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ABSTRACT: We report a Minisci-type cross-dehydrogenative
alkylation in an aerobic atmosphere using abundant and
inexpensive cerium chloride as a photocatalyst and air as an
oxidant. This photoreaction exhibits excellent tolerance to
functional groups and is suitable for both heteroarene and alkane
substrates under mild conditions, generating the corresponding
products in moderate-to-good yields. Our method provides an
alternative approach for the late-stage functionalization of valuable
substrates.

■ INTRODUCTION

Heteroarenes are important structural motifs in coordination
complexes, natural products, advanced materials, and pharma-
ceuticals.1 The development of synthetic methods that allow
their rapid derivatization and direct structural modification at a
late stage through C−H functionalization is of great value and
significance.2−4 Minisci-type reactions provide a powerful tool
for the construction of C(sp2)−C(sp3) bonds between
heteroarenes and alkyl radicals. In recent decades, considerable
effort has been made to develop new Minisci-type alkylations
that allow efficient, environmentally friendly formation of alkyl
radicals. Much has been reported on the generation of alkyl
radicals from alkyl carboxylic acids,5 boronic acids,6 alkyl
halides,7 and others;8,9 however, these methods often suffer
from high cost and low atom economy. In contrast, alkanes are
abundant and inexpensive. They represent ideal alkylation
reagents as no prefunctionalization is required, allowing for
atom- and step-economical synthesis. In this context, the direct
generation of alkyl radicals from alkanes for Minisci-type
reactions has recently received considerable attention.10,11

The key to successful cross-dehydrogenative alkylation lies
in the effective activation of the C(sp3)-H bonds of the alkane
to form active open-shell species. A straightforward way to
produce alkyl radicals is through oxidative C−H activation,
which usually requires expensive, strong oxidants. Among
them, thermal cleavage to generate the desired radicals is the
most common approach (Scheme 1a).12,13 Such a process
requires a high reaction temperature, which not only degrades
the selectivity of the reaction but also increases the safety risk,
especially for large-scale syntheses. Recently, photocatalyzed
cross-dehydrogenative coupling (CDC) reactions have opened
up tremendous opportunities for the sustainable modification

or synthesis of various heteroarenes (Scheme 1b).14−16

Although the reaction temperature was lowered to room
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Scheme 1. Cross-Dehydrogenative Alkylation of
Heteroarenes with Alkanes
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temperature, expensive photocatalysts and stoichiometric
strong oxidants were still required, which not only drove up
the cost but also made downstream purification difficult.
Therefore, it would be desirable to develop CDC reactions
under milder conditions by employing cheaper photocatalysts
and more environmentally friendly oxidants.
Rare-earth metals have been used as powerful tools for the

development of breakthrough technologies.17 Indeed, related
technologies have been applied in many fields, such as
optogenetics, biosensing, photothermal therapy, super-reso-
lution imaging, aggregation-induced emission, and organo-
catalysis.18 Recent studies have shown that rare-earth metals
can also act as a unique platform for photocatalytic reactions
due to their unique physical and chemical properties.19,20 On
the other hand, the photocatalytic CDC reactions using
chlorine radicals as a reagent for hydrogen atom transfer have
attracted considerable attention.21,22 For example, Li’s group
recently reported a cobalt-photocatalyzed cross-dehydrogen-
ative heteroarylation of C(sp3)-H bonds.21a In this trans-
formation, chlorine radicals produced in situ are used to
generate alkyl radicals, and cobalt catalysts are used to enable
H2 evolution for catalytic turnover, providing a practical
protocol for the modification of heteroarenes. In sharp
contrast, the CDC reaction facilitated by cerium photocatalysis
has rarely been reported. During the preparation of our article,
Schelter’s groups have made a revolutionary discovery enabling
the C−H amination of alkanes by a cerium-photocatalyzed
ligand-to-metal charge-transfer (LMCT) process.20a While
investigating the mechanism, they gave an example for the
C−H alkylation of heteroarenes using stoichiometric amounts
of (NH4)2S2O8 as an oxidant. Although significant progress has
been made, they are far from achieving green synthesis and
atom economy due to the requirements of strong oxidants.
Compared with harmful oxidants, abundant molecular oxygen
(O2) is considered a clean and cheap oxidant for cerium-
photocatalyzed organic transformations due to its inexpensive
and environmentally friendly properties.23 For example, in
2020, Mashima and co-workers photocatalyzed the aerobic
decarboxylative oxygenation of aliphatic carboxylic acids and
lactonization of 2-isopropylbenzoic acids with cerium.23a Based
on our previous work on C−H functionalization,24 we report
here a cerium-photocatalyzed cross-dehydrogenative alkylation
of heteroarenes with simple alkanes using air as the green
terminal oxidant (Scheme 1c). The chlorine radical generated
in situ serves as a hydrogen atom-transfer reagent. The
coupling between a wide range of heteroarenes and simple
nonfunctionalized alkanes proceeded smoothly and gave the
corresponding products in moderate-to-good yields.

■ RESULTS AND DISCUSSION
The reaction conditions of CDC were optimized by evaluating
the photocatalyst, additive, proton source, solvent, and reaction
time (Table 1 and the Supporting Information, Table S1−S6).
The target product (3) was obtained in 87% yield by reacting
quinoxalin-2(1H)-one (1a)25 (0.2 mmol) with cyclohexane
(2a) (15 equiv), CeCl3 (5 mol %), Bu4N

+Cl− (20 mol %),
CF3CH2OH (50 mol %), and CH3CN (1.0 mL) under 405 nm
light-emitting diode (LED) (10 W) irradiation for 9 h (Table
1, entry 1). In the absence of CeCl3 or visible light, no desired
product was generated (Table 1, entries 2 and 3). It should be
noted that the reaction did not proceed without CF3CH2OH,
probably because protonation of the nitrogen atom with
CF3CH2OH can activate heteroarenes in Minisci trans-

formations (Table 1, entry 4).26 It should be noted that
Bu4N

+Cl− was used because it is a convenient and organically
soluble source of chloride ions. The yield decreased to 18%
without Bu4N

+Cl− (Table 1, entry 5). Other quaternary
ammonium salts such as Bu4N

+F−, Bu4N
+F−, and Bu4N

+OAc−

were tested and gave low yields (Table S2, entries 2−4). These
results show the importance of the chloride ion in the reaction.
Reducing the stoichiometric amount of cyclohexane or
increasing the reaction time did not improve the yield
(Table 1, entries 6 and 7). The reaction did not proceed
under a nitrogen atmosphere, indicating that O2 involved in
this transformation (Table 1, entry 8). Further investigation of
the proton source and solvent did not improve the product
yield (Tables S3−S5).
Under the optimal reaction conditions (Table 1, entry 1),

we investigated the substrate scope of the quinoxalin-2(1H)-
one derivatives (Table 2). The quinoxalin-2(1H)-ones,
comprising a series of N-substituted methyl, ethyl, isopropyl,
n-butyl, cyclopropylmethyl and ester groups, were well
tolerated and gave the corresponding products (3−9) in
good yields. It is worth noting that the labile allyl group, which
could be further functionalized, was also compatible with
standard conditions and afforded the target product (10) in
69% yield. The reactions of a wide range of quinoxalin-2(1H)-
ones with different N-benzyl groups, bearing electron-donating
or electron-withdrawing substituents at the ortho-, meta-, or
para-position, gave the corresponding products (11−24) in
53−78% yield. CDC reactions of cyclohexane with quinoxalin-
2(1H)-ones bearing both electron-donating and electron-
withdrawing groups at the C5- or C6-position gave alkylated
products (25−29) in 55−72% yield.
We next investigated the substrate scope of the simple

alkanes. Alkanes are difficult to subject to selective C−H
functionalization because they contain different types of inert
C (sp3)−H bonds that have similar bond dissociation
energies.27 In our catalytic system, a variety of cycloalkanes
reacted with quinoxalin-2(1H)-one to give products (30−33)
in 70−84% yield. The adamantane containing both secondary
and tertiary C−H bonds in the molecule was tested. The
reaction took place at the tertiary C−H bond and afforded the
target product (34) in 78% yield. n-Pentane reacted with
quinoxalin-2(1H)-one and afforded a mixture of regioisomers

Table 1. Evaluation of Reaction Conditions for Cerium-
Photocatalyzed CDC Reactiona,b

entry variation from given conditions yield (%)b

1 none 87
2 no CeCl3 0
3 no light 0
4 no CF3CH2OH trace
5 no Bu4N

+Cl− 18
6 10 equiv of 2a was used 78
7 reaction time,12 h 86
8 under a N2 atmosphere trace

aReaction conditions: 1a (0.2 mmol), 2a (3.0 mmol), CeCl3 (5 mol
%), Bu4N

+Cl− (20 mol %), CF3CH2OH (50 mol %), CH3CN (1
mL), 405 nm LED (10 W), rt, air, 9 h. bYield of the isolated product.
Note: Cy = cyclohexyl.
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(35) with a ratio of C2/C3 = 3:1 in 72% combined yield,
probably due to more stable alkyl radicals and abundant C−H
bonds at the secondary carbon positions. Ethers, such as
tetrahydrofuran and 1,4-dioxane, also underwent the CDC
reaction, affording 36 and 37 in 56% and 73% yields,
respectively. Moreover, reactions between N-substituted or
N-free quinoxalin-2(1H)-ones and simple alkanes can proceed,
giving the corresponding products (38−49) in 50−76% yield.
We further performed gram-scale synthesis of product 26

(51% yield), which was subsequently chlorinated with POCl3
to give product 50. Cross-coupling of compound 50 with
phenylboronic acid or phenylacetylene or treatment with

nucleophilic reagents such as morpholine, sodium methoxide,
thiophenol, and benzenesulfonyl chloride gave a broad range of
quinoxaline derivatives (51−56) in good yield (Scheme 2).
The success of the cerium-photocatalyzed CDC reactions of

quinoxalin-2(1H)-ones with alkanes prompted us to evaluate
the scope of heteroarenes. Reaction of isoquinoline with
cyclohexane under standard conditions yielded only 15% of the
product (57), probably because the reactivity of isoquinoline is
lower than that of quinoxalin-2(1H)-ones (see the Supporting
Information, Table S7, entry 1). Further optimization of the
reaction conditions was performed by replacing CF3CH2OH
(TFE) with trifluoroacetic acid (TFA) as the proton source,

Table 2. Substrate Scope of the Cerium-Photocatalyzed CDC Reaction of Quinoxalin-2(1H)-ones with Alkanesa,b

aReaction conditions: 1a (0.2 mmol), 2a (3.0 mmol), CeCl3 (5.0 mol %), Bu4N
+Cl− (20.0 mol %), CF3CH2OH (50.0 mol %), CH3CN (1.0 mL),

405 nm LED (10 W), rt, air, 9 h. bYield of the isolated product. cReaction was performed on a 1 mmol scale.
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and the product (57) was obtained in 55% yield by extending
the reaction time to 48 h (Table S7, entry 2). This result shows
that the replacement of TFE with TFA leads to an increase in
yield. Further evaluation of the reaction conditions did not
improve the yield (Table S7, entries 3−10). We then examined
the substrate scope in the presence of TFA as a proton source
(Table 3). CDC reactions of cyclohexane with a wide range of
heteroarenes, including isoquinolines, quinolines, quinoxaline,
quinazoline, and pyridine as well as pyrimidine, afforded the
desired products (57−66) in 26−55% yield. Interestingly, both
mono- and bifunctionalized products (62 and 63) were
generated by using quinoxaline as a substrate. Other
heteroarenes such as indol (1ca), benzoxazole (1cb), and
benzothiazole (1cc) were also tested under optimized
conditions, but no corresponding product was obtained (see
the Supporting Information, Scheme S2). Several cycloalkanes,
including cyclopentane, cycloheptane, cyclooctane, and cyclo-
dodecane, also afforded the corresponding products in
moderate yields (42−63%, 67−70). Notably, the isomers
(71) were obtained in 54% yield with a ratio of C2/C3 = 5:4
when n-hexane was used as a starting material. Our method
was also successfully applied to the late-stage functionalization
of complex pharmaceutical compounds, and the corresponding
alkylation products (72−75) were obtained in 24−51% yield.

Scheme 2. Gram-Scale Synthesis and Further
Derivatizationa

aReaction conditions: (a) 50 (0.2 mmol), (4-methoxyphenyl)boronic
acid (1.5 equiv), Pd(PPh3)4 (5 mol %), K2CO3 (2 M in water, 1.1
mL), toluene (1.5 mL), EtOH (0.5 mL), 115 °C, N2, 12 h; (b) 50
(0.2 mmol), p-tolylacetylene (1.2 equiv), PdCl2(PPh3)2 (5 mol %),
CuI (7 mol %), Et3N (1 mL), 90 °C, N2, 18 h; (c) 50 (0.2 mmol),
morpholine (1.5 equiv), K2CO3 (1.5 equiv), MeCN (1.5 mL), 85 °C,
12 h; (d) 50 (0.2 mmol), MeONa (5.0 equiv), MeOH (1.5 mL), 80
°C, 4 h; (e) 50 (0.2 mmol), p-methylthiophenol (1.1 equiv), H2O (1
mL), 100 °C, 6 h; (f) 50 (0.2 mmol), tosyl chloride (2 equiv), Zn (1
equiv), H2O (1 mL), 100 °C, 12 h.

