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The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a
pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities
as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry
cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or
treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing
its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used
to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-
mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and
microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review
advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also
summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to
reduce viral progression.

1. Introduction 213 countries and territories [1]. On January 30, 2020,

WHO declared the COVID-19 outbreak as the sixth pub-
The recent global outbreak of COVID-19 has led to a  lic health emergency of international concern, following
public health emergency. As of April 23, 2020, over 2.6 HIN1 (2009), Polio (2014), Ebola in West Africa
million confirmed cases were reported to WHO from (2014), Zika (2016), and Ebola (2019) [2]. The rapid
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global expansion and rising fatalities have raised grave
concerns on the viral spread across the globe. With the
rapid increase in the number of confirmed cases, WHO
classified the global COVID-19 outbreak as a pandemic
on March 11, 2020 [3]. COVID-19 can spread from
person-to-person and animal, and transmission of infec-
tion may occur with exposure to symptomatic patients
or asymptomatic individuals.

Coronaviruses (CoVs) (corona: crown-like shape) are
enveloped, single-stranded RNA viruses that belong to
the order Nidovirales in the subfamily Coronaviridae.
CoVs are divided into four genera: alpha («), beta (),
gamma (y), and delta () (Figure 1(a)) [4]. Alpha- and
beta-CoVs infect mammals, while gamma- and delta-
CoVs primarily infect birds [5]. Before December 2019,
six types of CoVs had infected humans, including two a-
CoVs (HCoV-229E and HCoV-NL63) and four B-CoVs
(HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-
CoV). The first two [3-CoVs (HCoV-OC43 and HCoV-
HKU1) mainly cause self-limiting upper respiratory infec-
tions, while the other two $-CoVs (SARS-CoV and MERS-
CoV) are mostly associated with severe respiratory illness
[6, 7]. Full-genome sequence analysis of 2019-nCoV con-
firms that it is a $-CoV, distinct from SARS-CoV and
MERS-CoV [8]. Investigations reveal that 2019-nCoV
shares ~80% sequence identity with SARS-CoV while
maintaining ~89% nucleotide identity to the SARS-like
CoVs (ZC45 and ZXC21) from bats [9]. A recent report
suggests that a bat CoV (RatGl3) is 96% identical to
2019-nCoV [10].

A typical CoV genome is a single-stranded, positive-
sense RNA (+ssRNA) (~30kb) enclosed by a 5'-cap and 3’
-poly-A tail [11]. The genome size of 2019-nCoV is 29,891
nucleotides, encoding 9860 amino acids, with a G+C content
of 38% [12]. The 2019-nCoV genome contains two flanking
untranslated regions (UTRs) on 5'- and 3'-terminals, one
single long open reading frame Iab (ORFIab) encoding a
polyprotein and at least five other ORFs encoding structural
proteins, and eight accessory proteins (Figure 1(c)). The first
ORF (ORF1a/b) is about two-thirds of the whole-genome
length and encodes the 16 nonstructural proteins (nspl-
16). The other one-third of the genome contains four ORFs
encoding the spike (S), membrane (M), envelope (E), and
nucleocapsid (N) proteins, whereas other ORFs encode
accessory proteins (Figure 1(b) and (c)). Most of the non-
structural proteins are essential for 2019-nCoV replication,
while structural proteins are responsible for virion assembly
and viral infection [12, 13]. The M and E proteins are
required in viral assembly, while the N protein involves
RNA genome assembly.

The S protein, a surface-located trimeric glycoprotein of
CoVs, is the primary determinant of CoV tropism, as it
binds to the membrane receptor on host cells, mediating
viral and cellular membrane fusion [14]. The S protein of
2019-nCoV reportedly binds to angiotensin-converting
enzyme 2 (ACE2), a homolog of ACE on host cell mem-
branes, contributing to 2019-nCoV cell invasion [15].
Moreover, this particular S protein shows a higher binding
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affinity to ACE2 than the S protein of SARS-CoV, enabling
2019-nCoV to invade host cells more effectively [16, 17].
Recently, a transmembrane glycoprotein, CD147, also
known as Basigin or EMMPRIN, has been confirmed as
another receptor for binding of the 2019-nCoV S protein,
thereby mediating viral invasion [18].

The E protein is an integral membrane protein that regu-
lates viral life cycles, including pathogenesis, envelope forma-
tion, assembly, and budding [19-21]. Among the four
structural proteins, protein E appears to have the highest
antigenicity and the most significant potential as an immu-
nogenic target, highlighting the possibility of developing
protein E-derived peptides as a 2019-nCoV vaccine [22]. Sys-
temic studies of proteins S and E have inspired scientists to
take creative approaches to design anti-COVID-19 drugs.

Although some COVID-19 patients show no symptoms,
most patients have some common symptoms such as fever,
cough, fatigue, sputum production, shortness of breath, sore
throat, and headache. In some severe cases, infections can
cause pneumonia, severe acute respiratory syndrome, kidney
failure, and death. According to the WHO-China joint report
[23], on average, people infected with 2019-nCoV develop
mild respiratory symptoms and fever, 5-6 days after infection
(mean incubation period, 5-6 days; range, 1-14 days). People
over 60 years of age and those with hypertension, diabetes, or
cardiovascular diseases are at high risk for severe illness
and death. In comparison, children under 19 years appear
to be infected minimally by 2019-nCoV (around 2.4% of
all reported cases). Based on the Chinese Center for
Disease Control and Prevention (China CDC) report
(from 72,314 patient records, dated 11 February 2020),
among the confirmed cases, 86.6% of patients are 30-79
years of age, 80.9% of patients have mild-to-moderate
disease, 13.8% have a severe illness, and 6.1% are critically
ill [24]. Notably, the mortality rate of children under 19
years is 0.2%, while people aged over 80 years have the
highest mortality rate of 14.8%.

Currently, there are no effective antiviral drugs or specific
vaccines against COVID-19. Thus, there is an urgent need for
rapid detection to prevent further spread, to reduce the inten-
sity of the pandemic, and to slow the increase in cases.
Recently, several new technologies, including LAMP-LFA,
RPA-LFA, RPA-CRISPR, and other nanomaterial-based
IgG/IgM Kkits, have been adopted for 2019-nCoV detection.
A significant number of drug candidates, including chemical
drugs, biological drugs, nutritional interventions, and tradi-
tional Chinese medicine (TCM), have been proposed for
clinical trials after the 2019-nCoV outbreak. In this review,
we concentrate on the most significant developments in
2019-nCoV detection and provide an overview of medical
treatments and vaccines currently in development to combat
and contain the disease.

2.2019-nCoV Detection

According to the Diagnosis and Treatment Guidelines for
COVID-19 (7™ edition), COVID-19 cases can be divided into
suspected cases and confirmed cases [25]. Diagnostic
methods for 2019-nCoV are determined by the intrinsic
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F1GURE 1: Biological and genomic structure of 2019-nCoV. (a) Classification of coronavirus genera. (b) Schematic structure of 2019-nCoV. (c)

The whole-genome structure of 2019-nCoV.

properties of the virus and biomarkers that hosts exhibit after
infection. These biomarkers include viral proteins and
nucleic acids, as well as antibodies induced in response to
viral infection. The most common 2019-nCoV detection
methods include viral nucleic acid detection and serum anti-
body (IgG or IgM) detection. A confirmed case should have
at least one of the following criteria: (i) a positive result for
2019-nCoV nucleic acid, using real-time PCR tests from
respiratory or blood samples; (ii) a high homogeneity
between viral gene sequencing from respiratory or blood
samples and known 2019-nCoV; and (iii) serum samples
positive for IgM or IgG to 2019-nCoV, or seroconversion in
IgG, or a fourfold or more significant increase in IgG anti-
body titer to 2019-nCoV in the recovery phase than in the
acute phase [25].

2.1. Nucleic Acid Targeting

2.1.1.  High-Throughput  Sequencing  (2"%-Generation
Sequencing). High-throughput sequencing (HTS) technology
contains various strategies that depend on a combination of
library preparation, sequencing and mapping, genome align-
ment, and data analysis [26] (Figure 2(a)). Unlike the 1977
Sanger sequencing method (1%-generation sequencing)
[27], 2™-generation sequencing has been widely applied in

genome sequencing, transcriptional profiling (RNA-seq) dis-
ease mapping, and population genetic studies. The whole-
genome nucleotide sequence of 2019-nCoV was identified
and compared with the full-length genome sequence of coro-
navirus from bats [10] through HTS. HTS-based technology
is also applied to detect 2019-nCoV. For example, Wang et al.
developed a HTS method based on nanopore target sequenc-
ing (NTS) by harnessing the benefits of target amplification
and long-reads for real-time nanopore sequencing [28].
This NTS strategy detects 2019-nCoV with higher sensi-
tivity (100-fold) than standard qPCR, simultaneously with
other respiratory viruses within 6-10h. Moreover, all tar-
geted regions can be identified by NTS in higher copies of
samples (1000-3000 copies/mL) within 10 min, indicating
the potential for rapid detection of an outbreak in the clinic.
For 1h sequencing data, reads mapped to 2019-nCoV dif-
fered remarkably from those of negative controls in all tar-
geted regions at concentrations ranging from 10 to 3000
copies/mL. Importantly, NTS can identify mutated nucleic
acids. However, the NTS platform cannot readily detect
highly degraded nucleic acid fragments that are less than
200 base pairs in length [29]. Moreover, the strategy requires
tedious sample preparation and lengthy turnaround time.
Although HTS technology provides fast, low-cost DNA
sequencing, it is not suitable for detection in clinics. On the
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other hand, the HTS strategy may be suitable for amplicon
sequencing or de novo sequencing of a whole genome [30].

