A? (written as
A = A' x A?) if for every a € A there exist functions
X3z—aleal

(3.2)
Y3yrajeA!
such that (z, P) € o if and only if
z=(z,y) and P=IxJ (3.3)

45



46 KRZYSZTOF M. OSTASZIEWSKI

where

(s, ])€a) and (y,J)€cs. (3.4)

We will use the a2, ol as a standard notation for the functions in (3.2), if
 is an element of a product base (i.e., if we have 4 € A, then we will also write
o By)
It is easy to see that if ! and ¥? satisfy the condition 1.1.2, then so does
w.

8.1.3. Definition. Let P, stand for the class of positive functions p : R—R,
and let ®; be the class of all closed nondegenerate subintervals of R. Following
[53] and [54] we will define bases on R:

D = {ap }per, (3.5)

where
ap = {(z,[)el{xil:zelc (z-p{z),z-i—p(:))}; (3.6)
Do = {a; }rer, (3.7)

where

ap = {(z,I) €R x®, :zis an endpoint of I, C (z — p(z}, 2 +p(z))}; (3.8)

D* = (o? }yes, (39)
where
af = {(z,l)eRx@l :Ic (z-—p(:c),:c+p(z))}. {3.10)
Then we have
A, =DxD, {(3.11)
A; =D x Dy, {3.12)
A; =~ D* xD*, (3.13)

It is known that for the functions of the form f(z)A(I), D generates the
Denjoy-Perron integral, and so does D;. D* generates the Lebesgue integral.

For the complete discussion of this subject, see [53].



BEENSTOCK INTEGRATION IN THE PLANE 47

3.1.3. Observation. Any product base bas a local character. A product of two
bases wkich are fitering down, is filtering down.
3.1.4. Definition. Let ' = {(21,11),...,(zn, In)} be a partition in X, and
let, foreach i = 1,2,...,n,

w2, = {(W. )., (k.. 70} (3.14)

be a partition in Y. Then

= {J U {((:c.y).lx.f)}:

(z.)Ex* (9.7)€x] (3.15)
{(endidhTix H)i=1,2.n j= L2k}

is a partition of X x Y, and such a partition will be called a compoend partition.

3.1.5. Proposition. If A' and A? have the partitioning property and are fil-
tering down, then A = A! x A? has the partitioning property.

Proof. Leta € Aand [y x J, € . Fixan z € I;. Since A? has the partitioning

property, there exists a partition 72 C o? of J,. Write
= {i, 7). (e, I8 ) (3.16)

Since A?! is flltering down, for every z € I; there exists an a'* € A' such that

k.
at* c {7 al,. (3.17)

i=1

Since A’ has a local character, there is an a' € A' such that
a'[{z)] co'?[{z}] - (3.18)
for every z. There exists a partition ! C a! of I,
B ={lz, 1), (20 1)) {3.19)
Construct now a compound partition
r= {((z.-,y,‘-"),f.- XJF)ii=12,...,n j= 1,2,...,k,,.}. (3.20)

It is easy to see that ¥ C o so that the proof is ended.
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3.3. Fubinl Theorem.

3.2.1. Theorem. Let A be a product A x A? of derivation bases on X and Y
respectively, with W* and ¥? being the corresponding classes of subsets of £(X)
and P(Y). Let I, € %', Jy € ¥, and U : b x¥' — R, Uy Iy x(Jox W) — R.
Write U = U,U;. Suppose U is A-integrable om Iy x Jy. Define

T = {z€Iy:Us(z,,} is A’-integrable}. (3.21)
ForzeT let
o) = (&%) [ tafe.-). (322
For z € Jo \ T let g(z) be chosen arbitrarily. Set
W(z,I) = Us(2,Dg(z) (3.23)
for (z,I) € I, x ¥,
Then
(.i} V(Ul, AliIu \T]) = 0;
(ii) W is Al-integrable and
(aY) / w=)[ (3.24)
Iy faxJa

Proof. We will show (i) first. For every n € IN jet

Xa ={z € I : Va® € A? 3 partitions x*', #*? C o® of J; such that

. (2.2
E Uﬂ(zlyvj)_ z U’(zlyijll 2 ;;}-
(IIJ)G"’"‘ (y'j)e,-c.‘a
We have then
LA\T=|J X. (3.26)

neEN

and is suffices to show that

V(U,AlX,.]) =0 {3.27)
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for every n € IN.

Fix an n € IN. Let ¢ > 0 be arbitrary. Take an o € A such that for every

partition # C a of Iy X &y
1
A j U-Ulr)| £ ze- 3.28
&) "] <3 (3.28)

Let z € X,. Find partitions of Jy

2= {5 ) i=L2,...,my)

=2 z I . - (329]
1|'= = {(UJ’JJ) 1= 1,2,...,"’!3}
which are contained in a2, and such that
Y. miawnd)- Y. Uiz J)‘ > % {3.30)

(v.7)Ex] (v, JYEX?
— this is possible by (3.25). Since A! is filtering down and has a local character,
there exists a A' € A! such that for every z € X,, and every y such that (y, J) €
%2

A'[{=}] c o} [{}]. (3.31)
Now let z € Ip \ X and
r={v},J7):i= L2,....m;} Cea}

(3.32)

73 =3

Choose 4! € A® such hat for every z € Ip \ X, and every y such that wJ) €
-

Plta)] € 2 ((a) (333
Finally, let ¢! € A be such that

et cgaqyt (3.34)

Let T! be an arbitrary partition contained in ¢![X,]. By our standard

assumption 1.1.2, and because Al has the partitioning property, there exists a

partition z! C ¢" of [y such that

#={(z,])ex':z€ X} (3.39)
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Write
7' = {(z1, Ii)s-- ., (26, 05) } {3.38)

and define compound partitions

p= z‘-,y’f"‘['.xj“,'" :‘.=1v2|"'rk1 j=1|2!---‘m:; 1
) . ) } (3.37)
= {(ad3) Lx T3) iz 1200k = L2 iy, ).
Then we have p, 5 C a, so that by (3.28)
[U(e) -U@)| <e. {3.38)
On the other hand
{Uip) -V () =
= . et wa (3.39)
[ 3 Ul(zi,fa)(ZUz(z.-,u,»',J,-') - ZUz(-'n.u,-‘.J,-‘})|.

2E€EX, =i =1

We can assume without loss of generality that

sgn Ul(Zi. I.) = s¢n (Z‘Uﬂ(zh y;".' J;.) - Z'Uﬂ(zl'i fi;il j;.)) (3'“))

F=1 =1
whenever z; € X,, and Uy (,1;) #0. This is possible because if (3.40) does not
hold, we can simply switch the roles of #Z, and #32 .
Therefore
[U¢p) ~ U (B} =

.y e
Y 0=z 1) Y Us(zi v, 75) - EUI(-":H?;‘, Iz
2€EXn = j=1
1 3.41
LS el 2 4
n #€EXn
1
- Y, iz,
(s.N)ex?
From (3.38) and (3.41) we conclude that
Y Uiz, D] & ne, (3.42)

[ENT
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and this shows that (3.27) holds for every n € IN.
Now we turn to the proof of (ii}.

We need to show that for every ¢ there exists an a! € A! such that for every

partition 7! C a! of Ip

Se. (3.43)

Let £ > 0 be arbitrary. Find an o € A such that for every partition r € o of

Iy x Jo
I(A]fluxlo v- U(“)

Note that (3.44] implies that whenever x,¥ C a are partitions of Iy X Jp then

< %s. (3.44)

< ie. (3.45})

U(x) - U{F)

Let z € I, \ T. Choose a partition 52 C a3 of Jy. Then find an o' € A!
such that for every z € I,
a{{z}] ¢ [ all{z}]. (3.46)
(y.J)En3
Put
Q.= {z €L \T: [a(2){ + I Z Uiz, y. J)l < 1}. (3.47)

(v.J)Ex2
andforre N, n > 2

Q, = {ze I \T:r-1<|g(z)] +| E Us(z.p, J)l < r}. (3.48)

(v, d)Ex?
By (i) we have, forevery re N
V(v AlQ]) = 0. (3.49)

Note that Q,'s are pairwise disjoint.

By (3.49) for every r € N there exists an o' € A' such that for every

partition x'* € o’ [Q,]

|0 (227) < —

= pot+1° (3.50)



52 KRZYSZTOF M. OSTASZEWSKI

Put
p=pt=? forze o \T (3.51)

and find a A' € A! such that for every r € N and every z € Q,
8 [{z}] c a*[{z}] na®"[{z}]. (3.52)

Now consider an z € T. Let a2 be a partition of Jy which is contained in

al. We can find a ¢ € A? such that for every partition x* ¢ y? of J,

Y. Us(z,w,7) - gl2)|. (3.53)
{v.J)EX]

Z Ua(z, 9, J) - g(2)

(y.J)EX?