Table 3. Substrate Scope of the Cerium-Photocatalyzed CDC Reaction of Heteroarenes with Alkanesa,b

aReaction conditions: 1 (0.2 mmol), 2 (3.0 mmol), CeCl3 (5 mol %), Bu4N
+Cl− (20 mol %), TFA (100 mol %), CH3CN (1 mL), 405 nm LED

(10 W), rt, air, 48 h. bYield of the isolated product. cThe reaction was performed for 72 h.
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We next performed control experiments to elucidate the
reaction mechanism. Performing cerium photocatalysis with
cyclohexane (2a) and cyclohexane-d12 (2a−d12) independently
in separate reactors gave a kinetic isotope effect (KIE) of 3.5
(Scheme 3a). A competing experiment with cyclohexane (2a)
and cyclohexane-d12 (2a−d12) gave a ratio of 3.8 (Scheme 3b).
Both methods show that a kinetically relevant isotope effect is
involved in the reaction, suggesting that cleavage of the
C(sp3)-H bond may be the rate-determining step.28 The
transformation was completely inhibited when two equivalents
of radical scavengers, such as 1,1-diphenylethylene (DPE) or
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), were added
(Scheme 4a). The formation of adducts (A) and (B) indicates

the generation of chlorine and cyclohexyl radicals. In addition,
adduct C was also detected, probably because a radical adduct
[Cl−OHCH2CF3]

•, formed from the chlorine radical and
CF3CH2OH, was eventually trapped by DPE.20a,22 Overall, a
radical pathway appears to be involved. Since the reaction did
not occur under a nitrogen atmosphere and superoxide radicals
were detected under standard conditions by using electron
spin resonance (ESR) spectroscopy (Figure 1a), O2 in air plays
a central role in this transformation. Moreover, the results of
fluorescence spectroscopy (Figure S3), UV−visible absorption
(Figure S4), and ESR spectroscopy (Figure 1b) of the
substrate (1a) suggest that singlet oxygen (1O2) may play an
important role in the catalytic system.29 However, it was found

Scheme 3. KIE Study of the Cerium-Photocatalyzed CDC Reaction

Scheme 4. Control Experiments of the Cerium-Photocatalyzed CDC Reaction
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that isoquinoline derivatives do not absorb 405 nm LED light
to sensitize oxygen,30 which was also confirmed by ESR
(Figure 1c).
On the other hand, oxygen in the ground state is known to

auto-oxidize cerium(III) complexes to cerium(IV) complex-
es.20d In this regard, we hypothesized that the transformation is
mainly mediated by oxygen, and singlet oxygen (1O2) would
likely accelerate this process. To test this assumption, cross-
dehydrogenative alkylation of isoquinoline (1ab) with cyclo-
hexane (2a) was conducted with one equivalent of compound
3 (Scheme 4b), which proved as a singlet oxygen (1O2)
sensitizer (Figure S6c). However, the absence of any change in
product yield indicates that singlet oxygen (1O2) is
insignificant for the transformation.
Based on the experimental results, a possible mechanism for

cerium-photocatalyzed CDC reactions was proposed (Scheme
5). First, oxygen reacts with CeIIICln−1 by a single-electron

transfer to form CeIVCln, which undergoes a photoinduced
LMCT to generate a chlorine radical with simultaneous
regeneration of CeIIICln-1.

20b Meanwhile, protonation of the
nitrogen atom with a proton source activates the heteroarene
(1). The chlorine radical then undergoes hydrogen-atom
transfer with an alkane to form an alkyl radical, which
subsequently attaches to a protonated heteroarene to form an
intermediate (A).22 Subsequent aromatization-driven single-
electron oxidation and deprotonation yield the target product
(3) and H2O2.

31

■ CONCLUSIONS
In summary, we have reported a cerium-photocatalyzed
strategy for facile cross-dehydrogenative alkylation of hetero-

arenes with simple alkanes. A variety of heteroarenes can be
alkylated with simple alkanes in moderate-to-good yields. This
protocol offers many advantages, including an excellent step
sequence from abundant alkanes, inexpensive catalysts, the use
of air as a green oxidant, ambient conditions, and a wide range
of substrates.

■ EXPERIMENTAL SECTION
General Information. All reagents and deuterated solvents were

commercially available and used without further purification. All
alkanes and heteroarenes in Table 3 were purchased from Energy
Chemical. All quinoxalin-2(1H)-ones are known compounds and
were prepared according to the corresponding literature.25,32 All
products were purified by silica gel (200−300 mesh) column
chromatography using petroleum ether (PE) (60−90 °C) and ethyl
acetate (EA) as the eluent.33 1H, 13C, and 19F NMR spectra were
recorded using a Bruker ADVANCE 500 spectrometer at room
temperature with CDCl3 and CD3SOCD3 as solvents and
tetramethylsilane as an internal standard. Melting points were
determined on an X-5 Data microscopic melting point apparatus.
Analytical thin-layer chromatography (TLC) was performed on Merk
precoated TLC (silica gel 60 F254) plates. Compounds for high-
resolution mass spectrometry (HRMS) were analyzed by positive
mode electrospray ionization (ESI) using an Agilent 6530 QTOF
mass spectrometer. ESR spectra were recorded using a JES X320
spectrometer (JEOL Co). Fluorescence quenching experiments were
recorded using an F-7000 FL spectrophotometer. The photoreactor
(PL-SX100A) was purchased from Beijing Princess Technology Co.,
Ltd. The Schlenk tube used for photocatalysis was purchased from
Beijing Synthware Glass.

General Procedure for the Synthesis of Quinoxalin-2(1H)-
ones. A mixture of 1,2-phenylenediamines (5.0 mmol, 1.0 equiv),
ethyl glyoxalate (6.0 mmol, 1.2 equiv), and ethanol (40.0 mL) was
stirred under reflux until the crude material disappeared. Then, the
mixture was filtered and washed by ethanol. The solid was dried in
vacuo. For further alkylation, the corresponding haloalkane (4.8
mmol, 1.6 equiv) was added to a suspension of quinoxalin-2(1H)-one
(3.0 mmol, 1.0 equiv) and potassium carbonate (3.6 mmol, 1.2 equiv)
in DMF (15.0 mL). The mixture was stirred overnight at room
temperature. After the reaction was complete, brine was added and
the mixture was extracted with DCM. The collected organic layer was
washed with brine and dried with MgSO4. The solvent was removed
in vacuo, and the residue obtained was further purified by silica gel
column chromatography (200−300 mesh silica gel).

1-Methylquinoxalin-2(1H)-one (1a).31a Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.31 (s, 1H),
7.89 (dd, J = 8.0, 1.2 Hz, 1H), 7.64−7.58 (m, 1H), 7.39−7.34 (m,
2H), 3.70 (s, 3H).

Figure 1. Determination of reactive species by ESR spectroscopy of cerium-photocatalyzed cross-dehydrogenative alkylation. (a) ESR spectra of
superoxide radicals; (b) ESR spectra of singlet oxygens photosensitized by substrate 1a; and (c) ESR spectra of singlet oxygens photosensitized by
substrate 1ab.

Scheme 5. Plausible Mechanism of the Cerium-
Photocatalyzed CDC Reaction
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1-Ethylquinoxalin-2(1H)-one (1b).31a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.30),
white solid. 1H NMR (500 MHz, CDCl3): δ 8.31 (s, 1H), 7.90 (d, J =
7.9 Hz, 1H), 7.64−7.57 (m, 1H), 7.40−7.34 (m, 2H), 4.33 (q, J = 7.2
Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H).
1-Butylquinoxalin-2(1H)-one (1d).2b Purified by silica gel column

chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.32),
colorless liquid. 1H NMR (500 MHz, CDCl3): δ 8.29 (s, 1H), 7.89
(dd, J = 8.3, 1.4 Hz, 1H), 7.62−7.56 (m, 1H), 7.38−7.33 (m, 2H),
4.27−4.22 (m, 2H), 1.75 (tt, J = 7.9, 6.7 Hz, 2H), 1.49 (dd, J = 15.1,
7.5 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H).
1-(Cyclohexylmethyl)quinoxalin-2(1H)-one (1e).2b Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA
= 10:1, Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.30
(s, 1H), 7.89 (dd, J = 8.2, 1.4 Hz, 1H), 7.61−7.55 (m, 1H), 7.38−
7.32 (m, 2H), 4.14 (d, J = 7.3 Hz, 2H), 1.97−1.85 (m, 1H), 1.78−
1.64 (m, 5H), 1.18 (t, J = 7.8 Hz, 5H).
Methyl-2-(2-oxoquinoxalin-1(2H)-yl)acetate (1f).32a Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
10:1, Rf = 0.27), white solid. 1H NMR (500 MHz, CDCl3): δ 8.35 (s,
1H), 7.95−7.88 (m, 1H), 7.60−7.53 (m, 1H), 7.38 (t, J = 7.4 Hz,
1H), 7.11 (d, J = 8.3 Hz, 1H), 5.04 (s, 2H), 3.79 (s, 3H).
tert-Butyl-2-(2-oxoquinoxalin-1(2H)-yl)acetate (1g).31a Purified

by silica gel column chromatography (200−300 mesh silica gel, PE/
EA = 10:1, Rf = 0.25), white solid. 1H NMR (500 MHz, CDCl3): δ
8.27 (s, 1H), 7.83 (dd, J = 8.0, 1.4 Hz, 1H), 7.53−7.46 (m, 1H),
7.34−7.25 (m, 1H), 7.04 (dd, J = 8.4, 0.7 Hz, 1H), 4.86 (s, 2H), 1.38
(s, 9H).
1-Allylquinoxalin-2(1H)-one (1h).31a Purified by silica gel column

chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.35),
white solid. 1H NMR (500 MHz, CDCl3): δ 8.34 (s, 1H), 7.90 (dd, J
= 8.0, 1.4 Hz, 1H), 7.60−7.52 (m, 1H), 7.38−7.31 (m, 2H), 5.94
(ddt, J = 17.2, 10.3, 5.1 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 5.17 (d, J
= 17.2 Hz, 1H), 4.90 (dt, J = 5.0, 1.6 Hz, 2H).
1-Benzylquinoxalin-2(1H)-one (1i).31a Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.41 (s, 1H),
7.89 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.28 (ddd, J = 19.2,
14.0, 7.3 Hz, 7H), 5.49 (s, 2H).
1-(4-Methylbenzyl)quinoxalin-2(1H)-one (1j).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.40 (s, 1H),
7.88 (d, J = 7.7 Hz, 1H), 7.49−7.43 (m, 1H), 7.32 (dd, J = 11.9, 4.4
Hz, 2H), 7.13 (q, J = 8.3 Hz, 4H), 5.45 (s, 2H), 2.30 (s, 3H).
1-(4-Fluorobenzyl)quinoxalin-2(1H)-one (1k).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.33), white solid. 1H NMR (500 MHz, CDCl3): δ 8.40 (s, 1H),
7.90 (dd, J = 8.0, 1.3 Hz, 1H), 7.51−7.47 (m, 1H), 7.36−7.32 (m,
1H), 7.28 (s, 1H), 7.26−7.22 (m, 2H), 7.01 (t, J = 8.6 Hz, 2H), 5.46
(s, 2H).
1-(4-Chlorobenzyl)quinoxalin-2(1H)-one (1l).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.40 (s, 1H),
7.90 (dd, J = 8.0, 1.2 Hz, 1H), 7.51−7.46 (m, 1H), 7.35 (d, J = 7.2
Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.3 Hz, 1H), 7.19 (d, J
= 8.4 Hz, 2H), 5.45 (s, 2H).
1-(3-Methylbenzyl)quinoxalin-2(1H)-one (1n).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.41 (s, 1H),
7.89 (d, J = 7.9 Hz, 1H), 7.47 (dd, J = 11.5, 4.2 Hz, 1H), 7.31 (dd, J =
16.7, 8.2 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.05 (dd, J = 17.8, 7.7 Hz,
3H), 5.45 (s, 2H), 2.30 (s, 3H).
1-(3-Chlorobenzyl)quinoxalin-2(1H)-one (1o).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.33), white solid. 1H NMR (500 MHz, CDCl3): δ 8.41 (s, 1H),
7.91 (dd, J = 8.0, 1.4 Hz, 1H), 7.52−7.46 (m, 1H), 7.37−7.32 (m,
1H), 7.27−7.22 (m, 4H), 7.16−7.10 (m, 1H), 5.46 (s, 2H).
1-(3-Nitrobenzyl)quinoxalin-2(1H)-one (1q).2b Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.23), white solid. 1H NMR (500 MHz, CDCl3): δ 8.43 (s, 1H),

8.18−8.14 (m, 2H), 7.94 (dd, J = 8.0, 1.3 Hz, 1H), 7.58 (d, J = 7.8
Hz, 1H), 7.52 (ddd, J = 8.5, 3.4, 1.9 Hz, 2H), 7.40−7.35 (m, 1H),
7.21 (d, J = 8.4 Hz, 1H), 5.58 (s, 2H).

1-(2-Fluorobenzyl)quinoxalin-2(1H)-one (1r).2b Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.41 (s, 1H),
7.90 (dd, J = 8.0, 1.2 Hz, 1H), 7.53−7.46 (m, 1H), 7.36−7.32 (m,
1H), 7.30−7.26 (m, 2H), 7.15−7.09 (m, 1H), 7.03 (d, J = 4.3 Hz,
2H), 5.55 (s, 2H).

1-(2-Chlorobenzyl)quinoxalin-2(1H)-one (1s).2b Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid. 1H NMR (500 MHz, CDCl3): δ 8.43 (s, 1H),
7.92 (dd, J = 8.0, 1.4 Hz, 1H), 7.51−7.43 (m, 2H), 7.38−7.31 (m,
1H), 7.22 (td, J = 8.0, 1.4 Hz, 1H), 7.14−7.05 (m, 2H), 6.77 (d, J =
7.5 Hz, 1H), 5.58 (s, 2H).

1-(2-Bromobenzyl)quinoxalin-2(1H)-one (1t).2b Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.32), white solid. 1H NMR (500 MHz, CDCl3): δ 8.43 (s, 1H),
7.92 (d, J = 7.3 Hz, 1H), 7.68−7.60 (m, 1H), 7.51−7.43 (m, 1H),
7.34 (t, J = 7.3 Hz, 1H), 7.19−7.11 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H),
6.77−6.68 (m, 1H), 5.54 (s, 2H).

1-(2,4-Difluorobenzyl)quinoxalin-2(1H)-one (1u).2b Purified by
silica gel column chromatography (200−300 mesh silica gel, PE/EA =
10:1, Rf = 0.25), white solid. 1H NMR (500 MHz, CDCl3): δ 8.40 (s,
1H), 7.90 (d, J = 7.9 Hz, 1H), 7.52 (dd, J = 11.5, 4.1 Hz, 1H), 7.35 (t,
J = 7.4 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.08 (dd, J = 14.9, 8.5 Hz,
1H), 6.92−6.83 (m, 1H), 6.78 (dd, J = 11.5, 4.9 Hz, 1H), 5.49 (s,
2H).

6-Methoxy-1-methylquinoxalin-2(1H)-one (1w).32e Purified by
silica gel column chromatography (200−300 mesh silica gel, PE/EA =
10:1, Rf = 0.27), white solid. 1H NMR (500 MHz, CDCl3): δ 8.31 (s,
1H), 7.35 (d, J = 2.8 Hz, 1H), 7.27 (d, J = 4.9 Hz, 1H), 7.22 (dd, J =
9.1, 2.8 Hz, 1H), 3.90 (s, 3H), 3.69 (s, 3H).

Quinoxalin-2(1H)-one (1x).32a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 2:1, Rf =
0.26), white solid. 1H NMR (500 MHz, DMSO): δ 12.45 (s, 1H),
8.19 (s, 1H), 7.79 (dd, J = 8.0, 1.1 Hz, 1H), 7.59−7.54 (m, 1H),
7.35−7.30 (m, 2H).

