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Chapter 1

A Brief History of Greek
Mathematics

1.1 Early Greek mathematics

At the dawn of civilization, man discovered two mathematical concepts: “multiplicity” and “space”.
The first notion involved counting (of animals, days, etc.) and the second involved areas and vol-
umes (of land, water, crop yield, etc). These evolved into two major branches of mathematics:
arithmetic and geometry. (The word “geometry” is derived from the Greek roots “geo” meaning
“earth” and “metrein” meaning “measure”.) The mathematics of the Egyptians and the Babylonians
was essentially empirical in nature. It has been traditional to state that demonstrative mathematics
first appeared in the sixth century B.C. The Greek geometer, Thales of Miletus, is credited for giving
some logical reasoning (rather than by intuition and experimentation) for several elementary results
involving circles and angles of triangles. The next major Greek mathematician is Pythagoras (born
ca. 572 B.C.) of Samos. He founded a scholarly society called the Pythagorean brotherhood (it was
an academy for the study of philosophy, mathematics and natural science; it was also a society with
secret rites). The Pythagoreans believed in the special role of “whole number” as the foundation
of all natural phenomena. The Pythagoreans gave us 2 important results: Pythagorean theorem,
and more importantly (albeit reluctantly), the irrational quantities (which struck a blow against the
supremacy of the whole numbers). The Pythagorean, Hippasus, is credited with the discovery that
the side of a square and its diagonal are incommensurable (i.e. a square of length 1 has a diagonal
with irrational length). This showed that the whole numbers are inadequate to represent the ratios
of all geometric lengths. This discovery established the supremacy of geometry over arithmetic in
all subsequent Greek mathematics. For all the trouble that Hippasus caused, the Pythagoreans sup-
posedly took him far out into the Mediterranean and tossed him overboard to his death - thereby
indicating the dangers inherent in free thinking, even in the relatively austere discipline of mathe-
matics! Hippocrates of Chios (born ca. 440 B.C.) is credited with two significant contributions to
geometry. The first was his composition of the first Elements: the first exposition developing the
theorems of geometry precisely and logically from a few given axioms and postulates. This treatise

(which has been lost to history) was rendered obsolete by that of Euclid. His other contribution was
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6 CHAPTER 1. A BRIEF HISTORY OF GREEK MATHEMATICS

the quadrature of the lune.

Plato (427-347 B.C.) studied philosophy in Athens under Socrates. He then set out on his travels,
studying mathematics under Theodorus of Cyrene in North Africa. On his return to Athens in 387
B.C. he founded the Academy. Plato’s influence on mathematics was not due to any mathematical
discoveries, but rather to his conviction that the study of mathematics provides the best training for
the mind, and was hence essential for the cultivation of philosophers. The renowned motto over the
door of his Academy states:

Let no one ignorant of geometry enter here.

Aristotle, a pupil of Plato, was primarily a philosopher. His contribution to mathematics is his analy-
sis of the roles of definitions and hypotheses in mathematics. Plato’s Academy did however produce
some great mathematicians, one of whom is Eudoxus (ca. 408-355 B.C.). With the discovery of
the incommensurables, certain proofs of the Pythagoreans in geometric theorems (such as those on
similar triangles) were rendered false. Eudoxus developed the theory of proportions which circum-
vented these problems. This theory led directly to the work of Dedekind (Dedekind cuts) in the
nineteenth century. His other great contribution, the method of exhaustion, has applications in the
determination of areas and volumes of sophisticated geometric figures. This process was used by
Archimedes to determine the area of the circle. The method of exhaustion can be considered the
geometric forerunner of the modern notion of “/imif” in integral calculus. Menaechmus (ca. 380 -
320 B.C.), a pupil of Eudoxus, discovered the conic sections. There is a legendary story told about
Alexander the Great (356-323 B.C.) who is said to have asked his tutor, Menaechmus, to teach him
geometry concisely, to which the latter replied,
O king, through the country there are royal roads and roads for common citizens, but in
geometry there is one road for all.

Alexander entered Egypt and established the city of Alexandria at the mouth of the Nile in 332 B.C.
This city grew rapidly and reached a population of half a million within three decades. Alexander’s
empire fell apart after his death. In 306 B.C. one of his generals, Ptolemy, son of Lagos, declared
himself King Ptolemy I (thereby establishing the Ptolemaic dynasty). The Museum and Library of
Alexandria were built under Ptolemy I. Alexandria soon supplanted the Academy as the foremost
center of scholarship in the world. At one point, the Library had over 600,000 papyrus rolls. Alexan-
dria remained the intellectual metropolis of the Greek race until its destruction in A.D. 641 at the
hands of the Arabs. Among the scholars attracted to Alexandria around 300 B.C. was Euclid, who
set up a school of mathematics. He wrote the “Elements”. This had a profound influence on western
thought as it was studied and analyzed for centuries. It was divided into thirteen books and contained
465 propositions from plane and solid geometry to number theory. His genius was not so much in
creating new mathematics but rather in the presentation of old mathematics in a clear, logical and
organized manner. He provided us with an axiomatic development of the subject. The Elements
begins with 23 definitions, 5 postulates and 5 common notions or general axioms. From these he
proved his first proposition. All subsequent results were obtained from a blend of his definitions,
postulates, axioms and previously proven propositions. He thus avoided circular arguments. There
is a story about Euclid (reminiscent of the one about Menaechmus and Alexander): Ptolemy I once
asked Euclid if there was in geometry any shorter way than that of the Elements, to which Euclid
replied,
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There is no royal road to geometry.

The greatest mathematician of antiquity is Archimedes (287-212 B.C.) of Syracuse, Sicily. He
made great contributions in applied mechanics (especially during the second Punic War against the
Romans - missile weapons, crane-like beaks and iron claws for seizing ships, spinning them around,
sinking or shattering them against cliffs,...), astronomy and hydrostatics. He devised methods for
computing areas of curvilinear plane figures, volumes bounded by curved surfaces and methods of
approximating 7. Using the method of exhaustion (of Eudoxus), he anticipated the integral calculus
of Newton and Leibniz by more than 2000 years; in one of his problems he also anticipated their
invention of differential calculus. The above-mentioned problem involved constructing a tangent at
any point of his spiral. There are numerous stories told about Archimedes. According to Plutarch,
Archimedes would

... forget his food and neglect his person, to that degree that when he was occasionally

carried by absolute violence to bathe or have his body anointed, he used to trace geomet-

rical figures in the ashes of the fire, and diagrams in the oil of his body, being in a state of

entire preoccupation, and, in the truest sense, divine possession with his love and delight

in science.
The death of Archimedes as told by Plutarch:

...as fate would have it, intent upon working out some problem by a diagram, and having
fixed his mind alike and his eyes upon the subject of his speculation, he never noticed the
incursion of the Romans, nor that the city was taken. In this transport of study and contem-
plation, a soldier, unexpectedly coming up to him, commanded him to follow to Marcellus;
which he declined to do before he had worked out his problem to a demonstration, the

soldier, enraged, drew his sword and ran him through.

