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Mid-infrared (MIR) spectroscopy has broad applications 
in the life sciences, remote sensing, security, industrial 
imaging and environmental monitoring1–5. For instance, 

MIR spectroscopy enables structure determination of biologi-
cal molecules and direct probing of almost all gas molecules6. It 
is also a powerful tool for optical communication in free space7. 
Despite tremendous efforts, the development of simple, low-cost 
and low-noise systems for room-temperature MIR detection and 
imaging still leaves much space for improvement8,9. An alterna-
tive approach is to convert radiation from MIR to visible (VIS) and 
near-infrared (NIR) regions, which can be conveniently detected 
and imaged with silicon photodetectors due to their high sensi-
tivity, cost-effectiveness and ease of integration. However, bulky 
nonlinear crystals are usually used to achieve spectral conversion, 
which require delicate polarization control, phase matching and a 
high-power pump laser10–14. Consequently, nonlinear conversion 
requires high optical precision and mechanical stability, resulting 
in costly and complex instrumentation. Coherent detection of MIR 
radiation has recently been reported by surface-enhanced Raman 
scattering in optomechanical double-resonance nanocavities15,16. 
However, this nanocavity approach requires sophisticated design 
and fabrication and works only in a narrow wavelength range as 
molecules with simultaneous Raman and infrared-active vibrations 
are required.

Lanthanide nanophosphors exhibit unique optical proper-
ties—including rich energy levels, long luminescence lifetimes, 
programmable emission bands and high photostability—and have 
found applications in super-resolution imaging, lasing and optoge-
netics17–26. Here we report a new class of optical transducers based 
on lanthanide nanocrystals that enable incoherent broadband 
MIR sensing under ambient conditions by exploiting ratiometric 
NIR luminescence changes. Ratiometric measurements are gener-
ally insensitive to scattered light and instrumental fluctuations27. 

The basic experimental set-up includes a continuous-wave (CW) 
pump laser and lanthanide nanocrystals with quasi-continuous 
energy distribution (Fig. 1). Upon CW–MIR co-radiation, the 
intensity ratio of the two emission bands of the lanthanide nano-
transducers can be modulated, which is the basic mechanism for 
MIR detection. Considering the low lattice phonon energy, hex-
agonal core–shell NaYF4 nanocrystals doped with neodymium 
emitters (NaYF4:Nd3+@NaYF4) were selected as nanotransducers 
(Supplementary Fig. 1a–c). Nd3+ ions can be effectively pumped to 
the 4F7/2 state using a 740 nm CW laser, producing two Stokes emis-
sion bands centred at 806 nm (4F5/2 → 4I9/2) and 866 nm (4F3/2 → 4I9/2) 
(Fig. 1b and Supplementary Fig. 1d). The optimal doping concen-
tration for bright nanotransducers is around 5% (Supplementary 
Fig. 2a).

Notably, the 806 nm emission band is much weaker than 
its 866 nm counterpart, which can be attributed to the rapid, 
multiphonon-assisted, non-radiative depopulation of 4F5/2 to 
the underlying 4F3/2 level (Fig. 1). Benefiting from the ultralong 
luminescence lifetime (tens to hundreds of microseconds) of 
the metastable 4F3/2 state (Supplementary Fig. 2b), efficient MIR 
back-pumping from the long-lived 4F3/2 level to higher energy levels 
(4F5/2, 4F7/2) can occur, leading to an additional population of the 4F5/2 
level while depopulating the 4F3/2 level, thereby greatly increasing 
the 806/866 nm intensity ratio. It should be mentioned that spin–
orbital coupling (L–S coupling) of lanthanide ions usually results 
in multiple densely packed energy levels, and the situation could be 
further facilitated by crystal field-induced splitting (Stark splitting), 
which allows quasi-continuous energy distribution28,29. Nd3+-based 
nanotransducers therefore show a broadband response (~4−11 μm) 
to MIR stimulation. Unlike nonlinear strategies for MIR trans-
ducing, transitions between real existing energy levels occur in 
lanthanide nanotransducers and are independent of polarization 
and phase matching. Consequently, these nanotransducers can 

Incoherent broadband mid-infrared detection with 
lanthanide nanotransducers
Liangliang Liang1,6 ✉, Chongwu Wang2,6, Jiaye Chen1, Qi Jie Wang   2,3 ✉ and Xiaogang Liu   1,4,5 ✉