General Procedure for Cerium-Photocatalyzed, Cross-
Dehydrogenative Alkylation of Quinoxalinone with Alkane.
A mixture of quinoxalinone (1) (0.2 mmol), alkane (2) (3.0 mmol,
15.0 equiv), CeCl3 (5.0 mol %), Bu4N

+Cl− (20.0 mol %),
CF3CH2OH (50.0 mol %), and CH3CN (1.0 mL) in a 15 mL tube
was stirred under the irradiation of 405 nm LED (10 W) for 9 h. After
completing the reaction as indicated by TLC, a saturated NaHCO3
solution was added to the residue to neutralize the acidic compounds.
The mixture was then extracted with DCM, and the collected organic
layer was washed with brine and dried with MgSO4. The solvent was
removed in vacuo, and the obtained residue was further purified by
silica gel column chromatography (200−300 mesh silica gel).

Procedure for the Synthesis of Product 6 on a 1 mmol
Scale. A mixture of quinoxalinone (1d) (1.0 mmol), cyclohexane
(2a) (15.0 mmol, 15.0 equiv), CeCl3 (5.0 mol %), Bu4N

+Cl− (20.0
mol %), CF3CH2OH (50.0 mol %), and CH3CN (5.0 mL) in a 15 mL
tube was stirred under the irradiation of 405 nm LED (10 W) for 9 h.
After completing the reaction as indicated by TLC, a saturated
NaHCO3 solution was added to the residue to neutralize the acidic
compounds. The mixture was then extracted with DCM, and the
collected organic layer was washed with brine and dried with MgSO4.
The solvent was removed in vacuo, and the obtained residue was
further purified by silica gel column chromatography (200−300 mesh
silica gel).

Procedure for the Gram-Scale Synthesis of Product 26. A
mixture of quinoxalinone (1h) (10.0 mmol), alkane (2a) (150.0
mmol, 15.0 equiv), CeCl3 (5.0 mol %), Bu4N

+Cl− (20.0 mol %),
CF3CH2OH (50.0 mol %), and CH3CN (30.0 mL) in a 100 mL flask
was stirred under the irradiation of 405 nm LED (10 W) for 9 h. After
completion of the reaction as indicated by TLC, a saturated NaHCO3
solution was added to the residue to neutralize the acidic compounds.
The mixture was then extracted with DCM, and the collected organic
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layer was washed with brine and dried with MgSO4. The solvent was
removed in vacuo, and the obtained residue was further purified by
silica gel column chromatography (200−300 mesh silica gel).
3-Cyclohexyl-1-methylquinoxalin-2(1H)-one (3). Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 6:1,
Rf = 0.35), white solid (42 mg, 87% yield), mp 92−93 °C (lit.12c 91−
92 °C); 1H NMR (500 MHz, CDCl3): δ 7.82 (dd, J = 8.0, 1.4 Hz,
1H), 7.48 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.33−7.28 (m, 1H), 7.26
(dd, J = 8.4, 0.7 Hz, 1H), 3.68 (s, 3H), 3.34 (tt, J = 11.6, 3.3 Hz, 1H),
1.98−1.93 (m, 2H), 1.90−1.83 (m, 2H), 1.80−1.73 (m, 1H), 1.58
(ddd, J = 24.3, 12.5, 2.9 Hz, 2H), 1.51−1.42 (m, 2H), 1.37−1.28 (m,
1H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.2, 154.5, 132.9,
132.9, 129.8, 129.3, 123.3, 113.4, 40.8, 30.5, 29.0, 26.3, 26.2.
3-Cyclohexyl-1-ethylquinoxalin-2(1H)-one (4). Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 6:1,
Rf = 0.33), white solid (42 mg, 82% yield), mp 113−114 °C. 1H NMR
(500 MHz, CDCl3): δ 7.84 (dd, J = 8.2, 0.9 Hz, 1H), 7.52−7.46 (m,
1H), 7.30 (dd, J = 7.6, 6.8 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.35 (tt,
J = 11.6, 3.2 Hz, 1H), 1.96 (d, J = 11.8 Hz, 2H), 1.90−1.83 (m, 2H),
1.79−1.74 (m, 1H), 1.58 (ddd, J = 24.3, 12.5, 2.8 Hz, 2H), 1.51−1.42
(m, 2H), 1.37 (t, J = 7.2 Hz, 3H), 1.35−1.27 (m, 1H); 13C{1H} NMR
(126 MHz, CDCl3): δ 164.3, 154.0, 133.2, 131.8, 130.1, 129.3, 123.2,
113.3, 40.7, 37.3, 30.6, 26.4, 26.2, 12.4; HRMS (ESI−TOF) m/z: [M
+ Na]+ Calcd for C16H20N2ONa, 279.1468; found, 279.1459.
3-Cyclohexyl-1-isopropylquinoxalin-2(1H)-one (5). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
6:1, Rf = 0.33), white solid (46 mg, 85% yield), mp 107−108 °C 1H
NMR (500 MHz, CDCl3): δ 7.94 (dd, J = 8.1, 0.9 Hz, 1H), 7.74 (dd,
J = 8.1, 0.7 Hz, 1H), 7.57−7.51 (m, 1H), 7.50−7.44 (m, 1H), 5.55
(dt, J = 12.4, 6.2 Hz, 1H), 3.16 (tt, J = 11.8, 3.3 Hz, 1H), 1.96 (d, J =
11.9 Hz, 2H), 1.92−1.87 (m, 2H), 1.77 (d, J = 12.6 Hz, 1H), 1.69
(qd, J = 12.6, 3.1 Hz, 2H), 1.48 (dt, J = 12.7, 3.3 Hz, 2H), 1.43 (d, J =
6.2 Hz, 6H), 1.38−1.31 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3):
δ 155.1, 155.1, 139.6, 138.5, 128.5, 128.4, 126.6, 125.8, 68.8, 40.7,
30.7, 26.6, 26.2, 21.9; HRMS (ESI−TOF) m/z: [M + H]+ Calcd for
C17H23N2O, 271.1805; found, 271.1806.
1-Butyl-3-cyclohexylquinoxalin-2(1H)-one (6). Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 6:1,
Rf = 0.35), white solid (208 mg, 73% yield), mp 118−119 °C. 1H
NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9, 1.4 Hz, 1H), 7.52−
7.45 (m, 1H), 7.29 (td, J = 8.5, 2.7 Hz, 2H), 4.27−4.22 (m, 2H), 3.34
(tt, J = 11.6, 3.2 Hz, 1H), 1.96 (d, J = 11.8 Hz, 2H), 1.90−1.84 (m,
2H), 1.79−1.71 (m, 3H), 1.58 (ddd, J = 24.4, 12.5, 2.9 Hz, 2H),
1.51−1.42 (m, 4H), 1.36−1.28 (m, 1H), 1.00 (t, J = 7.4 Hz, 3H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.2, 154.2, 133.1, 132.0,
130.0, 129.3, 123.2, 113.5, 42.1, 40.7, 30.5, 29.3, 26.4, 26.2, 20.3, 13.8;
HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C18H24N2ONa,
307.1781; found, 307.1786.
3-Cyclohexyl-1-(cyclohexylmethyl)quinoxalin-2(1H)-one (7). Pu-

rified by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.32), yellow solid (51 mg, 79% yield), mp 111−
112 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9, 1.3 Hz,
1H), 7.53−7.43 (m, 1H), 7.28 (dd, J = 14.4, 8.0 Hz, 2H), 4.13 (d, J =
7.1 Hz, 2H), 3.34 (tt, J = 11.6, 3.2 Hz, 1H), 1.96 (d, J = 11.7 Hz, 2H),
1.93−1.84 (m, 3H), 1.79−1.63 (m, 6H), 1.57 (ddd, J = 24.3, 12.5, 2.8
Hz, 2H), 1.51−1.42 (m, 2H), 1.36−1.28 (m, 1H), 1.18 (d, J = 6.2 Hz,
5H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.3, 154.7, 133.1,
132.5, 130.0, 129.1, 123.1, 113.9, 48.1, 40.8, 36.6, 31.0, 30.5, 26.4,
26.2, 25.8; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C21H28N2ONa, 347.2094; found, 347.2085.
Methyl 2-(3-Cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetate (8).

Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.30), white solid (44 mg, 73% yield), mp
118−119 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J = 8.0, 1.4
Hz, 1H), 7.46 (ddd, J = 8.5, 7.4, 1.5 Hz, 1H), 7.36−7.29 (m, 1H),
7.04 (dd, J = 8.3, 0.8 Hz, 1H), 5.03 (s, 2H), 3.77 (s, 3H), 3.32 (tt, J =
11.6, 3.3 Hz, 1H), 2.01−1.95 (m, 2H), 1.90−1.84 (m, 2H), 1.79−
1.74 (m, 1H), 1.58 (ddd, J = 24.5, 12.6, 3.0 Hz, 2H), 1.50−1.41 (m,
2H), 1.36−1.28 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ
167.8, 164.1, 154.1, 133.0, 132.0, 130.2, 129.6, 123.7, 112.9, 52.8,

43.5, 40.8, 30.5, 26.3, 26.1; HRMS (ESI−TOF) m/z: [M + Na]+

Calcd for C17H20N2O3Na, 323.1366; found, 323.1365.
tert-Butyl 2-(3-Cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetate (9).

Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.30), white solid (49 mg, 72% yield), mp
113−114 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (d, J = 8.0 Hz,
1H), 7.49−7.43 (m, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 8.4 Hz,
1H), 4.93 (s, 2H), 3.33 (tt, J = 11.6, 3.0 Hz, 1H), 1.97 (d, J = 12.5 Hz,
2H), 1.86 (d, J = 12.9 Hz, 2H), 1.76 (d, J = 12.8 Hz, 1H), 1.58 (dt, J
= 12.2, 10.1 Hz, 2H), 1.49−1.42 (m, 11H), 1.35−1.28 (m, 1H);
13C{1H} NMR (126 MHz, CDCl3): δ 166.3, 164.1, 154.1, 132.9,
132.1, 130.0, 129.5, 123.6, 112.9, 83.0, 44.3, 40.8, 30.5, 28.0, 26.3,
26.1; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C20H26N2O3Na,
365.1836; found, 365.1817.

1-Allyl-3-cyclohexylquinoxalin-2(1H)-one (10). Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 6:1,
Rf = 0.36), white solid (37 mg, 69% yield), mp 89−90 °C (lit.32b 87−
89 °C); 1H NMR (500 MHz, CDCl3): δ 7.86 (dd, J = 8.0, 1.4 Hz,
1H), 7.50−7.44 (m, 1H), 7.33−7.29 (m, 1H), 7.27 (s, 1H), 5.94 (ddt,
J = 17.1, 10.4, 5.2 Hz, 1H), 5.26 (d, J = 10.4 Hz, 1H), 5.17 (d, J =
17.2 Hz, 1H), 4.94−4.86 (m, 2H), 3.36 (tt, J = 11.6, 3.2 Hz, 1H),
1.97 (d, J = 11.6 Hz, 2H), 1.90−1.84 (m, 2H), 1.77 (d, J = 12.8 Hz,
1H), 1.62−1.54 (m, 2H), 1.51−1.42 (m, 2H), 1.32 (ddd, J = 12.6,
8.1, 3.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.1,
133.0, 132.1, 130.8, 129.8, 129.4, 123.4, 118.0, 114.0, 44.6, 40.8, 30.5,
26.3, 26.2.

1-Benzyl-3-cyclohexylquinoxalin-2(1H)-one (11). Purified by
silica gel column chromatography (200−300 mesh silica gel, PE/EA
= 6:1, Rf = 0.29), white solid (48 mg, 75% yield), mp 132−133 °C
(lit.32b 134−135 °C); 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J =
7.9, 1.0 Hz, 1H), 7.39−7.35 (m, 1H), 7.32−7.28 (m, 2H), 7.28−7.21
(m, 5H), 5.49 (s, 2H), 3.40 (tt, J = 11.6, 3.2 Hz, 1H), 2.01 (d, J = 11.8
Hz, 2H), 1.93−1.86 (m, 2H), 1.78 (d, J = 12.8 Hz, 1H), 1.61 (ddd, J
= 24.6, 12.6, 3.0 Hz, 2H), 1.53−1.43 (m, 2H), 1.37−1.30 (m, 1H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.6, 135.5, 133.2,
132.2, 129.9, 129.4, 128.9, 127.6, 126.9, 123.5, 114.3, 46.0, 40.9, 30.6,
26.4, 26.2.

3-Cyclohexyl-1-(4-methylbenzyl)quinoxalin-2(1H)-one (12). Pu-
rified by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.29), yellow solid (52 mg, 78% yield), mp 145−
146 °C. 1H NMR (500 MHz, CDCl3): δ 7.90−7.74 (m, 1H), 7.41−
7.32 (m, 1H), 7.27−7.23 (m, 2H), 7.15−7.09 (m, 4H), 5.44 (s, 2H),
3.40 (tt, J = 11.7, 3.2 Hz, 1H), 2.29 (s, 3H), 2.01 (d, J = 11.9 Hz, 2H),
1.91−1.85 (m, 2H), 1.77 (d, J = 12.8 Hz, 1H), 1.60 (ddd, J = 24.5,
12.6, 2.9 Hz, 2H), 1.52−1.44 (m, 2H), 1.37−1.28 (m, 1H); 13C{1H}
NMR (126 MHz, CDCl3): δ 164.4, 154.6, 137.3, 133.2, 132.5, 132.3,
129.9, 129.6, 129.3, 127.0, 123.4, 114.3, 45.7, 40.9, 30.6, 26.4, 26.2,
21.1; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C22H24N2ONa,
355.1781; found, 355.1777.

3-Cyclohexyl-1-(4-fluorobenzyl)quinoxalin-2(1H)-one (13). Puri-
fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (50 mg, 73% yield), mp 160−
161 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 8.0, 1.4 Hz,
1H), 7.43−7.34 (m, 1H), 7.30−7.26 (m, 1H), 7.25−7.17 (m, 3H),
7.02−6.97 (m, 2H), 5.44 (s, 2H), 3.39 (tt, J = 11.6, 3.2 Hz, 1H), 2.00
(d, J = 11.8 Hz, 2H), 1.91−1.85 (m, 2H), 1.80−1.74 (m, 1H), 1.60
(ddd, J = 24.5, 12.6, 3.0 Hz, 2H), 1.52−1.43 (m, 2H), 1.33 (ddt, J =
12.8, 9.2, 4.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.4,
162.2 (d, J = 247.0 Hz), 154.5, 133.2, 132.1, 131.3 (d, J = 3.8 Hz),
130.0, 129.4, 128.8 (d, J = 8.8 Hz), 123.6, 115.8 (d, J = 21.4 Hz),
114.0, 45.3, 40.9, 30.6, 26.3, 26.2; 19F{1H} NMR (471 MHz, CDCl3):
δ −114.5. HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C21H21FN2ONa, 359.1530; found, 359.1521.