<!
2

— we can do that because the right-hand side is just a certain positive real

number.

It should be noted here that the right-hand side of (3.53) may actually be
equal to zero, but then we can skip the following estimates and go directly to

(3.66), which remains true.

Let 22 be a partition of Jo which is contained in a2 N ¢?. Then x? and

x3? are partitions of Jp, contained in a3, and such that

<!
2

Y Balznwd)-o(z)].  (359)

(w.d)ex?

Z: U,(z,y,.f) —g(z)

w.NE=]?

Choose o' € Al, a® c 8" such thatforz € T
o'[{z}] c o} [{z}] (3.58)

for all (y, J) € #3 and (p, J) € x3-2.
Let ' C o' be a partition of [y. If (z,/) € x' and 2 € T, and
Ul(z,I](( E Ua(z, y, J)) - g(z)) >0 (3.57)
(v.5)Ex]

then put

pA=a7 aad =gl (3.58)
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Otherwise (still for z € T let
oz =137 and g =x;.

Deflne compound partitions of I x J,

o= U {anrxd):w e}

(z,0)ex!

7= U {((x,y).li):(y.J)EﬁZ}.

(z.7)Ex?

Then p and § are contained in o so that by {3.45)
1
[T(e) - T(®)| < i

Furthermore, we have
|U(p) - W (x")| <
I Z U((z’y)lrx J) - Z W(Z,I)l +

ila.p) IxJIEp (2,2)Ewl
2gT TS

i Y UlznIxdy~ Y Wzl

({asp), I x ) Ep ]
’ ey ) [a.:é%r

Since #! C a!, from the way a' was chosen, we get
g

Y UleawiIxd)- Y, W)

((2.0)Ix T)EL (#,D)Ex?
agT agT

Z Uylz, I)Ua(z.y, T} — E Uiz, Ig(z)

(ta,g) i J)Er (=, 1wl
=ET TET

Y Y vahaend)- Y UilaDez)

tanext (3,J)€02 (PHIvTY
T €T

~ own(( T tan) - o)

(".'%-Er" (w.h)EMR

Y, Y rlonanis

rEN (1,)€w!
2€Q,

Z rs _1‘
r+d 4"
relN r2 ¢

-4

(3.50)

(3.60)

(3.61)

(3.62)

(3.63)
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Now let z € T for (z,I) € x*. Suppose

Ul(z,I}(( ) U,(x,y,J))-g(z))m. (3.64)
{wf)€x]
Then
0<U1(z,n(( Z Ua(z,v.J)) —a(z]) <
{v.)En
wien(( T oewd)-s o - (L vaawd)) =
(v, 1)€EpE (v 2)ER2
w.(z,r)(( Y nenn)-( X Uz(z,u,J))). (3.65)
(v 0)ERY

(v.0)€PT

Suppose, however, that {3.64) does not hold. Then

IU;(:,I}(( Y tazu.d) - dls)

<
{u.)€En

(v, NNEA2

Own(( Gl ) -ot) - (X Ualew. ) +0la)) =

(v.0)€53
Ul(z,I)(( Z: Ua(!.U.J))—( Z U,(z,y,.f))).
(v.J1€0} (v.9)€r3
(3.66)
Combining (3.65) and (3.66), we get for 2 € T, (z,I) € =!
e n(( T tate ) - ota))| <
(v.1)EP3
2, (2, 1)(( Y tznd))-( X Ui J))).
(n.7)ER2 (r.d)EP?2
(3.67)
Now let us note the following
Ulp) - U(p) =
( Y v(zuhIx J]) - ( Y Uz Ix .I)) =
t('.vl.é;J)Ep ((a-v_l'.é;-l'lei (368)

T ten(( T ttewd)-( T imnd))

e (v,4)€0 w.EP?
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Therefore, by (3.61), (3.67), and {3.68)

(T olearxn)-( X wen)|-

u.-..l.el;_ nNes |,,:é$,1
Z (( Z U,(a'.y,.f)) - ( E Uﬂ(”o!’:*’)))ls
(rfget © (v )€ R | {3.69)
(¥ @n)(( ¥ o)) T tatawnd))) s
(=g (1.5)603 {p.)ER2

1
2(U(p) -U(M) £ 2¢
Combining (3.63) and (3.69) we get

Vo)~ W) < 3o (3.70)

and this together with (3.44) gives the desired inequality (3.43). The proof is
ended,

3.3. Corollaries to the Fubinl Theorem.

3.3.1. Corollary. Let f : [2,b]x]c,d] — R be A, -integrable {or A,-integrable).
Write

T = {z € [a,b): f(z,-) is Denjoy-Perron integrable on e, d}}. (3.71)

Then
{i) [a,8] \ T is of measure zero;

{ii) If we define
d
glz) = [f(z, y)dy  (Denjoy-Perron integral) (3.72)
for z € T, and choose g(z) arbitrarily otherwise, then
bd
(A1) Jdr = ]f Iz, y)dydz (3.73)
{a.b]x{c,d] i
— the integrals on the right-hand side being Derjoy-Perron integrals.

Proof. This follows from the theorem 3.2.1 and {3.11) (or (3.12)).

Note: A theorem equivalent to 3.3.1 appears in [31].
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3.3.3. Corollary. Let [ : [a,b] x [c,d] — R be Al-integrable (ie., Lebesgue
integrable). Write

T ={z €[a,b]: f(z,") is Lebesgue integrable on [c,d}}. (3.74)

Then
(i) |a,b] \ T is of measure zero;
(ii) For g(x) defined as

glz) =[f(z,y)dy (Lebesgue integral) (3.75)

for z € T, and arbitrarily otherwise, we have

b d
(a) j[.._.,],;c,qm - f [ 1(2,9) dydz (3.76)

— the integrals on the right-hand side being Lebesgue integrals.

Proof. The corollary follows easily from the theorem 3.2.1 and (3.13).

Note: 3.3.2 i3 the classical Fubini Theorem for the Lebesgue integral.

3.4. Tolstov's counterexample.

8.4.1. Example. In [55] Tolstov conatructed a real-valued function H, defined
on the class of all subintervals J c [0, 1] X [0, 1], which is additive, continuous in
the sense of Saks, and such that (for p = })

Da,Hi(z,¥) = f(z,4) ae. (3.17)
for a certain measurable f: [0,1] x {0,1] — R, and
-0 <Da,Hi(z,y) $Da,Hal2,p) < + {3.78)
for all (z,y) €[0,1] x [0, 1], and yet

Oes (A4) fdx

3z [0,2]%[0,3]

(3.79)
a_‘L A aX
oy | 2)jl°-=lvt|°-v]f
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do not exist anywhere in (0,1) x (0, 1).

In [27] it is shown that the conditions (3.7T) and (3.78) force f to be in-
tegrable in the sense of Kempisty (this notion is introduced and discussed in
chapter 4). In theorem 4.5.2 we will show that any Kempisty-integrable function
is also Ag-integrable. Thus f is Ag-integrable.

However, if any of the equalities

L]
(Ag) [a.b]X[c.dlfd’\ =fff(z.y)dzdy,
N (3.80)

(A2) ~[[a.b]x[.:.¢]fd‘\ =fj J(z,y)dydz

holds for every [a,b] x [¢,d] C [0,1] x [0,1] (with the integrals on the right-
band side of (3.80) being the geuneral Denjoy integrals, as considered in [55],
or even more general approximately continucus Perron integrals of [5]), then
the corresponding partial (3.79) exists a.e. {see [5], property II). Thus for the
function constructed by Tolstov we do not have one of the equalities (3.80) for
some [a,b] x {e,d} € [0,1] % [0,1].

Combining this with the corollary 3.3.1 we see that f is an example of a

function which is Aj-integrable, but not A,-integrable.



Chapter §

THE INTEGRAL OF KEMPISTY

We consider here the Denjoy-type integral in R? introduced by Kempisty.
1t is less general than the Aq-integral. Under a special assumption on minorants
and majorants {which is satisfied for every finite regular derivative) Aj-integrals

which are continuous in the sense of Saks are also Kempisty integrals.

Any Kempisty-integrable function is Lebesgue-integrable on some nondegen-
erate closed interval. This shows thal a certain class of Az and Aj-integrable
functions also has this property. There exist, however, Aj-integrable functions

without it.

We consider also nonabsolute integrals of Mawhkin and Pfeffer, for which the
classical divergence theorem holds. They are less general than the Ag-integral,
but more general than the A;-integral.

