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Subwavelength imaging through ion-beam-induced
upconversion
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The combination of an optical microscope and a luminescent probe plays a pivotal role in

biological imaging because it allows for probing subcellular structures. However, the optical

resolutions are largely constrained by Abbe’s diffraction limit, and the common dye probes

often suffer from photobleaching. Here we present a new method for subwavelength imaging

by combining lanthanide-doped upconversion nanocrystals with the ionoluminescence

imaging technique. We experimentally observed that the ion beam can be used as a new form

of excitation source to induce photon upconversion in lanthanide-doped nanocrystals. This

approach enables luminescence imaging and simultaneous mapping of cellular structures

with a spatial resolution of sub-30 nm.

DOI: 10.1038/ncomms9832 OPEN

1 Department of Physics, Centre for Ion Beam Applications, National University of Singapore, Singapore 117542, Singapore. 2 Department of Chemistry,
National University of Singapore, Singapore 117543, Singapore. 3 Institute of Materials Research and Engineering, Agency for Science, Technology and
Research, Singapore 117602, Singapore. 4 Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China. 5 Yale-NUS
College, Singapore 138527, Singapore. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to
F.W. (email: phywattf@nus.edu.sg) or to X.L. (email: chmlx@nus.edu.sg) or to A.A.B. (email: a.bettiol@nus.edu.sg).

NATURE COMMUNICATIONS | 6:8832 | DOI: 10.1038/ncomms9832 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:phywattf@nus.edu.sg
mailto:chmlx@nus.edu.sg
mailto:a.bettiol@nus.edu.sg
http://www.nature.com/naturecommunications


P
hotoluminescent probes play an indispensable role in
labelling and manipulating biological species for many
areas of application such as molecular imaging at the

subcellular level1–4, in vivo biodetection5–8 and targeted
intracellular delivery of therapeutics9,10. In particular,
lanthanide-doped upconversion nanocrystals11–13 have recently
gained considerable attention for use as biomarkers owing to their
unique ability to convert low-energy light into high-energy
photons, coupled with the absence of photobleaching and
photoblinking14,15. However, an infrared laser, either in
continuous- or pulsed-wave mode, is generally needed to
implement photon upconversion16–20. The use of the laser as
the excitation source inevitably imposes an inherent constraint
for high-resolution imaging because of Abbe’s diffraction limit.

It has been well established that hexagonal-phase NaYF4 is one
of the most efficient host materials frequently utilized for
preparing upconversion nanocrystals12,21. The upconversion
nanocrystals are typically doped with ytterbium (Yb3þ )
sensitizer ions, which absorb infrared radiation centring at
980 nm and non-radiatively transfer their absorption to
activator ions such as thulium (Tm3þ ), erbium (Er3þ ) or
holmium (Ho3þ ). The notable prospects of lanthanide-doped
nanocrystals, including non-photobleaching, tunable emission
wavelength and controllable particle size12,14, have provided new
opportunities for bioimaging applications in a variety of research
fields6,7,22. In addition, the excitation of these nanocrystals in the
near-infrared region eliminates background autofluorescence6,8.
However, these imaging studies have been unable to provide
detailed information on the single-particle level owing to the
diffraction limit of infrared excitation light associated with
conventional or even confocal microscope setups23,24.

To overcome the diffraction limit, a variety of optical super-
resolution techniques, for instance stimulated-emission depletion
microscopy25, have been developed. Alternatives to these super-
resolution techniques are methods involving charged particles
such as electron or ion beams, with the benefit of rendering
much shorter de Broglie wavelengths. For example, electron
microscope-based cathodoluminescence has been successfully
utilized for high-resolution luminescence imaging26,27. However,
the electrons suffer from large angle scattering when interacting
with biological samples, which in turn compromises the
resolution, especially for tissue imaging at a substantial depth.

Here we report, for the first time, the observation of
photon upconversion through excitation of lanthanide-doped
nanocrystals under a beam of helium ions. The use of
mega-electron-volt- (MeV) focused helium ions offer significant
advantages, as they can penetrate much thicker biological samples
(up to several microns) with very little deviation in their
trajectories28 (see Supplementary Fig. 1). We thus reason that
the MeV-focused ion beam may serve as a new form
of excitation source to induce photon upconversion in
lanthanide-doped nanocrystals and, more importantly, to allow
for high-resolution luminescence imaging beyond the diffraction
limit.

Results
Construction of ion-beam imaging setup. The basic experi-
mental setup is shown in Fig. 1a. A beam of 1.6 MeV helium ions
(a-particles) is produced by a Singletron ion accelerator. A
sample comprising NaYF4:Yb/Tm nanorods is placed in a
vacuum chamber (10� 6 mbar) at a position situated exactly along
the beam path. A customized double-piece parabolic mirror with
front and rear openings is used to collect emission photons
induced by the ion beam and, concurrently, allow the ion
beam to pass through the mirror (Supplementary Fig. 1).