1-(4-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (14). Puri-
fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (48 mg, 68% yield), mp 157−
158 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J = 8.0, 1.4 Hz,
1H), 7.42−7.36 (m, 1H), 7.31−7.26 (m, 3H), 7.18 (dd, J = 7.9, 5.8
Hz, 3H), 5.44 (s, 2H), 3.38 (tt, J = 11.6, 3.2 Hz, 1H), 2.00 (d, J = 11.8
Hz, 2H), 1.92−1.86 (m, 2H), 1.78 (d, J = 12.8 Hz, 1H), 1.60 (ddd, J
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= 24.5, 12.6, 3.0 Hz, 2H), 1.52−1.43 (m, 2H), 1.34 (ddd, J = 12.7,
8.1, 3.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.5,
134.0, 133.6, 133.2, 132.0, 130.0, 129.5, 129.1, 128.4, 123.6, 114.0,
45.4, 40.9, 30.6, 26.3, 26.2; HRMS (ESI−TOF) m/z: [M + H]+ Calcd
for C21H22ClN2O, 353.1415; found, 353.1413.
1-(4-Bromobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (15). Puri-

fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (58 mg, 73% yield), mp 152−
153 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 7.5 Hz, 1H),
7.40 (dt, J = 15.7, 8.1 Hz, 3H), 7.30−7.25 (m, 1H), 7.16 (d, J = 8.3
Hz, 1H), 7.12 (d, J = 7.4 Hz, 2H), 5.42 (s, 2H), 3.37 (dd, J = 12.7,
10.5 Hz, 1H), 2.00 (d, J = 11.8 Hz, 2H), 1.88 (d, J = 12.3 Hz, 2H),
1.77 (d, J = 12.6 Hz, 1H), 1.60 (dd, J = 25.0, 12.7 Hz, 2H), 1.47 (dd, J
= 23.8, 12.2 Hz, 2H), 1.37−1.29 (m, 1H); 13C{1H} NMR (126 MHz,
CDCl3): δ 164.4, 154.5, 134.6, 133.2, 132.0, 132.0, 130.1, 129.5,
128.8, 123.6, 121.6, 114.0, 45.4, 40.9, 30.6, 26.3, 26.2; HRMS (ESI−
TOF) m/z: [M + Na]+ Calcd for C21H21BrN2ONa, 419.0729; found,
419.0719.
3-Cyclohexyl-1-(3-methylbenzyl)quinoxalin-2(1H)-one (16). Pu-

rified by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), white solid (51 mg, 77% yield), mp 134−
135 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9, 1.3 Hz,
1H), 7.40−7.35 (m, 1H), 7.29−7.22 (m, 2H), 7.18 (t, J = 7.7 Hz,
1H), 7.04 (dd, J = 16.8, 7.6 Hz, 3H), 5.45 (s, 2H), 3.41 (tt, J = 11.6,
3.2 Hz, 1H), 2.29 (s, 3H), 2.01 (d, J = 11.8 Hz, 2H), 1.92−1.86 (m,
2H), 1.78 (d, J = 12.8 Hz, 1H), 1.61 (ddd, J = 24.6, 12.6, 3.0 Hz, 2H),
1.53−1.44 (m, 2H), 1.34 (ddt, J = 12.7, 9.2, 4.6 Hz, 1H); 13C{1H}
NMR (126 MHz, CDCl3): δ 164.4, 154.6, 138.7, 135.5, 133.1, 132.3,
129.8, 129.4, 128.8, 128.4, 127.6, 124.0, 123.4, 114.3, 46.0, 40.8, 30.6,
26.4, 26.2, 21.5; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C22H24N2ONa, 355.1781; found, 355.1789.
1-(3-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (17). Puri-

fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (45 mg, 64% yield), mp 152−
153 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J = 7.9, 1.2 Hz,
1H), 7.41−7.36 (m, 1H), 7.28 (dd, J = 11.2, 4.0 Hz, 1H), 7.22 (d, J =
4.0 Hz, 3H), 7.16 (d, J = 8.3 Hz, 1H), 7.10 (dd, J = 6.4, 3.5 Hz, 1H),
5.44 (s, 2H), 3.39 (tt, J = 11.6, 3.2 Hz, 1H), 2.01 (d, J = 11.8 Hz, 2H),
1.91−1.86 (m, 2H), 1.77 (d, J = 12.8 Hz, 1H), 1.65−1.57 (m, 2H),
1.48 (tdd, J = 12.9, 9.7, 3.2 Hz, 2H), 1.33 (ddt, J = 12.7, 9.2, 4.6 Hz,
1H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.5, 137.6,
134.9, 133.2, 132.0, 130.2, 130.1, 129.5, 128.0, 127.1, 125.1, 123.7,
114.0, 45.5, 40.9, 30.6, 26.4, 26.2; HRMS (ESI−TOF) m/z: [M +
H]+ Calcd for C21H22ClN2O, 353.1415; found, 353.1413.
1-(3-Bromobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (18). Puri-

fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), white solid (50 mg, 63% yield), mp 148−
149 °C. 1H NMR (500 MHz, CDCl3): δ 7.86 (dd, J = 8.0, 1.3 Hz,
1H), 7.47−7.36 (m, 3H), 7.32−7.28 (m, 1H), 7.21−7.10 (m, 3H),
5.45 (s, 2H), 3.39 (tt, J = 11.6, 3.2 Hz, 1H), 2.01 (d, J = 11.8 Hz, 2H),
1.92−1.86 (m, 2H), 1.78 (d, J = 12.8 Hz, 1H), 1.61 (dt, J = 12.6, 9.6
Hz, 2H), 1.53−1.44 (m, 2H), 1.34 (ddd, J = 12.7, 8.1, 3.5 Hz, 1H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.5, 137.9, 133.2,
132.0, 130.9, 130.5, 130.1, 130.0, 129.5, 125.5, 123.7, 123.0, 114.0,
45.4, 40.9, 30.6, 26.3, 26.2; HRMS (ESI−TOF) m/z: [M + H]+ Calcd
for C21H22BrN2O, 397.0910; found, 397.0914.
3-Cyclohexyl-1-(3-nitrobenzyl)quinoxalin-2(1H)-one (19). Puri-

fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.22), white solid (39 mg, 54% yield), mp 203−
204 °C. 1H NMR (500 MHz, CDCl3): δ 8.14 (d, J = 9.0 Hz, 2H),
7.88 (dd, J = 8.0, 1.4 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.50 (t, J =
7.8 Hz, 1H), 7.45−7.38 (m, 1H), 7.36−7.29 (m, 1H), 7.20−7.12 (m,
1H), 5.57 (s, 2H), 3.38 (tt, J = 11.6, 3.2 Hz, 1H), 2.01 (d, J = 11.6 Hz,
2H), 1.93−1.86 (m, 2H), 1.81−1.76 (m, 1H), 1.64 (dd, J = 12.8, 3.2
Hz, 2H), 1.53−1.44 (m, 2H), 1.34 (ddd, J = 12.7, 8.2, 3.6 Hz, 1H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.4, 154.5, 148.6, 137.7,
133.2, 133.0, 131.8, 130.3, 130.1, 129.7, 123.9, 122.9, 122.1, 113.6,
45.3, 40.9, 30.6, 26.3, 26.2; HRMS (ESI−TOF) m/z: [M + H]+ Calcd
for C21H22N3O3, 364.1656; found, 364.1647.

3-Cyclohexyl-1-(2-fluorobenzyl)quinoxalin-2(1H)-one (20). Puri-
fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.32), yellow solid (46 mg, 68% yield), mp 139−
140 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 7.9 Hz, 1H),
7.38 (dd, J = 11.5, 4.1 Hz, 1H), 7.23 (ddd, J = 18.6, 14.3, 8.2 Hz, 3H),
7.11−7.07 (m, 1H), 7.03−6.96 (m, 2H), 5.53 (s, 2H), 3.40 (tt, J =
11.6, 3.1 Hz, 1H), 2.02 (d, J = 13.2 Hz, 2H), 1.88 (d, J = 12.9 Hz,
2H), 1.77 (d, J = 12.7 Hz, 1H), 1.65−1.57 (m, 2H), 1.52−1.44 (m,
2H), 1.37−1.29 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ
164.3, 160.4 (d, J = 245.7 Hz), 154.7, 133.2, 131.9, 130.0, 129.6,
129.4 (d, J = 8.8 Hz), 128.5 (d, J = 2.5 Hz), 124.7 (d, J = 3.8 Hz),
123.6, 122.6 (d, J = 13.9 Hz), 115.5 (d, J = 21.4 Hz) 113.9 (d, J = 1.3
Hz), 40.9, 39.4 (d, J = 5.0 Hz), 30.6, 26.4, 26.2; 19F{1H} NMR (471
MHz, CDCl3): δ −118.3; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd
for C21H21FN2ONa, 359.1530; found, 359.1538.

1-(2-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (21). Puri-
fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (41 mg, 58% yield), mp 136−
137 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (d, J = 7.9 Hz, 1H),
7.42 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.27 (t, J = 7.6 Hz,
1H), 7.18 (t, J = 7.7 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.3
Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 5.55 (s, 2H), 3.40 (tt, J = 11.7, 3.1
Hz, 1H), 2.02 (d, J = 10.2 Hz, 2H), 1.88 (d, J = 13.0 Hz, 2H), 1.77
(d, J = 12.6 Hz, 1H), 1.62 (ddd, J = 24.9, 12.7, 2.9 Hz, 2H), 1.52−
1.43 (m, 2H), 1.37−1.29 (m, 1H); 13C{1H} NMR (126 MHz,
CDCl3): δ 164.3, 154.6, 133.2, 132.7, 132.5, 132.0, 129.9, 129.7,
129.6, 128.8, 127.3, 126.9, 123.7, 114.1, 43.6, 40.9, 30.6, 26.4, 26.2;
HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C21H21ClN2ONa,
375.1235; found, 375.1228.

1-(2-Bromobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (22). Puri-
fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), white solid (50 mg, 63% yield), mp 179−
180 °C. 1H NMR (500 MHz, CDCl3): δ 7.97 (dd, J = 8.1, 1.4 Hz,
1H), 7.82 (dd, J = 8.2, 1.3 Hz, 1H), 7.64−7.56 (m, 3H), 7.55−7.49
(m, 1H), 7.34 (td, J = 7.6, 0.9 Hz, 1H), 7.20 (td, J = 7.7, 1.5 Hz, 1H),
5.63 (s, 2H), 3.29−3.21 (m, 1H), 2.01 (d, J = 11.9 Hz, 2H), 1.92−
1.86 (m, 2H), 1.79−1.67 (m, 3H), 1.51−1.41 (m, 2H), 1.39−1.31
(m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 155.0, 154.7, 139.3,
139.0, 136.3, 132.9, 129.7, 129.4, 128.8, 128.5, 127.5, 126.8, 126.4,
123.4, 67.5, 40.7, 30.8, 26.5, 26.2; HRMS (ESI−TOF) m/z: [M +
H]+ Calcd for C21H22BrN2O, 397.0910; found, 397.0919.

3-Cyclohexyl-1-(2,4-difluorobenzyl)quinoxalin-2(1H)-one (23).
Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.21), yellow solid (45 mg, 63% yield), mp
151−152 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J = 8.0, 1.4
Hz, 1H), 7.41 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.32−7.27 (m, 1H),
7.20 (dd, J = 8.4, 0.8 Hz, 1H), 7.05 (td, J = 8.6, 6.3 Hz, 1H), 6.89−
6.83 (m, 1H), 6.79−6.71 (m, 1H), 5.48 (s, 2H), 3.39 (tt, J = 11.7, 3.3
Hz, 1H), 2.03−1.98 (m, 2H), 1.91−1.86 (m, 2H), 1.78 (ddd, J = 6.3,
3.1, 1.5 Hz, 1H), 1.64−1.56 (m, 2H), 1.48 (dtd, J = 13.0, 9.5, 3.3 Hz,
2H), 1.37−1.29 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ
164.3, 163.4 (d, J = 11.3 Hz), 161.4 (t, J = 11.3 Hz), 159.4 (d, J =
12.6 Hz), 154.7, 133.2, 131.8, 130.1, 129.8 (q, J = 5.0 Hz), 129.6,
123.7, 118.6 (dd, J = 3.8 Hz) 113.6 (d, J = 2.5 Hz), 112.0 (dd, J = 3.8
Hz), 104.0 (t, J = 25.2 Hz), 40.9, 38.9 (d, J = 3.8 Hz), 30.6, 26.3, 26.2;
19F{1H} NMR (471 MHz, CDCl3): δ −110.3 (d, J = 4.7 Hz), −114.0
(d, J = 4.7 Hz); HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C21H20F2N2ONa, 377.1436; found, 377.1431.