Spectral conversion of mid-infrared (MIR) radiation to visible (VIS) and near-infrared (NIR) wavelengths is a fundamental 
technology for spectroscopy and imaging; however, current MIR-to-VIS/NIR conversion technology is limited to nonlinear 
optics with bulky crystals or resonant nanocavities. Here we report lanthanide-based MIR-to-NIR nanotransducers that enable 
broadband MIR sensing at room temperature by harnessing ratiometric luminescence changes. The ratiometric luminescence 
of lanthanide nanotransducers in the NIR region can be incoherently modulated by MIR radiation in the 4.5–10.8 µm wavelength 
range. Ratiometric modulation of luminescence enables a detection limit of ~0.3 nW × µm−2 with an internal quantum efficiency 
on the order of 3 × 10−3. The ratiometric sensor based on lanthanide nanotransducers does not require cryogenic cooling, polar-
ization control, phase matching or nanoantenna design for light confinement. We also developed a camera with lanthanide 
nanotransducers, which enable room-temperature MIR imaging. We anticipate that these lanthanide nanotransducers can be 
extended to MIR light manipulation at the microscale for chip-integrated device applications.

Nature Photonics | www.nature.com/naturephotonics

mailto:chmliang@nus.edu.sg
mailto:
qjwang@ntu.edu.sg
mailto:
qjwang@ntu.edu.sg
mailto:chmlx@nus.edu.sg
http://orcid.org/0000-0002-9910-1455
http://orcid.org/0000-0003-2517-5790
http://crossmark.crossref.org/dialog/?doi=10.1038/s41566-022-01042-7&domain=pdf
http://www.nature.com/naturephotonics


Articles Nature Photonics

be efficiently pumped even with a low-cost light-emitting diode, 
although a moderate absolute quantum yield of ~10% can be mea-
sured (Supplementary Fig. 2c).

To prove the concept, we used a simple fluorescence detec-
tion set-up to evaluate the response of prepared lanthanide nano-
transducers to broadband MIR radiation (Fig. 2a). A transducer 
film with a thickness of ~1 μm was prepared by mounting ~25 nm 
NaYF4:Nd@NaYF4 core–shell nanotransducers on a BaF2 window 
(Supplementary Fig. 2d). The 740 nm excitation source and the 
MIR light from a quantum cascade laser (QCL) come from opposite 
directions and converge on the film. Any fluctuation in the ratio-
metric luminescence of nanotransducers was detected in real-time 
with a diffraction grating spectrometer.

Absorption of MIR radiation by the metastable 4F3/2 state is 
the key step in modulating ratiometric luminescence. Additional 
broadband absorption occurred once a 740 nm pump beam was 
added during the Fourier-transform infrared (FTIR) measurement 
(Fig. 2b), signifying the relaying MIR absorption by the metastable 
4F3/2 state. For a film sample consisting of NaYF4:Nd(0.5%)@NaYF4 
nanotransducers, a low peak ratio (806 nm/866 nm) of ~0.06 was 
measured when pumping with a 740 nm laser (Fig. 2c). Interestingly, 
this value increased to ~1.06 when MIR radiation was introduced 
at 8.1 μm (13 μW μm−2). Although a temperature increase on the 
sample from 24 to 36.6 °C was observed under our experimental 
conditions, the increase in the ratio caused by the thermal effect 
contributes less than 1% to the overall effect (Supplementary Fig. 
3a,b). It is noteworthy that the thermal effect leads to an increase in 
both the 806 nm and 866 nm bands. By contrast, MIR co-radiation 
resulted in a drastic increase at 806 nm, but a decrease at 866 nm, 
suggesting that MIR radiation and the accompanying thermal effect 

act simultaneously but differ to some extent in regulating the popu-
lation of lanthanide energy levels (Supplementary Fig. 3c).