4.1. Functions absolutely continuous In the sense of Kemplaty.

4.1.1. In this chapter we will concentrate on the A; base, with a fixed g €
(0,1) given. If H : &, — R we will write simply D H{z), D H(z), D H(z) for
D a, Hi(2), D a, Ax(2), D 4, Ha(2) (respectively).

If E c R?, we will write Rg for the smallest interval containing E.

4.1.3. In [27] a function H : &, — R is termed ACr on a bounded set E ¢ R if
for every & > () there exists an 9 > O such that H I,, I, ..., I, are nonaverlapping

elements of ®,, meeting E, and contained in Rg, then

ZIH{I.-)I <&  whenever ia(r,-) < 7. (4.1)

i=1 =i

58
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But — there is a difficulty here. If E is contained in a vertical or horizontal

segment, Rg is degenerate and the definition becomes void.

The vertical or horizontal linear sets are precisely those which caunse prob-

lems.

Consider the following example. Let

ap = =) for n € N,
n
Iy =10,1] x [0, 1],
u, =1+ = -—L forne N, (4.2)

5;1 Uy = on
F)= Y & forI=[abx[cd€d,
9;Ela.b)
v;Ele,d)

F is well-defined, fluite, additive, and F{I) = 0 for any I € I,. Thus F is ACr

{in the above defined sense) on [,.

On the other hand, if I,, forn € N, is a %-regular interval with a vertex
at (¥gn—1,¥2n—1), 3 side contained in {1} x [0, 1| and not containing (ugn, vzn ),
then

o0

Y IF(LL)] = +oo, (4.3)

n=1
and [,'s are nonoverlapping. Since all f,,’s meet {1} x [0,1], F is not ACr on

any interval (1,1 + &] % [0, 1] for § > 0.
But {1} x [0,1] is a subset of a set on which F is ACr.

In view of these difficulties we decided to alter Kempisty's definition skightly.
The change as the one made here appears also in {7]. It does not effect the theory
of integration of Kempisty, just straightens things up.

4.1.8. Definition. H: &, — R is ACr on a bounded set E ¢ R? if for every
¢ > 0 there exists an n > O such that if [,,...,I, are nonoverlapping elements

of &,, meeting E, then (4.1) is satisfled.

4.1.4. Proposition. Let H be additive and continuous in the sense of Saks. If
H is ACr on a bounded set E then it is also ACr on E—.



60 KRZYSZTOF M. OSTASZEWSKI

Proof. Let ¢ > O be arbitrary. Choose 5 > 0 such that for every finite collection

I,... I, of elements of &, containing points of E, and nonoverlapping, we have

= 1

Y o|R()| < 3¢ (4.4)

=1

whenever

m

Yo ALY <n. (4.5)
=1

Now let Iy,...,I, € &, be nonoverlapping, contzining points of E~ and

such that Y0, I < 9.

=1
Since H is continnous in the sense of Saks, there exists a § such that for any
nondegenerate closed intervals J, and Jy
£
|#(7) - B(R)| < o2 (49)

whenever
A(JIAJQ) < §. (4.7)

The intervals [,,...,I, might fail to meet E. We will construct intervals

I,..., I} which will meet E, be nonoverlapping, and such that

S < «s)
and -
MLAL) <8 for every i, (4.9

The construction will be performed in n steps, in each of them we will be either
shifting or shrinking the intervals J;, this way their total area will not be increased,
Define I =I;, fori=1,2,...,n

The j-th step {1 € § < n) of the construction will be performed on the inter-
vals I7=' fori=1,2,...,n. After j— L steps we have intervals I'"!, ..., i~
which are g-regular, nonoverlapping and such that

I"'NE#9 fori<j-1, (4.10)
F'nE~#¢ fori2j (4.11)

ix(r{“‘) <, (4.12)

=1
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and
;o i — 1)8
MLary < Y - Ly (4.12)
Now take the interval I’ If it contains a point of E, let
I=r=" fri=12...n (4.14)

Otherwise, it has a point of E~ on its boundary., It is & cluster point of E.
Therefore we can make I,-j_l meet E by shifting it slightly toward that point.
Note that any such move, even very small, will assure that the shifted interval

meets E.

Denote the shifted interval by I ; . Make the move small enough for the area

of the symmetric difference of I}’-'"" and IJ’.' to be less than 4.
. i . . i i1 . .
It I does not averlap with any of I/ ™" for i # j, put I = I]™" for i # j.
But if it does, more work is needed.

Let I be an interval among If"', i # §, such that I and I}'—I overlap. Shrink
it to a proportional interval J < I (being proportional to I, it will still be g-
regular} such that J and [ J" do not overlap. If it so happens that J does not
contain points of £ (for I = I/™ i € j-1jor E~ (for I = '™, i 2 j+1)
any more, then go back to the way 1" was made out of Ij'_l. and make the shift
smaller, so that J will contain points of E or E~ (respectively]. This is possible
unless I}‘" and [ have a common boundary point belonging to E~ \ E which is
not a cluster point of E — that obviously can't happen, or there is an isolated
point of E being a common boundary point of Ij'l and [ — but then I;_l does

not need to be shifted.

Finally, make the I intervals shrink by not more than 4 (in terms of area),

and if that is not possible, go back to I;"!‘ and curb its shift so thas it is possible.
Do this for every interval I among I;""“ i # j, such that I and If overlap.

If I7=" is one of such intervals, let the corresponding J (the shrunk interval)

be I7. Otherwise, leave I/ = I ™",
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We obtain intervals J {, ...,IZ which are g-regular, nonoverlapping, and such

that
InE#0 forigj, (4.15)
IINE-#£9 fori2j, (4.16)
Z"jw{ )<, (4.17)
=1
and
AMLAD) s MLAP Y+ M A < (—’"n—”‘i + f-‘ = i'f- {4.18)

Let I! = I? for i = 1,2,...,n. We have from (4.17) and (4.7)

= 1
N IR(D)) < 7€ (4.19)
i=1
On the other hand, for every i,
5
MLALY) < i'n— =8 (4.20)
s0 that by (4.6) and (4.7)
AU £
|H(I) - B(ID] < e {4.21)

We got from {4.13) and (4.21)

_f]ﬁ(r.-)[ < i:IH(I,f)i + Y |H(I) - H(I)| < %z + %: =g, (4.22)

i=l1 =1

and this ends the proof.

4.1.5. Deflnltion. A function H : &, — R will be termed generalized abso-
Iutely continsous in the sense of Kempisty (or ACGr) on an interval o if I is

expressible as a union of a sequence of sets on each of which H is ACr.

Kempisty in {27] takes the sets in the sequence to be closed. Because of
proposition 4.1.4 we will not do so, as we will deal mostly with additive continuous

functions.
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4.2. Burkill integral.

4.2.1. Deflnition. Let [y € ®,, and 5 : &, — R. The Burkidl infegral of H
over Iy is the limit
li H{l; 4.23
NP (1:) (4.23)
where D = {I,...,I.} C &, is a division of I;.
We will use the notation
8)| H (4.24)
for the limit (4.23}.

The upper and lower Burkill integrals of H are defined in the natural manner,

as the corresponding lower and upper limit.

4.2.2. Definition. If H: &, = R and E ¢ R? then we define

_[H(I) HINE#®
Hell) = {0 otherwise, (4.25)
and

HE(I)= H(I) - He(]). {4.26)

4.2.8. Definition. The Burkill integral of H over a bounded set E is defined

as
(B]LH:(B)/RE He. (4.27)

The zpper and lower Burkill integrals over a set are defined similarly.

4.2.4. Definltion. If £ C I, is a closed set then its portion is a nonempty set

of the form 7 N E, where I C [, is a nondegenerate closed interval,

We will say that H : ®, — R is Ir in [ if every closed set F C [ contains

a portion on which H is integrable in the sense of Burkill.

4.2.5. Definltlon. Let Iy € &. We will say that [: Iy ~—~ R is fntegrable in the

sense of Kempisty on Iy if there exists an A : & — R which is
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(1) additive,
(i) continuous in the sense of Saks,
(iit) Ir on Jo,
(iv) ACGr on Iy,
(v) and such that
DH(z) = f(z) a.. onl. (4.28)

The definition comes from [27]. The author does not specify there what he
means by continuity of H, but a note after theorem 1.3 in [27] clearly implies

that he means (ii).