The convergent lens-coupled parabolic mirror allows the emitted
light to be focused into a fibre, which guides the light out of the
vacuum chamber. The emitted photons are then captured either
by a photomultiplier tube for luminescence imaging or by a
spectrometer for spectroscopic characterization. A Si surface
barrier detector is used to perform scanning transmission ion
microscopy imaging by measuring the energy loss during the
penetration of the ions into a given sample28,29.

The inelastic collision of helium ions with atomic electrons in a
crystal can lead to energy loss dominated through an excitation
and atomic ionization process30. To understand the efficacy of
the ionization in the NaYF4:Yb/Tm nanocrystal for photon
upconversion, we first performed simulations on the energy
distribution of the ionized secondary electrons using a Hansen–
Kocbach–Stolterfoht theoretical model (Supplementary Notes)30.
Our simulation result shows that the ionized electrons with
energies larger than 1.265 eV (equivalent to 980 nm) hold a large
portion (estimated to be 97.5%) of the total cross-sections
(Fig. 1b). Thus, the ionized electrons within this energy portion
can potentially be utilized by the Yb/Tm co-doped nanocrystal.
On the basis of the energy-matching principle, we propose an
energy transfer mechanism that governs the photon upconversion
in the NaYF4:Yb/Tm nanocrystal system (Fig. 1c and
Supplementary Fig. 2). It should be pointed out that the
ionized electrons with energies higher than 1.265 eV may
partially lose their energy by ionization, collision or phonon-
coupling processes to match the energy levels of Yb3þ or Tm3þ

for effective upconversion pumping.

Spectroscopic study of lanthanide-doped crystals. To validate
our hypothesis, we prepared a set of NaYF4-based nanorods
with different dopant compositions through a hydrothermal
procedure23 and systematically investigated their response to
a-particle irradiation. Scanning electron microscopic imaging
revealed the formation of monodisperse nanorods with an
average size of 1.9 mm� 150 nm (Fig. 2a and Supplementary
Figs 3 and 4). When singly-doped with Yb3þ (60 mol%) as the
activator, the nanorods gave rise to emission at 975 nm on
a-particle excitation, corresponding to 2F5/2-

2F7/2 transition of
Yb3þ (Fig. 2b). In contrast, NaYF4:Tm (2 mol%) nanorods
exhibited an intense emission at 800 nm and two weak emissions
at 450 and 480 nm, corresponding to 3H4-

3H6,
1D2-

3F4 and
1G4-

3H6 optical transitions of Tm3þ , respectively. These results
clearly verify that both Yb3þ and Tm3þ ions can directly harvest
the energy of the ionized electrons upon the excitation with the
a-particles. Intriguingly, in the case of NaYF4 nanorods co-doped
with Yb/Tm (60/2 mol%), the blue emissions at 450 and 480 nm
of Tm3þ showed a considerable enhancement, suggesting that
the addition of Yb3þ in the NaYF4:Tm nanorods promotes
ion-beam-induced upconversion emission of Tm3þ at short
wavelengths through energy transfer upconversion.

To shed more light on the energy transfer between Yb3þ and
Tm3þ , we prepared a series of NaYF4:Yb/Tm nanorods with
varied Yb3þ doping concentrations (10–98 mol%). We collected
their luminescence spectra (Supplementary Figs 5 and 6) under
a-particle irradiation and integrated the overall emission intensity
for Tm3þ and Yb3þ ions, respectively. The intensity ratios of
ITm/IYb, plotted against Yb doping content, was used to show
the relative intensity change in Tm3þ and Yb3þ emissions. As
shown in Fig. 2c, the measured intensity ratio of ITm/IYb increased
from 3.3 to 10.2 with the increase in Yb3þ concentration from
10 to 50 mol% and then decreased to 3.3 at a Yb3þ concentration
of 98 mol%. Such inverse-parabolic profile provides a strong
evidence for the energy transfer between Yb3þ and Tm3þ .
Particularly, the rising stage of ITm/IYb indicates the occurrence of
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efficient energy transfer from Yb3þ to Tm3þ , thus resulting in
the pronounced enhancement of upconversion emission in short
wavelengths. The descending stage of ITm/IYb can be ascribed to
the back-energy-transfer from Tm3þ to Yb3þ at high Yb3þ

concentrations, analogous to the scenario in photon upconver-
sion process in which a 980 nm laser (Supplementary Fig. 7
and Supplementary Table 1) is employed as the excitation
source23.