The next major mathematician of the third century B.C. was Apollonius (262-190 B.C.) of Perga,
Asia Minor. His claim to fame rests on his work Conic Sections in eight books. It contains 400
propositions and supersedes the work in that subject of Menaechmus, Aristacus and Euclid. The
names “ellipse,” “parabola” and “hyperbola” were supplied by Apollonius. His methods are similar
to modern methods and he is said to have anticipated the analytic geometry of Descartes by 1800
years.

The end of the third century B.C. saw the end of the Golden Age of Greek Mathematics. In the
next three centuries only one mathematician made a significant contribution, Hipparchus of Nicaea
(180-125 B.C.), who founded trigonometry.

SOME QUOTATIONS

Carl Friedrich Gauss: “... that the sum of the angles cannot be less than 180°: this is the critical
point, the reef on which all the wrecks occur.”

Janos Bolyai: “Out of nothing I have created a strange new universe.”

Bernhard Riemann: “The unboundedness of space possesses a greater empirical certainty than any
external experience. But its infinite extent by no means follows from this.”

Bertrand Russell: “... what matters in mathematics ... is not the intrinsic nature of our terms but the
logical nature of their interrelations.”
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1.2 Euclid’s Elements

EXTRACT FROM BOOK I OF EUCLID’S ELEMENTS

To illustrate the systematic approach that Euclid used in his elements, we include below an extract
from Book 1 of the Elements.

DEFINITIONS

1. A point is that which has no part.

2. Aline is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6.  The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on itself.

8. A plane angle is the inclination to one another of two lines in a plane which meet one another

and do not lie in a straight line.

9.  And where the lines containing the angles are straight, the angle is called rectilineal .

10.  When a straight line set up on a straight line makes the adjacent angles equal to one another,
each of the equal angles is right, and the straight line standing on the other side is called a
perpendicular to that on which it stands.

11.  An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight lines falling upon it
from one point among those lying within the figure are equal to one another;

16.  And the point is called the centre of the circle.

17. A diameter of the circle is any straight line drawn through the centre and terminated in both
directions by the circumference of the circle, and such a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference cut off by it. And
the centre of the semicircle is the same as that of the circle.

19.  Rectilineal figures are those which are contained by straight lines, trilateral figures being those
contained by three, quadrilateral those contained by four, and multilateral those contained by
more than four straight lines.

20.  Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles

triangle that which has two of its sides alone equal, and a scalene triangle that which has its

three sides unequal.
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21.  Further, of trilateral figures, a right-angled triangle is that which has a right angle, an obtuse-
angled triangle that which has an obtuse angle, and an acute-angled triangle that which has its

three angles acute.

22.  Of quadrilateral figures, a square is that which is both equilateral and right-angled; an oblong
that which is right-angled but not equilateral; a rhombus that which is equilateral but not right-
angled; and a rhomboid that which has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals other than these be called trapezia.

23.  Parallel straight lines are straight lines which, being in the same plane and being produced

indefinitely in both directions, do not meet one another in either direction.
COMMON NOTIONS

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4.  Things which coincide with one another are equal to one another.
5. The whole is greater than the part.
POSTULATES or AXIOMS

Let the following be postulated:

1. To draw a straight line from any point to any point.
To produce a finite straight line continuously in a straight line.
To describe a circle with any centre and distance.

That all right angles are equal to one another.

wook wn

That, if a straight line falling on two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.

There is much that can be said about Euclid’s “definitions”. However, we shall refrain from doing so.
We shall instead examine more closely the controversial fifth postulate. Over a hundred years ago,
a postulate was supposed to be a “self-evident truth.” Observe that the statements of the first four
postulates are short and “self-evident,” and thus, readily acceptable by most people. However, the
statement of the fifth postulate is rather long and sounds complicated. Nevertheless, it was deemed
to be necessarily true, and hence one should be able to derive it from the other four postulates and
the definitions. The problem then is to prove the fifth postulate as a theorem.

Let us first take another look at Postulate 2. It pertains to extensions of a finite straight line. Euclid
implicitly assumed that Postulate 2 implies that straight lines must be “unbounded in extent”, or are
“infinitely long.” As it turns out, this is a hidden postulate (i.e. it should be considered a separate

postulate). Euclid made tacit use of this assumption in proving Proposition 16 of Book I of Elements:

Proposition 1.16. In any triangle, if any one of the sides is produced, the exterior angle is greater

than either of the interior and opposite angles.
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ZDAB > /B
ZDAB > ZC

Figure 1.1: Proposition 16

This proposition was then used to prove:

Proposition 1.17. In any triangle, two angles taken together in any manner are less than two right
angles.

The following proposition also uses Proposition 1.16 and hence requires that straight lines be in-
finitely long:

Proposition L.27. If a straight line falling on two straight lines makes the alternate angles equal to

one another; then the straight lines are parallel to one another.

A

LA =/B /

B

Figure 1.2: Proposition 27

1.3 The Sth postulate

Let us state Postulate 5 in modern language and notation.
Postulate 5. I[f AB and CD are cut by EF so that a + < 180°, then AB and C'D meet in the
direction of B and D.

E
A
B
«
a+ B < 180°
B D
c

Figure 1.3: The 5th postulate
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Euclid did not make use of Postulate 5 until Proposition 29 of Book I:

Proposition 1.29. A straight line falling on parallel straight lines makes the alternate angles equal
to one another.

He used this to prove the following (stated here in modern language and notation):

Proposition 1.32. The exterior angle of a triangle is equal to the sum of the two interior and opposite
angles; the sum of the interior angles of a triangle is 180°.

Mathematicians, as early as Proclus (410-485 A.D.), have tried to prove Postulate 5 from Postulates
1-4 directly. However, they make implicit use of “unstated axioms” in their “proofs.” These unstated
axioms were later found to be logically equivalent to the fifth postulate. This means that

(1) Postulates 1-4 + “unstated axiom” implies Postulate 5; and conversely,

(2) Postulates 1-5 implies “unstated axiom.”

Thus, the “proofs” involved circular reasoning.

Proclus’ proof involved the use of the following unstated axiom:

Proclus’ Axiom. If a straight line cuts one of two parallels, it must cut the other one also.

Other famous axioms logically equivalent to Postulate 5 include:

Playfair’s Axiom. If P is a point not on a line ¢, then there is exactly one line through P that is
parallel to L.

(Playfair’s Axiom is actually a restatement of Euclid’s Proposition 1.31 in modern language and
notation.)

Equidistance Axiom. Parallel lines are everywhere equidistant.

