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Materials exhibiting long-lived, persistent luminescence in 
the visible spectrum are useful for applications in the display, 
information encryption and bioimaging sectors1–4. Herein, we 
report the development of several organic phosphors that 
provide colour-tunable, ultra-long organic phosphorescence 
(UOP). The emission colour can be tuned by varying the exci-
tation wavelength, allowing dynamic colour tuning from the 
violet to the green part of the visible spectrum. Our experi-
mental data reveal that these organic phosphors can have an 
ultra-long lifetime of 2.45 s and a maximum phosphorescence 
efficiency of 31.2%. Furthermore, we demonstrate the appli-
cations of colour-tunable UOP for use in a multicolour display 
and visual sensing of ultraviolet light in the range from 300 
to 360 nm. The findings open the opportunity for the devel-
opment of smart luminescent materials and sensors with 
dynamically controlled phosphorescence.

Tunable emission colour empowers luminescent materials with 
superior performance in optoelectronic applications. For instance, 
multicolour-encoded microparticles can serve as information car-
riers for high-density, encrypted data storage, anti-counterfeiting 
and multiplexed bioassay5,6. Three-dimensional volumetric dis-
play could be realized using pulse-duration-sensitive upconversion 
nanocrystals7. Polychromatic luminescent materials are ideal bio-
markers for multiplexed bio-imaging8. To date, multicolour emis-
sion can be obtained by modulating the material’s composition, 
phase and crystallinity9–11. Despite the success in realizing multico-
lour emission in luminescent materials12–14, it remains a formidable 
challenge to develop a single-component molecular crystal that 
could exhibit dynamic colour tunability in response to variations in 
external physical parameters such as optical output, magnetic field, 
pressure and electric current.

Persistent luminescence with a long-lived emission lifetime is 
a fascinating optical phenomenon that has received considerable 
attention in photonics, organic electronics and bio-electronics. 
However, this phenomenon is mainly limited to inorganic materi-
als based on transition metals and rare-earth ions15. Given harsh 
preparation conditions and the scarcity of metal resource compo-
nents, special attention has recently been paid to metal-free organ-
ics with ultra-long organic phosphorescence (UOP)16–31. Over the 
past few years, an extensive collection of persistent phosphors with 
colourful UOP have been developed at room temperature on the 
basis of different molecular skeletons and stacking motifs through  

crystallization18–22, host–guest doping23, metal–organic framework 
(MOF) construction24, H-aggregation25,26 and many others27–31. To 
the best of our knowledge, researchers have yet to find a single-
component material, in the form of inorganic phosphors or organic 
materials, with tunable persistent luminescence.

Notably, multicolour emission can be obtained in carbon dots 
under different excitations due to the formation of multiple emit-
ting centres (Fig. 1a)32. Under cryogenic conditions, strong molec-
ular phosphorescence with long-lived emission lifetimes can be 
observed from metal-free organic molecules in a dilute solution, 
due to the suppression of nonradiative transition through the effi-
cient confinement of molecular motion at an atomic level33. Inspired 
by multi-emitting centres for tunable colour emission in the carbon 
dots and high-efficiency molecular phosphorescence in cryogenic 
conditions, we speculate that the realization of tunable persistent 
luminescence is possible under different excitations by constructing 
multiple UOP emitting centres in a single-component molecular 
crystal under ambient conditions. Similar to the case of an emitter 
present in a cryogenic solution, a molecular emitter may be con-
structed by regulating in-plane intermolecular interactions through 
molecular engineering (Fig. 1b, left). Recently, we have developed 
a strategy to stabilize the triplet excited states for ultra-long phos-
phorescence by forming H-aggregation in single crystals (Fig. 1b, 
right)25, which can serve as a phosphorescence emitting centre. We 
reason that, with a proper design, such molecular engineering can 
provide a versatile platform with a multicolour fine-tuning capabil-
ity (Fig. 1c).

To validate our hypothesis, we designed a series of triazine deriv-
atives containing multiple hetero atoms, which can not only improve 
the rate of intersystem crossing (ISC) to boost triplet excitons 
but also construct multiple intermolecular interactions to restrict 
molecular motion for molecular phosphorescence in solid states. 
In addition, molecules featuring planar configurations should pro-
mote the formation of H-aggregation, which stabilizes the excited 
triplet states in favour of UOP. As a proof of concept, we synthe-
sized 2,4,6-trimethoxy-1,3,5-triazine (TMOT) and characterized 
this molecule by 1H and 13C NMR spectroscopies, elemental analy-
sis, single-crystal X-ray diffraction and photophysical properties 
(Supplementary Sections 1 and 2). As anticipated, long-lived green 
luminescence was observed from the TMOT crystalline powder 
under ambient conditions after the removal of the 365 nm ultravio-
let (UV) lamp (Supplementary Fig. 17 and Supplementary Video 1).  
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The long-lived luminescence turned to a sky-blue colour as the 
excitation wavelength changed from 365 to 310 nm (Supplementary 
Fig. 17 and Supplementary Video 2), demonstrating the excitation-
dependent nature of the long-lived luminescence.