Luminescence imaging. High-resolution imaging can be
achieved through a-beam irradiation of lanthanide-doped
nanomaterials because the spot size of a-beam can be readily
focused down to sub-30 nm (refs 28,29). Considering that the
spectral-response range of the photodetector used falls within the
visible spectrum, we have adopted Yb3þ /Tm3þ (60/2 mol%) as
the optimal combination for maximal visible emission (Fig. 2d
and Supplementary Fig. 6). Images of the NaYF4:Yb/Tm
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Figure 1 | Experimental setup and proposed ionoluminescence mechanism. (a) Artist’s view of the basic experimental setup. The focused beam

with a spot size of sub-30 nm features can be achieved using a spaced triplet of compact magnetic quadrupole lenses. A Si surface barrier detector is

equipped for measuring the energy loss distribution of the ions. (b) Calculated energy distribution of the ionized electrons by bombarding the MeV

a-particles on the lanthanide-doped nanocrystals, showing different cross-sections of the resulting electrons at specific energies. Note that most of the

ionized electrons have energies mainly located in the visible and infrared spectral region. (c) Proposed upconversion mechanism under a-beam irradiation.

The incident helium ions with energy of E0 deposit a certain amount of energy (DE) onto the crystal to cause the atomic ionization inside the crystal.

Subsequently, the ionized secondary electrons can release their energy, most likely during the electron-hole recombination process and successively

transfer the energy to Yb3þ and Tm3þ . An energy transfer from the excited Yb3þ to its neighbouring Tm3þ ions then populates the excited states

(for example, 3H4, 1G4 and 1D2) of Tm3þ .
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Figure 2 | Spectroscopic analysis of ionoluminescence. (a) Scanning electron microscopy (SEM) image of the as-synthesized Yb3þ/Tm3þ -co-doped

NaYF4 nanorods under investigation. The inserted high-resolution SEM image shows hexagonal cross-sections of these nanorods. Scale bar, 2 mm.

(b) Comparative emission spectra of the NaYF4-based nanorods with different dopant compositions when irradiated with a-particles. (c) The plot of the

emission ratio of Tm3þ and Yb3þ (ITm/IYb) as a function of Yb3þ doping concentration, supporting the energy transfer between the two lanthanide ions.

(d) Optimization of Yb3þ doping concentration for maximal emission output in the visible range. The ratio of IVis/Itotal represents the percentage of

integrated visible emission in the total emission covering the range from 350 to 1,100 nm.
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Figure 3 | Luminescence imaging of NaYF4:Yb/Tm (60/2 mol%) nanorods. (a) Ionoluminescence image of the as-synthesized nanorods through

a-particle excitation. (b) High-magnification ionoluminescence image of a single nanorod as marked in a. (c) The corresponding line-scanning profile

extracted from the intensity counting at the region marked in b along the arrow, indicating an imaging resolution of about 28 nm. (d) Photoluminescence

image of the same sample taken by using 980 nm laser excitation. (e) High-magnification photoluminescence image of the same nanorod as shown in b.

(f) The corresponding line-scanning profile from the image shown in e showing a diffraction-limited resolution of 253 nm associated with conventional

upconversion microscopes. (g) Ionoluminescence intensity profile as a function of the accumulated dosage of helium ions showing the considerable

iono-bleaching resistance of the nanorods. The inserted images, taken at different time intervals (11, 33 and 66 min), indicate that the emission brightness

of the nanorods remains essentially unaltered over time. Scale bars, 500 nm. The error bar represents the standard deviation of luminescence counts

obtained from a single nanorod in two separate measurements.
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Figure 4 | Particle-distribution mapping by ionoluminescence imaging. (a) Transmission electron microscopy image of the as-synthesized NaYF4:Yb/Tm

(60/2 mol%) nanoparticles. The inserted histogram shows the size distribution of these nanoparticles. (b) Basic experimental design for structural

determination and ionoluminescence imaging of the HeLa cell after uptake of the nanoparticles. The luminescence mapping of the nanoparticles and the 3D

rendering of detailed cellular structures can be simultaneously implemented by capturing a-particle-induced photons through a photomultiplier tube (PMT)

and by scanning transmission ion microscopy, respectively. (c) Comparative photoluminescence (top left) and ionoluminescence (right) imaging, with the

latter clearly showing the ability to resolve single nanoparticles (marked by the arrows as shown in the magnified image). Note that top-left and bottom-left

images are taken from the same section of the cell. Scale bars, 1 mm. Note that the photoluminescence image was generated by using a 980-nm-diode laser

(Supplementary Fig. 12).
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(60/2 mol%) nanorods were recorded in a 512� 512 pixel array at
a count rate of around 15,000 helium ions per second by detecting
the a-particle-induced luminescence (Fig. 3a,b). To ascertain the
spatial resolution of the ionoluminescence image, a representative
line-scanning profile of an individual nanorod was collected and
presented in Fig. 3c. By fitting the profile using a modified
Gaussian model31, the imaging resolution of the a-particle-based
ionoluminescence technique was determined to be 28 nm as
defined by full-width at half maximum. By comparison,
conventional optical microscopies equipped with a 980-nm
diode laser showed a resolution limit of B253 nm (Fig. 3d–f
and Supplementary Fig. 8). It should be noted that the effect of
iono-bleaching, typically associated with the reduction in
emission intensity in dye- or quantum dot-based systems32,33,
does not pose a constraint to lanthanide-doped nanomaterials
(Fig. 3g and Supplementary Figs 9 and 10).

