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A B S T R A C T   

A visible-light-mediated multicomponent cascade reaction of heteroarenes with unactivated alkenes and TMSN3 
has been developed. This approach gives a practical solution for the eco-friendly modification of N-heteroarenes 
with a high functional group tolerance and a broad substrate scope. This efficient, green strategy provides access 
to functional compounds that contain both a heteroarene skeleton and an organic azide structure.   

Introduction 

Over the past decade, photocatalysis has emerged as an efficient 
platform to develop robust and valuable organic transformations, 
especially for alkene difunctionalization [1]. Photo-induced radical--
mediated difunctionalization of alkenes provides an environmental 
sustainability strategy to increase molecular and functional complexity 
from simple and readily available starting materials [2]. In those re-
actions, active alkyl radical intermediates have been employed in 
various alkene functionalization, giving valuable compounds in an 
atom-economical fashion. For instance, N-heteroarenes and their de-
rivatives are crucial motifs in bioactive natural products and synthetic 
pharmaceuticals [3]. In recent decades, various methods have been 
developed to introduce different functional groups into N-heterocycles 
[4]. A representative approach is direct arylation of heteroarenes with 
unactivated bromoalkanes and alkenes using a photoredox gold catalyst 
reported by Barriault’s group in 2016 (Scheme 1a) [4]. Recently, Nagib 
and co-workers demonstrated an efficient photocatalytic method to 
enable heteroarene phosphinylalkylation using iridium as the photo-
catalyst [4]. Despite the broad substrate scope and good yields, these 
methods require expensive metal catalysts, increasing experimental 
costs and product toxicity. Considerable efforts have been devoted to 
metal-free reactions without toxic transition metals. For example, Studer 
presented a visible-light-initiated α-perfluoroalkyl-β-heteroarylation of 

alkenes with perfluoroalkyl iodides and quinoxalin-2(1H)-ones [4]. In 
2021, Chu’s group reported an efficient, metal-free protocol for 
three-component sulfonylative pyridylation of styrenes via organic 
photoredox catalysis [4]. 

Orangoazides are important organic compounds due to their trans-
formation diversity, and they are widely applied in building pharma-
ceutical molecules or chemical libraries [5]. Therefore, introduction of 
an azide group into organic molecules has attracted much attention [6]. 
In 2017, Liu and co-workers reported an intermolecular azidoheter-
oarylation of simple alkenes based upon a radical polar effect via a 
metal-free, radical-mediated, multicomponent cascade process [7]. 
Nagib et al. disclosed the multicomponent, radical-mediated addition 
that enabled difunctionalization of alkenes with heteroarenes and a 
variety of radical precursors [8]. Meanwhile, our group described a 
hypervalent iodine(III)-promoted rapidly three-component cascade re-
action of quinoxalinones with unactivated alkenes and trimethylsilyl 
azide (TMSN3) (Scheme 1b). However, from the perspective of green 
chemistry, the requirement of stoichiometric amounts of oxidants is still 
a major restriction hindering broad application of these reactions. 
Therefore, it is of high synthetic value to develop simple and practical 
methods for the introduction of an azide group into organic molecules 
[9]. 

To develop efficient and straightforward strategies for synthesizing 
valuable compounds [10], we report a protocol for intermolecular 
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Scheme 1. The Multicomponent Cascade Reaction of Heteroarenes.  

Table 1 
Screening of Reaction Conditions for the Multicomponent Cascade Reactiona,b.  

Entry Photocatalyst Solvent Time Yield (%) 

1 PC-1 DCM 1 h 88 
2 PC-2 DCM 1 h 24 
3 PC-3 DCM 1 h 38 
4 PC-4 DCM 1 h 34 
5 PC-5 DCM 1 h 77 
6 PC-6 DCM 1 h 69 
7 PC-7 DCM 1 h 47 
8 PC-1 THF 1 h 35 
9 PC-1 toluene 1 h 45 
10 PC-1 DMSO 1 h 52 
11 PC-1 DMF 1 h 38 
12 PC-1 DCM 2 h 88 
13 PC-1 DCM 30 min 86 
14 PC-1 DCM 15 min 63 
15c PC-1 DCM 30 min trace 
16d PC-1 DCM 30 min 84 
17e PC-1 DCM 30 min 87 
18f PC-1 DCM 1 h 68 
19e PC-1, dark DCM 30 min 0 
20g – DCM 30 min 0  

a 1a (0.2 mmol), 2a (1.3 equiv), 3 (1.3 equiv), photocatalyst (4 mol%), solvent (1.0 mL), rt, irradiation with 6 W blue LEDs (420 nm) under air. 
b Isolated yields. 
c Under N2. 
d Under O2. 
e PC-1 (2 mol%). 
f PC-1 (1 mol%). 
g No PC-1. 
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Table 2 
Substrate Scope of Quinoxalin-2(1H)-ones for the Multicomponent Cascade Reactiona,b.  

a 1 (0.2 mmol), 2a (1.3 equiv), 3 (1.3 equiv), PC-1 (2 mol%), DCM (1.0 mL), rt, irradiation with 6 W blue LEDs under air. 
b Isolated yields. 