3-Cyclohexyl-1-(2,6-dichlorobenzyl)quinoxalin-2(1H)-one (24).
Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.20), white solid (41 mg, 53% yield), mp
157−158 °C. 1H NMR (500 MHz, CDCl3): δ 7.80 (d, J = 7.8 Hz,
1H), 7.36−7.22 (m, 4H), 7.13 (dt, J = 15.6, 7.2 Hz, 2H), 5.80 (s,
2H), 3.38 (dd, J = 15.3, 7.2 Hz, 1H), 1.97 (d, J = 10.7 Hz, 2H), 1.86
(d, J = 12.2 Hz, 2H), 1.76 (d, J = 11.6 Hz, 1H), 1.63−1.54 (m, 2H),
1.52−1.43 (m, 2H), 1.36−1.29 (m, 1H); 13C{1H} NMR (126 MHz,
CDCl3): δ 163.9, 155.2, 135.5, 133.4, 131.9, 131.2, 130.0, 129.4,
129.3, 129.1, 123.3, 114.1, 42.1, 40.8, 30.4, 26.3, 26.2; HRMS (ESI−
TOF) m/z: [M + Na]+ Calcd for C21H20Cl2N2ONa, 409.0845; found,
409.0833.
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3-Cyclohexyl-6-methoxy-1-methylquinoxalin-2(1H)-one (25).
Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.31), white solid (39 mg, 72% yield), mp
166−167 °C. 1H NMR (500 MHz, CDCl3): δ 7.78 (d, J = 8.8 Hz,
1H), 6.91 (dd, J = 8.8, 2.2 Hz, 1H), 6.70 (d, J = 2.2 Hz, 1H), 3.92 (s,
3H), 3.66 (s, 3H), 3.30 (ddd, J = 11.6, 8.6, 3.0 Hz, 1H), 1.93 (d, J =
11.9 Hz, 2H), 1.86 (d, J = 12.9 Hz, 2H), 1.76 (d, J = 12.7 Hz, 1H),
1.62−1.54 (m, 2H), 1.45 (dt, J = 12.9, 7.9 Hz, 2H), 1.34−1.29 (m,
1H); 13C{1H} NMR (126 MHz, CDCl3): δ 160.8, 160.7, 154.8,
134.3, 130.9, 127.6, 110.3, 98.0, 55.8, 40.6, 30.6, 29.2, 26.4, 26.2;
HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C16H20N2O2Na,
295.1417; found, 295.1431.
3-Cyclohexylquinoxalin-2(1H)-one (26). Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 3:1),
white solid (28 mg, 61% yield, Rf = 0.25), mp 174−175 °C (lit.32a

177−178 °C); 1H NMR (500 MHz, DMSO): δ 12.29 (s, 1H), 7.71
(d, J = 8.2 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.26 (t, J = 7.4 Hz, 2H),
3.18 (t, J = 11.2 Hz, 1H), 1.87 (d, J = 12.1 Hz, 2H), 1.81 (d, J = 12.4
Hz, 2H), 1.72 (d, J = 12.3 Hz, 1H), 1.46 (dd, J = 25.2, 12.4 Hz, 2H),
1.41−1.33 (m, 2H), 1.27 (d, J = 12.5 Hz, 1H); 13C{1H} NMR (126
MHz, DMSO): δ 165.3, 154.6, 132.1, 132.0, 129.8, 128.6, 123.5,
115.6, 30.5, 26.3, 26.2.
6-Bromo-3-cyclohexylquinoxalin-2(1H)-one (27). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA
= 3:1, Rf = 0.29), white solid (34 mg, 55% yield), mp 226−227 °C. 1H
NMR (500 MHz, DMSO): δ 12.40 (s, 1H), 7.87 (d, J = 2.2 Hz, 1H),
7.63 (dd, J = 8.7, 2.2 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 3.17 (ddd, J =
11.2, 8.1, 3.2 Hz, 1H), 1.86 (d, J = 13.0 Hz, 2H), 1.81 (d, J = 12.6 Hz,
2H), 1.71 (d, J = 12.8 Hz, 1H), 1.46−1.35 (m, 4H), 1.23 (s, 1H);
13C{1H} NMR (126 MHz, DMSO): δ 166.8, 154.4, 133.1, 132.4,
131.3, 130.7, 117.6, 114.8, 30.4, 26.2, 26.2; HRMS (ESI−TOF) m/z:
[M + H]+ Calcd for C14H16BrN2O, 307.0441; found, 307.0444.
3-Cyclohexyl-6,7-difluoroquinoxalin-2(1H)-one (28). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
3:1, Rf = 0.32), yellow solid (29 mg, 55% yield), mp 246−247 °C. 1H
NMR (500 MHz, DMSO): δ 12.42 (s, 1H), 7.78 (dd, J = 11.1, 8.2
Hz, 1H), 7.18 (dd, J = 11.1, 7.6 Hz, 1H), 3.13 (ddd, J = 11.2, 7.2, 3.0
Hz, 1H), 1.85 (d, J = 12.0 Hz, 2H), 1.80 (d, J = 12.3 Hz, 2H), 1.71
(d, J = 12.7 Hz, 1H), 1.46−1.24 (m, 5H); 13C{1H} NMR (126 MHz,
DMSO): δ 166.0, 154.3, 150.3 (dd, J = 15.1 Hz), 146.0 (dd, J = 2.5
Hz), 129.3 (d, J = 10.1 Hz), 128.5 (d, J = 7.6 Hz), 116.4 (d, J = 18.9
Hz), 103.4 (d, J = 22.7 Hz), 30.4, 26.2, 26.2; 19F{1H} NMR (471
MHz, DMSO): δ −134.6 (d, J = 23.4 Hz), −143.8 (d, J = 23.4 Hz);
HRMS (ESI−TOF) m/z: [M + H]+ Calcd for C14H15F2N2O,
265.1147; found, 265.1145.
6,7-Dichloro-3-cyclohexylquinoxalin-2(1H)-one (29). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
3:1, Rf = 0.30), white solid (38 mg, 64% yield), mp 280−281 °C. 1H
NMR (500 MHz, DMSO): δ 12.43 (s, 1H), 7.94 (s, 1H), 7.41 (s,
1H), 3.15 (ddd, J = 11.2, 7.3, 3.1 Hz, 1H), 1.86 (d, J = 12.1 Hz, 2H),
1.81 (d, J = 12.5 Hz, 2H), 1.71 (d, J = 12.7 Hz, 1H), 1.47−1.24 (m,
5H); 13C{1H} NMR (126 MHz, DMSO): δ 167.3, 154.2, 131.9,
131.8, 131.6, 129.6, 125.2, 116.7, 30.4, 26.2, 26.2; HRMS (ESI−
TOF) m/z: [M + H]+ Calcd for C14H15Cl2N2O, 297.0556; found,
297.0565.
3-Cyclopentyl-1-methylquinoxalin-2(1H)-one (30). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
6:1, Rf = 0.30), white solid (38 mg, 83% yield), mp 91−92 °C (lit.32e

89−91 °C); 1H NMR (500 MHz, CDCl3): δ 7.82 (dd, J = 8.0, 1.4 Hz,
1H), 7.53−7.46 (m, 1H), 7.34−7.27 (m, 2H), 3.73−3.67 (m, 4H),
2.10−2.03 (m, 2H), 1.96−1.89 (m, 2H), 1.86−1.79 (m, 2H), 1.75−
1.67 (m, 2H); 13C{1H} NMR (126 MHz, CDCl3): δ 163.7, 155.0,
133.0, 132.7, 129.7, 129.3, 123.4, 113.4, 42.7, 30.8, 29.0, 25.9.
3-Cycloheptyl-1-methylquinoxalin-2(1H)-one (31). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
6:1, Rf = 0.35), yellow solid (43 mg, 84% yield), mp 99−100 °C. 1H
NMR (500 MHz, CDCl3): δ 7.82 (dd, J = 7.9, 0.9 Hz, 1H), 7.52−
7.47 (m, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.3 Hz, 1H), 3.69
(s, 3H), 3.52−3.45 (m, 1H), 2.01−1.94 (m, 2H), 1.87−1.78 (m, 4H),
1.70 (dd, J = 7.5, 5.3 Hz, 2H), 1.66−1.58 (m, 4H); 13C{1H} NMR

(126 MHz, CDCl3): δ 165.4, 154.5, 132.9, 132.8, 129.7, 129.3, 123.4,
113.4, 42.4, 32.3, 29.1, 28.2, 27.1; HRMS (ESI−TOF) m/z: [M +
Na]+ Calcd for C16H20N2ONa, 279.1468; found, 279.1471.

3-Cyclooctyl-1-methylquinoxalin-2(1H)-one (32). Purified by
silica gel column chromatography (200−300 mesh silica gel, PE/EA
= 6:1, Rf = 0.35), yellow solid (40 mg, 74% yield), mp 112−113 °C.
1H NMR (500 MHz, CDCl3): δ 7.83 (dd, J = 8.0, 1.2 Hz, 1H), 7.53−
7.46 (m, 1H), 7.34−7.30 (m, 1H), 7.28 (d, J = 8.4 Hz, 1H), 3.70 (s,
3H), 3.59−3.53 (m, 1H), 1.89 (dd, J = 11.8, 5.8 Hz, 4H), 1.82 (dd, J
= 12.6, 6.7 Hz, 2H), 1.71−1.62 (m, 8H); 13C{1H} NMR (126 MHz,
CDCl3): δ 165.8, 154.5, 132.9, 132.8, 129.8, 129.3, 123.4, 113.4, 40.5,
30.6, 29.1, 26.7, 26.6, 26.0; HRMS (ESI−TOF) m/z: [M + Na]+

Calcd for C17H22N2ONa, 293.1624; found, 293.1618.
3-Cyclododecyl-1-methylquinoxalin-2(1H)-one (33). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
6:1, Rf = 0.35), white solid (46 mg, 70% yield), mp 119−120 °C. 1H
NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 8.0, 1.3 Hz, 1H), 7.52−
7.46 (m, 1H), 7.33−7.25 (m, 2H), 3.73−3.67 (m, 4H), 1.83−1.73
(m, 4H), 1.61 (dd, J = 12.6, 5.4 Hz, 2H), 1.56−1.41 (m, 7H), 1.35
(ddd, J = 21.0, 15.1, 8.2 Hz, 9H); 13C{1H} NMR (126 MHz, CDCl3):
δ 164.4, 154.9, 132.9, 132.8, 129.8, 129.3, 123.3, 113.4, 36.2, 29.1,
28.1, 24.0, 23.8, 23.6, 23.3, 23.1; HRMS (ESI−TOF) m/z: [M + Na]+

Calcd for C21H30N2ONa, 349.2250; found, 349.2253.
3-((3r,5r,7r)-Adamantan-1-yl)-1-methylquinoxalin-2(1H)-one

(34). Purified by silica gel column chromatography (200−300 mesh
silica gel, PE/EA = 6:1, Rf = 0.35), yellow solid (46 mg, 78% yield),
mp 173−174 °C (lit.14d 169−186 °C); 1H NMR (500 MHz, CDCl3):
δ 7.83 (d, J = 7.3 Hz, 1H), 7.49 (dd, J = 11.4, 4.1 Hz, 1H), 7.30 (t, J =
7.6 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H), 3.65 (s, 3H), 2.25 (d, J = 2.4
Hz, 6H), 2.11 (s, 3H), 1.85−1.77 (m, 6H); 13C{1H} NMR (126
MHz, CDCl3): δ 164.8, 153.7, 133.1, 132.5, 130.1, 129.4, 123.1,
113.2, 42.0, 38.9, 37.0, 28.6, 28.6.

Mixture of 3-(Pentan-2-yl)-1-methylquinoxalin-2(1H)-one and 3-
(Pentan-3-yl)-1-methylquinoxalin-2(1H)-one (35). Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 6:1,
Rf = 0.35), yellow liquid (ratio C2:C3 = 3:1, 33 mg, 72% yield); data
for the C2 product: 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9,
1.4 Hz, 1H), 7.52−7.49 (m, 1H), 7.34−7.30 (m, 1H), 0.88 (t, J = 7.4
Hz, 1H), δ 3.70 (s, 3H), 3.55 (h, J = 6.9 Hz, 1H), δ 1.87 (ddd, J =
16.5, 9.4, 4.4 Hz, 2H), 1.59−1.50 (m, 1H), 1.40−1.26 (m, 4H), 0.92
(t, J = 7.3 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3): δ 164.8,
154.7, 132.9, 132.8, 129.8, 129.4, 123.4, 113.5, 36.9, 29.7, 29.1, 20.7,
18.2, 14.2; data for the C3 product: 1H NMR (500 MHz, CDCl3): δ
7.88−7.84 (m, 1H), δ 7.55−7.49 (m, 1H), δ 7.34−7.28 (m, 2H), δ
3.70 (s, 3H), δ 3.35 (tt, J = 8.0, 5.8 Hz, 1H), δ 1.94−1.80 (m, 1H),
1.70 (ddd, J = 13.4, 7.4, 5.9 Hz, 1H), 1.56 (ddd, J = 7.6, 6.0, 4.2 Hz,
1H), 1.46−1.29 (m, 4H), δ 0.88 (t, J = 7.4 Hz, 3H); 13C{1H} NMR
(126 MHz, CDCl3): δ 163.8, 155.1, 132.9, 132.8, 129.8, 129.4, 123.4,
113.5, 44.6, 35.9, 29.1, 25.8, 18.2, 12.0; HRMS (ESI−TOF) m/z: [M
+ Na]+ Calcd for C14H18N2ONa, 253.1311; found, 253.1303.

1-Methyl-3-(tetrahydrofuran-2-yl)quinoxalin-2(1H)-one (36).12c

Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 6:1, Rf = 0.33), yellow liquid (26 mg, 56% yield). 1H
NMR (500 MHz, CDCl3): δ 7.96 (dd, J = 8.0, 1.2 Hz, 1H), 7.58−
7.53 (m, 1H), 7.37−7.33 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 5.40 (dd,
J = 7.4, 6.0 Hz, 1H), 4.26−4.21 (m, 1H), 4.04−3.99 (m, 1H), 3.71 (s,
3H), 2.54−2.47 (m, 1H), 2.06−2.03 (m, 3H); 13C{1H} NMR (126
MHz, CDCl3): δ 159.5, 154.1, 133.2, 132.5, 130.5, 130.2, 123.7,
113.5, 77.6, 69.2, 30.5, 28.8, 25.7.

3-(1,4-Dioxan-2-yl)-1-methylquinoxalin-2(1H)-one (37). Purified
by silica gel column chromatography (200−300 mesh silica gel, PE/
EA = 6:1, Rf = 0.35), yellow solid (36 mg, 73% yield), mp 135−136
°C (lit.12c 136−138 °C); 1H NMR (500 MHz, CDCl3): δ 8.03 (dd, J
= 8.0, 1.2 Hz, 1H), 7.62−7.56 (m, 1H), 7.39−7.35 (m, 1H), 7.33 (d, J
= 8.4 Hz, 1H), 5.30 (dd, J = 9.5, 2.6 Hz, 1H), 4.27 (dd, J = 11.2, 2.6
Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H), 3.99 (ddd, J = 11.8, 8.0, 6.1 Hz,
1H), 3.84 (dd, J = 8.1, 2.3 Hz, 2H), 3.71 (s, 3H), 3.66 (dd, J = 11.2,
9.6 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 155.1, 153.7,
133.1, 132.6, 130.8, 130.7, 123.9, 113.6, 74.6, 69.4, 67.5, 66.3, 29.0.
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1-(4-Chlorobenzyl)-3-cyclopentylquinoxalin-2(1H)-one (38). Pu-
rified by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.31), yellow solid (45 mg, 66% yield), mp 148−
149 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 7.8 Hz, 1H),
7.38 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.1 Hz, 3H), 7.20−7.13 (m, 3H),
5.45 (s, 2H), 3.86−3.69 (m, 1H), 2.16−2.04 (m, 2H), 1.96 (dd, J =
12.3, 7.4 Hz, 2H), 1.87−1.80 (m, 2H), 1.73 (dd, J = 6.9, 4.5 Hz, 2H);
13C{1H} NMR (126 MHz, CDCl3): δ 163.9, 155.0, 134.0, 133.5,
133.0, 132.1, 130.0, 129.4, 129.1, 128.4, 123.6, 114.0, 45.3, 42.7, 30.9,
26.0; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C20H19ClN2ONa, 361.1078; found, 361.1076.
1-(4-Chlorobenzyl)-3-cycloheptylquinoxalin-2(1H)-one (39). Pu-

rified by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (45 mg, 61% yield), mp 116−
117 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 7.9, 1.3 Hz,
1H), 7.42−7.36 (m, 1H), 7.29 (dd, J = 12.7, 4.8 Hz, 3H), 7.17 (dd, J
= 7.9, 4.9 Hz, 3H), 5.45 (s, 2H), 3.53 (tt, J = 9.7, 3.5 Hz, 1H), 2.05−
1.98 (m, 2H), 1.90−1.79 (m, 4H), 1.71 (dd, J = 7.8, 5.4 Hz, 2H),
1.67−1.61 (m, 4H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.5,
154.4, 134.0, 133.5, 133.1, 132.0, 130.0, 129.4, 129.1, 128.4, 123.6,
114.0, 45.4, 42.4, 32.4, 28.2, 27.2; HRMS (ESI−TOF) m/z: [M +
Na]+ Calcd for C22H23ClN2ONa, 389.1391; found, 389.1388.
1-(4-Chlorobenzyl)-3-cyclooctylquinoxalin-2(1H)-one (40). Puri-

fied by silica gel column chromatography (200−300 mesh silica gel,
PE/EA = 6:1, Rf = 0.30), yellow solid (51 mg, 67% yield), mp 112−
113 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 8.0, 1.4 Hz,
1H), 7.41−7.36 (m, 1H), 7.33−7.26 (m, 3H), 7.23−7.13 (m, 3H),
5.45 (s, 2H), 3.61 (dq, J = 12.8, 4.4 Hz, 1H), 1.91 (td, J = 7.9, 3.5 Hz,
4H), 1.87−1.81 (m, 2H), 1.68 (dt, J = 18.4, 8.0 Hz, 8H); 13C{1H}
NMR (126 MHz, CDCl3): δ 165.9, 154.5, 134.0, 133.5, 133.0, 132.0,
130.0, 129.4, 129.1, 128.3, 123.6, 114.0, 45.4, 40.5, 30.7, 26.7, 26.6,
26.0; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C23H25ClN2ONa, 403.1548; found, 403.1545.
3-((3r,5r,7r)-Adamantan-1-yl)-1-(4-chlorobenzyl)quinoxalin-