It turns out the second part of Proposition 1.32 is also logically equivalent to Postulate 5:

Angle Sum of Triangle Axiom. The sum of the interior angles of a triangle is 180°.

1.4 The work of Gerolamo Saccheri

Gerolamo Saccheri (1667-1733) was the first mathematician who attempted to prove the fifth postu-
late via an indirect method - reductio ad absurdum. This means that he assumed that Postulate 5 was
not true and he attempted to derive a contradiction. In his book Euclides ad omni naevo vindicatus
(Euclid vindicated of all flaws), he introduced what is now called the Saccheri quadrilateral. It is a
quadrilateral ABC D such that AB forms the base, AD and BC the sides such that AD = BC, and
the angles at A and B are right angles. We shall refer to the ZC' and ZD as summit angles.

ZA = /B =90°
AD = BC

Figure 1.4: A Saccheri quadrilateral

Saccheri first proved that ZC' = ZD. He then considered three mutually exclusive hypotheses

regarding the summit angles:
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HRA (Hypothesis of the Right Angle.) The summit angles are right angles. (LC = ZD = 90°.)
HAA (Hypothesis of the Acute Angle.) The summit angles are acute angles. (Z/C = ZD < 90°.)
HOA (Hypothesis of the Obtuse Angle.) The summit angles are obtuse angles. (LC' = ZD > 90°.)
HRA turns out to be logically equivalent to Postulate 5. To use the method of reductio ad absurdum
Saccheri assumed that HRA is false. First, he would assume that HOA is true and show that this
leads to a contradiction. Next, he would assume that HAA is true and show that this also leads to a
contradiction.

When he adopted HOA, Saccheri indeed reached a contradiction. But in doing so, he made use of
Proposition 1.16, hence the hidden assumption that straight lines are infinitely long. It is precisely
this hidden postulate that the HOA is contradicting. Saccheri thus proved (without knowing it) that
Postulates 1-4, together with the additional postulate that straight lines are infinitely long, implies
that the sum of the interior angles of a quadrilateral is equal to or less than 360°.

When Saccheri attempted to eliminate the possibility of HAA, he experienced greater difficulties.
Assuming HAA, he derived the fact that the sum of the interior angles of a triangle is less than
180°, and other “strange results”; however, he never reached a contradiction. Nevertheless, he
rejected HAA because “is repugnant to the nature of the straight line”. He thus missed his chance
of being a founder of the first non-euclidean geometry. Instead, the honors belong to three men -
who discovered it independently.

Carl Friedrich Gauss (1777-1855) developed the geometry implied by HAA between the years 1810-
1820, but he did not publish his results as he was too “timid”. We know this only because of his
correspondence and his private papers which became available after his death.

While Gauss and others were working in Germany, and had arrived independently at some of the
results of non-euclidean geometry, there was a considerable interest in the subject in France and
Britain inspired chiefly by A.M.Legendre (1752-1833). Assuming all Euclid’s definitions, axioms
and postulates except the Sth postulate, he proves an important result.

Theorem 1.1 (Legendre) The sum of the three angles of a triangle is less than or equal to 180°.

Proof. Let A; A;C be atriangle. Denote its angles and lengths of its sides as indicated in the figure.
Along the line A; A (we assume it can be extended indefinitely), place the triangles A2 A3Ch, . . .,
ApAn41C, each congruent to A; Ao Cy next to each other as shown in the figure. Then the triangles
A CCs, -+, A, Cp—1C,, are all congruent.

Figure 1.5: The angle sum of a triangle is less than or equal to 180°

We prove the result by contradiction. Suppose 180° < « + 8 + . Then at the point As on
the straight line A1 A, o+ 0+ 8 = 180° < aa+ S+ ysothat § < v. As C1A; = AyCh,
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C1A5 = AyCh and § < vy, we have C1Cy < A1 As. Let C;Ci41 = pforalli =1,...,n — 1. Then
d = c¢—p > 0. The total length A;C; + C1Cy + -+ - Cp,1Cp, + CApy1isb+ (n — 1)p + a. By
triangle inequality, it is greater than or equal to A; A,,+1 = nc. Thus b+ (n — 1)p + a > nc. That
isb—p+a > n(c—p) = nd. By taking n sufficiently large, we have a contradiction. (Here we

have used the Archimedean property of real numbers.)

1.5 Non-Euclidean geometry

Two contemporaries of Gauss, Janos Bolyai (1802-1860) and Nicolai Ivanovitch Lobachevsky (1793-
1856), who worked independently of each other, are officially credited with the discovery of the first
non-euclidean geometry. In 1829 Lobachevsky published his results (in Russian) on the new geom-
etry in the journal “Kazan Messenger”. Because this is a rather obscure journal, his results went
unnoticed by the scientific community. In 1832 Janos Bolyai’s results were published in an ap-
pendix to a work called “Tentamen”, written by his father Wolfgang Bolyai, a lifelong friend of
Gauss. Gauss received the manuscript and instantly recognized it as a work of a genius. However,
Gauss was determined to avoid all controversy regarding non-euclidean geometry, and he not only
suppressed his own work on the subject, but he also remained silent about the work of others on that
subject.

In 1837 Lobachevsky published a paper on that subject in Crelle’s journal and in 1840 he wrote
a small book in German on the same subject. Again Gauss recognized genius and in 1842 he
proposed Lobachevsky for membership in the Royal Society of Gottingen. But Gauss made no
statement regarding Lobachevsky’s work on non-euclidean geometry. He did not tell Lobachevsky
about Janos Bolyai. Bolyai learned about Lobachevsky around 1848, but Lobachevsky died without
knowing that he had a codiscoverer. Just before he died, when he was blind, Lobachevsky dictated an
account of his revolutionary ideas about geometry. This was translated into French by Jules Houel
in 1866, who also translated the works of Bolyai the following year. Thus began the widespread
circulation of the ideas on the new non-euclidean geometry. Euclid was finally vindicated - Postulate
5 is indeed an independent postulate.

Consequence of HAA include:

o the sum of the angles of any triangle is less than 180°,

o the existence of many parallel lines through a point not on a given line.

We now return to the hidden postulate on infinitely long lines. Bernhard Riemann (1826-1866)
diluted Euclid’s implicit assumption that lines are infinitely long and replaced it with endlessness or
unboundedness. As a result, he discovered that

(1) Proposition I.16 no longer holds;

(2) Proposition 1.17 no longer holds;

(3) Proposition 1.27 no longer holds.

Now Proposition .27 allows us to construct at least one parallel through a point not on a given line.
A consequence of the non-validity of Proposition 1.27 is that under HOA, there are no parallel lines!

In this new geometry, the sum of the angles of a triangle is greater than 180°.