2.1.2. Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR). RT-PCR is considered the gold stan-
dard to detect nucleic acids extracted from 2019-nCoV
specimens qualitatively. Positive results indicate infection
with 2019-nCoV. RT-PCR is an advanced technique for
coronavirus detection because of its optimized sensitivity,
specificity, and simplicity for quantitative assay [31, 32]. It
provides accurate and reliable identification for confirmed
and suspected cases. There are many commercial 2019-
nCoV detecting kits with oligonucleotide primers and probes
(SYBR Green or TagMan chemistries) for detecting double
genes of 2019-nCoV (nucleocapsid N gene and ORFIa-
b/E/ORF1b/S gene). This strategy usually requires four steps:
sample collection (respiratory swabs), sample preparation
(RNA isolation), one-step qRT-PCR, and data analysis
(Figure 2(b)) [33]. The evaluation procedure typically lasts
4-6h. Recently, Roche (Indiana, USA) developed two auto-
mated cobas® 2019-nCoV test systems: cobas® 6800 and
cobas® 8800 (approved in testing patient samples by the US
FDA), which can process up to 384 results and 1056 results
in an 8-hour shift, respectively [34]. The tests produce results
in about 3.5h and can process up to 4128 results in 24h,
boosting screening capacity to help restrain the sudden grow-
ing epidemic in the USA. RT-PCR is widely applicable to
2019-nCoV detection in the clinic, but limitations of this
technology are obvious, such as high false-negative rate and
low sensitivity. False-negative results may occur due to the
following factors: first, mutations in the primers and probe-
target regions in the 2019-nCoV genome [32]; second, low

viral load present in test specimens, improper extraction of
nucleic acid from clinical samples, or inappropriate restric-
tions on sample collection, transportation, or handling [31].
Real-time RT-PCR has been adopted as the gold standard
diagnostic approach for 2019-nCoV worldwide. However,
RT-PCR is time-consuming (4-6h) and requires well-
equipped laboratories and skilled technicians, thereby limit-
ing full deployment in developing countries.

2.1.3. Reverse Transcription- Isothermal Amplification (RT-
IAMP)-Based Detection. Isothermal amplification technology
has been developed to eliminate the need for a high-precision
instrument in RT-PCR assays. This approach can amplify
DNA at isothermal conditions without a thermocycler [35].
There are mainly four isothermal amplification technologies
for nucleic acid detection: LAMP, RPA, nucleic acid
sequence-based amplification (NASBA), and transcription-
mediated amplification (TMA) [36]. In NASBA and TMA
assays, input RNA is converted to a double-stranded DNA
intermediate with a promoter region. Detection of RNA using
DNA polymerase-based amplification requires a reverse tran-
scriptase step. LAMP and RPA do not require thermal or
chemical melting with the aid of enzymes. Combined with a
visual detection platform, such as a lateral flow assay (LFA)
or organic dyes, LAMP and RPA have been widely employed
in viral detection kits.

LAMP is a rapid, one-step amplification technique that
amplifies nucleic acids with high sensitivity and specificity
at an optimal temperature of 65°C [37]. LAMP processing
comprises three steps: an initial step, a cycling amplification
step, and an elongation step (Figure 3(a)). LAMP employs
six primers to amplify targeted genes by creating stem-loop
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structures that promote new DNA synthesis using a DNA
polymerase with strand displacement activity. The two inner
primers (FIP, BIP) and two outer primers (F3, B3), along
with loop structures (LF, LB), create multiple initiating sites
in the growing DNA products, enabling rapid amplification.
LAMP is also highly specific since the amplification reaction
occurs only when the primers correctly recognize all six
regions. A reverse transcriptase step is included in the LAMP
reaction to allow RNA targets to be detected [38].
RT-LAMP offers improved sensitivity and specificity in
screening SARS-CoV, HCoV-NL63, and MERS-CoV com-
pared to conventional real-time RT-PCR [39-41]. Recently,
Yu et al. used a commercial LAMP kit to amplify fragmented
ORFIab genes of 2019-nCoV (Figure 3(b) and (c)) [42]. They
optimized the LAMP system through incubation at 65°C for
different periods using a 2019-nCoV-positive RNA sample as
the template. Results require a 15 min reaction time at 65°C,
and detection sensitivity is comparable to that of the
TaqMan-based qPCR approach (10 copies). RT-LAMP
employs two additional protocols for 2019-nCoV RNA
detection. Park et al. performed RT-LAMP at 65°C for

40 min to identify the nsp3, S, and N genes of 2019-nCoV
using colorimetric detection [43]. The sensitivity of this
RT-LAMP assay was 100 copies of 2019-nCoV RNA. The
other RT-LAMP protocol was conducted at 63°C for 30 min
to detect the ORFIab, E, and N genes simultaneously [44].
The results confirmed the specific nature of ORFIab and
the high sensitivity of the N gene. Based on an analysis of
208 clinical specimens, the sensitivity of this RT-LAMP was
similar to conventional RT-PCR, and the specificity was
99%. Interestingly, EI-Tholoth et al. designed a two-stage iso-
thermal amplification procedure by combining RPA (37°C)
with LAMP (63°C) to detect synthesized DNA fragments of
2019-nCoV [45]. The test was performed in closed tubes
within 1 h using either fluorescence or colorimetric detection.
This method has a sensitivity of 100 times better than con-
ventional LAMP and RT-PCR, suggesting a rapid, sensitive,
point-of-care test for use at home.

RPA is an isothermal DNA amplification method that
utilizes a specific combination of enzymes and proteins
(recombinase, single-strand binding (SSB) protein, and
strand-displacing DNA polymerase) to amplify target genes
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rapidly at a constant low temperature between 25 and 42°C in
as little as 15min [46]. RPA usually requires four steps to
achieve DNA amplification: formation of a recombinase-
primer complex, strand invasion, D-loop formation (stabi-
lized by SSB, DNA polymerization through the use of
strand-displacing DNA polymerase), and DNA amplification
(Figure 3(d)) [47]. Results of RPA can be detected by agarose
gel electrophoresis, quantitatively measured using Twis-
tAmp  probes, or simply applied in lateral flow assays. Apart
from DNA target amplification, RPA formats have been
developed for the detection of RNA targets (RT-RPA) by
adding a reverse transcriptase enzyme to reaction mixtures
[48]. Because RPA- (RT-RPA-) based detection achieves
more rapid and sensitive results and operates efficiently, it
has been widely adopted to detect animal and human patho-
gens, such as hand, foot, and mouth disease (HFMD) virus,
human immunodeficiency virus (HIV), bovine coronavirus,
or MERS-CoV [49-52]. Currently, RPA has been applied to
detect 2019-nCoV, in combination with other technologies,
such as CRISPR or microfluidic technology.

2.1.4. Clustered Regularly Interspaced Short Palindromic
Repeat- (CRISPR-) Based Detection. The CRISPR-associated
protein 9 (Cas9) system (CRISPR/Cas9) is a revolutionary
gene-editing toolbox that can modify target genes with high

precision and that can control various types of genetic dis-
eases in preclinical studies [53-56]. Due to the collateral
nucleic acid cleavage activity of Cas effectors, CRISPR/Cas
systems have also been widely used in nucleic acid detection
with fluorescent and colorimetric signals [56]. There are
mainly two kinds of CRISPR/Cas systems for diagnostics,
based on the cutting activity of Cas protein on nucleic acids
outside of the gRNA target site: the CRISPR/Casl3a and
CRISPR/Cas12a systems.