2(1H)-one (41). Purified by silica gel column chromatography (200−
300 mesh silica gel, PE/EA = 6:1, Rf = 0.32), white solid (61 mg, 75%
yield), mp 179−180 °C. 1H NMR (500 MHz, CDCl3): δ 7.85 (dd, J
= 7.9, 1.4 Hz, 1H), 7.41−7.35 (m, 1H), 7.28 (dd, J = 10.9, 4.7 Hz,
3H), 7.14 (t, J = 8.1 Hz, 3H), 5.42 (s, 2H), 2.27 (d, J = 2.6 Hz, 6H),
2.13 (s, 3H), 1.86−1.78 (m, 6H); 13C{1H} NMR (126 MHz,
CDCl3): δ 165.0, 153.5, 134.2, 133.4, 132.7, 132.2, 130.3, 129.6,
129.1, 128.2, 123.4, 113.7, 44.9, 42.1, 38.9, 37.0, 28.6; HRMS (ESI−
TOF) m/z: [M + Na]+ Calcd for C25H25ClN2ONa, 427.1548; found,
427.1541.
Mixture of 1-(4-Chlorobenzyl)-3-(pentan-2-yl)quinoxalin-2(1H)-

one [C2] and 1-(4-Chlorobenzyl)-3-(pentan-3-yl)quinoxalin-2(1H)-
one [C3] (42). Purified by silica gel column chromatography (200−
300 mesh silica gel, PE/EA = 6:1, Rf = 0.35), yellow liquid (ratio
C2:C3 = 2:1, 40 mg, 59% yield); data for the C2 product: 1H NMR
(500 MHz, CDCl3): δ 7.87 (d, J = 7.9 Hz, 1H), 7.39 (dd, J = 8.3, 1.1
Hz, 1H), 7.30−7.22 (m, 3H), 7.18 (d, J = 4.6 Hz, 3H), 5.46 (s, 2H),
3.60 (dd, J = 13.7, 6.9 Hz, 1H), 1.95−1.85 (m, 1H), 1.63−1.53 (m,
1H), 1.44 (ddd, J = 9.9, 5.0, 2.2 Hz, 1H), 1.39−1.29 (m, 3H), 0.94 (t,
J = 5.9 Hz, 4H). 13C{1H} NMR (126 MHz, CDCl3): δ 164.9, 154.6,
134.0, 133.5, 133.0, 132.0, 130.0, 129.6, 129.1, 128.3, 123.7, 114.0,
45.3, 37.0, 29.7, 20.8, 18.0, 14.2; data for the C3 product: 1H NMR
(500 MHz, CDCl3): δ 7.88 (d, J = 15.7 Hz, 1H), 7.44−7.34 (m, 1H),
7.33−7.27 (m, 3H), 7.16 (d, J = 7.7 Hz, 3H), 5.46 (s, 2H), 3.45−3.36
(m, 1H), 1.94−1.85 (m, 1H), 1.79−1.70 (m, 1H), 1.44 (ddd, J = 9.9,
5.0, 2.2 Hz, 1H), 1.39−1.32 (m, 3H), 0.91 (t, J = 5.9 Hz, 4H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.1, 155.0, 134.0, 133.5,
132.9, 132.0, 130.0, 129.6, 129.1, 128.3, 123.7, 114.0, 45.3, 44.7, 36.0,
25.9, 18.2, 12.1; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C20H21ClN2ONa, 363.1235; found, 363.1230.
3-Cyclooctyl-1-(3,3-dimethyl-2-oxobutyl)quinoxalin-2(1H)-one

(43). Purified by silica gel column chromatography (200−300 mesh
silica gel, PE/EA = 6:1, Rf = 0.30), white solid (54 mg, 76% yield), mp
136−137 °C. 1H NMR (500 MHz, CDCl3): δ 7.84 (dd, J = 8.0, 1.3
Hz, 1H), 7.43−7.38 (m, 1H), 7.31−7.27 (m, 1H), 6.81 (t, J = 8.7 Hz,
1H), 5.26 (s, 2H), 3.52 (tt, J = 8.5, 4.1 Hz, 1H), 1.89 (dt, J = 12.9, 7.3

Hz, 4H), 1.80 (d, J = 5.6 Hz, 2H), 1.70−1.60 (m, 8H), 1.36 (s, 9H);
13C{1H} NMR (126 MHz, CDCl3): δ 206.7, 165.4, 154.1, 132.9,
132.3, 130.0, 129.3, 123.5, 112.8, 47.0, 43.8, 40.4, 30.6, 26.6, 26.6,
26.5, 26.0; HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for
C22H30N2O2Na, 377.2199; found, 377.2204.

3-((3r,5r,7r)-Adamantan-1-yl)-1-(3,3-dimethyl-2-oxobutyl)-
quinoxalin-2(1H)-one (44). Purified by silica gel column chromatog-
raphy (200−300 mesh silica gel, PE/EA = 6:1, Rf = 0.35), yellow solid
(55 mg, 73% yield), mp 219−220 °C. 1H NMR (500 MHz, CDCl3):
δ 7.84 (dd, J = 8.0, 1.3 Hz, 1H), 7.43−7.37 (m, 1H), 7.28 (dd, J =
10.9, 3.8 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 5.24 (s, 2H), 2.23 (d, J =
2.6 Hz, 6H), 2.10 (s, 3H), 1.84−1.76 (m, 6H), 1.36 (s, 9H).; 13C{1H}
NMR (126 MHz, CDCl3): δ 206.7, 164.4, 153.2, 132.5, 132.5, 130.4,
129.4, 123.2, 112.6, 46.6, 43.8, 41.9, 38.9, 37.0, 28.6, 26.6; HRMS
(ESI−TOF) m/z: [M + Na]+ Calcd for C24H30N2O2Na, 401.2199;
found, 401.2205.

3-Cyclopentylquinoxalin-2(1H)-one (45). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 3:1, Rf =
0.26), white solid (22 mg, 51% yield), mp 214−215 °C. 1H NMR
(500 MHz, DMSO): δ 12.28 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.49−
7.44 (m, 1H), 7.29−7.24 (m, 2H), 3.57 (p, J = 8.1 Hz, 1H), 1.99−
1.92 (m, 2H), 1.87−1.79 (m, 2H), 1.76−1.69 (m, 2H), 1.68−1.61
(m, 2H); 13C{1H} NMR (126 MHz, DMSO): δ 164.8, 155.1, 132.1,
131.9, 129.8, 128.6, 123.5, 115.6, 41.8, 30.7, 25.9; HRMS (ESI−
TOF) m/z: [M + Na]+ Calcd for C13H14N2ONa, 237.0998; found,
237.1005.

3-Cycloheptylquinoxalin-2(1H)-one (46). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 3:1, Rf =
0.25), yellow solid (24 mg, 50% yield), mp 188−189 °C. 1H NMR
(500 MHz, CDCl3): δ 12.36 (s, 1H), 7.83 (dd, J = 8.0, 0.9 Hz, 1H),
7.52−7.45 (m, 1H), 7.36−7.29 (m, 2H), 3.56−3.48 (m, 1H), 2.04−
2.00 (m, 2H), 1.88−1.83 (m, 4H), 1.77−1.71 (m, 2H), 1.67−1.63
(m, 4H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.9, 156.2, 132.9,
130.7, 129.4, 128.8, 124.0, 115.5, 41.8, 32.3, 28.3, 27.1; HRMS (ESI−
TOF) m/z: [M + Na]+ Calcd for C15H18N2ONa, 265.1311; found,
265.1309.

3-Cyclooctylquinoxalin-2(1H)-one (47). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 3:1,
Rf = 0.25), white solid (31 mg, 60% yield), mp 190−191 °C. 1H NMR
(500 MHz, CDCl3): δ 12.31 (s, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.51−
7.44 (m, 1H), 7.32 (t, J = 8.0 Hz, 2H), 3.66−3.52 (m, 1H), 1.94 (dd,
J = 11.3, 5.9 Hz, 4H), 1.84 (d, J = 8.6 Hz, 3H), 1.69 (ddd, J = 16.0,
11.0, 5.9 Hz, 7H); 13C{1H} NMR (126 MHz, CDCl3): δ 166.3, 156.2,
132.9, 130.7, 129.4, 128.8, 123.9, 115.5, 39.9, 30.5, 26.8, 26.6, 25.9;
HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C16H20N2ONa,
279.1468; found, 279.1469.

3-((3r,5r,7r)-Adamantan-1-yl)quinoxalin-2(1H)-one (48). Purified
by silica gel column chromatography (200−300 mesh silica gel, PE/
EA = 6:1, Rf = 0.29), white solid (37 mg, 67% yield), mp 164−165
°C. 1H NMR (500 MHz, DMSO): δ 12.20 (s, 1H), 7.70 (d, J = 7.8
Hz, 1H), 7.46 (dd, J = 11.4, 3.9 Hz, 1H), 7.35−7.18 (m, 2H), 2.16 (s,
6H), 2.06 (s, 3H), 1.75 (s, 6H); 13C{1H} NMR (126 MHz, DMSO):
δ 165.7, 154.1, 132.2, 131.6, 130.0, 128.9, 123.4, 115.2, 41.5, 38.7,
37.0, 28.3; HRMS (ESI−TOF) m/z: [M + H]+ Calcd for C18H21N2O,
281.1648; found, 281.1648.

Mixture of 3-(Pentan-2-yl)quinoxalin-2(1H)-one [C2] and 3-
(Pentan-3-yl)quinoxalin-2(1H)-one [3] (49). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 3:1, Rf =
0.26), white solid (ratio C2:C3 = 2:1, 25 mg, 58% yield), mp 148−
149 °C. Data for the C2 product: 1H NMR (500 MHz, CDCl3): δ
12.37 (s, 1H), 7.86 (t, J = 7.1 Hz, 1H), 7.52−7.45 (m, 1H), 7.34
(ddd, J = 3.7, 3.1, 1.9 Hz, 2H), 3.60 (dd, J = 13.8, 6.9 Hz, 1H), 1.99−
1.85 (m, 2H), 1.48−1.40 (m, 2H), 1.34 (d, J = 6.9 Hz, 2H), 0.95 (t, J
= 7.4 Hz, 4H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.3, 156.5,
132.9, 130.7, 129.5, 128.8, 124.0, 115.5, 37.0, 29.7, 20.7, 18.3, 14.3;
data for the C3 product: 1H NMR (500 MHz, CDCl3): δ 12.37 (s,
1H), 7.86 (t, J = 6.9 Hz, 1H), 7.53−7.44 (m, 1H), 7.35−7.30 (m,
2H), 3.44−3.35 (m, 1H), 1.77 (ddd, J = 13.4, 7.3, 5.9 Hz, 2H), 1.65−
1.54 (m, 2H), 1.34 (t, J = 6.5 Hz, 2H), 0.94−0.89 (m, 4H); 13C{1H}
NMR (126 MHz, CDCl3): δ 164.5, 156.9, 133.0, 130.7, 129.6, 128.9,
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124.0, 115.5, 44.1, 35.4, 25.9, 18.3, 12.0; HRMS (ESI−TOF) m/z:
[M + Na]+ Calcd for C13H16N2ONa, 239.1155; found, 239.1150.
Procedure for the Synthesis of 2-Chloro-3-cyclohexylqui-

noxaline 50. A mixture of 3-cyclohexylquinoxalinone (26) (6.0
mmol), POCl3 (7.2 mmol, 1.2 equiv), and pyridine (6.0 mmol, 1.0
equiv) in a 15 mL pressure tube was stirred at 160 °C in an oil bath
for 2 h. After reaction completion confirmed by TLC, the mixture was
cooled down to room temperature and a saturated NaHCO3 solution
was added to the residue to neutralize the acidic compounds. The
mixture was then extracted with DCM, and the collected organic layer
was washed with brine and dried with MgSO4. The solvent was
removed in vacuo, and the obtained residue was further purified by
silica gel column chromatography (200−300 mesh silica gel).
2-Chloro-3-cyclohexylquinoxaline (50). Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.52), white solid (1.18 g, 80% yield), mp 89−90 °C (lit.33d 94−
96 °C); 1H NMR (500 MHz, CDCl3): δ 8.07−8.03 (m, 1H), 8.01−
7.92 (m, 1H), 7.74−7.67 (m, 2H), 3.34 (tt, J = 11.6, 3.3 Hz, 1H),
2.03 (d, J = 12.1 Hz, 2H), 1.96−1.90 (m, 2H), 1.84−1.78 (m, 1H),
1.71 (dd, J = 17.2, 7.7 Hz, 2H), 1.53−1.44 (m, 2H), 1.41−1.33 (m,
1H); 13C{1H} NMR (126 MHz, CDCl3): δ 159.2, 147.5, 141.2,
140.6, 129.8, 128.8, 128.1, 42.6, 31.3, 26.4, 26.0.
Procedure for the Synthesis of Compound 51. A mixture of