We further attempted to measure the excitation–phosphores-
cence spectra of the TMOT crystalline powder under ambient 
conditions. As shown in Fig. 2a, with a change in the excitation 
wavelength from 250 to 400 nm, the long-lived luminescence exhib-
ited an obvious bathochromic shift from sky-blue to green along 
with a variation in the main peak from 452 to 505 nm. Resolved 
phosphorescence spectra were simultaneously demonstrated 
(Supplementary Fig. 18). The colour variations of the TMOT pow-
der in response to different excitation wavelengths are shown in the 
Commission International de l’Eclairage (CIE) coordinate diagram 
in Fig. 2b. As the excitation wavelength was gradually changed from 
300 to 360 nm, the UOP changed from a blue to green colour with 
good linearity of the CIE coordinates (Fig. 2b). In addition, the 
TMOT powder exhibits the same excitation-dependent phospho-
rescence features under oxygen and nitrogen atmospheres at room 
temperature (Supplementary Figs. 19 and 20).

From the analysis of time-resolved emission spectra (Fig. 2c 
and Supplementary Table 1), it was found that the long-lived lumi-
nescence of the TMOT powder showed remarkably long lifetimes 
of 0.58 and 0.75 s following excitation at 320 and 365 nm, respec-
tively, under ambient conditions (Supplementary Fig. 21). Notably, 
the maximum phosphorescence efficiency of the TMOT powder 
is about 31.2% (Supplementary Table 2), which is among the best 
results reported so far. As shown in Fig. 2d, with an enhanced 
excitation intensity on increasing the iris aperture from 10% to 
100%, the UOP increased linearly after irradiation with differ-
ent excitation wavelengths (Supplementary Fig. 22). An efficient 
multicolour ultra-long phosphorescence can be obtained for 
TMOT powder within a short period of excitation (<2 s) (Fig. 2e 
and Supplementary Fig. 23). From Fig. 2f, it is revealed that the  

long-lived luminescence can be efficiently excited by UV light rang-
ing from 250 to 390 nm. When the TMOT powder was excited by 
UV light from 250 to 347 nm, the blue luminescence was more 
intense than the green emission, whereas the luminescence of the 
sample was dominated by the green emission with excitation in the 
range from 347 to 390 nm. The ratiometric change in the emission 
intensities of 465 and 505 nm as a function of the excitation wave-
length leads to colour-tunable phosphorescence.

To gain a deeper insight into the unique optical properties, we 
further conducted a set of control experiments, single-crystal X-ray 
diffraction analysis and theoretical calculations on the TMOT 
molecule. The phosphorescent property of TMOT was first inves-
tigated in a dilute solution of 2-methyltetrahydrofuran (m-THF)  
and in polymethyl methacrylate (PMMA)-encapsulated films  
(1, 5 and 10 wt. %) at 77 K. As shown in Fig. 3a and Supplementary  
Fig. 24, the TMOT molecule exhibited a broad blue emission band 
at around 445 nm only when excited at 320 nm, closely resembling 
the UOP (452 nm) occurring in single crystals. The lifetimes of the 
emission bands at around 445 nm for the TMOT molecule reached  
as much as 1.67 and 2.17 s in dilute solution and PMMA film  
at 77 K, respectively (Supplementary Fig. 25 and Supplementary 
Table 3). In addition, no green phosphorescence at around 505 nm  
was detectable, either in the solution or PMMA film, after irradiation  
at 320 or 365 nm. Therefore, the blue ultra-long luminescence can 
be ascribed to the phosphorescence of isolated molecules, like that 
observed in the solution or PMMA film, and the fact that green UOP 
was observed only in the solid form may stem from intermolecular 
aggregation. In the TMOT single crystal, each TMOT molecule was 
tethered by six adjacent molecules with multiple intermolecular 
interactions (C-H∙∙∙N) with distances of 2.757, 2.684 and 2.643 Å 
in the same plane (Fig. 3b), which could significantly limit molecu-
lar movement and suppress the nonradiative transition of triplet 
excitons in the crystalline state. The restriction of molecular move-
ment at a single molecular level endowed the isolated molecule with 
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blue phosphorescence. The side view of the TMOT crystal structure 
showed face-to-face parallel arrangements with an H-aggregation 
feature through an intensive π∙∙∙π interaction (3.348 Å), providing 
a possibility to stabilize the triplet excitons for green UOP (Fig. 3b).