4.3. Properties of derivatives and the Burkill Integral.

4.3.1. Lemma. Let H : &, — R. Then the point functions

z+— D H(z),
_ (4.29)
z— D H(z)
are measurable.
Proof. Let r€ R and
E={z:DH(z)>r}. (4.30)

A point z belongs to E if and only if there exists an s € R, # > 0, and a sequence

of g-regular intervals {IZ} tending to z (in the sense of the A, base) such that

f((;g)) 2r+s (4.31)
for all n € N. Thus, if
Bu=U{le®:d) < and ’;((I")} 2rt7} (432)

then

E= U n Ek‘,. (433)

IEN kEN
Every set Ey, as a union of a family of intervals in R?, is measurable (see [52],
lemma 4.4.1, p. 112}. Thus £ is measurable, and this ends the proof.
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4.3.3. Lemma. If H is ACr on I, then so is |H|.
Proof. This is obvious.
4.3.3. Corollary. Let H be ACr on I,. Define

Pa(n) = 3 (10| + B(D)),

{4.34)
Nall) = 3 (|#0)] - 21).
Then both Py and Ny are ACr on I,.
4.8.4. Lemma. If H is ACr on Iy, then all three Burkill integrals
@[ = (4.35)
[ & (4.36)
® [ (w1
are Bnite.
Proof, Since we have
(3)]1 H< (a)f’ Pu, (4.38)
@ f B2-0)f va (u.3)
and - )
@ mse) [ purio)f M, (4.40)
it suffices to show that
(8) ] P omd ) N (441)

are finite,
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Suppose not, and

(8) f | Ni =+oo (4.42)

By corollary 4.3.3, Ny is ACr.

Let £ > 0, There exists an § > 0 such that if I),... I, € &, are nonaver-
lapping and
S ML) <n (4.43)

then n
3 Nu(h) <. (4.44)

=1
Let r be a real number such that

r> 5,\(10) +L (4.45)

Because of (4.42) there exists a g-regular division D of I, such that

n(D) < \/g (4.46)

S Na()>r+e. {4.47)
Teb

Then, by (4.46), for any I € D we have

and

M s (a(n)* < L. (4.48)
Write 0 = (I;,...,1,}. Set
b ={h,....I}, (4.49)

where k; is the smallest integer & such that

r—1

k
<) ML) < (4.50)

i=1

(if there is no such k, let ; = D).
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Let D; be obtained from D\ D the way D, was obtained from P.

Continuing that process, we will stop at some point, and get a family of
classes of g-regular intervals

D,....D: {4.51)
such that
r—1 .
- n< Y M)<n  fori=12...,01-1 (4.52)
Iep;
and
3 Al <. {4.53)
Ieb

Note that, since Dy Ul U... U D, = D, we have

M) L rMT)

{ =T, =G=1n + 1 (4.54)
Now, since N is ACr and
Y MD <, (4.55)
30
we have
Y Nyl <e, fori=12,..,1 (4.56)

1ed;
From (4.45), (4.54), and {4.56) we get

Y Ng(D=Y3 Na(D) <
Ied i=1 1eb; (4.57)
I’)Q[IQ)S

(r—1)n

+e<r+e,

which contradicts {4.47). Thus (4.42) is impossible. The other half of the lemma

is proved simiiarly.

4.3.5. Proposltion. If H is nonnegative and

(B) [ H<+e (4.58)
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then D H(z) and D H(z) are fnite a.e. on I,.

Proof. Note that D H(z) > 0 so that we need only to show that D H(z) < +o0

a.e. on Ip.

Let

(B)f H=r. (4.59)

There exists an g such that if D is a g-regular division of [y of norm less than n

then

Y HD<r+1 (4.60)
Iep
We will show that the set
E={z€l,:DH(2) = +x} (4.81)

is of measure zero. Suppose not, i.e., A(E) > 0. We can assume that the distance
of E from the boundary of [, is positive, since if it is zero, E still contains a

measurable subset of positive measure whose distance from 41, is positive.
Let
E,={z€l:DH(z) > n} (4.62)

for n € N. Every E, is measurable, by lemma 4.3.1. There exists a £ > 0 such
that
AEW) >k (¢.83)

for every n € N. Fix an n € N such that

1
n> 12 (4.64)
x
Choose an o € &y such that for any z € E,, (2, ) € o
H(I) > nA(]) {4.85)

and
n(I) <n. {4.66)
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Let
&= {I €E®,:(z,])€a for some z}. {4.67)

Then £ is a Vitali cover of E,. Therefore by the Vitali Covering Theorem (see
[52], theorem 4.3.1, p 109), there exists a finite class M C & such that the elements

of M are disjoint and

M} > . (4.68)
Iem
From (4.67) and (4.68) we get
ZH(I))v an([])mr) r+l. (4.89)
IeM {3,

By extending M to a division D of [y, of norm less thaa 5, we get

Y EHN2Y H(I)>r+1 (4.70)

Ied IEM

This contradicts (4.60). Therefore A(E) = 0.

4.8.8. Corollary. If H is ACr in Iy then D H(z) and D H(z) are finite a.c. in
Ip.

Proof. Using the notation of (4.34), write
H(I) = Py (I} - Ng{I). (4.71)

By lemmas 4.3.4 and 4.3.5, D Py (z), D Py(z), D Ny(z), and D Nyg(z) are finite
a.c., and that implies 4.3.8.

»

4.8.7. Lemma. Let H be ACr in I,. Write

Ac={z€l,:DH(z) >k}, keN, (4.72)
A ={z€l,:DH(z) >k}, keN, (4.73)
B, ={z€l;:DH(z) < —n}, neN, (4.T4)

B, ={z€l,:DH(z) < -n}, nel. ('4.15)
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Then
lim kA{Ax) = lim kA(AL) =
k—o0 k-‘-'oo s " (B (4-16)
Ao, mA(By) = fim nA(B;) =0.
Proof. We will show that
Jim kA{4e) = 0. (4.77)

Note that A} € A, and B}, D By, so that the only other part requiring a proof
is
nlinga ni(B.) =0. (4.78)
It can be proved similarly as {4.77) will be.
Suppose that (4.77) does not hold. There exists an 5 > 0 such that
EMAx) > 9 (4.79)

for inflnitely many k. Let Ay be a subset of Ax which has a positive distance

{rom the boundary of I, and is such that
MA) > T M4, (4.80)
Choose an o € Aj such that for any z € Ay, (z,/) € a
H(I) > k(). (4.81)

Let
E={led,:(z,])€a for somezezk}. (4.82)

Then £ is a Vitali cover of A;. By the Vitali Covering Theorem (see |52], theorem
4.3.1, p 109) there exists & Bnite class M C € consisting of disjoint g-regular
intervals and such that

2A(4) > Yo a() > ;:«(Z,,). (4.83)
TEM
But then
M4 > Y A0) > i% A(Ar) > %.\(Ak). (4.84)

IeM
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Thus we get
1
PN (HED IR 3 KA (4e) > %q. (4.85)
Iexn IeM
However, H is ACr, and by corollary 4.3.6
klggo AAg) =0. {4.86)

Therefore, by choosing k large enough, we can make

2 AU (4.87)
fem
small sufficiently to have
Y H(N< -;-.,. (4.88)
IeM

This contradicts (4.85). The proof is ended.

4.8.8. Lemma. If H is ACr in Iy then
(3)/ H SIQH(I]d;e S/ﬁH(z]dz < (B}f H o (489)
Ig fu
- fo Iy

{the integrals in the middle are Lebesgue integrals).

Proof. We will show that

-~

fﬁH(:)dz <(8)| H, (4.90)
Ia
L
the other half can be proved in a similar manner.f
Define, for n, k € N
Sn = min{k, max(D H(z), —n}). (4.91)

Then fn i are bounded and measurable, therefore Lebesgue integrable. We will

show that for n, k sufficiently large

] fux(2)dz < (8) j H (4.91)
] o
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This, obviously, will imply (4.90), since by lemma 4.3.4 the integral

(8)f H
Iy
is finite.

Let ¢ > 0 be arbitrary. Choose an 5 > 0 such that
{a) it D is a division of Iy such that n{P) < n then

ZH(:)S(s)L H+e

Iep
and
(b} if £ is a finite class of nonoverlapping g-regular intervals such that
YA <q
=4
then

YIEM)| <.

1€€
Let n,k € N be such that
1
'\(Ak} < 5"!

I
A(-Bn) < § n,
and

kA(A:) <&

Let
-n=l <l <l <...<l,=k

be such that for
Ei={zel:l, <D H(z) <}, i=12....m

we have ~
E!.-_l,\(z.-} > j D H(z)dz ~ «.

i=1 [o\(ﬂ..UBn)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

{4.101)

(4.102)
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Note that "
I\ (4. uB,) = E. (4.103)

i=L
But

DH(z)dz = jf,,,k(z)dz — kA[Ag) + n)(B,) >
Iy

To\(AxUBy) (4 104)
ffn,k(z)dz — &
fa
Thus
m
Yo LoA(E) > [ fanlz)dz ~ 2¢. (4.105)
=1 In
Let
=min{ -5 "
§= mm(zmzk. Gm,). (4.106)

Since the sets E; are measurable, for every i there exists a finite collection of

nonoverlapping intervals

S 0k, (4.107)
such that .
E = (U JfUGi)\Lh (4.108)
=1

where G;, L; are some measurable sets of measure less than §. Then

A(UJ{nE.) > ME;i) - 6. (4.109)

i=1
Some of J}'s {for different i’s) might overlap. To svoid that, remove any nonvoid
intersections of Ji's and divide the remaining parts of intervals into finite number

of g-regular intervals.