Discussion
Importantly, the combination of scanning transmission ion
microscopy and the a-particle-induced luminescence technique
enables simultaneous structural determination and luminescence
imaging on a single-cell level. As a proof of concept, we prepared
NaYF4:Yb/Tm (60/2%) nanoparticles (B95 nm) and incubated
them with Human cervical carcinoma cells, which were seeded on
a 100-nm-thick silicon-nitride membrane (Fig. 4a,b and
Supplementary Fig. 11). By detecting the energy loss of
transmitted ions through a Si surface barrier detector, we were
able to generate an areal density map of a whole HeLa cell by
scanning transmission ion microscopy, which provides detailed
information on cellular structures (Fig. 4b). Concurrently,
a-particle-induced photons were captured by a photomultiplier
tube for luminescence mapping of the nanoparticles (Fig. 4b).
The coupling of a-particle-induced luminescence imaging
with scanning transmission ion microscopy allowed us to
precisely locate the nanoparticles within the whole cell (Fig. 4c).
Remarkably, single nanoparticles after cellular internalization
could be resolved by our technique (see the enlarged panel in
Fig. 4c). This was in stark contrast with the limit of resolution
achievable by a conventional microscope equipped with a 980-nm
diode laser (Fig. 4c, top-left panel). In the latter case, the
photoluminescence imaging from the same area showed much
reduced resolution (Supplementary Fig. 12).

Our findings could influence the study of the dynamics of
upconversion processes and provide a better understanding of
energy transfer in lanthanide-doped materials systems where
the source of excitation may play a crucial role. The results
presented here suggest that a sub-30 nm imaging resolution
for upconversion nanocrystals is achievable through the use
of a-particle-induced secondary electrons. By combining
upconversion luminescence with scanning transmission ion
microscopy, we have been able to map the distribution of
individual nanoparticles within a whole cell and simultaneously
reveal the 3D cellular structure at ultrahigh spatial resolution.
This methodology will enable important applications in probing
biological and biomedical processes at the subcellular level,
for example, the quantitative measurement of intracellular
bio-distribution of drugs delivered by upconversion
nanoparticles34,35.

Methods
Preparation of upconversion nanocrystals. Lanthanide-doped nanorods
and nanoparticles were prepared through a hydrothermal method23 and a
coprecipitation method36, respectively. The as-prepared nanocrystals were washed
with HCl to remove oleic acid molecules that were used as surface-capping ligands
during the synthesis. Detailed experimental procedures are provided in the
Supplementary Methods.

Preparation of cells. Human cervical carcinoma cells were seeded onto
100-nm-thick silicon-nitride membranes at a density of 9,000 cells cm� 2 in
Dulbecco’s Modified Eagle’s medium containing fetal bovine serum (10%),
penicillin (100 units ml� 1) and streptomycin (100 mg ml� 1). After 24 h and a brief
wash with phosphate-buffered saline, the cells were incubated in complete medium
containing the as-synthesized NaYF4:Yb/Tm (60/2%) nanoparticles (10mg ml� 1)
for another 24 h. Following another wash with Hepes-buffered saline, the
particle-treated cells were then transferred to a solution of 2% glutaraldehyde and
stored overnight prior to intermediate dehydration using an increasing ethanol
gradient. Complete dehydration was then achieved by critical-point drying.

Instrumentation and imaging. Photoluminescence images were taken by an
Olympus BX51 optical microscope equipped with a 980-nm diode laser. The
a-particle-induced luminescence imaging was achieved by collecting the
luminescence photons with a customized double-piece parabolic mirror. The
collected photons were then detected by a Hamamatsu photomultiplier tube (PMT)
R7400P equipped with the photon counting unit C9744. The data were collected
and processed using the IONDAQ data acquisition system37 to generate the
ionoluminescence images (Supplementary Fig. 13). The energy loss of an ion
transmitted through a sample depends on the sample composition and thickness.
Thus, the areal density can be expressed by equation (1):

Areal density ¼
Z Er

E0

dE
d rzð Þ

� �� 1

dE ð1Þ

where E0 is the initial ion energy, Er is the remaining energy of the ion after passing
through the sample, and r¼ r(z) is the mass density of the sample at a depth of z.
Through scanning transmission ion microscopy, the transmitted ion energies and
number of ions at each pixel within the scanned area can be measured by a Si
surface barrier detector to render the areal density map.
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