The CRISPR/Casl3a system (specific high-sensitivity
enzymatic reporter unlocking (SHERLOCK)) was developed
by Zhang’s group, based on the collateral effect of an RNA-
guided and RNA-targeting CRISPR effector, Casl3a
(Figure 4(a)) [57, 58]. The detection system is highly sensitive
and specific because it is capable of single-molecule nucleic
acid detection. Subsequently, they developed an enhanced
SHERLOCK version 2 (SHERLOCKv2) detection system
with a 3.5-fold improvement in detection sensitivity and lat-
eral flow readout. SHERLOCKv2 has been used to detect
dengue and Zika virus single-stranded RNA or mutations
in clinical samples, showing great potential for multiplexable,
portable, rapid detection of nucleic acids [59]. Recently, they
combined RT-RPA technology with the SHERLOCK system
(namely CRISPR diagnostics) to detect the S and ORFlab
genes of 2019-nCoV (Figure 4(b) and (c)) [60]. The CRISPR
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diagnostics-based test can be conducted in 1 hour and can be
read using a dipstick. The analysis is performed at 37°C and
42°C, and its detection sensitivity is ten copies per microliter
of input, exhibiting unique advantages, such as high sensitiv-
ity, specificity, speed, and suitability for point-of-care testing.
However, this approach needs to be validated using real
patient samples.

Unlike the CRISPR/Casl3a system, the CRISPR/Cas12a
system is based on the collateral effect of Casl2a on single-
stranded DNA (ssDNA). Chen and colleagues combined
Casl2a ssDNase activation with RPA technology to create a
new approach, named DNA endonuclease-targeted CRISPR
trans reporter (DETECTR), with attomolar sensitivity for
DNA detection (Figure 4(a)) [61]. DETECTR was also vali-
dated with clinical samples, showing the capacity for rapid,
specific detection of human papillomavirus (HPV) [61].
Recently, DETECTR was investigated to identify the nucleic
acid of 2019-nCoV. Lucia et al. applied the DETECTR
(CRISPR-Casl2a and RT-RPA) to detect the RNA-
dependent RNA polymerase (RdRp), ORF1b, and ORFlab
genes of 2019-nCoV using synthetic RNA fragments as sam-
ples [62]. Remarkably, all steps of the test were completed in
1 h, and results were visible to the unaided eye. The limit of
detection for ORFIab was ten copies/uL. The advantages of
this method are its portability and low cost (~US$2 per reac-
tion). But this proposed approach also needs to be validated
with clinical samples before commercialization. Another
DETECTR-based 2019-nCoV detection strategy was devel-
oped by Chiu’s lab [63]. They employed LAMP, CRISPR/-
Casl2, and lateral flow assay to detect the E and N genes of
2019-nCoV in clinical samples. This protocol supplied rapid
(~30 min), low-cost, and accurate (100% specific vs. 90% spe-
cific for QRT-PCR) detection of 2019-nCoV in respiratory
swab samples. Realistically, CRISPR/Cas-based 2019-nCoV
detection technology is highly specific, rapid, and low cost,
but the detection strategy also needs to be validated using
clinical samples.

2.1.5. Microfluidic-Based Detection. The abovementioned
methods are based on relative quantification, because they
require external calibration with genetic standards or inner
reference DNA templates, resulting in unavoidable errors
and other uncertainties. On the contrary, methods that do
not need standard curves can provide a quantitative analysis
of nucleic acids using absolute quantification of genetic cop-
ies. Recently, digital PCR and digital LAMP have been
achieved with microelectromechanical and microfluidic
technologies [64, 65].

Microfluidic or lab-on-a-chip techniques use microsized
channels to process or manipulate fluids. Microfluidics has
been widely utilized in various fields, including drug screen-
ing, tissue engineering, disease diagnostics, and nucleic acid
detection [66, 67]. Based on its portability and ultralow sam-
ple consumption, microfluidics shows significant promises in
clinical applications [68]. Regarding nucleic acid analyses,
microfluidic devices aliquot diluted nucleic acid samples into
hundreds to millions of discrete nanoliter chambers. The iso-
lated chambers contain only one or zero target molecule
according to a Poisson distribution. Consequently, the abso-

lute copy number of target nucleic acid can be calculated
from the number of positive and negative reactions, based
on the Poisson distribution formulas [69, 70]. Both digital
PCR and digital LAMP have employed microfluidics for
pathogen analysis, which is suitable for COVID-19 detection.
For instance, Ottesen and colleagues used digital PCR to
amplify and analyze multiple genes on a microfluidic chip
[71]. This chip consisted of parallel chambers and microme-
chanical valves. The micromechanical valves segmented
chambers into independent PCR reactors after the sample
flowed into chambers through connection channels. The
chip was able to detect several kinds of genes with parallel
sample panels. Digital PCR can also be conducted with drop-
lets generated by the microfluidic chip. However, the detec-
tion of fluorescent signals in droplets requires special
instruments, such as flow cytometers, which may limit its
application in point-of-care testing. Additionally, the high
temperature in PCR amplification tends to evaporate the
reaction liquid (nanoliter or even femtoliter), leading to
unacceptable errors. Using airtight devices or high pressure
delays liquid evaporation but complicates the devices and
increases testing costs.

Digital LAMP is more compatible with microfluidics than
digital PCR because it is executed at a moderate temperature.
This simplifies microfluidic devices and reduces testing costs.
Many microfluidic devices have been reported for nucleic acid
detection using digital LAMP, such as self-digitization chips,
self-priming compartmentalization chips, and droplet-
generation chips [72-74]. As an example, Xia et al. designed
a mathematical model using the Monte Carlo method accord-
ing to the theories of Poisson statistics and chemometrics [70].
The mathematical model illustrated influential factors of the
digital LAMP assay, guiding the design and analysis of digital
LAMP devices. Based on the established mathematical model,
they fabricated a spiral chip with 1200 chambers (9.6nL) for
pathogen detection (Figure 5(a)-(c)). This spiral chip operated
at 65°C without visible liquid evaporation and achieved a
quantitative analysis of nucleic acids over four orders of mag-
nitude in concentration with a detection limit of 87 copies per
mL. This portable gadget shows significant promise in future
point-of-care testing.

Microfluidics, combined with enzyme-DNA nanostruc-
tures, is also applied to detecting 2019-nCoV. Ho et al. devel-
oped a modular detection platform (termed enVision)
consisting of an integrated circuit of enzyme-DNA nano-
structures for direct and versatile detection of pathogen
nucleic acids from infected cells [75]. Built-in enzymatic cas-
cades in the enVision microfluidic system supply a rapid
color readout for detecting HPV. The assay is fast (<2 h), sen-
sitive (limit of detection < 10 attmol), and readily quantified
with smartphones. Recently, they adopted the enVision
microfluidic system to detect 2019-nCoV [76]. Preliminary
results showed that the enVision platform is sensitive, accu-
rate, fast (within 0.5-1h), and inexpensive (less than $1 per
test kit). This novel platform works at room temperature
and does not require a heater or special pumps, and it uses
a minimal amount of samples, making it highly portable.
However, this platform needs to be further validated with real
clinical samples.
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2.2. Target Antigen and Antibody. As mentioned above, the
primary diagnostic methods are virological detection involv-
ing viral nucleic acids. Another approach to detection is with
serological assays that measure antigens or antibodies pres-
ent in the host. Such testing provides vital information about
host exposure to 2019-nCoV and is useful for detection and
surveillance purposes. For instance, this method greatly helps
medical professionals to determine whether some recovered
patients have a higher risk of reinfection. However, the
disadvantage is that one should be cautioned that in the
early stages of COVID-19 infection, the host’s antibodies
are often not within the detectable range of serological test
kits. Besides, there was no proven evidence on the dura-
tion of IgM or IgG antibodies circulating in the host after
recovery. It could be merely a short time frame for detec-
tion. As such, serological tests should not be solely used
for COVID-19 diagnosis.

2.2.1. Enzyme-Linked Immunosorbent Assay (ELISA). Early
diagnosis of 2019-nCoV infection is of utmost importance
both for medical teams to manage patients effectively and
for policymakers to curb the viral spread. Presently, ELISA
in cell culture extracts has proven to be the working “gold
standard” for laboratory diagnosis of 2019-nCoV [77].
ELISA is a plate-based assessment method for detecting
and quantifying biomolecules, including peptides, proteins,
antibodies, and hormones. ELISA techniques depend on spe-
cific antibodies to bind target antigens and a detection system
to indicate the presence of antigen binding. In an ELISA, an
antigen must be immobilized to a solid surface and then
complexed with an antibody that is linked to an enzyme.

Detection is accomplished by assessing the conjugated
enzyme activity after incubation with a substrate to produce
a measurable product [78]. Recently, coronavirus proteins
have been widely used in ELISA to diagnose SARS-CoV or
other viruses within the coronavirus family [79].