2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), (4-
methoxyphenyl)boronic acid (0.3 mmol, 1.5 equiv), Pd(PPh3)4 (5.0
mol %), K2CO3 (2.0 M in water, 1.1 mL), toluene (1.5 mL), and
EtOH (0.5 mL) in a 15 mL pressure tube was stirred at 115 °C in an
oil bath for 12 h under a N2 atmosphere. After reaction completion
(as indicated by TLC), the mixture was cooled down to room
temperature and water (5 mL) was added to the residue. The mixture
was extracted with DCM, and the collected organic layer was washed
with brine and dried with MgSO4. The solvent was removed in vacuo,
and the obtained residue was further purified by silica gel column
chromatography (200−300 mesh silica gel).
2-Cyclohexyl-3-(4-methoxyphenyl)quinoxaline (51). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
10:1, Rf = 0.35), white solid (52 mg, 82% yield), mp 135−136 °C. 1H
NMR (500 MHz, CDCl3): δ 8.07 (dd, J = 6.9, 1.8 Hz, 2H), 7.69
(ddd, J = 8.4, 7.0, 1.5 Hz, 2H), 7.58−7.50 (m, 2H), 7.05 (d, J = 8.7
Hz, 2H), 3.89 (s, 3H), 3.22−3.12 (m, 1H), 1.86−1.79 (m, 6H), 1.71
(d, J = 12.7 Hz, 1H), 1.38−1.27 (m, 3H); 13C{1H} NMR (126 MHz,
CDCl3): δ 160.1, 160.1, 154.4, 141.6, 140.6, 131.7, 130.3, 129.2,
129.1, 129.0, 128.7, 114.0, 55.4, 42.3, 32.5, 26.4, 25.9; HRMS (ESI−
TOF) m/z: [M + H]+ Calcd for C21H23N2O, 319.1805; found,
319.1802.
Procedure for the Synthesis of Compound 52. A mixture of

2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), p-tolylacetylene
(0.24 mmol, 1.2 equiv), PdCl2(PPh3)2 (5.0 mol %), CuI (7.0 mol %),
and Et3N (1.0 mL) in a 15 mL pressure tube was stirred at 90 °C in
an oil bath for 18 h under a N2 atmosphere. After completion of the
reaction (as indicated by TLC), the mixture was cooled down to
room temperature and water (5 mL) was added to the residue. The
mixture was extracted with DCM, and the collected organic layer was
washed with brine and dried with MgSO4. The solvent was removed
in vacuo, and the obtained residue was further purified by silica gel
column chromatography (200−300 mesh silica gel).
2-Cyclohexyl-3-(p-tolylethynyl)quinoxaline (52). Purified by silica

gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.35), colorless liquid (54 mg, 83% yield). 1H NMR (500 MHz,
CDCl3): δ 8.11−7.97 (m, 2H), 7.74−7.65 (m, 2H), 7.58 (d, J = 8.0
Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 3.54 (tt, J = 11.7, 3.2 Hz, 1H), 2.41
(s, 3H), 2.13 (d, J = 12.3 Hz, 2H), 2.01−1.92 (m, 2H), 1.85−1.74
(m, 3H), 1.58−1.48 (m, 2H), 1.45−1.35 (m, 1H); 13C{1H} NMR
(126 MHz, CDCl3): δ 162.0, 140.8, 140.7, 140.1, 139.4, 132.2, 130.0,
129.4, 129.3, 128.9, 128.7, 118.8, 95.3, 86.4, 43.7, 31.5, 26.7, 26.1,
21.7; HRMS (ESI−TOF) m/z: [M + H]+ Calcd for C23H23N2,
327.1856; found, 327.1863.
Procedure for the Synthesis of Compound 53. A mixture of

2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), morpholine (0.3
mmol, 1.5 equiv), K2CO3 (0.3 mmol, 1.5 equiv), and MeCN (1.5

mL) in a 15 mL pressure tube was stirred at 85 °C in an oil bath for
12 h. After completion of the reaction as indicated by TLC, the
mixture was cooled down to room temperature and water (5 mL) was
added to the residue. The mixture was then extracted with DCM, and
the collected organic layer was washed with brine and dried with
MgSO4. The solvent was removed in vacuo, and the obtained residue
was further purified by silica gel column chromatography (200−300
mesh silica gel).

4-(3-Cyclohexylquinoxalin-2-yl)morpholine (53). Purified by
silica gel column chromatography (200−300 mesh silica gel, PE/EA
= 10:1, Rf = 0.30), colourless liquid (52 mg, 87% yield). 1H NMR
(500 MHz, CDCl3): δ 7.93 (dd, J = 8.1, 1.4 Hz, 1H), 7.82 (dd, J =
8.2, 1.2 Hz, 1H), 7.55 (dtd, J = 15.0, 7.0, 1.4 Hz, 2H), 3.95−3.90 (m,
4H), 3.33−3.28 (m, 4H), 3.06 (ddd, J = 15.0, 9.9, 4.8 Hz, 1H), 1.88
(ddd, J = 50.2, 13.8, 8.5 Hz, 7H), 1.45−1.37 (m, 3H); 13C{1H} NMR
(126 MHz, CDCl3): δ 157.6, 155.5, 139.7, 139.5, 128.7, 128.2, 127.4,
126.9, 66.8, 51.0, 41.4, 32.5, 26.8, 25.9; HRMS (ESI−TOF) m/z: [M
+ H]+ Calcd for C18H24N3O, 298.1914; found, 298.1916.

Procedure for the Synthesis of Compound 54. A mixture of
2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), MeONa (1.0
mmol, 5.0 equiv), and MeOH (1.5 mL) in a 15 mL pressure tube was
stirred at 80 °C in an oil bath for 4 h. After completion of the reaction
(as indicated by TLC), the mixture was cooled down to room
temperature and water (5 mL) was added to the residue. The mixture
was extracted with DCM, and the collected organic layer was washed
with brine and dried with MgSO4. The solvent was removed in vacuo,
and the obtained residue was further purified by silica gel column
chromatography (200−300 mesh silica gel).

2-Cyclohexyl-3-methoxyquinoxaline (54). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.36), colorless liquid (46 mg, 95% yield). 1H NMR (500 MHz,
CDCl3): δ 7.97 (dd, J = 8.2, 1.2 Hz, 1H), 7.79 (dd, J = 8.2, 1.1 Hz,
1H), 7.60−7.53 (m, 1H), 7.53−7.45 (m, 1H), 4.09 (s, 3H), 3.22−
3.12 (m, 1H), 1.96 (dd, J = 13.4, 1.5 Hz, 2H), 1.93−1.86 (m, 2H),
1.78 (ddd, J = 12.6, 4.6, 2.4 Hz, 1H), 1.70 (qd, J = 12.6, 3.0 Hz, 2H),
1.50−1.40 (m, 2H), 1.39−1.31 (m, 1H); 13C{1H} NMR (126 MHz,
CDCl3): δ 156.0, 154.8, 139.5, 138.7, 128.7, 128.4, 126.6, 126.2, 53.7,
40.5, 30.7, 26.5, 26.2; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C15H19N2O, 243.1492; found, 243.1495.

Procedure for the Synthesis of Compound 55. A mixture of
2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), p-methylthiophe-
nol (0.22 mmol, 1.1 equiv), and H2O (1.0 mL) in a 15 mL pressure
tube was stirred at 100 °C in an oil bath for 6 h. After completion of
the reaction (as indicated by TLC), the mixture was cooled down to
room temperature and water (5 mL) was added to the residue. The
mixture was extracted with DCM, and the collected organic layer was
washed with brine and dried with MgSO4. The solvent was removed
in vacuo, and the obtained residue was further purified by silica gel
column chromatography (200−300 mesh silica gel).

2-Cyclohexyl-3-(p-tolylthio)quinoxaline (55). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.35), white solid (55 mg, 82% yield), mp 129−130 °C. 1H NMR
(500 MHz, CDCl3): δ 7.94 (dd, J = 8.1, 1.3 Hz, 1H), 7.64 (dd, J =
8.1, 1.4 Hz, 1H), 7.55−7.44 (m, 4H), 7.27−7.22 (m, 2H), 3.20 (tt, J
= 11.5, 3.2 Hz, 1H), 2.41 (s, 3H), 2.07 (d, J = 12.1 Hz, 2H), 1.97−
1.90 (m, 2H), 1.83−1.73 (m, 3H), 1.55−1.45 (m, 2H), 1.43−1.34
(m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 158.6, 155.5, 141.2,
140.2, 139.1, 135.4, 129.9, 128.7, 128.6, 128.0, 128.0, 125.6, 42.5,
31.4, 26.6, 26.1, 21.4; HRMS (ESI−TOF) m/z: [M + H]+ Calcd for
C21H23N2S, 335.1576; found, 335.1578.

Procedure for the Synthesis of Compound 56. A mixture of
2-chloro-3-cyclohexylquinoxaline (50) (0.2 mmol), tosyl chloride (0.4
mmol, 2.0 equiv), zinc powder (0.2 mmol, 1.0 equiv), and H2O (1.0
mL) in a 15 mL pressure tube was stirred at 100 °C in an oil bath for
12 h. After completion of the reaction (as indicated by TLC), the
mixture was cooled down to room temperature and a saturated
NaHCO3 solution was added to the residue to neutralize the acidic
compounds. The mixture was extracted with DCM, and the collected
organic layer was washed with brine and dried with MgSO4. The
solvent was removed in vacuo, and the obtained residue was further
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purified by silica gel column chromatography (200−300 mesh silica
gel).
2-Cyclohexyl-3-tosylquinoxaline (56). Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.30), white solid (63 mg, 86% yield), mp 165−166 °C. 1H NMR
(500 MHz, CDCl3): δ 8.06 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.2 Hz,
2H), 7.87 (dd, J = 8.4, 0.7 Hz, 1H), 7.83−7.76 (m, 1H), 7.72−7.65
(m, 1H), 7.39 (d, J = 8.1 Hz, 2H), 3.92 (tt, J = 11.5, 3.3 Hz, 1H), 2.49
(s, 3H), 1.95 (d, J = 11.7 Hz, 2H), 1.92−1.86 (m, 2H), 1.81 (td, J =
12.1, 3.1 Hz, 3H), 1.58−1.47 (m, 2H), 1.43−1.33 (m, 1H); 13C{1H}
NMR (126 MHz, CDCl3): δ 158.9, 152.7, 145.0, 142.9, 138.4, 135.4,
132.1, 130.0, 129.8, 129.7, 129.5, 128.6, 42.0, 32.3, 26.4, 25.9, 21.8;
HRMS (ESI−TOF) m/z: [M + Na]+ Calcd for C21H22N2O2SNa,
389.1294; found, 389.1299.
General Procedure for Cerium-Photocatalyzed, Cross-

Dehydrogenative Alkylation of Heteroarene with Alkane. A
mixture of heteroarene (1) (0.2 mmol), alkane (2) (3.0 mmol, 15.0
equiv), CeCl3 (5.0 mol %), Bu4N

+Cl− (20.0 mol %), TFA (100.0 mol
%), and CH3CN (1.0 mL) in a 15 mL tube was stirred under the
irradiation of 405 nm LED (10 W) for 48 h. After completion of the
reaction (as indicated by TLC), a saturated NaHCO3 solution was
added to the residue to neutralize the acidic compounds. The mixture
was then extracted with DCM, and the collected organic layer was
washed with brine and dried with MgSO4. The solvent was removed
in vacuo, and the obtained residue was further purified by silica gel
column chromatography (200−300 mesh silica gel).
1-Cyclohexylisoquinoline (57).10d Purified by silica gel column

chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.33),
colorless liquid (23 mg, 55% yield). 1H NMR (500 MHz, CDCl3): δ
8.49 (d, J = 5.7 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.1 Hz,
1H), 7.71−7.64 (m, 1H), 7.63−7.58 (m, 1H), 7.51 (d, J = 5.7 Hz,
1H), 3.58 (tt, J = 11.7, 3.2 Hz, 1H), 1.96 (ddd, J = 12.7, 11.6, 8.9 Hz,
4H), 1.86 (ddd, J = 22.0, 12.3, 6.2 Hz, 3H), 1.58−1.49 (m, 2H),
1.46−1.38 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.6,
141.3, 136.5, 129.9, 127.6, 127.0, 126.2, 124.9, 119.1, 41.5, 32.6, 26.9,
26.2.
2-Cyclohexyl-4-methylquinoline (58).10d Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.33), colorless liquid (20 mg, 45% yield). 1H NMR (500 MHz,
CDCl3): δ 7.99 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.61−
7.57 (m, 1H), 7.44−7.39 (m, 1H), 2.81 (tt, J = 12.0, 3.3 Hz, 1H),
2.60 (s, 3H), 1.96−1.90 (m, 2H), 1.81 (d, J = 13.1 Hz, 2H), 1.71 (d, J
= 12.8 Hz, 1H), 1.55 (dd, J = 12.5, 3.1 Hz, 2H), 1.39 (dt, J = 12.9, 3.2
Hz, 2H), 1.30−1.24 (m, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ
166.5, 147.5, 144.5, 129.4, 129.0, 127.1, 125.4, 123.6, 120.3, 47.5,
32.8, 26.6, 26.1, 18.9.
4-Bromo-2-cyclohexylquinoline (59).10d Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.32), colorless liquid (25 mg, 51% yield). 1H NMR (500 MHz,
CDCl3): δ 8.17 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.74−
7.69 (m, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.42 (s, 1H), 2.89 (tt, J = 12.0,
3.4 Hz, 1H), 2.04−2.01 (m, 2H), 1.90−1.88 (m, 2H), 1.80−1.77 (m,
1H), 1.65−1.57 (m, 2H), 1.50−1.41 (m, 2H), 1.36−1.31 (m, 1H);
13C{1H} NMR (126 MHz, CDCl3): δ 166.80, 148.58, 142.73, 130.22,
129.25, 126.63, 125.14, 123.90, 119.81, 47.35, 32.69, 26.44, 26.01.
4-Bromo-2-cyclohexylquinoline (60).5d Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.33), yellow liquid (30 mg, 52% yield). 1H NMR (500 MHz,
CDCl3): δ 8.12 (dd, J = 18.4, 7.6 Hz, 2H), 7.74 (t, J = 7.6 Hz, 1H),
7.65 (s, 1H), 7.59 (t, J = 7.6 Hz, 1H), 2.95 (t, J = 10.7 Hz, 1H), 2.05−
2.02 (m, 2H), 1.92−1.89 (m, 2H), 1.81−1.78 (m, 1H), 1.66−1.58
(m, 2H), 1.51−1.43 (m, 2H), 1.37−1.31 (m, 1H); 13C{1H} NMR
(126 MHz, CDCl3): δ 166.61, 130.96, 130.54, 128.96, 128.90, 127.11,
126.61, 126.55, 123.72, 46.93, 32.69, 26.38, 25.96.
2-Bromo-4-cyclohexylquinoline (61).10b Purified by silica gel

column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.35), yellow liquid (28 mg, 48% yield). 1H NMR (500 MHz,
DMSO): δ 8.23 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.81 (t,
J = 7.6 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.49 (s, 1H), 3.38 (s, 1H),
1.90−1.81 (m, 4H), 1.77 (d, J = 13.1 Hz, 1H), 1.54 (t, J = 10.4 Hz,

4H), 1.31 (dd, J = 9.3, 6.1 Hz, 1H); 13C{1H} NMR (126 MHz,
DMSO): δ 157.3, 148.7, 142.5, 130.9, 129.3, 127.6, 125.8, 124.4,
122.4, 38.6, 33.2, 26.6, 26.0.