For each i, let
Pi,.... P (4.110)

be 30 obtained elements of ©,. In each set

ki
U % nE; (4.212)
=1
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we removed, in terms of measure, not more than the sum of all A\(G;), A(L,) for
J#i, ie, 26(m — 1). We get then
L H . ki .
AEAUP) > MEn U F) -26(m - 1), (4.112)
=1 =1
From (4.100) and (4.112) we have
¥;
s(En Y P;') > A(E;) - (2m - 1)5. (4.113)
=1
Let C; be a subset of
L
En|J ¥ (4.114)
=1

which has a positive distance from the boundary of |J;%, P} and is such that

2 ) 1
Ae) > A(En J F) - 5. (4.115)
{=1
For every z € C; we have
L.y <D H(2), (4.116)

so that for every a € A;[{z}] there exist (z,]) € « such that
’5_11(1) < H(I). (‘.117)
We can assume that for every such (2, 1), n{I) < g and I c |}, P.

Let
M= {I € @, : for some z € C; and & € Aq[{2}],

(4.118)
(2,1} € o and (4.117) bolds }.

Then M covers C; in the sense of Vitali. By the Vitali Covering Theorem (see
{52], theorem 4.3.1, p. 109), there exists a finite class

{Ri,....RL,} c M (4.119)

consisting of disjoint intervals such that

A(O R,") > MC)) - %5. (4.120)
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Then, by {4.115} and (4.120), we have
& i
AU &) > (& nUP;') -5
i=1 1=t

Combining (4.113) and (4.121) we get

.\(I:J R} > M(E:) - 2ma.

=1
Let
R={Ri:1=12...,i=12..,m}.
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(4.121)

(4.122)

(4.123)

The elements of R are nonoverlapping. By (4.97), (4.98), (4.103) and (4.123) we

have

,\(U Jz) >A{Jo \ (Ak U B,)) = 2m?5 >
MIo) ~ A4 = A(Ba) = 34 > Allo} = n.
If D is a division of Jo \ U R then by {b) and (4.124)
|Z H(I]} <e.
rep
Since n{I) < n for every I € R, (a) and (4.125) give

Z:H{I)s(ﬂ)fI H +2s.

el
On the other hand, by (4.106), (4.117}, and (4.122) we have

Y HD =i‘(i H(R})) 2 f::(}; ME)) 2

F{=34 =1 =1 =1

i’i—l(A(Ei} - 2m6) 2 zm:li._u\(E;) - 2m2k6 2

=l i=1

il;-,A{E.-) —£.

i=1

Thus (4.105), (4.126), and (4.127) give

;o/fn,k(z)dz < (B)/—IOH+5€.

(4.124)

(4.125)

(4.126)

(4.127)

(4.128)

Since ¢ was arbitrary, this implies {4.92), and then {4.90). The proof is ended.
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4.3.9. Lemma. If H is ACr on Iy then
(8) j H= ] D H(z)dz (4.120)
I
1Y

and

(8) j H= f D H{z)ds. (4.130)
- ’U '0
Proof. By the lemma 4.3.8 it suffices to show that
(8) f H< j D H(z)dz. (4.131)
fo 1o
Suppose (4.131} is not true. Set

.= ﬁ ((s) f RE ’[ ﬁH(z)dz). (4.132)

For every n € N there exists a g-regular division Dy of Iy such that n{D,) < 1

and
Y B(1)- ] D H{z)dz > 2e){1,). (4.133)
I€dn A
Let
b={reo. . H(- j D H(z)dz > eA(1)}. (4.134)
i

Let g be a positive uumber such that if Jy,...,]; are nonaverlapping g-regular
intervals such that

)E AlL) <1 (4.135)

=1

Y A(L) - Z[ﬁ!ﬂz)dz

=1 =1 I

then

< k(o). (4.136)

Such an n exists since both H and | D H(z) are ACr on .

We claim that
MU za (4.137)
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Suppose not. Then

S 8(1)- [DHGds= L #0)~ [ DA(z+
Iy

I€E, Ufn
. HN- Y f D H(z}dz <
lepu\cn lepﬁ\tl r

kA{lp) + z xA(I}) < 2x)(h),
I1€Pa\En

Ieb,

a contradiction to {4.133).

Let
K, = U I
I€E,
for n € N, We have
AMKa) 29
for every n € IN. Set
K = limsup K.
k~—co
Then
AK) 2 n.

Let z € K be a point where

D { DH(z)dz =D H(2)
/

— almost every point of K has this property.
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(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

Since ® € K, by the definition of K and (4.134), there exists a sequence

{In} of g-regular intervals, each of them containin’g z, n(Im) < 3, such that

H{I) -~ jﬁH(z)dz > kAMIn).
fm

Then {I,,} converges to z and by (4.144)
| DH(z)d=
DH(z) > lejip{-"'—m—— + k.

This contradicts (4.143).

(4.144)

(4.145)
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4.3.10. Lemma. If E is a closed subset of I, and H : §, — R, then

DH(z) forz€E,

DHg(z) = { o otherwise, {4.148)
= DH(z) forzeE
Helz) = , 4147
D Hg(z) {0 otherwise. ( )
Proof. This is obvious.
4.3.11. Corollary. If H is ACr on a closed set E C I then
(3) [ H= f D H(z)dz (4.148)
E E
and
(8)/ H=fDH(z)dz. (4.149)
E
- E

Proof. This is a consequence of lemmas 4.3.9 and 4.3.10.

4.4, Seml-absolutely-continuous functions.

4.4.1. Deflnition. We will say that H : 8, — R is SACr on [ if for every
¢ > 0 there exists an g > 0 such that if I,,... I, are nonoverlapping g-regular

intervals contained in [; and

i: ML) <n ' (4.150)
i=t
then o
S H(L) <. (4.151)
If we replace (4.151) by .
ST H() > -, (4.152)

i=1

then we obtain a definition of an JACr function on I;.

4.4.3. Definition. # : &, — R will be termed SACronaset ECLh it He is
SACronly. His IACron E if Hg is IACr on I,.
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4.4.8. Definition. H is SACGr {IACGr) on I, i I is expressible as a union
of a sequence of sets on each of which H is SACr (IACT).

4.4.4. Lemma. IfH: &, —~ R and foreveryz€ I,
DH(z) < + (4.153)

then H is SACGr on Iy.

I
DH(z)> - (4.154)

for every x € Iy then H is IACGr on I,.

Proof. We will show the first part only; the other one may be proved in the

same manner.

Write for n € N
E, = {z €Ip: H{I) S nM{I) for every {z,I) € a“* € Ag}. (4.155)
If z € I, then {4.153) is satisfled so there exists an m € IN such that
DH{z) < m. (4.156)

There exists an a = af € Ay such that for every (z,I) € a

H(I) < mA(]). (4.157)
Let n € IN be such that )
n > max(m, ple_)) (4.158)
Then for every (z,I) € ai
H(I) < mMI) € nMI), (4.150)
so that z € E,. Consequently
L= | E. {4.160)

ngEN
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We will show that H is SACr on every set E,. Fixan n € N, Let « > 0 and

n= min(%, Eﬁ?) {4.161)

Let Jy,..., Jx be nonoverlapping, ¢-regular intervals meeting E, such that

k
PIRIEART (4.162)
=1
Because of (4.162) we have
AMJ) <9 (4.163)
for every j, so that
d(J;) <vV2n(J;) € V2 A
¢ (4.164)
n [] 1
- < —_—= -
Ve \/: <2 2n?p n

for every j = 1,2,..., k. If z € E, N J; (by assumption on J;'s, this intersection

is nonempty) then by (4.164)

(z,d5) € af',‘_, (4.185)
and by (4.155)
H(J;) € nA(;). {4.166)
Consequently
k k
S H(I) Y AI) <n<e. (4.167)
=1 =1

This shows that H is SACr on E,, thus being SACGr on [.
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4.5. The relationship between the Kemplsty Integral and the Aj-integral.
4.5.1. Lemma. Suppose H : @ — R. is additive, f: I — R foran I, € ¥, and
DH{z)=f(z} ae onlj. (4.168)

Moreover, let H be ACGr on Iy, and continuous in the sense of Szks. Then H

isIr on lp.