In a bold, novel approach, a team of infectious disease
experts in Singapore utilized an ELISA against 2019-nCoV
to ascertain that suspected subjects were infected with
COVID-19 and discovered the connection between two
COVID-19 clusters in the local community [80]. Using blood
samples taken from alleged COVID-19 patients, the
researchers detected antibodies targeting the spike protein
that prevented the virus from killing cells in laboratory tests.
They verified that a couple allegedly infected with COVID-19
had the disease because they had exceedingly elevated levels
of virus-specific antibodies in their blood. Interestingly,
PCR tests on the couple yielded negative results. Because
the couple had recovered from the 2019-nCoV infection,
they had no viral genetic materials in their bodies, but the
antibodies persisted. There were also other reports of using
ELISA to diagnose 2019-nCoV infection [81, 82]. Each study
confirmed the high reproducibility and specificity of ELISA
in diagnosing COVID-19 patients accurately in clinics.

2.2.2. IgG/IgM Lateral Flow Assay (LFA). Research has estab-
lished that the presence of immunoglobulin M (IgM) indi-
cates a primary defense against viral infections. This IgM
defense occurs before the production of high-affinity and
adaptive immunoglobulin G (IgG) that is critical for pro-
longed immunity and immunological memory [83]. From a
previous study on SARS infections, both IgM and IgG
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antibodies could be detected in the patient blood after 3-6
days and beyond 8 days, respectively [84]. Given that 2019-
nCoV belongs to the same family of coronaviruses including
MERS and SARS, 2019-nCoV should also generate IgM
and IgG antibodies in infected humans. Therefore, the
detection of IgM and IgG antibodies may provide epide-
miologists with crucial information on viral infection of
test subjects, allowing them to adjust policies to combat
the pandemic more effectively.

Point-of-care lateral flow immunoassays are performed
qualitatively to quickly determine the presence of 2019-
nCoV by detecting anti-2019-nCoV IgM and anti-2019-
nCoV IgG antibodies in human plasma, serum, or whole
blood. A typical device is shown in Figure 6(a). Reddish-
purple lines in the readout indicate the presence of 2019-
nCoV IgM and IgG antibodies in the sample. LFA is based
on the lateral chromatographic flow of reagents that bind
and interact with the sample. As the sample flows through
the test device, starting at the sample pad region, the anti-
2019-nCoV IgM and IgG antibodies, if present, bind tightly
to 2019-nCoV antigen-labeled gold nanoparticles, located
on the conjugated pad. When conjugated products in the
sample continue to move up the strip, anti-2019-nCoV IgM

antibodies and anti-2019-nCoV IgG antibodies bind to
anti-human IgM (M line) or anti-human IgG (G line),
respectively. No visible lines can be seen when the specimen
does not contain anti-2019-nCoV antibodies because no
labeled complexes bind at the test zone. IgG-labeled gold
colorimetric nanoparticles serve as the control when they
bind to anti-rabbit IgG antibodies at the control line (C)
(Figure 6(b)). LFA has proven useful in detecting 2019-nCo-
VIgM/IgG antibodies in clinical studies, demonstrating
88.66% test sensitivity and 90.63% specificity in human
blood, serum, and plasma samples. Results from six patients
are shown in Figure 6(c). Common 2019-nCoV detection
methods are summarized in Table 1.

2.3. Supplementary Detection Methods. Various diagnostic
techniques have been used to complement RT-PCR and
antibody-antigen serological testing. These include chest
computed tomography (CT) and transmission electron
microscopy (TEM). Each has its place in diagnostic settings
and can serve as a complementary diagnostic tool to aid
medical investigators in diagnosing 2019-nCoV accurately
in suspected COVID-19 patients.
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2.3.1. Chest Computed Tomography (CT). In clinics, medical
imaging tools are indispensable and form an essential com-
ponent of viral diagnosis, as well as for monitoring viral pro-
gression [85]. They have also been used for follow-up in
outpatient settings for coronavirus-related pulmonary disor-
ders. Just like both SARS and MERS, pulmonary complica-
tions in COVID-19 patients have been observed. Learning
from the well-documented SARS and MERS studies, CT
imaging results in the acute and chronic periods of
COVID-19 are invariant, but not always present [86-89].
Evidence is found in previous studies on SARS and MERS.
The glass opacities observed are not always found in
COVID-19 patients. Crucially, preliminary imaging discov-
eries indicate that COVID-19 yields nonspecific results as
well [90-92]. Radiologists are presently striving to any char-
acteristics specific to COVID-19, although present medical
information remains limited. Given the precarious situation,
there is a pressing need for alternative, complementary diag-
nostics. CT is one example. COVID-19 patients often
develop “ground glass” lung opacities [93]. As such, a CT
imaging scan can readily identify lung abnormalities in
human subjects, thereby enabling early treatment against
COVID-19. CT has demonstrated some common imaging
characteristics in COVID-19 patients. These features include
bilateral, multifocal, ground glass opacities, with a peripheral
distribution (Figure 7(a)) [93]. Crucially, more than half of
90 patients under study presented multilobar involvement
and lesions more prominently in the lower lobes of their
lungs. Given its feasibility and ease of use, CT has become
an essential tool for the 2019-nCoV infection diagnosis.
From a radiological perspective, the advantages of using CT
imaging could expedite the rate of diagnosis. It also supports
the current shortage and heavily reliant on technical know-
how during RT-PCR testings. Nonetheless, one limitation is
that it should be cautiously utilized as a diagnostic approach
because there are no proven, evidence-based clinical benefits
of using CT. It could also cause false securities if results are
negative. Other limitations include requirements of relatively
high-dose CT scans and long-term, continuous usage, which
can altogether be logistically challenging and deplete addi-
tional medical resources.

2.3.2. Transmission Electron Microscopy (TEM). Transmis-
sion electron microscopy (TEM) has been used for many
years and has had a profound impact on our understanding
of illnesses, including viral infections. The thousandfold
enhanced resolution provided by TEM enables investigators
to visualize viral morphology and to classify viruses into fam-
ilies [94].

Mechanistically, TEM operates based on interactions
between electrons emitted from a source and materials under
examination. In the present context, it is usually 2019-nCoV
in a cellular sample [95]. The detector collects a multitude of
signals from transmitted electrons, before processing them to
reveal viral morphology and location within cells [96]. Typi-
cal specimen preparation for TEM includes sample fixation,
embedding, sectioning, staining, and loading onto the TEM
copper grids [94, 97, 98]. 2019-nCoV sampling typically uses
supernatants from patient airway epithelial cells. Infected

11

(®)

Ficure 7: Computed tomography and transmission electron
microscopy characterizations of 2019-nCoV. (a) Cross-sectional
noncontrast enhanced chest CT radiographs of a man’s lungs with
COVID-19. The figure shows enlarged lesions and increased
density of the lesions at the outer edge of the lungs (yellow
arrows) [93]. (b) A TEM image of the 2019-nCoV grown in cells
at the University of Hong Kong [97].

cells are fixed and dehydrated before embedding in resin. A
negatively stained, film-coated grid for examination is simi-
larly prepared for contrast enhancement. 2019-nCoV virus
particles seen with TEM are shown [97] (Figure 7(b)). TEM
enables microbiologists to rapidly diagnose patients with a
single examination of a single tissue sample.

3. Medical Treatment

There are three general approaches to develop potential
antiviral treatments of the human coronavirus. Firstly,
standard assays may be used to evaluate existing broad-
spectrum antiviral drugs. Secondly, chemical libraries con-
taining existing compounds or databases may be screened.
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Thirdly, specific, new medications based on the genome
and biophysical understanding of 2019-nCoV can be
designed and optimized. Therefore, this section will dis-
cuss some of the potential 2019-nCoV therapeutics
obtained through these general approaches. Besides chem-
ical and biologic drugs commonly used in antiviral thera-
pies, we further elaborate on how nanomaterials,
nutritional interventions, traditional Chinese medicine,
and stem cell therapy can be potentially used for treatment
or as an adjuvant to reduce the mortality and morbidity
rate of 2019-nCoV patients. Finally, to end this section,
we highlight vaccines as a key therapeutic option to erad-
icate COVID-19 through herd immunity without getting
the disease.

3.1. Chemical Drugs. There are currently no approved antivi-
ral drugs to treat COVID-19, and patients must depend upon
their immune systems to combat the infection. A full-fledged
treatment plan has yet to emerge, and both academia and
pharmaceutical companies are racing to develop new treat-
ments and vaccines to address COVID-19. Research into
the cellular and molecular pathogenesis of 2019-nCoV has
provided essential insights with the hope of developing viable
therapies. While researchers are working on cures or preven-
tive measures for COVID-19 [99], a more robust, efficient,
and economical way to tackle the disease is to repurpose
existing drugs into a viable therapeutic strategy. Drug
repurposing, also termed drug repositioning, refers to
the process of discovering new therapeutic applications
for existing drugs. It offers various advantages over tradi-
tional de novo drug discovery, i.e., reduced cost and drug
development time, established drug characteristics, and,
most importantly, established safe dosages for human
use [100]. Repurposed drugs often negate the need for
phase 1 clinical trials and can be used immediately
[100, 101]. At present, repurposed drugs are the only
option available at treatment centers for COVID-19
patients. As COVID-19 is a viral infection, the most obvi-
ous choices for repurposed drugs come from known anti-
viral drugs [102]. Antiviral creation strategies focus on
two approaches: targeting viruses or targeting host cell
factors. In this section, we will review antiviral drugs pre-
scribed or proposed against COVID-19 based on the anti-
viral drug creation strategies.