2-Cyclohexylquinoxaline (62). Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf =
0.36), white solid (13 mg, 31% yield), mp 47−48 °C (lit.33c 43−44
°C); 1H NMR (500 MHz, CDCl3): δ 8.77 (s, 1H), 8.10−8.01 (m,
2H), 7.71 (ddd, J = 12.7, 8.0, 1.3 Hz, 2H), 2.97 (tt, J = 12.0, 3.4 Hz,
1H), 2.04 (d, J = 11.8 Hz, 2H), 1.93 (d, J = 13.3 Hz, 2H), 1.81 (d, J =
12.8 Hz, 1H), 1.76−1.68 (m, 2H), 1.48 (dd, J = 25.8, 12.8 Hz, 2H),
1.37 (t, J = 12.7 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ
161.1, 145.0, 142.2, 141.4, 129.8, 129.1, 129.0, 128.9, 45.1, 32.3, 26.4,
25.9.

2,3-Dicyclohexylquinoxaline (63). Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.25),
white solid (16 mg, 27% yield), mp 66−67 °C (lit.33c 68−69 °C); 1H
NMR (500 MHz, CDCl3): δ 7.98 (dd, J = 6.3, 3.4 Hz, 2H), 7.62 (dd,
J = 6.4, 3.4 Hz, 2H), 3.09 (td, J = 11.1, 5.4 Hz, 2H), 1.98−1.90 (m,
5H), 1.89−1.78 (m, 11H), 1.51−1.37 (m, 6H); 13C{1H} NMR (126
MHz, CDCl3): δ 159.7, 140.9, 128.6, 128.4, 41.7, 32.4, 26.7, 26.0.

2-Cyclohexylquinazolin-4(3H)-one (64). Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.30), white solid (13 mg, 28% yield), mp 210−211 °C (lit.32c

214−215 °C); 1H NMR (500 MHz, DMSO): δ 12.10 (s, 1H), 8.10−
8.05 (m, 1H), 7.80−7.74 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.45 (t, J
= 7.5 Hz, 1H), 2.58 (t, J = 11.8 Hz, 1H), 1.91 (d, J = 12.0 Hz, 2H),
1.80 (d, J = 12.9 Hz, 2H), 1.69 (d, J = 11.8 Hz, 1H), 1.63−1.56 (m,
2H), 1.29 (dd, J = 20.9, 7.7 Hz, 3H); 13C{1H} NMR (126 MHz,
CDCl3): δ 162.6, 154.8, 151.2, 133.7, 126.2, 125.4, 125.2, 119.8, 43.7,
29.6, 24.9, 24.7.

2-Bromo-4-cyclohexyl-6-methylpyridine (65).10b Purified by silica
gel column chromatography (200−300 mesh silica gel, PE/EA = 10:1,
Rf = 0.40), colorless liquid (13 mg, 26% yield). 1H NMR (500 MHz,
CDCl3): δ 7.06 (s, 1H), 6.86 (s, 1H), 2.42 (s, 3H), 2.38−2.32 (m,
1H), 1.77 (d, J = 7.2 Hz, 4H), 1.69 (d, J = 12.5 Hz, 1H), 1.55 (s, 1H),
1.30 (t, J = 10.2 Hz, 4H); 13C{1H} NMR (126 MHz, DMSO): δ
160.7, 159.9, 141.2, 123.8, 121.8, 43.2, 33.1, 26.4, 25.8, 24.0.

2-Bromo-4-cyclohexylpyrimidine (66).32d Purified by silica gel
column chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf
= 0.38), colorless liquid (15 mg, 31% yield). 1H NMR (500 MHz,
DMSO): δ 8.58 (d, J = 5.0 Hz, 1H), 7.50 (d, J = 5.1 Hz, 1H), 2.67 (tt,
J = 11.6, 3.2 Hz, 1H), 1.85 (d, J = 11.5 Hz, 2H), 1.78 (dd, J = 12.6,
3.0 Hz, 2H), 1.69 (d, J = 12.6 Hz, 1H), 1.45 (ddd, J = 23.9, 12.1, 2.4
Hz, 2H), 1.34 (ddd, J = 12.7, 7.7, 2.9 Hz, 2H), 1.24 (t, J = 9.0 Hz,
1H); 13C{1H} NMR (126 MHz, DMSO): δ 178.4, 160.7, 152.6,
119.1, 45.2, 31.7, 26.0, 25.7.

1-Cyclopentylisoquinoline (67).33a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.35),
yellow liquid (25 mg, 63% yield). 1H NMR (500 MHz, CDCl3): δ
8.46 (d, J = 5.7 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.1 Hz,
1H), 7.66 (t, J = 7.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 5.6
Hz, 1H), 4.11−3.95 (m, 1H), 2.12 (ddd, J = 14.4, 12.1, 8.0 Hz, 4H),
1.93 (dt, J = 13.6, 8.0 Hz, 2H), 1.79 (ddd, J = 10.5, 8.3, 3.4 Hz, 2H);
13C{1H} NMR (126 MHz, CDCl3): δ 164.7, 141.5, 136.4, 129.8,
127.4, 127.2, 126.9, 125.3, 119.1, 43.0, 32.8, 26.1.

1-Cycloheptylisoquinoline (68).33a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.36),
yellow liquid (25 mg, 56% yield). 1H NMR (500 MHz, CDCl3): δ
8.48 (d, J = 5.8 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.1 Hz,
1H), 7.69 (t, J = 7.2 Hz, 1H), 7.65−7.59 (m, 1H), 7.51 (d, J = 5.7 Hz,
1H), 3.75 (dt, J = 13.9, 6.6 Hz, 1H), 2.05 (dt, J = 9.5, 5.3 Hz, 4H),
1.96−1.89 (m, 2H), 1.80−1.65 (m, 6H); 13C{1H} NMR (126 MHz,
CDCl3): δ 167.1, 136.7, 130.1, 130.1, 127.7, 127.2, 125.9, 125.1,
119.1, 43.2, 34.6, 28.0, 27.6.

1-Cyclooctylisoquinoline (69).33a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.35),
yellow liquid (20 mg, 42% yield). 1H NMR (500 MHz, CDCl3): δ
8.46 (d, J = 5.7 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.1 Hz,
1H), 7.64 (dd, J = 11.0, 3.9 Hz, 1H), 7.62−7.55 (m, 1H), 7.46 (d, J =
5.7 Hz, 1H), 3.89−3.80 (m, 1H), 2.12−2.04 (m, 2H), 2.00 (ddd, J =
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14.5, 7.8, 3.5 Hz, 2H), 1.89 (dd, J = 7.3, 3.4 Hz, 2H), 1.79−1.63 (m,
8H); 13C{1H} NMR (126 MHz, CDCl3): δ 167.9, 141.7, 136.6,
129.6, 127.6, 126.9, 125.9, 124.9, 118.8, 41.1 33.1, 26.8, 26.8, 26.3.
1-Cyclododecylisoquinoline (70).33b Purified by silica gel column

chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf = 0.33),
yellow liquid (31 mg, 53% yield). 1H NMR (500 MHz, CDCl3): δ
8.51 (d, J = 5.7 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.0 Hz,
1H), 7.67 (t, J = 7.5 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 5.7
Hz, 1H), 3.89 (dd, J = 12.4, 6.2 Hz, 1H), 2.03−1.96 (m, 2H), 1.92−
1.86 (m, 2H), 1.62−1.46 (m, 10H), 1.38 (d, J = 12.5 Hz, 7H), 1.22
(d, J = 6.4 Hz, 1H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.7,
141.3, 136.5, 129.9, 127.6, 127.1, 127.0, 124.8, 119.0, 36.7, 29.8, 23.9,
23.8, 23.7, 23.6, 23.0.
Mixture of 1-(Hexan-2-yl)isoquinoline [C2] and 1-(Hexan-3-

yl)isoquinoline [C3] (71).33a Purified by silica gel column
chromatography (200−300 mesh silica gel, PE/EA = 10:1, Rf =
0.30), yellow liquid (ratio C2:C3 = 5:4, 23 mg, 54% yield). Data for
the C2 product: 1H NMR (500 MHz, CDCl3): δ 8.51 (d, J = 5.0 Hz,
1H), 8.23 (d, J = 10.0 Hz, 1H), 7.82 (d, J = 10.0 Hz, 1H), 7.66 (t, J =
7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 3.83−
3.76 (m, 1H), 2.01−1.98 (m, 2H), 1.78−1.76 (m, 1H), 1.42 (d, J =
10.0 Hz, 3H), 1.33−1.3 (m, 3H), 0.87−0.85 (m, 3H); 13C{1H} NMR
(126 MHz, CDCl3): δ 166.1, 141.8, 136.4, 129.7, 127.6, 126.9, 124.8,
118.9, 37.6, 36.5, 30.1, 22.9, 20.5, 14.1. Data for the C3 product: 1H
NMR (500 MHz, CDCl3): δ 8.54 (d, J = 5.0 Hz, 1H), 8.26 (d, J =
10.0 Hz, 1H), 7.82 (d, J = 10.0 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.59
(t, J = 7.5 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 3.66−3.61 (m, 1H),
1.87−1.83 (m, 1H), 1.76−1.74 (m, 1H), 1.42 (d, J = 10.0 Hz, 3H),
1.14−1.11 (m, 1H), 0.85−0.83 (m, 3H), 0.78 (t, J = 7.5 Hz, 3H);
13C{1H} NMR (126 MHz, CDCl3): δ 165.3, 141.8, 136.3, 128.0,
127.5, 126.8, 125.0, 118.8, 42.9, 36.1, 28.6, 21.0, 14.3, 12.3.
5,7-Dichloro-2-cyclohexyl-4-(4-fluorophenoxy)quinoline (72).10d

Purified by silica gel column chromatography (200−300 mesh silica
gel, PE/EA = 10:1, Rf = 0.25), yellow liquid (40 mg, 51% yield). 1H
NMR (500 MHz, CDCl3): δ 7.99 (s, 1H), 7.50 (d, J = 2.1 Hz, 1H),
7.18−7.14 (m, 2H), 7.12−7.09 (m, 2H), 6.52 (s, 1H), 2.72 (t, J =
10.6 Hz, 1H), 1.88 (d, J = 12.9 Hz, 2H), 1.82 (d, J = 12.7 Hz, 2H),
1.72 (d, J = 12.9 Hz, 1H), 1.46−1.35 (m, 4H), 1.25 (t, J = 10.8 Hz,
1H); 13C{1H} NMR (126 MHz, CDCl3): δ 169.5, 162.6, 160.9,
158.9, 151.0, 150.2, 150.2, 135.0, 130.0, 128.8, 127.2, 122.0, 121.9,
117.2, 117.0, 105.6, 47.0, 32.3, 26.3, 25.8.
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 6-Cyclohexylpicoli-

nate (73). Purified by silica gel column chromatography (200−300
mesh silica gel, PE/EA = 3:1, Rf = 0.28), yellow liquid (22 mg, 32%
yield). 1H NMR (500 MHz, CDCl3): δ 8.68 (d, J = 4.4 Hz, 1H), 7.96
(s, 1H), 7.30 (d, J = 4.1 Hz, 1H), 5.05 (td, J = 10.8, 4.2 Hz, 1H), 2.59
(s, 1H), 2.11 (d, J = 11.8 Hz, 1H), 1.90 (d, J = 10.2 Hz, 4H), 1.70 (d,
J = 22.1 Hz, 6H), 1.47−1.39 (m, 4H), 1.26 (d, J = 11.4 Hz, 3H),
1.15−1.10 (m, 1H), 0.92 (dd, J = 9.8, 6.8 Hz, 6H), 0.80 (d, J = 6.9
Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3): δ 165.2, 158.0, 149.9,
148.3, 125.3, 123.9, 75.8, 46.8, 43.9, 40.8, 34.3, 33.5, 31.5, 26.5, 26.3,
25.8, 23.5, 22.1, 20.8, 16.3; HRMS (ESI−TOF) m/z: [M + H]+ Calcd
for C22H34NO2, 344.2584; found, 344.2585.
8-Cyclohexyl-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione

(74). Purified by silica gel column chromatography (200−300 mesh
silica gel, PE/EA = 3:1, Rf = 0.30), white solid (16 mg, 29% yield), mp
216−217 °C (lit.32c 215−216 °C); 1H NMR (500 MHz, CDCl3): δ
3.86 (s, 3H), 3.51 (s, 3H), 3.32 (s, 3H), 2.70−2.60 (m, 1H), 1.81 (t, J
= 14.7 Hz, 4H), 1.72−1.56 (m, 3H), 1.30 (dd, J = 16.5, 8.8 Hz, 3H);
13C{1H} NMR (126 MHz, CDCl3): δ 157.0, 154.5, 150.8, 147.1,
106.0, 34.8, 30.4, 29.9, 28.7, 26.8, 25.0, 24.5.
6,6′-Dicyclohexyl-4,4′-dimethyl-2,2′-bipyridine (75). Purified by

silica gel column chromatography (200−300 mesh silica gel, PE/EA =
1:2, Rf = 0.25), yellow liquid (17 mg, 24% yield). 1H NMR (500
MHz, CDCl3): δ 7.80 (s, 2H), 7.32 (s, 2H), 3.38 (tt, J = 11.9, 3.1 Hz,
2H), 2.53 (s, 6H), 2.23 (d, J = 11.6 Hz, 4H), 1.89−1.83 (m, 4H),
1.63 (dd, J = 26.0, 12.9 Hz, 6H), 1.41 (dt, J = 12.4, 9.4 Hz, 4H),
1.31−1.26 (m, 2H); 13C{1H} NMR (126 MHz, CDCl3): δ 166.8,
152.1, 147.6, 123.6, 119.0, 46.6, 32.3, 25.0, 24.9, 20.8; HRMS (ESI−

TOF) m/z: [M + H]+ Calcd for C24H33N2, 349.2638; found,
349.2627.
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