Note that in view of this lemma, Kempisty's definition of integral (see [27]

snd definition 4.2.5) contains an unnecessary condition {iii).

Proof. Let {E,} be a sequence of sets such that
I = |J En (4.169)
nEN

and H is ACr on each E,. Since H is continuous in the sense of Saks, by

proposition 4.1.4 we can assume that all E,’s are closed. Let E be an arbitrary
closed subset of Iy. Then

E = |J(E.nE). (4.170)

nEN
By the Baire Category Theorem one of the sets E, N E contains a portion of E.
Let P be such a portion. Then H is ACr on P, P is closed, and

DH{(z)=f{z) ae onP. (4.171)
By 4.3.4, 4.3.8, 4.3.10, and 4.3.11, H is Burkill-integrable on P with
(8) j H= f f(z)d=. (4.172)
il F
This ends the proof.

4.6.3, Theorem. If f: I, — R is integrable in the sense of Kempisty, and H
is its Kempisty integral, then f is Aj-integrable on Iy and for I C I,

H{I) = (As) f, 7da. (4.173)



82 KRZYSZTOF M. OSTASZEWSKI

Proof. Let
E={zel,:DH(z) = f(z)}

and
Eo ='-IU\E.

By propaosition 1.6.4 it suffices to show that
V(H = 10,84 (B)[Eo]) = 0.
From propositions 2.3.11 and 2.7.1 we have
v(x, A,(!U);Eo]) =0.

Let
E, = {.r € Eo:|1(2)| € n}

for n € N. Then

Eg= | J En.
REN

Og the other hand, from (4.177) and (4.178) we get
V(2 8, (r,,)[E,.]) =0

for every n € N, Consequently

v (L\, A (Io)[Eol) =0.

Therefore, in order to prove (4.176), it suffices to show that

v (H, 8s () E]) =0.

(4.174)

(4.175)

(4.176)

(4.177)

{4.178)

{4.179)

(4.180)

(4.181)

(4.182)

Since I is expressible as a union of a sequence of sets on each of which H

is ACr, and As,(Eo) = 0, it is enough to show that if A is a set on which H is

ACr and such that Aa,(A) = 0 then Hy,(A) = 0.

Let & > 0. Choose an 5 such that if I),..., I, are nonoverlapping g-regular

intervals meeting A and

(21

(4.183)
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then

Y |HE)] < e (4.184}

i=1
Since Aa,(A) = 0 — and this, by proposition 2.3.11, means simply that A{A) = 0

— there exists an open set G 3 A such that
AMG) < n. (4.185)

As stated in observation 2.3.10, A; is compatible with the Euclidean topology.

Therefore we can find an az € Ay such that
o3]G] € aG). (4.188)

Let w3 C aa|A] be a partition. For an {2,I) € x; we have I € ¢ so that

Y M EMG) <. (4.187)
‘:J)ETZ
Consequently
S AW <. (4.188)
("h’)e'!
This shows that
V{H, a3[4]) < ¢, (4.189)
so that
HA,[A, = 0. (4.190)

The proof is ended.

4.5.3. Remark. In [27], theorem 3, p. 36, Kempisty states that a Ag-Perron-
integrable function is integrable in his sense. The proof is based on his claim that
if we have 4 € A(L), B € &(l), H € A(Iy) such that

All) - B(I) < e, (4.191)
AL 2 H{I) 2 B(I), (4.192)

and A is JACGr, B is SACGr on Iy, then H is ACGr on Iy. This, however, is

not shown by Kempisty, and does not appear obvious.

A weaker result may be proved, namely:
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4.5.4. Theorem. Let f:I; — R be Ag-integrable. Write
H(I) = (4,) f Jda (4.103)
I

for I C I;. Assume additionally that H is continuous in the sease of Saks in
Iy, and that for every ¢ > O the functions A € A(l,), B € A(lo) (defined for
g-regular intervals), existing by theorem 2.1.1, such that

A(lL) - B{l) < ¢, (4.194)
D A(z) 2 f(z) > DB(a), (4.195)
and
H(I) = inf A(I) = sup B{I) (4.196)
A B

can be chosen so that A is SACGr on I, B is IACGr on I,.

Then £ is integrable in the sense of Kempisty, and H is its Kempisty integral,

Note: By lemma 4.4 4, the assumption on majorants and minorants is satisfled,
in particular, if we can choose A, B so that
D A(z) <+
(4.197)
DB(z) > -
forz € Iy.
Proof. We need only show that H is ACGr on Iy — the rest will be given by

proposition 2.7.1 ard lemma 4.5.1.
Let {E,} be a sequence of sets such that
UE.=1 (4.198)
and A is SACr, B is TACr on every E,. We will show that H is ACr on each
set E,.

Let n > 0 be arbitrary. Find a § > 0 such that if D is a g-regular division
contained in [ such that each 7 € P meets E, then

San<s (4.199)

fep
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implies
34 < % n (4.200)
€0
and
Y B(I) > - % 7. (4.201)
1€
Then we have N
—57 < %Bm S%;H{I) <
L (4.202)
Z A(!) < § Ty
iep
so that
Y H(I)| <zm (4.203)
reo
Let
D=(IeD:H({I)>0} {4.204)
and
=D\ {4.205)
By what we have proved, since
YMD <& and Y MD <, (4.206)
red’ ep”
we get
1
5 H(I)l = T IEDI< 2 (4.207)
1ep iep’
and
1
> H(I)| = Y [HI< 3" {4.208)
T repn “
This gives
AN <, (4.209)
1€0

and thus H is ACr on E,.

4.5.5. Corollary. If H is additive, continnous in the sense of Saks, and
DH(z) = f(z) for every z € I; then [ is Ag-integrable and Kempisty-integrable
on [y, with the values of both integrals equal,
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4.6, Lebesgue Integrability on a nontrivial subinterval.

4.6.1, Proposition. Let f be Kempisty-integrable on I, and H be its integral.
Then for every closed set E C I there exists its portion P = I, N E for some
I: € & such that

(i} 1 is Lebesgue-integrable on P,

(ii) HE is Burkill-integrable on every I C I, and

(iif) for every I c I,

H{I) = ] f(z)dz +(B) f; HE. (4.210)

InE

Proof. Let £ C I be closed. There exisis a sequence of closed sets {E,} such
that
UE =15 (4.211)
"

and H is ACr on every E,. Then
J(EsnE)=E. (4.212)
n

By the Baire Category Theorem one of the sets E, 1 E contains a portion Py =
I'NEoE. His ACr on P,.

P, is closed, so it contains a portion P = I, N Py, where I, C I', on which
H is Burkill-integrable. It is also a portion of E, and H is ACr on it.

Let I C I}, and let D be its arbitrary division with elements of ®,. We have
H(I)= Hg(D) + HE(D), (4.213)
becaunse H is additive. As n(P) — 0
He(D) — (8) [ " (4.214)
Enrf
and H(I) remaing constant. Therefore

Jm HE(D) (4.215)
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exists, and it is, by definition, equal to

(8) f HE. {4.216)
i
(4.213) gives then
H{I} = (5)j H+(B)/HE. (4.217)
Ens 1

Since H i3 ACr on E NI, and Burkill integrable there, corollary 4.3.11 implies

(3) f H= f f(2)dz, (4.218)
Ent
End

so that (4.210) holds.

4.8.2. Corollary. If f is Kempisty-integrable on I, then there exists a nonde-

generate subinterval I, of Iy on which J is Lebesgue-integrable.
Proof. It suffices to take E = I, in 4.6.1.

4.8.3. Corollary. If f: I, — R is Ag-integrable and its integral

H(I) = (a2) j fdA (4.219)
]
is continuons in the sense of Saks, and if the minorants and majorants in the

Perron integral can be chosen to be SACGr, JACGr, respectively, then there

exists a nondegenerate interval I, C Iy such that f is Lebesgue-integrable on I;.
Proof. This follows from 4.5.4 and 4.6.2.

4.8.4. Remark. If fis A -integrable, then it is also Aj-integrable. Therefore if
the assumption about majorants and minorants holds for a A -integrable function
whose integral is continuons in the sense of Saks, then the conclusion of corollary

4.6.3 is true for it.

The question posed by Kartik in [23] — whether for a Perron-integrable
tunction one can find a nondegenerate interval on which it is Lebesgue-integrable,

remains unanswered.

4.8.5. Corollary. If DH(z} = f(z) for every z € I, then there exists a nonde-
generate interval I} C Iy such that f is Lebesgue-integrable on I,.
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4.7. The Integrals of Mawhin and Pfeffer.