3.1.1. Entry Inhibitors. When an infection occurs, the virus
gains entry into a host cell by attaching itself to the host cell
surface (Figure 8) [103]. This relies on numerous interactions
between the virion surface and the specific proteins on the
cell membrane. In general, these surface proteins have other
functions but are serendipitously recognized by the virus as
entry receptors [103]. Molecules that prevent such recogni-
tion, either by competitive binding or by downregulating
the receptors, are known as viral entry inhibitors
(Figure 9(a)). These inhibitors are valuable as therapeutics
since blocking infection early in the life cycle reduces cellular
and tissue damage associated with viral replication and pro-
duction of viral progeny.

Research

As mentioned above, coronavirus particles comprise four
structural proteins: the S, E, M, and N proteins [104-107].
The S protein is the most crucial in viral attachment, fusion,
and entry [108]. It comprises two subunits. S1 facilitates
attachment to the host cell receptor, while S2 mediates mem-
brane fusion of the virion and the host cell. As mentioned
above, viruses have specific attachment sites. SARS-CoV rec-
ognizes ACE2 as its host receptor, while MERS-CoV recog-
nizes dipeptidyl peptidase 4 [109, 110]. Like SARS-CoV,
2019-nCoV also targets host ACE2 [111-113]. Biophysical
and structural analysis indicates that the 2019-nCoV S pro-
tein binds ACE2 with higher affinity than the SARS-CoV S
protein [16]. Therefore, it is vital to target ACE2 for the
development of viral entry inhibitors.

To the best of our knowledge, not much is known about
ACE2-specific inhibitors that are commercially available or
under commercial development [114]. However, ACE2 stim-
ulators have been used in the treatment of hypertension, car-
diac diseases, and diabetes mellitus to regulate the renin-
angiotensin system [115, 116]. There are also ACE inhibitors
known for treating the diseases mentioned, but these lack
inhibitory activity toward ACE2 due to their distinct
substrate-binding pockets [116-119]. In brief, there are con-
cerns that both ACE2 stimulators and ACE inhibitors can
increase the expression of ACE2, which in turn may increase
susceptibility to viral host cell entry [120, 121]. Much work
needs to be done on ACE2-targeting drugs, and controversial
issues that lie beyond the treatment pathway need to be
addressed soon.

A small antiviral molecule, umifenovir, has entry inhibi-
tory effects on the influenza virus. Umifenovir targets hemag-
glutinin for its anti-influenza virus effect [122-124].
Hemagglutinin, a viral cell surface protein, facilitates infec-
tion by undergoing a conformational change when the virus
binds to host cells [122]. Umifenovir interacts with hemag-
glutinin to stabilize it against low pH-induced conforma-
tional change via the formation of an extensive network of
noncovalent interactions that prevent hemagglutinin-
mediated membrane fusion [122, 124]. It also interacts with
phospholipids by altering membrane fluidity [125], which is
vital for the fusion process. This is most likely due to umife-
novir’s molecular interactions (bearing both the H donor and
acceptor groups) with the interfacial region of the lipid
bilayer by competing for the hydrogen bonding of phospho-
lipid C=0 groups with water molecules [126]. This renders
lipid bilayers of host cells less prone to viral fusion [125].
No studies have shown that umifenovir is effective in inhibit-
ing SARS-CoV or 2019-nCoV. Wang et al. reported that 4
patients with mild/severe COVID-19 recovered after pre-
scription of combined lopinavir/ritonavir, arbidol (umifeno-
vir), and Shufeng Jiedu Capsule (a traditional Chinese
medicine) [127]. On the other hand, Dong et al. found in
an in vitro study that arbidol may effectively inhibit 2019-
nCoV infection at a concentration of 10-30 uM [128].

Chloroquine, also a small molecule, is a quinine analog
used to prevent and treat malaria. Similar to umifenovir,
chloroquine exhibits its inhibitory effect on influenza by pH
stabilization. Chloroquine is a weak base and becomes pro-
tonated intracellularly in a manner described by the
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Henderson-Hasselbalch law [129]. It can raise lysosomal pH
to facilitate autophagy intracellularly [130-132]. Chloro-
quine also alters the signaling pathway of enzymes, causing
enzyme glycosylation, ultimately inhibiting viral replication
in host cells [133, 134]. Liu et al. claimed that chloroquine
could inhibit SARS-CoV entry by changing glycosylation of
the ACE2 receptor and S protein [135]. Chloroquine’s effec-
tive inhibition of SARS-CoV was demonstrated in vitro on
primate cells and human rectal cells [136, 137]. Hydroxy-
chloroquine is a derivative of chloroquine with an additional
hydroxyl group. These two chloroquines share similar struc-

tures and mechanisms. Both have shown in vitro antiviral
activities toward 2019-nCoV [138-140]. Hydroxychloro-
quine was more effective than chloroquine in inhibiting
2019-nCoV in vitro on primate cells [141]. Until now, chlo-
roquine has shown apparent efficiency and safety against
2019-nCoV in clinical trials conducted in China [139].
Currently, chloroquine or hydroxychloroquine has been
administered to hospitalized 2019-nCoV patients on an
uncontrolled basis in various countries, including China
and the USA [42]. However, it must be noted that chloro-
quine and hydroxychloroquine cause ocular toxicity [142].
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Hydroxychloroquine is reportedly less toxic than chloro-
quine, making it more attractive as a prescription drug
[135, 143]. Nevertheless, more investigation and clinical tri-
als are needed to evaluate further their efficacy and safety in
treating 2019-nCoV.

3.1.2. Protease Inhibitors. Proteases are essential enzymes
that regulate cell life processes such as cell growth and death,
blood clotting, inflammation, fertilization, and infection
[103]. Viral entry into host cells requires S protein priming
by host proteases, which subsequently enables the fusion of
viral and cellular membranes [113]. Membrane fusion
enables the release of the viral genome into the host cyto-
plasm, initiating RNA translation into protein. Most
viruses also encode their proteases to protect viral proteins
by modulating host cell responses. While proteases are
vital for cell life processes, they have become promising
targets for antiviral therapeutic agents. Protease inhibitors
prevent viral replication by binding selectively to viral pro-
teases or blocking proteolytic cleavage of protein precur-
sors necessary for the production of infectious particles
[144]. It is noteworthy that protease inhibitors were a
major therapeutic breakthrough of antiviral drug design
in the mid-1990s for the treatment of HIV. Most HIV
protease inhibitors have found prominent clinical use
(Figure 9(b)).

Coronavirus S proteins can be primed by a multitude of
proteases [145]. Hoffmann et al. demonstrated that the S pro-
tein of 2019-nCoV could be primed by serine protease
TMRPSS2 [113]. Similarly, both SARS-CoV and MERS-
CoV can be activated by other TMPRSS family members
[145]. TMPRSS family proteases are widely expressed in the
respiratory tract [145, 146], which is likely the reason that
coronaviruses cause acute respiratory distress syndrome.
Upon successful priming, the viral genome encoding RNA
and several nonstructural proteins, including coronavirus
main protease (3CLpro), papain-like protease (PLpro), and
RdRp, are released [147-149]. The single-stranded positive
RNA is translated into viral polyproteins by ribosomes in
the host cell cytoplasm. The polyproteins are then cleaved
into effector proteins by viral proteases: 3CLpro and PLpro.
PLpro also acts as a deubiquitinase that may remove specific
host cell proteins (e.g., interferon regulatory factor 3 (IRF3)
and nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-«B)), thus weakening the immune system [147,
149, 150]. Both host and viral proteases are essential thera-
peutic targets in the case of COVID-19.

Camostat mesylate is a small molecule that has shown an
excellent therapeutic effect for chronic pancreatitis treatment
by targeting proteases [113, 151, 152]. Camostat mesylate
primarily inhibits enzymatic autodigestion of the pancreas
[153]. In vivo studies on rats with pancreatic fibrosis showed
that camostat mesylate inhibits inflammation, cytokine
expression, and fibrosis in the pancreas [154]. It has an addi-
tional clinical benefit for pancreatic pain by preventing
enzyme-evoked activation of pain receptors [155]. As men-
tioned above, the TMPRSS family, especially TMRPSS2, is
most likely the protease targeted by a coronavirus. Camostat
mesylate inhibits TMPRSS2 activity on primate cells in vitro,
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completely blocking membrane fusion between the host cell
and the viral MERS-CoV particle [156]. Zhou et al. claimed
that camostat mesylate displays an inhibitory effect in mice
for SARS-CoV infection [152]. Recent research by Hoffmann
et al. showed a promising in vitro inhibitory effect of this ser-
ine protease inhibitor in SARS-CoV and 2019-nCoV on
human lung cells, showing potential as a viable option for
COVID-19 treatment [113]. Unfortunately, in vitro and
in vivo data for camostat mesylate against coronaviruses are
limited. More investigation is required to evaluate camostat
mesylate as a potential therapeutic against COVID-19.