Our speculation regarding unique UOP in TMOT was further 
verified by simulations (Supplementary Figs. 26–29). In monomeric 
and dimeric states, the lowest excited triplet states (T1) were cal-
culated to be 459 and 475 nm (Fig. 3c), respectively, which agree 
well with the experimental data for 452 and 481 nm (Supplementary 
Fig. 30). After the replacement of the methoxy group in the TMOT  
molecule by a phenyl, there existed only yellow-green UOP  
due to H-aggregation (Supplementary Fig. 31 and Supplementary  
Section 4). Notably, compared with the molecular packing in the 
TMOT crystal, the intermolecular interaction in the 2,6-methoxy-
4-diphenyl-1,3,5-triazine (MOPT) crystal was weaker in restricting 
molecular motion in a plane (Fig. 3d). Therefore, we reason that 
strong intermolecular interactions along the same plane play a cen-
tral role in realizing molecular phosphorescence. Taken together, we 

speculate that with the change in excitation wavelength, a mixing of 
different ratios between molecular phosphorescence, restricted by 
intermolecular interactions in the same plane, and H-aggregation-
mediated ultralong phosphorescence can result in tunable long-lived 
luminescence in single-component molecular crystals (Fig. 3e).

We further tested our hypothesis using two additional com-
pounds, namely 2-chloro-4,6-dimethoxy-1,3,5-triazine (DMOT)  
and 1,3,5-triazinane-2,4,6-trione (CYAD) (Supplementary Sections 1  
and 4). Both DMOT and CYAD crystalline powders showed tun-
able ultra-long phosphorescence from violet to sky-blue by vary-
ing the excitation wavelength from 250 to 400 nm (Fig. 4a–d and 
Supplementary Figs. 37–39). For DMOT, the luminescence is cen-
tred at 430 nm with a lifetime of 2.45 s (Fig. 4e and Supplementary  
Table 1). For CYAD, the luminescence peak blue-shifted to 380 nm 
with a lifetime of 0.45 s (Fig. 4e). As shown in Fig. 4f,g, the long-lived 
luminescence can be efficiently excited by UV light ranging from 250 
to 390 nm. Like TMOT, the excitation at different wavelengths can lead 
to a ratiometric variation between the molecular phosphorescence  
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and ultra-long phosphorescence from aggregations in DMOT and 
CYAD crystalline powder, possibly resulting in colour-tunable 
ultra-long organic phosphorescence in single-component crystals. 
In addition to H-aggregation (Supplementary Fig. 31), molecules in  
the same plane were strictly restricted through the multiple  
intermolecular interactions shown (Fig. 4h and Supplementary 
Section 5). Remarkably, the percentage of restricted atoms in the 
CYAD molecule was up to 75% (Supplementary Fig. 44).

On the basis of the excitation-dependent UOP feature of the 
newly developed single-component phosphors, we took one step 
further to demonstrate their potential applications for multico-
lour display and visual detection of a specific wavelength in the 
UV region. Different patterns, such as a peace dove, a panda, Cp 
rings, and a butterfly, with different sizes from 1 to 3.5 cm were fab-
ricated through a simple silk-screen printing technique by grind-
ing TMOT and 9-(4,6-dichloro-1,3,5-triazin-2-yl)-9H-carbazole 
(DClCzT) powder as a solid ink (Fig. 5a and Supplementary Section 
6). On changing the excitation wavelength from 254 to 365 nm, the  
phosphorescence image turned from sky-blue to green (Fig. 5b). 

By comparison, the control phosphorescence imaging of DClCzT 
showed a constant yellow colour, independent of the excitation 
wavelength (Fig. 5c and Supplementary Fig. 47). Interestingly, as 
the invisible UV excitation changed from 300 to 360 nm with an 
interval of 10 nm, colourful, visual phosphorescence images could 
by captured by the naked eye (Fig. 5d and Supplementary Fig. 48),  
demonstrating its potential utility for the detection of UV light. 
The specific wavelength of the UV light can be precisely identi-
fied by correlating the excitation wavelength and the CIE chro-
maticity coordinates (Supplementary Fig. 49). It is worth noting 
that a low power of UV irradiation at 10 μW cm−2 is detectable 
(Supplementary Fig. 50).

In conclusion, we have reported the development of a series of 
organic molecules featuring colour-tunable ultra-long organic phos-
phorescence in single-component molecular crystals. On changing 
the excitation wavelength, the emission colours of these organic 
molecules can be dynamically tuned from the violet (380 nm) 
to green (505 nm) under ambient conditions. In light of both the 
experimental results and simulation, we believe that mitigation 
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of molecular movement in the same plane and H-aggregation are 
responsible for the tunable UOP under study. By tailoring the struc-
ture of such molecules, the lifetime and phosphorescence quantum 
efficiency of phosphors can reach values up to 2.45 s and 31.2%, 
respectively, under ambient conditions. Importantly, our investiga-
tion not only provides a fundamental design principle for realizing 
colour-tunable UOP in single-component molecular crystals, but 
also offers an opportunity for developing a convenient platform for 
multiplexed biological labelling, multicolour displays, anti-counter-
feiting, UV detection, and potentially many others.

Online content
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