4.7.1. Definltlon. Let f: I, — R. We will say that [ is integradle in the rence
of Mawhin {or Mauhin-integrable) on Iy, with the vaiue of the integral written
as (M) [, fdA, it for every ¢ > 0 and every g € (0, 1) there exists a p € P such
that if  is a g-regular partition of I, satisfying

z€ I CD(zp(z)) forevery (z1)€n, (4.220)

then
<e. (4.221)

5 1@ -0 [ rax
(z.0)Ex fo
The notion introduced here originates from [35].

4.7.2. Observation. [f f is Mawhin-integrable then it is Ag-integrable with
the values of both integrals equal.

It f is A;-integrable then it is Mawbhin-integrable, and the values of both
integrals are equal.

4.7.3. Theorem. Let I; € & and let V be a vector fleld which is differentiable
in an open domain containing Iy. Then V-V (the divergence of V) is Mawhin-
integrable over I; and
’ (M)/; v-v= [V-n, (4.222)
¢ 81,
where n is the exterior normal, and the integral oa the right-hand side is &

Lebesgue integral (continuity of V implies that we may even take it to be the

clagsical Riemann integral).
Proof. This is proved in [35], theorem 5.1, p. 625.

4.7.4. Definition. Let I € ® and let ¥ be a family of straight lines. The
regelarity of I relative to X is the number r(I, ¥) defined as follows:

(i) if ¥ = @ then r(I, X) = r(I);

(i) if N consists of a single line H

a(InH)

r(IL,}H)= nll)

(4.223)
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whenever I N H # 8, and r(I, N} = r(I) otherwise;
{iii) if ¥ is arbitrary then

1 - f, H . 4 4
F(J H) S“p r( ) ( .22 )
0bvl°u5iy, '(1) _S '(1,”) to: any ”.

4.7.5. Definition. Let £ and p be real-valued positive funtions on I, € &, Let
X be a family of straight lines. A partition r of [ is

(i) p-fine if for every (z,I) € ¥ we have z € I ¢ D(z, p(z));

(ii) an {e, ¥)-partition if for every (z,I) € %, r(I,X) > &(z).

4.7.8. Proposition. Let P(e,X,p) be the set of all p-fine (g, X)-partitions of
I. Then Ple, ¥,p) # 9 whenever ¢ < 1 and p > 0.

Proof. See [47], corollary 2.5.

4.7.7. Definitlon. A pair (s, ¥) where s is a constant function, 0 < ¢ < 1, and
X is a finite family of straight lines, is called a regulator.

4.7.8. Definitlon. A function f: I, — R is integrable in the sense of Pfeffer
(or Pfeffer-integrable), with the value of the integral written as

) [ 1o (4.225)

if for every regulator (s, N) there exists a positive function p : I, — R such that
for every p-fine (£, ¥ )-partition = of Iy we have

|(P) / - ¥ Jan)

(z.1)€x

<& (4.226)

This definition comes from {47].
4.7.9. Proposition. If f is Pleffer-integrable then it is Ay-integrabie and the
values of both integrals are equal.

If t is A,-integrable then it is Pfeffer-integrable and the values of both
integrals are equal.
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Proof. Let 1 >¢ > 0. Put X = 9. Find p € P which corresponds to (¢, X) in
the definition of the Pfeffer integral. Let @ = af € Az. Then forevety x Ca, 8
partition of Iy, we have (4.226). This ends the proof of the first part. The second

part is obvious.

4.7.10. Remark. As shown in [47], remark 7.3, if we take

I =[0,1] x [0,1], (4.227)
nL=[-1,0x[0,1], (4.228)
n 3 1 1
A+ = [2—"_‘_—1, -2""—_-7] x [0, F;] N (4229)
1 3 1
At = [0, 27] X [2_'0:;’ '2—';_—11 . (4230)
and let f: Jy UI; — R be defined as follows:
_ [xn2ntl itze A}
z) = { 0 otherwise, (4.221)

then f is Mawhin-integrable on o but not on Lo U T; or [0, 1] x [0,1]. On the
other hand, as Pleffer shows in [47], if a function g is Pfeffer-integrable on I’ and
I", then it is Pfeffer-integrable on I’ U I".

The function defined in (4.231) is not Pfeffer-integrable.

4.7.11. Theorem. Let I; € ¥ and let V be a continuous vector Seld which is
differentiable on If. Then V-V is Pfeffer-integrable and

(P)j; vV = fv-n, (4.232)

8ly

where the integral on the right-hand side is a Lebesgue integral.
Proof, This is showe in [47], corollary 5.5.
4.7.12. Example. Let

1 1
I, = [Fl-, 2—"] . n=01,... (4.233)
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Using a technique of [39], 1.3, we can construct continuously differentiable func-
tions ¢, on R such that
()0 dn <1, dn(t)=0fort < 327", and gu(t) = 1for t > 327", and

(ii} there exists a x > 0 such that

f‘ﬁ'n?% forn=0,1,... (4.234)
Io

Given (u,v) € R?, put

0 ifv<0,
v? sinu ifv2>1,
J(u, v) = dair) vt sin{8" u)+ (4.235)

(1 = da(v)) v? sin(8"*'u) fvel,, n=01,...

As shown is [47], example 5.7, since the fleld V' = (f, 0) is differentiable, 5%%’;(& v)
is Pfeffer-integrable on [0, 2x] x [0,1]. On the other hand

1 aﬂ
jﬁ(u, v)dv (4.236)
0

does not exist for almoat all u € {0, 2x|. By the corollary 3.3.1 a“LTo.,(“v v} i3 not
A, -integrable on [0, 2x] x [0, 1].

4.7.13. Example. Tolstov in [56] constructed a continuous function ¢: [0, 1] x
[0,1] — R such that the second mixed partial derivatives of g exist everywhere
on (0, 1) x (0,13}, are finite, and

2%y g
dudy ~ Jvdu' (4:237)
and yet for )
o) = 229 (4 0) (4.238)
’ dudu' "

J is not Lebesgue-integrable on any nondegenerate subinterval of [0,1] x [0, 1].

By corollary 4.6.2, f is not Kempisty-integrable.

It might be interesting to note that if we put

V= (0, g%) (4.239)
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then
I=VV (4.240)

We do not know, however, whether V is differentiable, and we do not know if f

is Mawhin-integrable, or Pfeffer-integrable.



Chapter 5

APPROXIMATE DERIVATION BASES

We define three density topologies on the plane.

Then we introduce the notion of a filtered base, and define approximate
bases As,Aq, and Ay as filtered bases generated by the density topologies on the

plane.

We also define a product approximate base Ay, finer than A;, for which the
Fubini Theorem proved in chapter 3 holds.

We show that Ay < Ag < Ay =% Ay which in tura gives us the relationships

between integrals generated by these bases.

The nonabsolute integral of Chelidze and Dzhvarshelshvili is then defined.
We show that a certain subclass of functions integrable in the sense of Chelidze

and Dzhvarshelshvili consists of functions which are As-integrable.

6.1. Density topologies on the plane,

5.1.1. Definition, We will say that z € R? is an ordinary density point of
EcR'if
. MENnQ)
lim ——— =1, 5.1
a—z AQ) ( )

where @ is a square centered at z, and Q — z is interpreted with respect to the

Al bBBC.

A point z is a strong density point of E ¢ R? if

MENnI) _
fr) x(n) =1 (52)

83
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where I is and interval centered at z, and J — z is interpreted as above.

A point 2o = (up, tp) is 8 &'-demity point of E C R? if it is its strong density

point, and for
L, = {(uo,v] v E R},

(5.3)
Ly={(u,m):ueR}

we have
d.{E N Ly, (40,%0)) =de(E N Ly, (ug, v5)) = 1, (5.4)

where d, denotes the outer linear density (see [2], p. 18).
5.1.1. Definitlon. Let us write, for £ ¢ R?, d,(E) for the set of its ordinary
density points, d,(E) for the set of its strong density points, and J(E ) for the set
of its d-density points. Let

T. = {E ¢ R?: E is measurable and E c d,{E)},

T, = {E c R" : E is measurable and E c d,(E}}, (5.5)

T = {E CR": E is measurable and E C d(E)}.
Then T,, T,, and T are topologies on R? (see [10]).

5.1.8. Every E-density point is a strong density point, and every strong density

point is an ordinary density point, so that we have
TcT.CcT. (5.6)
Furthermore, the set
E; = {(u,v) €R? : u # 0 whenever v # 0} (5.7)
belongs to T, but not to f, and
Ey = {(u,v) e R : o] > u?} U {{0,0)} (5.8)

belongs to T, but not to 7,, so that the containments in (5.6) are proper. All
three topologies are finer than the natural topology on R?. As shown in [10], T,
is completely regular, but not normal, T, is not even regular. 1i is not known
whether T is completely regular.
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5.2. Filtered bases.