Lopinavir-ritonavir is a coformulated antiretroviral drug
with excellent efficacy against HIV-1. The lopinavir has a
core molecular structure identical to ritonavir. The 5-
thiazolyl end group and 2-isopropylthiazolyl group in rito-
navir are replaced by the phenoxyacetyl group and a mod-
ified valine, respectively, in which the amino terminus has
six-membered cyclic urea attached. In brief, lopinavir is a
potent protease inhibitor developed from ritonavir with
high specificity for HIV-1 protease [103]. It represents a
higher proportion of the coformulation. Lopinavir contains
a hydroxyethylene scaffold mimicking a standard peptide
bond cleavable by HIV-1 protease [157]. This results in the
production of noncontagious viral particles. On the other
hand, ritonavir binds to HIV-1 protease, interrupting the
maturation and production of viral particles [158]. A clinical
study from Hong Kong has shown that the combination of
lopinavir-ritonavir and ribavirin treatment for 152 patients
against SARS-CoV had an overall favourable clinical
response [159]. It has been demonstrated that lopinavir-
ritonavir targets 3CLpro of 2019-nCoV and further indicated
that 3CLpro might also be the targets of protease inhibitors
for other coronaviruses [160]. Regrettably, a recent clinical
trial using lopinavir-ritonavir in Wuhan, China, reported
that 199 hospitalized adult patients infected with 2019-
nCoV did not benefit from the treatment [161]. Given such
conflicting clinical data, physicians must carefully weigh
lopinavir-ritonavir as a COVID-19 treatment.

Darunavir is another antiretroviral protease inhibitor
drug effective against HIV-1. Darunavir is designed for
multidrug-resistant HIV-1 protease variants, due to its
molecular structure, which introduces more hydrogen bonds
compared to conventional antiretroviral medicines. In gen-
eral, changes in van der Waals and hydrogen bonding inter-
actions between inhibitors and proteases affect the potency of
antiretroviral drugs [162]. Aside from enzymatic inhibition,
darunavir inhibits protease dimerization [163]. The dimer-
ization of HIV protease is essential for the acquisition of its
proteolytic activity for the maturation of viral particles
[163]. Lin et al. claimed that darunavir inhibits 2019-nCoV.
The group has used molecular modeling to evaluate daruna-
vir binding to 3CLpro and PLpro proteases and found tar-
geted activity against the latter [164]. Nevertheless, the
therapeutic effect of darunavir in COVID-19 clinical cases
remains untested [164]. This may be in part due to potential
side effects, such as liver damage and severe skin rashes [103,
165]. These contraindications must be carefully evaluated if
darunavir is to be considered a potential therapeutic agent
for COVID-19.
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3.1.3. Replication Inhibitors. Polymerases are enzymes essen-
tial for viral replication to produce viral progeny. Viral DNA
and RNA polymerases are responsible for duplicating the
viral genome and facilitating transcription and replication
[103]. Replication inhibitors (Figure 9(c)) interfere with the
production of viral particles by blocking enzymatic activity,
ultimately causing chain termination during viral DNA or
RNA replication [166]. There are four types of viral polymer-
ases in viruses: RNA-dependent RNA polymerases, RdRp,
DNA-dependent RNA polymerases, and DNA-dependent
DNA polymerases.

In the section Protease Inhibitors, we mentioned that
RdRp is released upon successful priming. RdRp is a neces-
sary polymerase that catalyzes the replication of RNA from
an RNA template for coronaviruses [167]. Release of RdRp
from the virus initiates the synthesis of a full negative-
strand RNA template to be used by RdRp to replicate more
viral genomic RNA, which eventually turns host cells into
virus factories [147]. Therefore, RdRp is an attractive thera-
peutic target to prevent host cells from producing viruses.

Ribavirin is a synthetic guanosine nucleoside analog that
mimics purines, including inosine and adenosine, and ribavi-
rin has been used in the treatment of respiratory syncytial
virus [168]. It has only one ring at the heterocyclic base, com-
pared with guanine’s two rings. Notably, ribavirin has a
ribose sugar moiety with a hydroxyl group at the 2'-carbon
position, enabling preferential activity in RNA-related
metabolism [168, 169]. Ribavirin inhibits cellular enzyme
and inosine monophosphate dehydrogenase involved in
purine nucleotide biosynthesis [170, 171]. Ribavirin is also
known for its inhibitory effect on viruses by forcing viral
genome replication to become catastrophically error-prone.
It is likely that as a nucleoside analog, ribavirin is incorpo-
rated by RdRp into the newly synthesized viral genome,
where it induces mutagenesis [170, 172]. Although ribavirin
has proven effective against viral infections, its mechanism
of action has not been firmly established, and there are sev-
eral proposed mechanisms of action that require further val-
idation [168, 173]. Ribavirin was initially used in treating
SARS; however, ribavirin treatment lacked an in vitro antivi-
ral effect and caused adverse side effects including anemia,
hypoxemia, and decreased hemoglobin levels [174]. How-
ever, ribavirin was used as the primary treatment during
the MERS outbreak [175]. In general, clinical studies of riba-
virin treatment for SARS and MERS did not show strong evi-
dence of efficacy against these coronaviruses [176-178].
There have been no studies of ribavirin’s efficacy against
COVID-19. Therefore, the use of ribavirin remains contro-
versial and requires more investigation for a better under-
standing of its mechanism of action, efficacy, and toxicity,
even though it is a widely available drug.

Favipiravir is a synthetic guanine analog frequently used
for influenza treatment [179]. Structurally, favipiravir is
closely related to ribavirin, in which it shares the same car-
boxamide moiety [180]. While ribavirin interacts with the
viral polymerase directly, favipiravir must be phosphoribosy-
lated by cellular enzymes to its active form, favipiravir-ribo-
furanosyl—S/-triphosphate (RTP) [181, 182]. The wviral
polymerase mistakenly recognizes favipiravir-RTP for a
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purine nucleotide, thereby disrupting viral genome replica-
tion [181, 182]. Favipiravir has not been used against SARS
and MERS previously, but interestingly, it has been shown
to reduce viral infection of 2019-nCoV [138, 183]. In a clin-
ical study involving 80 patients infected with 2019-nCoV,
conducted in Shenzhen, China, favipiravir showed better
efficacy than lopinavir-ritonavir in terms of disease pro-
gression and viral clearance [183]. Another clinical study
involving 240 patients with COVID-19 conducted in
Hubei Province, China, also demonstrated that those
treated with favipiravir had a higher recovery rate com-
pared to those treated with umifenovir (preprint) [184].
More clinical data are needed to validate favipiravir’s effi-
cacy and safety in 2019-nCoV treatment.

Remdesivir is a trial synthetic adenosine analog that has
not yet been clinically approved [185]. It was synthesized
and developed by Gilead Science in 2017 for Ebola virus
infection [186]. Remdesivir needs to be metabolized into its
active form, GS-441524, to initiate its activity. The active
form of remdesivir inhibits viral RNA polymerase and evades
proofreading by viral exonuclease, causing an interruption in
viral RNA production [138, 185, 186]. It has been demon-
strated that remdesivir is effective against MERS-CoV infec-
tion in vivo and 2019-nCoV in vitro [138, 187], showing great
potential as a therapeutic agent for 2019-nCoV. The drug is
currently being validated in clinical trials [188]. Given that
antiviral drugs have previously demonstrated reasonable
inhibition of coronaviruses and therapeutic efficacy against
coronavirus outbreaks, umifenovir, chloroquine, hydroxy-
chloroquine, lopinavir-ritonavir, and ribavirin have been rec-
ommended in the latest guidelines for diagnosis and
treatment of COVID-19, updated on 17 February 2020 [189].