More importantly, the population kinetics of the metastable 4F3/2 
state largely determines the responsivity of nanotransducers to MIR 
radiation, as a more stable 4F3/2 state has a greater probability of 
being pumped to higher energy levels by MIR radiation. Increasing 
the doping concentration of lanthanide emitters can generally trig-
ger severe energy cross-relaxation, resulting in accelerated decay of 
the metastable state, as evidenced by the greatly shortened lumines-
cence lifetime (Supplementary Fig. 2b)24,30,31. A numerical simula-
tion was performed based on a simplified energy model of Nd3+ 
emitters, where a larger cross-relaxation rate (kcro) represents the 
case of a higher doping concentration (Supplementary Fig. 4a). The 
simulation results clearly show that less doping is more beneficial to 
improve the transducer’s response to MIR radiation (Supplementary 
Fig. 4b). We next investigated the MIR-to-NIR transduction perfor-
mance of nanotransducers with increasing Nd3+ doping concentra-
tions (0.5, 5, 15 mol%). When we varied the pump power at 740 nm, 
we observed a linear dependence of the downshifting luminescence 
(Fig. 3a). Importantly, the ratio of peaks at 806 and 866 nm is inde-
pendent of the pump power, regardless of the involvement of MIR 
radiation (Supplementary Fig. 5). The MIR-induced increase in 
the ratio is therefore not perturbed by the inevitable fluctuation in 
pump power (Fig. 3b), which is critical for high-precision detec-
tion. The increase in peak ratio scales linearly with the power of 
incident MIR radiation for all nanotransducers (Fig. 3c). In good 
agreement with theoretical simulations, nanotransducers with 
lower Nd3+ content responded more strongly to MIR radiation (Fig. 
3b,c). Moreover, these Nd3+-mediated nanotransducers showed a 
broadband (4.5–10.8 μm) response to MIR stimulation (Fig. 3d).  
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For NaYF4:Nd(0.5%)@NaYF4 nanotransducers, a sensitivity of more 
than 100% μW−1 μm2 was measured at 8−9 μm MIR radiation. These 
lanthanide nanotransducers can reliably detect incident MIR power 
densities below 10 nW μm−2 with a detection limit of ~0.3 nW μm−2 
(Fig. 3e). However, without ratiometric detection, an impaired 
detection limit of 3.5 nW μm−2 was measured by monitoring the 
intensity of the 806 nm band (Supplementary Fig. 6). To quanti-
tatively analyse the MIR response of the nanotransducer, the NIR 
emissions around 806 nm were collected by a silicon photodetector. 
The recorded photovoltages for various MIR frequencies are shown 
in Fig. 3f, from which the external and internal quantum efficiencies 
for MIR-to-NIR were measured on the order of 3 × 10−5 and 3 × 10−3, 
respectively, for the 806 nm band at 8.1 μm radiation, which can be 
attributed to efficient incoherent transduction (Fig. 3f).

Importantly, these lanthanide nanotransducers exhibit excellent 
long-term photostability (Fig. 4a). Upon high-power pumping at 
740 nm and MIR co-irradiation, the peak ratio of a fixed spot on the 
transducer film shows no decline even after 2 h, despite slight fluc-
tuations due to the power instability of the QCL laser source (<1%). 
Furthermore, lanthanide nanotransducers show strong resistance to 
perturbations resulting from temperature fluctuations in the envi-
ronment and the surrounding infrared radiation (Supplementary 
Fig. 7). The wide wavelength response of the lanthanide nanotrans-
ducers can be applied for MIR spectroscopy, which records the 
vibrational pattern of molecules (known as fingerprints) at distinc-
tive frequencies. As a proof of concept, we measured the absorp-
tion spectra for a multicomponent mixture of CH4, SO2, and water 

vapour from 1,290 to 1,670 cm−1. The MIR light passes through 
a 10 cm gas cell filled with the target or reference gases (nitrogen 
gas), and is then focused on the nanotransducer film (Fig. 4b). The 
light attenuation by gas molecules diluted in nitrogen can be well 
recorded by monitoring both the intensity fluctuation at 806 nm 
and the 806/866 nm ratio. It can be found that the absorption 
peaks for each component match well with the simulation from 
the HITRAN database when the 806 nm emission band was used 
to monitor the MIR light absorption32. Importantly, when the ratio-
metric strategy is used, perturbation due to fluctuation in excitation 
power can be well eliminated to further improve the detection limit 
(Supplementary Fig. 8).

We next used lanthanide nanotransducers to demonstrate a proof 
of concept for room-temperature MIR imaging using a low-cost 
CMOS camera (Fig. 4c,d). A MIR light source was projected onto 
the transducer film using a ZnSe lens. The light intensity distribu-
tion on the film was directly imaged by recording the transduced 
NIR emission intensity around 800 nm with the CMOS camera 
(Fig. 4c). A punch-out letter plate illuminated with a 7.3 μm CW–
MIR laser was imaged well with an integration time of 2 ms (Fig. 
4d). Although the imaging performance of the currently developed 
lanthanide nanotransducers is inferior to that of commercial MIR 
cameras based on InSb or HgCdTe semiconductors, which are nor-
mally operated at low temperatures (Supplementary Table 1), the 
imaging quality can be improved by developing much brighter and 
more MIR-sensitive lanthanide nanotransducers, or by fabricating 
more uniform nanotransducer films.