5.2.1. We will assume that X = R? (although the definition 5.2.2 may be gen-
eralized). We will say that an interval I is generated by z, and z;, elements of

X, if ) and z, are opposite vertices of J.
§.3.2. Definitlon. Let a system
N={N{z):z€ X} 5.9)

of nontrivial filters N(z) of subsets of X, converging to z, be given. A filtered
bare A generated by it is defined as

A={a,,:q€ HN(Z)} {5.10)
€X
where
an = {(2,I): I is generated by z and some z' € n(z)}. (6.11)

An element n of the Cartesian product in {5.10) will be called a choice.
5.2.3. Let T be a Hausdorff topclogy on the plane. Then
Nz)={GeT:2€G} (5.12)

is a filier satisfying the assumptions of 5.2.2. Therefore any Hausdorff topology
naturally generates a filtered base. We will write At for that base,

§.3.4. Observation. Suppose T' and T" are Hausdorff topologies on the plane
and T' ¢ T". Then
Arr = Agn, (5.13)

5.2.5. Deflnition. Let us write
As = Az,
Ag = AT, (.14}
Ar =Ar,.
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5.2.8. Observation. Let T,,¢ be the natural topology on the plane. Then
31 = AT--!' (5‘15)

5.2.7. Corollary.
Ar X Ag S A5 <Ay (5.16)

Proof. This follows from 5.2.4 and 5.2.6.

5.3.8. Observation. Any filtered base bas a local character and is Altering

dowa.

6.2.9. Corollary. Each of the bases As, Ag, and Ay has a local character aand

is filtering down.

5.3, Approximate bases.

6.3.1. Definition. I D is the density topology on the line (see [10]), then we
can deflne, just as it was done in 5.2.3, the filtered base on R generated by it.
This base (see 53], p. 85) will be denoted by A and calied the approzimate base
on the real line.

5.3.2. Proposition, A is fltering down, bas local character and the partitioning
property.

Proof. The partitioning property of A is shown in [19], and discussed in [53],
p. 85.

6.3.3. Propositlon. The integral generated by A is the approximately contin-
uous Perron integrsl of {5).

Proof. See [19].

5.3.4. Definltion.
Ag =Ax 4. (5.17)
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5.3.5. Proposition. A, has the partitioning property.

Proof. This follows from the proposition 3.1.5.

5.3.8. Obaervation. Ifuy € R is a deasity point of Ey C R, and vo E R is &
deusity point of E; C R, then (uo,vp) is a J—density point of E; x E,.

5.3.7. Corollary.
Br X Ag XAy <A <A, (5.18)

5.3.8. Definition. The bases A,, for i = 4,5,6,7, will be termed approzimate

derivation basce on the plane,
5.3.9, Observation. )\, is the Lebesgue outer measure on R.
Proof. This is proved just as it was done in 2.3.11.

5.3.10. Corollary. Let f: [a,b] X [c,d] — R be A -integrable. Write

T = {uc[sb]: the approximately continuous Perron (5.19)
5.19
integral of f exists on [a,b]}.

Then [3,b] \ T' is of Lebesgue measure zero. If we define
4
p(u) = / f{u,v)dy (spproximately continuous Perron integrafj  {5.20)
¢

for u € T, and choose g{u) arbitrarily otherwise, then

b

the integral on the right-hand side being the approximately continuous Perroa

integral.

Proof. This follows from the theorem 3.2.1 and the proposition 5.3.3.
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5.3.10. Example. Locking back at 3.4.1 we observe that the function con-
structed by Tolstov is Ag-integrable, but not A,-integrable.

5.3.11. Rernark. It is not known whether the bases Aj, Ag, and Ay have the
partitioning property. However, by taking any of the forms (iii), {iv), or {v} of
the equivalent definitions discussed in the theorem 1.6.1, we can talk about the
Henstock {or — variational) integral generated by them, since the equivalences
(iil) # (iv} «(v) do not require the partitioning property.

§5.4. The Integral of Chelidse and Dshvarshelshvili

§.4.1. Definitlon., We will say that a real-valued function of interval H is ab-
solutely continnoxs in the sense of Chelidze-Dzhvarsheiohvili (or AC~CDjona
bounded set E C R? if for every £ > O there exists a § > 0 such that whenever
Ii,..., Iy is a finite collection of nonoverlapping intervals, each of which bas some
two opposite vertices in E, such that

i‘, ME) <6, {5.22)

then

YL <. (5.23)

=1
5.4.12. Definitlon. We will say that H is generalized absolstely conlinnons in
the senee of Chelidze-Dzhvarshetshuili (or ACG — CD) on I if I, is expressible

as a union of a sequence of sets on each of which H is AC -~ CD.

§.4.4. Definitlon. If H is a real-valued function defined on ®, the class of all
closed, nondegenerate intervals in R?, then D4, H,(z) will be called the spproz-
imate derivative of H at ¢ € R?, and denoted by D.p  H(z).

65.4.6. Definitlon. A function f: Iy — R will be called integrable in the sense
of Chelidze and Dzhoarsheirkoili (or CD-integrable) if there exists a ACG —CD

function H, continuous in the sense of Saks and such that

D, H{(z)= f(z) ae ool (5.24)
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The definitions 5.4.1, 5.4.2, and 5.4.5 come from [6] and [7].

5.5. The relationship of the CD-Integral to the other Integrals.

5.5.1. Example. [T} (p. 163) contains an example of a function which is CD-

integrable, but not integrable in the sense of Kempisty.

Let g be a real-valued function on [0, 1] which is integrable in general Denjoy

sense and such that for

Glz) = / gle)dt (5.25)
1]

G does not have a finite derivative on a set E C [0,1] of positive measure. The
existence of such functions is well-known and shown in [52]. By the theorem 33,

p. 181 of |7}, J{z,y) = g(z)g(y) is CD-integrable. It is not Kempisty-integrable.

5.5.3. Example. As shown in [7], p. 155, there exists a function of interval
H such that D, H{z) exists everywhere, but H is not ACG ~ CD. Obviously,
by 1.6.3, f(z) = DgpH|(z) is then Ar-integrable to H. However, not being
ACG - CD, H cannot be the CD-integral of f.

The situation is more complicated, though. It is not clear whether there
is no other function of interval G which is the CD-integral of f. The equality
D,,G(2) =D.pH(z} ae. does not guarantee that G = H (compare it with the
theorem 2.13.21, p. 153, in (7}). It is, in fact, &n interesting question — is the

function constructed in {7], p. 155, CD-integrable?

5.5.3. Exemple. Asshown in {7}, p. 194, the funciion construcied by Tolstov,
and discussed in 3.3.1, is CD-integrable. The reason is that flniteness of lower
and upper regular derivatives on an intervals function forces it to be ACG ~CD
(see [7}, theorem 2.14.22, p. 133). We already know that function is neither
A;-integrable, nor A -integrable.
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B.5.4. Theorem. Let H:® — R besuch that foran I, € ®,and f: I, — R,
() Do H(z) = f(2) ae,
(ii} There exists a sequence of T,-open sets {Ey } such that
| EBu=t (5.26)
nEN

and H is AC-CD on each of the E,, ’s.

Then [ is Ay-integrable to H on Iy.

Proof. Exactly as it was done in the proof of the theorem 4.5.2, we observe

that it is enough to show
V(H, Ar(L)[E]) =0 (5.27)

whenever F is a set of measure zero contained in a T,-open set M on which M

is AC -CD.

Note that the problem mentioned in 5.3.11 does not canse difficulties, as in
4.5.2, 1.6.4 and hence 1.6.3 were used, which, for sake of consistency with 1.6.1,
hypothesize but do not use the partitioning property.

Let £ > 0. There exists a § such that whenever {I},..., I, } is a finite system

of nonoverlapping intervals with two opposite vertices ie M and

Z“:,\u.») <8 (5.28)

i=1

then

Nlan) < (5.29)

=1
Since E is of measure zero, there exists a set U7, open in the Euclidean topology,

U 2 E, such that A(U) < 4.

For every z € E there exists an open ball B, centered at z, of radius r(z),
such that B, c U/,

Let,forx € E,
g(z)=B.nM (5.30)
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— note that B; N M is a Ty-neighborhood of z.
For z € Iy \ E, let n{z) be defined arbitrarily.

Let a, be an element of Ay generated by 5. Then, if 7 is a partition contained

in o, |E], we bhave

U rcelys.cru, (5.31)
(z.0)€x  3€E
so that
> Al)<e. (5.32)
(z,f)Ex

Ou the other band, if (2, ) € 7 C a,, then z and the opposite vertex of I belong
to M, so that

Y B <. (5.33)

(z.[)E™

Consequently, V (H, A7{I;)|E]) = 0. This completes the proof.
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