By 1873 Felix Klein classified, unified and named the three geometries:
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Parabolic Geometry = Hyperbolic Geometry Elliptic Geometry
Saccheri HRA HAA HOA
Angle sum of triangle = 180° < 180° > 180°
Playfair’s exactly 1 parallel more than 1 parallel no parallels
Curvature Zero negative positive
Founder Euclid Gauss, Bolyai, Lobachevski Riemann

Exercise 1.1 Prove that Playfair’s axiom implies Euclid’s 5th Axiom.



Chapter 2

Basic Results in Book I of the
Elements

2.1 The first 28 propositions

A plane geometry is “neutral” if it does not include a parallel postulate or its logical consequences.
The first 28 propositions of Book I of Euclid’s Elements are results in a neutral geometry that are
proved based on the first 4 axioms and the common notions.

Proposition I.1. To construct an equilateral triangle.

Proposition I.2. To place a straight line equal to a given straight line with one end at a given point.
Proposition 1.3. To cut off from the greater of two given unequal straight lines a straight line equal
to the less.

Proposition I.4. (SAS) If two triangles have two sides equal to two sides respectively, and have the
angles contained by the equal straight lines equal, then they also have the base equal to the base, the
triangle equals to the triangle, and the remaining angles equal the remaining angles respectively.
Proposition LS. In isosceles triangles, the angles at the base equal one another; and if the equal
straight lines are produced further, then the angles under the base equal one another.

Proposition 1.6. If in a triangle two angles equal one another, then the sides opposite the equal
angles also equal one another.

Proposition I.7. Given two straight lines constructed from the ends of a straight line and meeting in
a point, there cannot be constructed from the ends of the same straight line, and on the same side of
it, two other straight lines meeting in another point and equal to the former two respectively, namely
each equal to that from the same end.

Proposition L1.8. (SSS) If two triangles have the two sides equal to two sides respectively, and also
have the base equal to the base, then they also have the angles equal which are contained by the
equal straight lines.

Proposition 1.9. To bisect a given rectilinear angle.

Proposition I.10. To bisect a given finite straight line.

Proposition 1.11. To draw a straight line at right angles to a given straight line from a given point
on it.

15



16 CHAPTER 2. BASIC RESULTS IN BOOK I OF THE ELEMENTS

Proposition 1.12. To draw a straight line perpendicular to a given infinite straight line from a given
point not on it.

Proposition 1.13. If a straight line stands on a straight line, then it makes either two right angles or
angles whose sum equals two right angles.

Proposition 1.14. If with any straight line, and at a point on it, two straight lines not lying on the
same side make the sum of the adjacent angles equal to two right angles, then the two straight lines
are in a straight line with one another.

Proposition 1.15. If two straight lines cut one another, then they make the vertical angles equal to
one another.

Proposition 1.16. (Exterior Angle Theorem) In any triangle, if any one of the sides is produced, the
exterior angle is greater than either of the interior and opposite angles.

Proposition I.17. In any triangle, two angles taken together in any manner are less than two right
angles.

Proposition 1.18. In any triangle, the angle opposite the greater side is greater.

Proposition I.19. In any triangle, the side opposite the greater angle is greater.

Proposition 1.20. In any triangle, the sum of any two sides is greater than the remaining one.
Proposition 1.21. If from the ends of one of the sides of a triangle two straight lines are constructed
meeting within the triangle, then the sum of the straight lines so constructed is less than the sum of
the remaining two sides of the triangles, but the constructed straight lines contain a greater angle
than the angle contained by the remaining two sides.

Proposition 1.22. To construct a triangle out of three straight lines which equal three given straight
lines: thus it is necessary that the sum of any two of the straight lines should be greater than the
remaining one.

Proposition 1.23. To construct a rectilinear angle equal to a given rectilinear angle on a given straight
line and at a point on it.

Proposition 1.24. If two triangles have two sides equal to two sides respectively, but have one of
the angles contained by the equal straight lines greater than the other, then they also have the base
greater than the base.

Proposition 1.25. If two triangles have two sides equal to two sides respectively, but have the base
greater than the base, then they also have one of the angles contained by the equal straight lines
greater than the other.

Proposition 1.26. (ASA or AAS) If two triangles have two angles equal to two angles respectively,
and one side equal to one side, namely, either the side adjoining the equal angles, or that opposite
one of the equal angles, then the remaining sides equal the remaining sides and the remaining angles
equals the remaining angle.

Proposition 1.27. If a straight line falling on two straight lines make the alternate angles equal to
one another, then the straight lines are parallel to one another.

Proposition 1.28. If a straight line falling on two straight lines make the exterior angles equal to the
interior and opposite angle on the same side, or the sum of the interior angles on the same side equal
to two right angle, then the straight lines are parallel to one another.

Proposition 1.1, 1.2, and 1.3 are basically proved by construction using straightedge and compass.

Proposition 1.4 (SAS) is deduced by means of the uniqueness of straight line segment joining two
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points. Apparently Euclid places it early in his list so that he can make use it in proving later results.
Before we proceed, let’s state the definition of “congruent triangle.”

Definition 2.1 Two triangles are “congruent” if and only if there is some “way” to match vertices
of one to the other such that corresponding sides are equal in length and corresponding angles are

equal in size.

If AABC is congruent to AXY Z, we shall use the notation AABC = AXY Z. Thus AABC =
AXYZ ifand only if AB = XY, AC = XZ, BC =YZ and /BAC = LYXZ,/CBA =
LZY X, /JACB = /ZXZY.

A

Figure 2.1: Congruent triangles

Let’s state and prove proposition 1.5 and 1.6 in modern language

Proposition L.5. In AABC, if AB = AC, then ZABC = ZACB, same for the exterior angles at
Band C.

Proof. Let the angle bisector of ZA meet BC' at D. Then by (SAS), ABAD = ACAD. Thus
/ABC = ZACB. (Alternatively, take D to be the midpoint of BC and use (SSS) to conclude that
ABAD = ANCAD.)

2.2 Pasch’s axiom

There is a hidden assumption that the bisector actually intersects the third side of the triangle. This
seems intuitively obvious to us, as we see that any triangle has an “inside” and an “outside.” That
is “the triangle separates the plane into two regions” which is a simple version of the Jordan curve
theorem! In fact, Euclid assumes this separation property without proof and does not include it as
one of his axioms. Pasch (1843-1930) was the first to notice this hidden assumption of Euclid. Later
he formulates this property specifically; and it is now known as “Pasch’s axiom”.

A

Figure 2.2: Pasch’s axiom
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Pasch’s axiom Let ¢ be a line passing through the side AB of a triangle ABC. Then { must pass
through a either a point on AC or on BC.

Proposition 1.6. In AABC, if /ABC = ZACB, then AB = AC.

Proof. Suppose AB # AC'. Then one of them is greater. Let AB > AC. Mark off a point D on AB
such that DB = AC. Also CB = BC and ZACB = ZDBC. Thus triangles AC'B is congruent
to triangle D BC, the less equal to the greater, which is absurd. Therefore AB = AC.