Beam splitter

BaF2 window NaYF4:Nd@NaYF4 nanotransducers

ZnSe lens Lens

740 nm CW

740 nm pump

Ratiometric 
luminescence

MIR
radiation Spectrometer

CW QCL IR
4–11 µm

MIR off

MIR on

×
50

NA = 0.55

λ1 λ2

a

b c

Pump off

Pump on

Populated 
metastable 
state

MIR absorption

780740 820 860 900

In
te

ns
ity

 (
a.

u.
)

Wavelength (nm)

806 nm

866 nm

MIR on (ratio of 806/866 nm: 1.06)

Off On

MIR off (ratio of 806/866 nm: 0.06)

CCD

P
um

p 
on

P
um

p

Nd3+

50 nm

1,800

Wavenumber (cm–1)

H2O

2,200 1,400 1,000
0

20

40

60

80

T
ra

ns
m

itt
an

ce
 (

%
)

0

2

4

P
um

p-induced M
IR

 absorption (%
)

50 µm

Fig. 2 | Ratiometric luminescence transduction from MIR radiation to the NIR region. a, Experimental set-up for MIR sensing. A 740 nm CW laser is 
used to pump the NaYF4:Nd@NaYF4 nanotransducer film, and a CW QCL is selected to provide the MIR radiation from 4 to 11 μm. b, FTIR spectra of the 
nanotransducer film with and without 740 nm laser pumping. The pump-induced MIR absorption (<1.5%) was determined from the difference between 
the two FTIR transmission spectra. c, Change in ratiometric luminescence of NaYF4:Nd (0.5%)@NaYF4 nanotransducers with and without MIR radiation 
(8.1 μm, 13 μW μm−2). The acquisition time is 10 ms. The inset shows photographic images of the nanotransducer film before and after turning on the MIR 
laser, using an 800 nm bandpass filter. The acquisition time for the images is 3 ms. NA, numerical aperture. CCD, charge-coupled device.

Nature Photonics | www.nature.com/naturephotonics

http://www.nature.com/naturephotonics


Articles Nature Photonics

The development of ratiometric luminescent nanotransducers 
provides new possibilities for low-cost, high-efficiency MIR sens-
ing and imaging under ambient conditions. The transduction per-
formance of lanthanide nanotransducers could be further improved 
through optical engineering and rational design of nanocrystal 
structures. For instance, a resonant cavity could be implemented 
to increase the quantum efficiency of optical transducers through 
enhanced light-matter interactions33. Furthermore, incorporation of 
energy transfer into lanthanide nanotransducers may further improve 
the sensitivity of ratiometric luminescence to MIR modulation34, 

and the toolbox of lanthanide nanotransducers could be expanded 
by employing other lanthanide emitters with an extended spectral 
response in the MIR range and better detection performance. From 
the fundamental research perspective, the involvement of lanthanide 
nanotransducers provides the academic community with a useful 
toolbox for light manipulation in the MIR region, and these optical 
nanotransducers could also find stimulating applications in nano-
photonics. For example, lanthanide nanotransducers offer high flex-
ibility in large and microscale patterning through inkjet printing35, 
which has tremendous potential for MIR-integrated photonics.
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Methods
Materials. Sodium hydroxide (NaOH; >98%), ammonium fluoride (NH4F; > 98%), 
1-octadecene (90%), oleic acid (90%), yttrium acetate hydrate (Y(CH3CO2)3⋅xH2O; 
99.9%), neodymium acetate hydrate (Nd(CH3CO2)3⋅xH2O; 99.9%), cyclohexane 
(>98%) and methanol (>99%) were all purchased from Sigma–Aldrich and used as 
received without further purification.