Table 3 
Substrate Scope of Alkenes for the Multicomponent Cascade Reactiona,b.  

a 1a (0.2 mmol), 2 (1.3 equiv), 3 (1.3 equiv), PC-1 (2 mol%), DCM (1.0 mL), rt, irradiation with 6 W blue LEDs under air. 
b Isolated yields. 
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azidoheteroarylation of unactivated alkenes based on visible light 
stimulation. Importantly, our method can be performed at room tem-
perature in a sustainable fashion, unlike traditional reactions that 
typically require hypervalent iodine(III) for azide radical generation 
from TMSN3 [11]. 

Results and discussion 

We commenced our study by examining the reaction of quinox-
alinone (1a), 1-amylene (2a), and TMSN3 (3) in the presence of 5 mol% 
of Acr+MesClO4

− (PC-1) and dichloromethane (DCM) under irradiation 
with a 6 W LED. From this versatile test reaction, the desired product 
(4a) was generated in 88% yield (Table 1, entry 1). To optimize reaction 

Table 4 
Substrate Scope of N–Heteroarenes for the Multicomponent Cascade Reactiona,b.  

a 5 (0.2 mmol), 2a (1.3 equiv), 3 (1.3 equiv), TFA (1.1 equiv), PC-1 (2 mol%), DCM (1.0 mL), rt, irradiation with 6 W blue LEDs under air. 
b Isolated yields. 

Table 5 
Substrate Scope of Alkenes with Isoquinoline for the Multicomponent Cascade Reactiona,b.  

a 5v (0.2 mmol), 2 (1.3 equiv), 3 (1.3 equiv), TFA (1.1 equiv), PC-1 (2 mol%), DCM (1.0 mL), rt, irradiation with 6 W blue LEDs under air. 
b Isolated yields. 
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conditions, we investigated the effect of photocatalyst and solvent on the 
reaction yield. As shown in entries 1–11, the highest yield was 88% 
when the reaction was carried out using Acr+MesClO4

− (PC-1) as the 
photocatalyst in dichloromethane (DCM). The reaction was finished 
within 30 min (Table 1, entries 12–14). No desired product was detected 
when the model reaction was conducted under a nitrogen atmosphere, 
implying that O2 might play an essential role in this transformation 
(Table 1, entry 15). However, when the model reaction was conducted 
under a O2 atmosphere, the yield of desired product would not be 
enhanced (Table 1, entry 16). When the catalyst loading was reduced to 
2 mol%, the reaction afforded 4a in 87% yield (Table 1, entry 17). 
Further reduction of catalyst loading to 1 mol% decreased the product 
yield, even after one hour of reaction (Table 1, entry 18). Moreover, 
transformation did not occur in the absence of light stimulation and PC- 
1 (Table 1, entries 19–20). 

Under the optimized condition, we studied the substrate scope of the 
multicomponent cascade reaction (Table 2). We first examined the 
compatibility of different quinoxalin-2(1H)-ones. Quinoxalin-2(1H)- 
ones with a wide range of N-substituents such as methyl, 

cyclopropylmethyl, acetyl ester, and benzyl groups, were well tolerated, 
giving corresponding products (4a-4d) in 81–87% yields. Quinoxalin-2 
(1H)-ones bearing methoxy‑, methyl-, and bromo‑ groups on the ben-
zene ring were also compatible, yielding products (4e-4 h) in 75–82% 
yields. It is worth noting that unsubstituted N–H substrates with 
methyl- and halo- moieties on the benzene ring could also be trans-
formed into corresponding products in acceptable yields (4i-4l). These 
results show that the multicomponent cascade reaction is compatible 
with a wide range of quinoxaline derivatives. Furthermore, the substrate 
scope of alkenes was explored (Table 3). The reaction was suitable for 
the cyclic and multiply substituted alkenes, providing corresponding 
products (4 m and 4n) in 79% and 82% yields. Subsequently, various 
alkenes with different functional groups, such as ester, hydroxy and 
halo, were well tolerated, giving target products (4o-4t) in 69–79% 
yields. Of note, a wide range of styrenes containing both electron- 
donating and electron-withdrawing groups proceeded smoothly, 
affording corresponding products (4u-4ab) in moderate to high yields. 
To further test the scalability of this method, alkenes containing aspirin, 
ibuprofen, salicylic acid, and naproxen moieties were examined, with 

Scheme 2. Control Experiments of the Multicomponent Cascade Reaction.  