A
D

Figure 2.3: Proposition 6

Similarly, it is not true that AB < AC. Consequently, AB = AC.

Propositions 1.7 and 1.8 are the (SSS) congruent criterion. Proposition 1.7 is self-evident by con-
struction and proposition 1.8 follows from 1.7. Propositions 1.9 to 1.15 follow from definitions and
construction. Propositions 1.16 and 1.17 are discussed in chapter 1. The proofs use crucially axioms
1 and 2.

Proposition I.18. In the triangle ABC, if AB > AC, then ZC > /B.
Proof. Mark off a point D on AB such that AD = AC.

A

Figure 2.4: Proposition 18

By proposition 1.5, ZADC = LZACD. Thus £C > LACD = LZADC > /B by the exterior angle
theorem (proposition 1.16).

Proposition 1.19. In the triangle ABC, if /B > ZC, then AC > AB.
Proof. If AB = AC, then by proposition 1.5 we have /B = ZC'. If AB > AC, then by proposition
18 we have ZC > ZB. Thus both cases lead to a contradiction. Hence, we must have AC > AB.

Proposition 1.20. (Triangle Inequality) For any triangle ABC, AB + BC > AC.

Proof. Exercise.
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Proposition 1.21. Let D be a point inside the triangle ABC. Then AB + AC > DB + DC' and
/ZBDC > £ZBAC.

Figure 2.5: Proposition 21

Proof. This follows from the triangle inequality (proposition 1.20) and the exterior angle theorem
(proposition 1.16).

Also Proposition 1.22 follows from the triangle inequality (proposition 1.20). Proposition 23 is on
copying an angle by means of a straightedge and a compass. It can be justified using (SSS) condition.

Proposition 1.24. For the triangles ABC' and PQR with AB = PQ and AC = PR, if ZA > /P
then BC' > QR.

Proof. Stack the triangle PQ R onto ABC' so that P() matches with AB. Since /A > /P, the ray
AR is within ZBAC'. Join BR and C'R. Suppose R is outside the triangle ABC.

P=A

Figure 2.6: Proposition 24

As AC = AR (or PR), ZARC = ZACR. Thus Z/BRC > ZARC = ZACR > /BCR.
Therefore, BC' > (QR. We leave it as an exercise for the case where R is inside ABC'.

Proposition 1.25. For the triangles ABC and PQR with AB = PQ and AC' = PR, if BC > QR,
then LA > ZP.

Proof. If /A = /P, then by (SAS) the two triangles are congruent. But BC' # @R, we have a
contradiction. If ZA < ZP, then by proposition 1.24, BC' < @R, which also contradicts the given
condition. Thus we must have ZA > /P.



20 CHAPTER 2. BASIC RESULTS IN BOOK I OF THE ELEMENTS

Proposition 1.26. (ASA) For the triangles ABC and PQR, if /B = /Q,/ZC = ZR and BC =
QR then AABC = APQR.

Proof. Suppose AB > P(Q. Mark off a point D on AB such that BD = @QP. Then by (SAS),
DBC = PQRsothat /ZBCD = ZQRP = ZR. Butthen /BCD < ZC = /R, a contradiction.

A
D

B c Q R

Figure 2.7: Proposition 26

Similarly we get a contradiction if AB < PQ. Thus AB = P(Q. Then by (SAS), AABC =
APQR. The (AAS) case is left as an exercise.

Finally proposition 1.27 is proved in chapter 1 and proposition 1.28 is a reformation of proposition
1.27.



Chapter 3
Triangles

In this chapter, we prove some basic properties of triangles in Euclidean geometry.

3.1 Basic properties of triangles

Theorem 3.1 (Congruent Triangles) Given two triangles ABC and A’ B'C’,

A A

B a C B’ ’ c’

Figure 3.1: Congruent Triangles

the following statements are equivalent.

(a) ANABC is congruent to NA'B'C’'. (NABC = NA'B'C’)
(b)a=a',b="b,c=c.(SSS)

(c)b=1V, LA =LA, c=c.(SAS)

(d) LA=/A b=V, 2C = £C". (ASA)

(e) LA= LA, /B = /B a=d. (AAS)

Theorem 3.2 Given two triangles ABC and A’ B'C’' where /C = ZC" = 90°,

A A

B a C B’ ’ (o4

Figure 3.2: Congruent right Triangles

21
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the following statements are equivalent.

(a) NABC = NA'B'C".
(b) LC =2C"=90° a=da,c=c. (RHS)
(b) /C = /C' = 90°, b=V, ¢ = . (RHS)

Theorem 3.3 (Similar triangles) Given two triangles ABC and A'B'C’,

A/
A

B a C B’ ’ c’

Figure 3.3: Similar Triangles

the following are equivalent.

(a) ANABC is similar to NA'B'C'. (ANABC ~ NA’B'C’)
(b) /A= /A and /B = /B

(c) LA= /A andb:V =c: .

(d)a:a =b:bV =c:c.

Theorem 3.4 (The midpoint theorem) Let D and E be points on the sides AB and AC of the
triangle ABC respectively. Then AD = DB and AE = EC if and only if DFE is parallel to BC
and DE = %BC.

B C

Figure 3.4: The midpoint theorem

D

Q

A E M C B

Figure 3.5: The midpoint of AC'is E
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Example 3.1 In figure 3.5, M, N, and P are respectively the mid-points of the line segments
AB,CD and BD. Let Q be the mid-point of M N and let PQ be extended to meet AB at F.
Show that AE = EC.

Solution. Join NP. Because N is the mid-point of C'D and P is the midpoint of BD, we have
NP is parallel to AB. Since NQ = MQ, we see that AN P(Q is congruent to AM E(Q. Thus
EM = NP = }BC. Therefore, 2EM = BC = MB — MC = AM — MC = AC —2MC =
AC —2(EC — EM) = AC —2EC + 2EM. Thus AC = 2EC and E is the mid-point of AC.

Definition 3.1 For any polygonal figure A1As - -- A, the area bounded by its sides is denoted by
(A1 Az -+ Ap).

For example if ABC is a triangle, then (ABC) denotes the area of AABC; and if ABCD is a
quadrilateral, then (ABC D) denotes its area, etc.

Theorem 3.5 (Varignon) The figure formed when the midpoints of the sides of a quadrilateral are

Jjoined is a parallelogram, and its area is half that of the quadrilateral.

Proof. Let P, Q, R, S be the midpoints of the sides AB, BC,CD, DA of a quadrilateral respec-
tively. The fact that PQR.S is a parallelogram follows from the midpoint theorem. Even ABCD is
a “cross-quadrilateral”, the result still holds.