Preparation of lanthanide nanotransducers. Specially designed Nd3+-doped 
nanocrystals were synthesized by a modified co-precipitation method36. In a typical 
procedure, an aqueous solution (4 ml) of Nd(CH3CO2)3 and Y(CH3CO2)3 in various 
molar ratios (x/100 – x, where x = 0.5, 5, 15) was added to a 50 ml flask containing 
6.0 ml of oleic acid and 14 ml of 1-octadecene. The mixture was heated to 150 °C 
and kept for 60 min to form lanthanide–oleate coordination complexes. After 
cooling down to 50 °C, a methanol solution (12 ml) containing NH4F (3.2 mmol) 
and NaOH (2.0 mmol) was added under stirring at 50 °C for 60 min. The solution 
was then heated to 100 °C and kept under vacuum for 20 min to remove the 
volatile residue. The remaining mixture was heated to 290 °C and maintained at 
this temperature for 3 h under an inert nitrogen environment. After cooling to 
room temperature, the resulting nanocrystals were collected by centrifugation, 
washed several times with ethanol, and dispersed in 4 ml of cyclohexane for further 
treatment. To synthesize neodymium-activated core–shell nanocrystals, a shell 
precursor containing 0.8 mmol Y(CH3CO2)3 was prepared following the procedure 
described above. The as-synthesized core nanocrystals were added to the shell 
precursor and kept at 80 °C for 40 min. When the resultant mixture was cooled 
to 50 °C, a methanol solution (12 ml) of NH4F (3.2 mmol) and NaOH (2 mmol) 
was added. After further stirring for 30 min at 50 °C, the reaction was heated to 
100 °C and then the impurities were pumped off, followed by further heating to 
290 °C. After the reaction was completed after 2 h, the as-synthesized core–shell 
nanocrystals were washed with ethanol and then dispersed in 4 ml cyclohexane.  
To remove surface ligands of lanthanide nanotransducers, neodymium-doped 
core–shell nanocrystals dispersed in cyclohexane (1 ml, 0.2 M) were first 
precipitated by adding 4 ml of ethanol. The solid was collected by centrifugation 
and redispersed in 1 ml ethanol. After the addition of 1 ml HCl solution (2 mol l–1), 
the mixture was sonicated for several seconds and then centrifuged. Ligand-free 
nanocrystals were redispersed in 1 ml of ethanol for further use37. Lanthanide 
nanotransducer films were prepared using a simple drop-casting method. 
Specifically, 20 μl of ethanol solution containing ligand-free nanotransducers 
(10 mg ml–1) was dropped onto a BaF2 substrate (5 mm thick) placed in a Petri 
dish. The sample was kept immobile and the Petri dish was covered to reduce the 
evaporation rate and thus the number of cracks.

Optical set-up and data acquisition. A home-built fluorescence detection system 
was used to investigate the response of prepared lanthanide nanotransducers to 
MIR radiation. A multimode laser with a wavelength of 740 nm (CNI-MDL-III) 
was used for excitation. The light was reflected by a 760 nm dichroic long-pass 
filter (Newport HPD760, Newport) and focused on the nanotransducer film 
through a ×50 objective (Mitutoyo, NA = 0.55). For the introduction of the MIR 
source, a QCL with a power tuning of 4.4 to 10.8 μm (Daylight Solutions, MIRcat) 
was used, and the light beam was focused on the nanotransducer film using a 
ZnSe lens with a focal length of 5 cm (Thorlabs). For data collection of ratiometric 
luminescence, a 750 nm long-pass filter was placed between the dichroic filter and 
a lens to focus the emission onto the fibre end of a grating spectrometer (Ocean 
optics, QE Pro). The integration time used for spectrum acquisition is 10 ms. 
Furthermore, the real-time peak ratio between 806 nm and 866 nm can be obtained 
using the peak ratio collection mode of the spectrometer. The limit of detection 
(LOD) is defined in terms of signal value at which a signal-to-noise ratio is one, 
and the standard deviation of the response curve is used to derive the detection 
limit. The LOD is calculated by the equation: LOD = standard deviation/slop, in 
which the standard deviation stands for the standard deviation of the infrared off 
signal (806 nm emission or the ratio of 806/866), the slop is derived from the linear 
fitting for the curve of power-dependent infrared response.

The emission power can be detected and measured with a silicon-amplified 
detector (Thorlabs, PDA36A2). The gain was set to 60 dB, corresponding to a 
responsivity of 7.5 × 105 V W–1. The 800 nm bandpass filter (Thorlabs, FBH800-40) 
was placed in front of the detector to filter the emission around 800 nm. The output 
voltage was connected to a high-sensitivity digital source meter (Keysight, 2912 A). 
For single-band (806 nm) power-dependent photoresponse measurements, the 
infrared emission was modulated with an optical chopper at 15 Hz. The output 
voltage was demodulated with a time constant of 100 ms using a lock-in amplifier 
(Zurich Instruments, HF2LI). The MIR laser power was measured using a thermal 
power meter (OPHIR, Nova display-ROHS).