Recent studies also demonstrated that some antibiotics
potentially inhibit 2019-nCoV replication. Anderson et al.
(preprint) recently developed the first bat genome-wide
RNA interference (RNAi) and CRISPR libraries and identi-
fied MTHEDI as the critical host factor for viral infections
[190]. MTHEFDI is a trifunctional enzyme involved in the
one-carbon (C1) metabolic pathway, participating in the cel-
lular production of purine, dTMP, and methyl groups [191].
Anderson et al. demonstrated that purine synthesis activity of
MTHEFDI is an essential activity for viral replication, making
MTHEDI a potential target for developing antiviral drugs
[190]. They further explained that an MTHFD1 inhibitor,
carolacton, restricts replication of influenza virus, mumps
virus, Melaka virus, Zika virus, and, most importantly,
2019-nCoV [190]. Carolacton is a secondary metabolite
derived from the mycobacterium Sorangium cellulosum. It
is a macrolide ketocarbonic acid. Carolacton has been stud-
ied as an antibacterial compound against biofilms of patho-
genic Streptococcus mutans and growth of pathogen
Streptococcus pneumoniae [192, 193]. It has no toxic effect
against eukaryotic cells [194]. It has recently been identified
as a potent inhibitor of MTHFDI, and its mechanism of
action is presumably due to the ability of carolacton to bind
with MTHFDI [194]. More research is needed to validate
the mechanism of action, efficacy, and safety of carolacton
as a possible treatment for COVID-19. On the other hand,
ivermectin is originally a medication used to treat parasite
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infestation. It comprises different analogs of avermectin:
22,23-dihydroavermectin Bla and 22,23-dihydroavermectin
Bl1b, at a ratio of 4:1 [195]. They are macrolide antibiotics
isolated from the fungus Streptomyces avermitilis. It has
reportedly stopped HIV-I proliferation by inhibiting interac-
tion of the retroviral integrase protein with adapter protein
(importin), responsible for the nuclear protein import cycle
[196]. Caly et al. reported that ivermectin successfully inhib-
ited 2019-nCoV in vitro but the mechanism of action is
unclear [197]. Since ivermectin is an approved drug, it shows
great potential as a therapeutic agent for COVID-19. In vivo
work or clinical trials need to be done to confirm its efficacy
and safety for treatment against COVID-19. Potential drugs
for COVID-19 are summarized in Table 2.

3.2. Nanodrug Delivery System. Nanomaterials have recently
been utilized for the treatment of diseases such as cancer
[198-200] and various types of infections [201, 202]. The
ease of modification of surface properties, large surface area
[203], and multivalent interactions with targets [204] imbues
nanomaterials with massive potential as highly efficacious
COVID-19 therapeutic options. However, to the best of our
knowledge, no nanoparticle treatment option has been
applied to COVID-19. Nonetheless, results obtained from
nanoparticle research against other viruses have shown
promising potential. For example, Fujimori et al. utilized a
Cul nanoparticle to treat HIN1 influenza through the gener-
ation of reactive oxygen species (ROS) that inactivate the
virus [205]. Silver nanoparticles also show much promise in
treating COVID-19 with their broad antiviral properties
against a multitude of viruses, including HIV, hepatitis B
virus, herpes simplex virus, respiratory syncytial virus, and
monkeypox virus [206]. The broad antiviral properties of sil-
ver nanoparticles and the generality of ROS inactivation sug-
gest that these nanoparticles can be utilized therapeutically
without any modifications. Nanoparticles could also be used
for drug delivery. Recently, Herold and Sander demonstrated
the use of pulmonary surfactant-biomimetic nanoparticles to
encapsulate a stimulator of interferon gene (STING) agonist,
2",3"-cyclic guanosine monophosphate-adenosine mono-
phosphate, as an adjuvant in a variety of influenza vaccines
[207]. Using nanoparticles as a delivery agent, immune cells
were activated without excessive inflammation in the lung.
This could provide a considerable benefit for use in
COVID-19 vaccines in the future, but as the field is still rela-
tively new, especially in medicinal applications, safety should
remain a key consideration in the adoption of nanoparticles
in humans.

3.3. Biologic Drugs. In addition to chemical medicines,
another vital form of therapy for COVID-19 may be the
use of biologics. Currently, interferon-a2b nebulization of
100,000 to 400,000 IU/kg twice a day for 5 to 7 days is one
of the main treatments for COVID-19 in children, and it
has demonstrated efficacy in reducing the viral load during
early stages of infection [208, 209]. Another promising bio-
logic drug is convalescent plasma, the plasma of patients
who have recovered from COVID-19 [210, 211]. Antibodies
in the donated plasma could confer temporary, passive
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immunity against COVID-19, allowing patients time to
develop active immunity. Clinical trials are currently ongoing
[212, 213], and preliminary results announced from the Chi-
nese hospitals have been promising.

On the other hand, human monoclonal antibodies or
their fragments developed in the lab have shown encouraging
results as well. Tian et al. confirmed the binding of a human
monoclonal antibody CR3022 to the receptor-binding
domain (RBD) of 2019-nCoV with high affinity [214],
highlighting the therapeutic potential of CR3022 toward
COVID-19, though further in vitro and in vivo studies are
required before it could be used clinically.

3.4. Nutritional Interventions. Another supportive treatment
for COVID-19 involves dietary interventions. Various
research studies have shown supplementation of multiple
vitamins and minerals such as vitamins A, C, and D and zinc
can reduce the severity of respiratory infections [215-221].
However, most of these studies targeted children below the
age of 5 who were suffering from malnourishment or preex-
isting diseases. Therefore, vitamin and mineral supplementa-
tion may offer more significant benefits to COVID-19
patients in developing countries. Moreover, aggressive sup-
plementation of calories and protein in nutritionally at-risk
patients has shown significant benefits in reducing mortality
[222]. Using a modified Nutrition Risk in Critically IlI
(mNUTRIC) score, Kalaiselvan and coworkers demonstrated
that 42.5% of mechanically ventilated patients have high
nutritional risks (mNUTRICscore >5), accompanied by
long intensive care unit (ICU) stays and high mortality rates
[223].

An estimated 5% of COVID-19 patients require ICU
care, and of these critically ill patients, most need mechanical
ventilation [224, 225]. Therefore, nutritional intervention
using aggressive calorie and protein supplementation may
provide substantial benefits to a significant number of criti-
cally ill patients. Evidence of such benefits may be provided
by the clinical trial (NCT04274322) that is expected to end
in July 2020.

3.5. Traditional Chinese Medicine. Traditional Chinese med-
icine (TCM) is considered a prospective supplementary
treatment of COVID-19, due to its impressive performance
in treating SARS in 2003 [226]. First, TCM shows a general-
ized antiviral effect through direct inhibition of viruses and
control of inflammation. For example, Weng et al. reported
that the Smabucus Formosana Nakai (a traditional medicinal
herb) ethanol stem extract displayed strong anti-HCoV-
NL63 activity [227]. Moreover, TCM can alleviate damage
induced by inflammatory reactions and immune responses
initiated by viral infections. Single and combined Chinese
medicines could mitigate the cytokine storm by clearing the
heat and toxicity in the body. For instance, TCM approaches
were adopted to prevent and treat SARS in 2003 and HIN1
influenza in 2009 [228]. As of February 17, 2020, over
85.2% of total confirmed cases (over 60,000 cases) had been
treated with TCM, showing that TCM yields excellent out-
comes. Notably, in a trial of 102 cases with mild symptoms,
TCM achieved remarkable therapeutic effects, demonstrated


https://clinicaltrials.gov/ct2/show/NCT04274322
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by faster clinical symptom disappearance and reduction of
fever, shorter disease course, higher cure rate (by 33%), and
lower rate of moderate-to-severe cases [229]. To date, the
National Health Commission (NHC) of the People’s Repub-
lic of China has published seven editions of the guidelines for
diagnosis and treatment of COVID-19 [25]. Since the fourth
version, a list of TCM prescriptions (including TCM soup
and TCM capsules) has been recommended for patients
based on the stage of the disease and their symptoms [230].
According to the 7™ edition of the guidelines, there are
three kinds of TCM prescriptions recommended for different
stages of patients: the medical observation period, the clinical
treatment period, and critical condition (details in Table 3)
[25]. Among TCM recipes, the Qing Fei Pai Du Decoction
is strongly recommended for treatment of COVID-19 by
the NHC of the People’s Republic of China, because it gave
a cure rate of over 90% of COVID-19 patients in a clinical
trial involving 701 confirmed cases [231]. Another TCM rec-
ipe, Xue Bi Jing Injection is specifically recommended for
treating critically ill COVID-19 patients, because it sup-
presses severe sepsis, according to the China Food and Drug
Administration. It also promoted significant improvement in
cases of severe community-acquired pneumonia (CAP)
[232]. Therefore, TCM could be an alternative prophylactic
approach to COVID-19 and a supplementary treatment in
combination with western medicine to cure COVID-19.