Figure 3.6: Varignon’s theorem

As for the area, we have

(PQRS)=(ABCD) — (PBQ) — (RDS) — (QCR) — (SAP)
= (ABCD) — Y(ABC) — L{(CDA) — 1(BCD) — 1(DAB)
=(ABCD) — X(ABCD) — 1(ABCD)
= 1(ABCD).

If “sign area” is used, the result still holds.

Theorem 3.6 (Steiner-Lehmus) Let BD be the bisector of ZB and let CE be the bisector of ZC.
The following statements are equivalent:

(a) AB = AC

(b) /B =21C

(c) BD =CFE
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B C

Figure 3.7: Steiner-Lehmus Theorem

The result on (c) implies (a) is called the Steiner-Lehmus Theorem. The proof relies on two lemmas.

Lemma 3.7 If two chords of a circle subtend different acute angles at points on the circle, the
smaller angle belongs to the shorter chord.

Proof. Two equal chords subtend equal angles at the center and equal angles (half as big) at suitable
points on the circumference. Of two unequal chords, the shorter, being farther from the center,
subtends a smaller angle there and consequently a smaller acute angle at the circumference.

Lemma 3.8 If a triangle has two different angles, the smaller angle has the longer internal angle

bisector.

Proof. Let ABC be the triangle with /B > ZC. Let’s take 8 = +/B and v = $/C. Thus
B8 > ~. Let BE and CF be the internal angle bisectors at angles B and C' respectively. Since
/EBF = (8 > =y, we can mark off a point M on C'F such that /ZEBM = ~y. Then B,C, E, M lie
on a circle.

Figure 3.8: The smaller angle has the longer internal angle bisector
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Note that 8+ < B+~ + 3 £A = 90°. Also ZC' =2y < B+~ = ZCBM. Hence CF > CM >
BE. To prove the theorem, we prove by contradiction. Suppose AC' > AB. Then /B > Z/C. By
lemma 2, CF' > BE, acontradiction. Can you produce a constructive proof of this result?

Theorem 3.9 (The angle bisector theorem) If AD is the (internal or external) angle bisector of
/A in atriangle ABC, then AB : AC = BD : DC.

E

s}
&)
Q

Figure 3.9: Angle bisectors

Proof. The theorem can be proved by applying sine law to AABD and AACD. An alternate proof
is as follow. Construct a line through B parallel to AD meeting the extension of C' A at E. Then
/LABE = /BAD = /DAC = ZAEB. Thus AE = AB. Since ACAD is similar to ACEB,we
have AB/AC = AE/AC = BD/DC. The proof for the external angle bisector is similar.

mn

Theorem 3.10 (Stewart) If% = ﬂ, then nAB? + mAC? = (m +n)AP? + BC?.
n

m-4+n

A

B m P n C

Figure 3.10: Stewart’s theorem
Proof. Apply cosine law to the triangles ABP and APC for the two complementary angles at P.
Theorem 3.11 (Pappus’ theorem) Let P be the midpoint of the side BC of a triangle ABC. Then

AB? + AC?* = 2(AP? + BP?).

3.2 Special points of a triangle

1. Perpendicular bisectors. The three perpendicular bisectors to the sides of a triangle ABC meet

at a common point O, called the circumcentre of the triangle. The point O is equidistant to the three
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vertices of the triangle. Thus the circle centred at O with radius O A passes through the three vertices
of the triangle. This circle is called the circumcircle of the triangle and the radius R is called the

circumradius of the triangle.

Figure 3.11: Perpendicular bisectors

b c
sind _ sinB _ sinC
2. Medians. The 3 medians AD, BE and C'F' of AABC' are concurrent. Their common point,
denoted by G, is called the centroid of NABC'.

For any triangle ABC with circumradius R, we have the sine rule: 2R.

A

Figure 3.12: Medians

We have

(1) (AGF)=(BGF)=(BGD)=(CGD) = (CGE) = (AGE).
2) AG:GD=BG:GE=CG:GF=2:1.
(3) (Apollonius’theorem)

AD?* = 3(b? + ) — 3a?,
BE? = 1(c® + a?) — 1b?%,
CF? = L1(a>+b%) — 1
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3. Angle bisectors. The internal bisectors of the 3 angles of A ABC' are concurrent. Their common
point, denoted by 1, is called the incentre of AABC. It is equidistant to the sides of the triangle. Let
r denote the distance from I to each side. The circle centred at I with radius r is called the incircle
of AABC, and r is called the inradius.

Figure 3.13: Angle bisectors

Let s = $(a+ b+ c) be the semi-perimeter. We have

(1) x=s—a,y=s—bandz=s—c.
(2) (ABC) =sr.
(3) abc = 4srR.

To prove (3), we have 4srR = 4(ABC)R = 2(absin C')R = abe.
Exercise 3.1 Prove that sin A = (2b%c? + 2¢%a? + 2a%b* — a* — b* — c4)%/(2bc).

4. Altitudes. The 3 altitudes AD, BE and C'F of A ABC are concurrent. The point of concurrence,
denoted by H, is called the orthocentre of AABC. The triangle DEF is called the orthic triangle
of AABC'. We have the following result.

Theorem 3.12 The orthocentre of an acute-angled triangle is the incentre of its orthic triangle.

Figure 3.14: Altitudes
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Example 3.2 Show that the three altitudes of a triangle are concurrent.

Solution. Draw lines PQ, QR, RP through C, A, B and parallel to AB, BC, C A respectively. Then
PQR forms a triangle whose perpendicular bisectors are the altitudes of the triangle ABC.

R A Q

P

Figure 3.15: The three altitudes of a triangle are concurrent

Exercise 3.2 In an acute-angled AABC, AB < AC, BD and C'E are the altitudes. Prove that
(i) BD < CE

(i) AD < AE

(iii) AB? + CE? < AC? + BD?

(ivy AB+ CE < AC + BD.

(v) Is it true that AB™ + CE™ < AC™ + BD"™ for all positive integer n?

A

B C

Figure 3.16: AB%2 + CE? < AC? + BD?

Exercise 3.3 Prove Heron’s formula that for a triangle ABC, we have

(ABC) = /s(s — a)(s — b)(s — c).
Exercise 3.4 Prove that if [ is the incentre of the triangle ABC, then AI? = bc(s — a)/s.

Exercise 3.5 Prove that for any triangle ABC,

A s(s—a) .2 A (s=Db)(s—¢)
‘2 _—= — S 2 _—— —
cos 5 be and sin 5 be .
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5. External bisectors. The external bisectors of any two angles of AABC' are concurrent with the
internal bisector of the third angle.

Figure 3.17: External angle bisectors

We call the circles centred at I,,, I, I with radii r, 7, 7 respectively the excircles of the AABC,
their centres I, I, I.., the excentres and their radii r, 7y, 7. the exradii. Note that
(1 AY,=AZ,=BZ,=BX,=CX.=CY,.=s.