For the measurement of MIR transduction efficiency, the power of the 
enhanced emission around 806 nm was recorded with an amplified silicon detector 
(Thorlabs, PDA36A2). Considering the transmission of the objective (65%), 
dichroic filter (89%) and lens (91%), an overall collection efficiency of less than 
4% can be estimated. The following expression was used to calculate external and 
internal quantum efficiencies for MIR-to-NIR transduction. The absorption of 
MIR light by the transducer film was measured by the FTIR spectroscopy with and 
without the 740 nm pump laser.

ηExternal =
PowerNIR/(hυNIR)

PowerMIR input/(hυMIR)

ηInternal =
PowerNIR/(hυNIR)

PowerMIR absorbed/(hυMIR)

For MIR imaging demonstration, a QCL CW–MIR laser working at 7.3 μm was 
used as the light source, and a micrometre-sized pattern was placed in front of it to 
obtain a patterned light source. Then the light was projected through a ZnSe lens 
onto a lanthanide nanotransducer film. A CMOS camera (Thorlabs, CS135MUN) 
behind the film was used to record the emission pattern of the transducer film. An 
800 nm bandpass filter (Thorlabs, FBH800-40) was used to extract the transduced 
emission. To achieve MIR imaging using the emission intensity at 806 nm, the 
background images were first taken with (MIR on) and without (MIR off) the MIR 
radiation; the sample was then placed on the MIR light path and an image was 
captured (sample). To extract the contrast information of the sample, the following 
algorithm was used.

Contrast = Sample − MIR off
MIR on − MIR off

For gas sensing demonstration, a gas cell with an optical length of 10 cm 
was placed in the infrared optical path and filled with a reference (N2) or target 
gas (CH4 (0.8%), SO2 (0.2%), H2O (2%)). The intensity of transmitted MIR light 
after passing through the gas cell was then collected by recording the emission 
intensity at 806 nm using a photodetector and/or the 806/866 nm intensity ratio 
using a grating spectrometer (Ocean optics, QE Pro). For the single-band sensing 
(806 nm), the infrared emission was modulated with an optical chopper at 15 Hz. 
The output voltage was demodulated with a time constant of 100 ms using a 
lock-in amplifier (Zurich Instruments, HF2LI). The wavenumber of the QCL 
source was scanned 30 times from 1,290 to 1,670 cm−1. Absorption spectra were 
calculated using the Beer–Lambert law (that is, absorbance = –log10(Igas/IN2)) and 
the concentration for each component was derived using the standard spectra from 
the HITRAN database.

Numerical simulation of the MIR modulation process. The population 
distribution at the different energy levels of neodymium emitters can be well 
simulated with and without the MIR radiation (Supplementary Fig. 5). Here we 
build a simplified model in which only important transition steps are considered. 
As the cross-relaxation process can be facilitated with higher doping concentration, 
varied cross-relaxation rates are used here to study the performance of transducers 
with different doping contents. Moreover, only downshifting processes are involved 
in this model, and minor upconversion processes are ignored; we therefore applied 
the following rate equations for a typical simplified neodymium transducer system:

d(nE1)
dt = −Ppump

λpump

hc σpumpE1 − kcroE1E3 + k21E2 + k41E4 + k31E3; (1)

d(nE2)
dt = 2kcroE1E3 − k21E2; (2)

d(nE3)
dt = −kcroE1E3 + k43E4 − k31E3 − PMIR

λMIR

hc σMIRE3; (3)

d(nE4)
dt = k54E5 − k43E4 − k41E4 + PMIR

λMIR

hc σMIRE3; (4)

d(nE5)
dt = Ppump

λpump

hc σpumpE1 − k54E5; (5)

In these equations, Ppump and PMIR are the power densities of the pump and 
incident MIR beams, respectively; h and c are the Plank constant and the speed 
of light in vacuum, respectively; σpump and σMIR are the absorption cross-sections 
of the pump light and the MIR radiation of the lanthanide ion, respectively; nEi is 
the population of energy level, Ei; kij is the relaxation decay rate from Ei to Ej; and 
kcro is the cross-relaxation rate. The differential equation system was solved using 
Mathematica 12.0 and 1stOpt 9.0 program from 7D Soft High Technology38.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All relevant data that support the findings of this work are available from the 
corresponding author on reasonable request. Source Data are provided with  
this paper.
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Code availability
The Mathematica and 1stOpt-based codes for theoretical modelling and numerical 
simulations are available from the corresponding author on reasonable request.
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