3.6. Stem Cell Therapy. Stem cell therapy is a promising treat-
ment strategy for degenerative diseases, including Hunting-
ton’s disease, Parkinson’s and Alzheimer’s diseases, and
chronic diseases such as cardiac failure and diabetes [233].
A clinical study showed that transplantation of mesenchymal
stem cells (MSCs) significantly lowered the mortality of
patients with H7N9-induced acute respiratory distress syn-
drome (ARDS), with no harmful effects [234]. As H7N9
and 2019-nCoV share similar genome structures and corre-
sponding infection mechanisms, as well as related clinical
symptoms (lung failure), MSC-based therapy could be a pos-
sible alternative for treating COVID-19. Currently, stem cell-
based therapy for COVID-19 is being conducted by different
hospitals in China. Doctors from Baoshan Hospital (Yunnan
province, China) used human umbilical cord mesenchymal
stem cells (hUCMSCs) to treat a 65-year-old critically ill
woman with COVID-19. Two days after the 3rd injections
of stem cells, the woman recovered, and the throat swab test
for COVID-19 turned negative [235]. Another clinical trial
involving stem cell therapy was conducted in seven con-
firmed COVID-19 patients in different clinical stages in Bei-
jing Youan Hospital (Beijing, China). Two to four days after
intravenous transplantation of CE2" MSCs, all symptoms
such as high fever, weakness, and shortness of breath disap-
peared in all seven patients without observed adverse effects,
indicating that MSCs can cure or significantly improve func-
tional outcomes [236]. There are at least 12 other trials using
stem cells to treat COVID-19 in China, according to the
WHO report.

3.7. Other Treatments. Vaccines are another promising treat-
ment to prevent or cure specific viruses. Currently, there is no
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effective vaccine against 2019-nCoV. Fortunately, two
COVID-19 vaccines are undergoing clinical trials. The first
is Moderna’s mRNA-1273, an mRNA vaccine, which started
at KPWHRI in Seattle, USA, on March 16, 2020 [237]. It tar-
gets the spike protein of 2019-nCoV. The other vaccine, Ad5-
nCoV (a recombinant novel coronavirus disease vaccine
(adenovirus type 5 vector)), was conducted at Tongji Hospi-
tal in Wuhan, China, on March 16, 2020 [238]. The trial was
jointly developed and administered by CanSino Biologics
Inc. and the Academy of Military Medical Sciences. Ad5-
nCoV, a genetically engineered vaccine, expresses the 2019-
nCoV § protein using replication-defective adenovirus type
5 as an expression vector, thereby inducing a virus-specific
immune response to prevent COVID-19. There are also sev-
eral other types of COVID-19 vaccines, including deopti-
mized live attenuated vaccines, protein vaccine, DNA
vaccine, RNA vaccine, and subunit vaccine, all of which are
in the preclinical stage (Table 4) [239]. Notably, there is a
new microneedle array (MNA) approach based on delivering
coronavirus S1 subunit vaccines against COVID-19. Expe-
dited by prior experience in developing vaccines against
MERS, this approach was developed within 4 weeks and
enabled long-term induction of potent virus-specific anti-
body responses. Significantly, the MNA work can be
extended to other emerging infectious diseases. However,
these will require further clinical studies for efficacy and
safety, which requires more time.

According to the 7™ edition of the diagnostic criteria
[25], patients severely or critically ill with COVID-19 should
receive comprehensive antiviral treatment, including lopina-
vir/ritonavir, arbidol, or Shufeng Jiedu Capsule. Meanwhile,
they also need additional treatments, according to their
symptoms, including respiratory support (oxygen therapy,
high-flow nasal cannulas, or noninvasive ventilation, invasive
mechanical ventilation, or extracorporeal membrane oxy-
genation- (ECMO-) based therapy), circulatory support, or
continuous renal replacement therapy. The main therapeutic
approaches proposed for COVID-19 are summarized in
Table 5.

4. Control and Prevention of COVID-19

As the most recent pandemic, COVID-19 induces much fear.
It is highly infectious and is transmitted asymptomatically.
As such, our best options to slow and prevent transmission
are to understand the origin of 2019-nCoV, its transmission
route, and associated disease pathways and systems. Gener-
ally, a pathogen must remain viable outside the host to allow
for environmental spread [240]. Collective effects of many
biotic and abiotic factors determine the period that the path-
ogen can survive [240]. As of now, COVID-19 is thought to
be transmitted directly from person-to-person through lig-
uid (droplets) and, more importantly, transmitted indirectly
via contact with contaminated surfaces. 2019-nCoV remains
viable for a fairly long period outside the human body (up to
72 hours) and is more stable on plastic and stainless steel
than on copper and cardboard [241]. Therefore, aerosol
and fomite transmission of 2019-nCoV is possible, as the
virus lingers among particles or fibers, in airborne liquid
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F1GURE 10: Procedures for identifying COVID-19 cases.

droplets, and on surfaces, in some cases for days [241].
Although there are currently insufficient data on the inactiva-
tion of environmental 2019-nCoV, data from other corona-
viruses can be used as a reference. However, it should be
noted that biocidal agents may only limit the survival of coro-
navirus in critical environments and have no efficacy for
infected patients.

Given the high transmissibility of COVID-19, its propen-
sity for asymptomatic transmission, and its persistent nature,
confirmed patients could only be quarantined and treated in
adequately equipped facilities. This also applies to anyone
who has come into contact with these patients. As such,
contact tracing is still a mainstay for disease control. Confir-
mation can be achieved only when specific diagnostic
methods have been employed. Chest CT imaging is useful
as an initial evaluation for COVID-19, as CT confirmation
is often possible even before symptoms appear; therefore, it
is recommended for suspected COVID-19 cases [242]. Once
the primary diagnosis reveals abnormal chest CT findings,
a nucleic acid test should be performed to confirm
whether a patient is infected. Once a person is confirmed
positive, tests such as C-reactive protein (CRP), complete
blood count, urinalysis, biochemical indicators (ie., liver
enzymes, myocardial enzymes, and renal function), blood
coagulation function, arterial blood gas analysis, and cyto-
kine levels should be performed to monitor the patient’s
condition [189]. Chest CT should be performed as a
follow-up to treatment as well [242]. The -currently
adopted procedure in identifying potential COVID-19
cases in China is summarized in Figure 10.

On a community scale and beyond, strict controls over
human traffic are essential to limiting disease transmission.
By establishing lockdowns, China has been able to bring the

crisis under control. Other nations are now following the
Chinese’s approach in restricting movement of residents
within their borders. As evidenced globally, social distancing
is essential to halt the spread of COVID-19. On the other
hand, individuals have the responsibilities to follow the
guidelines given by the authorities, to practice good hygiene,
and to behave responsibly. COVID-19, like the past epi-
demics, does not recognize political boundaries, ethnicity,
or gender. The disease has challenged the economic and
medical infrastructure of the entire globe. As evidenced by
events of the past few months, the impact of the outbreak
depends upon how well we are prepared to face such a chal-
lenge. Only with time will we be able to fully evaluate the
measures that are being taken against COVID-19 today.

5. Conclusions

Previous coronavirus epidemics like SARS and MERS have
expedited the process of finding useful diagnostic and thera-
pies against 2019-nCoV. It is of paramount importance for
all countries to share essential information about 2019-
nCoV to mitigate its spread. Because of this strategic
approach, research has been mobilized to rapidly develop
diagnostic methods and worldwide implementation to mini-
mize the impact of the pandemic. Practical diagnostic tests
have aided management and contact tracing of COVID-19
cases in hotspot areas. In this regard, molecular virological
techniques have assisted the scientific community in charac-
terizing infectious agents for years. These include qRT-PCR,
isothermal amplification, and CRISPR technology.

On the other hand, serological assays for antibodies
and antigens present essential tools to obtain valuable
information about prior exposure to 2019-nCoV and the
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prevalence of infection. These include ELISA and LFA
technologies. Serological screening also enables novel vac-
cines to be assessed and supports the design of functional
vaccine approaches. Other approaches, including chest
computed tomography (CT) and transmission electron
microscopy (TEM), can boost existing detection approaches.
Notably, there has been a marked increase in the use of both
CT and TEM to detect 2019-nCoV and other coronaviruses.
These complimentary tools reveal the progression of sus-
pected infection, which cannot be accomplished by conven-
tional diagnostic means. Nonetheless, there is a pressing
need for continuous development of rapid, accurate diagnos-
tic devices and strategies to characterize unknown respira-
tory pathogens.

Despite these signs of progress, the present data suggest
that current public health policies and improved diagnostic
measures alone may not be sufficient to eradicate COVID-
19 in the short term. Efficacious and novel treatments are
desperately required. Presently, large numbers of ongoing
clinical trials of various drugs may succeed in minimizing
morbidity and mortality. We have highlighted several of
them in this review. Some are highly promising, while others
may require more time to demonstrate usefulness. While
some drug candidates appear promising and have been used
in treating COVID-19 patients in desperation, it does not
necessarily mean that they are proven safe and efficacious
in the long run. As such, stringent criteria must be estab-
lished by health regulatory agencies. However, in the long
term, vaccines and prophylactics may be required to curb
the spread of 2019-nCoV.
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