[2AY, = AY, + AZ, = AB + BZ, + AC + CY, = AB + BX, + X,C + AC =
AB + BC + AC = 2s.]

(2) BX.=BZ.=CX,=CY,=s—a.[BX.=CX.— BC =5s—a.
CY,=CX,=AY,=AZ,=s—b.
AZy =AY, = BZ, = BX,=s—c.
3) (ABC)=(s—a)ra=(s—b)ry = (s —c)re.
[(ABC) = 41,Z, - AB+ 51,Y, - AC — 11,X, - BC = ira(c+b—a) =r4(s — a).]
4 +F4+Lit+Li=1

Ta T re T
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(5) AABC is the orthic triangle of A1 Ip1..

. 1 1 1 _1
Exercise 3.6 Prove that ettt =

Exercise 3.7 Prove the identity
abc=s(s=b)(s—c)+s(s—c)(s—a)+s(s—a)(s—b) —(s—a)(s—b)(s—c),
where 2s = a+ b+ c.

Exercise 3.8 Prove that4R =r, + 71y + 7. — T

3.3 The nine-point circle

Theorem 3.13 Let L be the foot of the per-
pendicular from O to BC. Then AH =
20L.

Proof. As AAEB is similar to AOLB
with AB : OB =c¢: R = 2sin C, we have
AFE : OL = 2sinC. On the other hand,
LAHE = ZC sothat AE : AH = AD :
AC = sin C'. Consequently, AH = 20L.

Alternatively, extend C'O meeting the cir-
cumcircle of AABC at the point P. Then
APBH is a parallelogram. Thus AH =

PB =20L. Figure 3.18: AH = 20L

Theorem 3.14 The circumcentre O, cen- A
troid G and orthocentre H of ANABC are
collinear. The centroid G divides the seg-
ment OH into the ratio 1 : 2.

H
The line on which O, G, H lie is called the GO
Euler line of NABC. !
. —I I
Proof. Since AH and OL are parallel, B T C

/HAG = ZOLG. Also AH = 2L0O and
AG = 2LG. Thus AHAG is similar to
AOLG so that ZAGH = ZLGO. There-

fore O, G, H are collinear.
ore s, &, 1 are cotiimedt Figure 3.19: G divides OH in the ratio 1 : 2

Let N be the midpoint of OH, where O is the circumcentre and H is the orthocentre of AABC.
Using the fact that OG : GH =1 : 2, we have NG : GO =1 : 2. Since GL : GA =1 : 2
and ZNGL = ZOGA, we see that ANGL is similar to AOGA. Thus N L is parallel to OA and
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NL : OA =1 : 2. If we take H; to be the midpoint of AH, then L, N, H; are collinear, N H;
is parallel to OA and NH; = %OA. Since N is the midpoint of OH, we also have ND = NL.
Consequently, ND = NL = NH; = %OA = %R.

Alternatively, if we take H;=midpoint of AH, then AN H H; is congruent to ANOL because
HH, = %AH = OL,NH = NO,/HHN = ZLON. Then L, N, H; are collinear. Thus
NHy = NL = ND = OA. [Here G is not involved in the proof.]

A

Hy

Figure 3.20: The Nine-point Circle

Theorem 3.15 (The Nine-point Circle) The feet of the three altitudes of any triangle, the midpoints
of the three sides, and the midpoints of the segments from the three vertices to the orthocentre, all lie
on the same circle of radius %R with centre at the midpoint of the Euler line. This circle is known

as the nine-point circle or the Euler circle of the triangle.

Exercise 3.9 Suppose the Euler line passes through a vertex of the triangle. Show that the triangle
is either right-angled or isosceles or both.

Exercise 3.10 In a triangle ABC, ZC = 90°, D is a point on AB such that the inradius of AACD
equals to the inradius of ABC'D. Prove that D is the midpoint of AB if and only if AC = BC.

Figure 3.21: The triangles AC'D and BC'D have equal inradii.
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Chapter 4

Quadrilaterals

Quadrilaterals are 4-sided polygons. Among them those whose vertices lie on a circle are called

cyclic quadrilaterals. Cyclic quadrilaterals are the simplest objects like triangles in plane geometry

and they possess remarkable properties. In this chapter, we shall explore some basic properties of

quadrilaterals in Euclidean geometry.

4.1 Basic properties

1. For a quadrilateral ABCD, the following
statements are equivalent:

(1) ABCD is a parallelogram.

(ii)) AB || DC and AD || BC.

(iii) AB = DC and AD = BC.

(iv) AB || DC and AB = DC.

(v) AC and BD bisect each other.

2. For a parallelogram ABC'D, the following
statements are equivalent:

(1) ABCD is arectangle.

(ii) LA = 90°.

(iii) AC = BD.

3. For a parallelogram ABCD, the following
statements are equivalent:

(i) ABCD is a rhombus

(i) AB = BC.

(iii) AC L BD.

(iv) AC bisects ZA.

33

A

Figure 4.1: A parallelogram

A

B

Figure 4.2: A rectangle

c

Figure 4.3: A rhombus
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Example 4.1 In the figure, E/, F' are the mid-

points of AB and BC respectively. Suppose
DE and DF intersect AC at M and N re-
spectively such that AM = MN = NC.
Prove that ABC'D is a parallelogram.

Figure 4.4

Solution. Join BM and BN. Let BD intersect AC at O. As AE = EB, AM = MN, we have
EM is parallel to BN. Similarly, BM is parallel to F'N. Therefore, BM DN is a parallelogram.
From this, we have OB = OD and OM = ON. Since AM = NC, we also have OA = OC. Now
the diagonals of ABC' D bisect each other. This means that ABC' D is a parallelogram.

Theorem 4.1 The segments joining the midpoints of pairs of opposite sides of a quadrilateral and

the segment joining the midpoints of the diagonals are concurrent and bisect one another.

Figure 4.5: XY passes through O

Proof. Consider a quadrilateral ABC' D with midpoints E, F, G, H of its sides as shown in the
figure. By Varignon’s theorem, EF'GH is a parallelogram. Thus the diagonals EG and F'H of
this parallelogram bisect each other. Now consider the quadrilateral (a crossed-quadrilateral in the
figure) ABDC. By Varignon’s theorem, the midpoints E, Y, G, X of its sides form a parallelogram.
Thus EG and XY bisect each other. Consequently, EG, FH and XY are concurrent at their
common midpoint O.

Definition 4.1 A quadrilateral ABCD is called a cyclic quadrilateral if its 4 vertices lie on a

common circle. In this case the 4 points A, B, C, D are said to be concyclic.
Regarding cyclic quadrilaterals, we have the following characterizations.

Theorem 4.2 Let ABC D be a convex quadrilateral. The following statements are equivalent.
(a) ABCD is a cyclic quadrilateral.