Scheme 3. Plausible Mechanism for the Multicomponent Cascade Reaction.  
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corresponding products (4ac-4af) in good yields. 
N-heteroarenes are essential in biological synthesis, especially in 

research for new therapeutic agents. To this end, we investigated the 
scope of N-heteroarenes for three-component coupling (Table 4). A se-
ries of quinolines with diverse substituents, such as alkyl, halo and 
alkoxy, gave corresponding products (6a-6 m) in 38–51% yields. Qui-
noxaline, quinazoline, phthalazine, phenanthroline and its derivatives 
were also effective substrates (6o-6v) for transformation. To further 
examine the substrate scope, a variety of alkenes were studied (Table 5). 
Nonfunctionalized linear and cyclic alkenes reacted with isoquinoline 
smoothly, affording desired products (6w-6aa) in 41–54% yields. 
Diverse functional groups, such as benzyl, ether, ester, and halo, were 
well tolerated (6ab-6ah). It is noteworthy that privileged scaffolds in 
relevant antiphlogistic drugs, such as aspirin, ibuprofen and naproxen, 
were amenable to this protocol, giving target products (6ai-6ak) in 
41–47% yields. 

To probe the mechanism underlying the multicomponent cascade 
reaction, a series of control experiments were performed (Scheme 2). 
First, the addition of 2.0 equivalents of radical scavenger TEMPO 
(2,2,6,6-tetramethyl-1-piperidinyloxy) led to complete inhibition of 
transformation (Scheme 2a). In addition, the radical clock experiments 
provided the desired products (8a and 8b) in 71% and 47% yields. These 
results strongly support that a radical mechanism is involved in this 
cascade reaction (Scheme 2bc). 

According to above results and previous literature, [12] a plausible 
mechanism for this cascade reaction was proposed in Scheme 3. Firstly, 
the excited *PC-1 was generated from PC-1 under visible light irradia-
tion (Ered* = 2.06 V vs. SCE)[9].a Then, TMSN3 (3) reacted with *PC-1 
to produce the azido radical and PC-1¡ via a single electron transfer 
(SET) process. The oxidation potential of the free azide anion was found 
to be +1.32 V (NHE) [9]. Subsequently, the azido radical attacked 
alkene 2 to produce alkyl radical (A), which then reacted with N-het-
eroarene to furnish a nitrogen radical intermediate (B). Meanwhile, 
another SET process took place between PC-1¡ and O2, providing an 
O2
•− species with the regeneration of PC-1 [13]. Finally, the O2

•− species 
oxidized the intermediate (B) to afford the corresponding coupling 
product. 

Conclusions 

In conclusion, we have developed a visible-light-mediated method 
for the cascade reaction of N-heteroarenes with unactivated alkenes and 
TMSN3. The mildness of the strategy permits high tolerance of func-
tional groups and enables the synthesis of diverse heteroarenes with 
medicinal relevance. 

Supplementary Materials 

Supplementary material associated with this article can be found, in 
the online version, at XXX. 

CRediT authorship contribution statement 

Jiabin Shen: Investigation, Writing – original draft. Lei He: Inves-
tigation, Writing – original draft. Chenfeng Liang: Conceptualization. 
Yani Ouyang: Conceptualization. Xiaoguang Yue: Conceptualization. 
Haifeng Wu: Writing – review & editing. Jun Xu: Writing – review & 
editing. Xiaogang Liu: Project administration, Writing – review & 
editing. Qing Zhu: Project administration, Writing – review & editing. 
Pengfei Zhang: Project administration, Writing – review & editing. 

Declaration of Competing Interest 

We have no conflict of interest to declaration. 

Acknowledgments 

We thank the National Natural Science Foundation of China 
(22178078, 21871071), Natural Science Foundation of Zhejiang Prov-
ince (No. LY17B060009) and “Ten-Thousand Talents Plan” of Zhejiang 
Province (No. 2019R51012) for financial supports. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.mcat.2022.112330. 

References 

[1] (a) D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. A multi-faceted 
concept for green chemistry, Chem. Soc. Rev. 38 (2009) 1999–2011, https://doi. 
org/10.1039/B714786B. https://doi.org/; 
(b) J.M. Narayanam, C.R. Stephenson, Visible light photoredox catalysis: 
applications in organic synthesis, Chem. Soc. Rev. 40 (2011) 102–113, https://doi. 
org/10.1039/B913880N. https://doi.org/; 
(c) N.A. Romero, D.A. Nicewicz, Organic Photoredox Catalysis, Chem. Rev. 116 
(2016) 10075–10166, https://doi.org/10.1021/acs.chemrev/6b00057. https:// 
doi.org/; 
(d) J.J. Douglas, M.J. Sevrin, C.R.J. Stephenson, Visible Light Photocatalysis: 
applications and New Disconnections in the Synthesis of Pharmaceutical Agents, 
Org. Process Res. Dev. 20 (2016) 1134–1147, https://doi.org/10.1021/acs. 
oprd.6b00125. https://doi.org/; 
(e) L. Marzo, S.K. Pagire, O. Reiser, B. Konig, Visible-Light Photocatalysis: does It 
Make a Difference in Organic Synthesis?, Angew. Chem., Int. Ed. 57 (2018) 
10034–10072, https://doi.org/10.1002/anie.201709766. https://doi.org/; 
(f) J. Xuan, W.J. Xiao, Visible-Light Photoredox Catalysis, Angew. Chem., Int. Ed. 
51 (2012) 6828–6838, https://doi.org/10.1002/anie.201200223. https://doi.org/; 
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