(b) LBAC = £ZBDC.

(c) LZA+ ZC = 180°.

(d) LZABE = ZD.
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Figure 4.6: A cyclic quadrilateral

Proof. That (a) implies (b) follows from the property of circles, namely the angle subtended by a
chord at any point on the circumference and on one side of the chord is a constant. To prove (b)
implies (c), observe that A AP B is similar to A D PC'. This in turn implies that A AP D is similar to
ABPC. Thus /BAC = /BDC, ZABD = LACD, ZCAD = ZCBD and ZADB = LACB.
Therefore, ZA+/C = LBAC+/ZCAD+/ZACB+/ZACD = %(ZA—FAB—FZC—FZD) = 180°.
That (c) is equivalent to (d) is obvious. The part that (d) implies (a) is left as an exercise.

Exercise 4.1 Suppose the diagonals of a cyclic quadrilateral ABC' D intersect at a point P. Prove
that AP - PC = BP - PD.

Theorem 4.3 If a cyclic quadrilateral has perpendicular diagonals intersecting at P, then the line
through P perpendicular to any side bisects the opposite side.

Proof. Let X H be the line through P perpendicular to BC'. We wish to prove X is the midpoint of
AD.

Figure 4.7: A cyclic quadrilateral with perpendicular diagonals

We have /DPX = /BPH = /PCH = LZACB = ZADB = ZXDP. Thus the triangle X PD
is isosceles. Similarly, the triangle X AP is isosceles. Consequently XA = XP = X D.
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4.2 Ptolemy’s theorem

Theorem 4.4 (The Simson line) The feet of the perpendiculars from any point P on the circumcir-
cle of a triangle ABC to the sides of the triangle are collinear.

Figure 4.8: The Simson line

Proof. Referring to figure 4.8, we see that PZAY, PXCY and PACB are cyclic quadrilaterals.
Therefore, /PY 7Z = /PAZ = /PCX = ZPY X. This shows that Y, Z, X are collinear.

(Note that the converse of the statement in this theorem is also true. That is, if the feet of the
perpendiculars from a point P to the sides of the triangle ABC' are collinear, then P lies on the
circumcircle of ANABC'.) The line containing the feet is known as the Simson line.

Theorem 4.5 (Ptolemy) For any cyclic quadrilateral, the sum of the products of the two pairs of
opposite sides is equal to the product of the diagonals.

Proof. Let PBC A be a cyclic quadrilateral and let X, Y, Z be the feet of the perpendiculars from P
onto the sides BC, AC, AB respectively. By previous theorem, X, Y, Z lie on the Simson line.

Figure 4.9: Ptolemy’s theorem
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The quadrilateral AY PZ is cyclic. Since ZPY A = 90°, the circle passing through A,Y, P, Z has

diameter PA. Thus

YZ . a
P4 = sin LY AZ =sin ZBAC = R
Thatis YZ = aPA/(2R). Similarly, by considering the cyclic quadrilaterals PZX B and PXCY,
we have XZ = bPB/(2R) and XY = ¢PC/(2R). As X,Y, Z lie on the Simson line, we have
XZ+ZY = XY sothat bPB/(2R) + aPA/(2R) = ¢PC/(2R). Canceling the common factor

2R, we get bPB 4+ aPA = c¢PC'. That is
AC-PB+ BC-PA=AB- PC.

Ptolemy’s Theorem can be strengthened by observing that if P is any point not on the circumcircle of
AABC, then the equality X Z + ZY = XY has to be replaced by the inequality XZ + ZY > XY
sothat AC'- PB+ BC - PA > AB - PC.

Theorem 4.6 If P is a point not on the arc C' A of the circumcircle of the triangle ABC, then
AC-PB+ BC-PA> AB - PC.

Example 4.2 Let P be a point of the minor arc C'D of the circumcircle of a square ABC'D. Prove
that

PA(PA+ PC) = PB(PB + PD).

Solution. Refer to figure 4.10. Let AB = a. Applying Ptolemy’s theorem to the cyclic quadrilater-
als PDAB and PABC, we have PD - BA+ PB-DA = PA-DB,and PA-BC + PC - AB =
PB - AC. Thatis a(PD + PB) = v/2a - PA and a(PA + PC) = \/2a - PB. Canceling a
common factor of a for both equations, we get PD + PB = V2PA and PA + PC = \/2PB.
Thus PA(PA+ PC) = \/2PA-PB = PB(PB + PD).

Figure 4.10 Figure 4.11

Exercise 4.2 In a parallelogram ABCD, a circle passing through A meets AB, AD and AC at P,
@ and R respectively. Prove that AP - AB + AQ - AD = AR - AC. See figure 4.11.
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4.3 Area of a quadrilateral

Theorem 4.7 (Brahmagupta’s Formula) If a cyclic quadrilateral has sides a,b,c,d and semi-

perimeter s, then its area K is given by

K? = (s—a)(s—Db)(s —¢)(s — d).

Proof. Let ABC'D be a cyclic quadrilateral. Let the length of BD be n. First note that ZA+ /C =

180° so that cos A = — cos C and sin A = sin C. Thus by Cosine law,

a?4+b% —2abcos A =n? =2+ d* — 2edcos C,

giving

2(ab+ cd) cos A = a® + b* — ¢ — d>.

Figure 4.12: Brahmagupta’s Formula

Since ) . .
K= iabsinA + icdsinC’ = i(ab + cd) sin A,

we also have
2(ab+ cd)sin A = 4K.
Adding the squares of (4.1) and (4.2), we obtain
4(ab+ cd)* = (a® +b* — * — d*)* + 16K?,

giving
16K? = (2ab + 2¢d)? — (a® + b* — & — d*)2.

Thus  16K2 = (2ab + 2cd)? — (a® + b? — 2 — d?)?

= (2ab + 2cd + a® 4+ b% — ¢ — d?)(2ab + 2cd — a® — b* + % + d?)

4.1

4.2)
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=((a+b)* = (c = d)*)((c +d)* = (a = b)*)
=(a+b+c—d)(a+b—c+d)(c+d+a—Db)(c+d—a+D)
=(2s — 2d)(2s — 2¢)(2s — 2b)(2s — 2a).

Therefore, K? = (s — a)(s — b)(s — ¢)(s — d).
Setting d = 0, we obtain Heron’s formula for the area of a triangle:

(ABC)? = 5(s —a)(s — b)(s — c).

Exercise 4.3 In a trapezium ABCD, AB is parallel to DC and E is the midpoint of BC. Prove
that 2(AED) = (ABCD).

Exercise 4.4 Suppose the quadrilateral ABC'D has an inscribed circle. Show that AB + CD =
BC + DA.

Exercise 4.5 Suppose the cyclic quadrilateral ABC' D has an inscribed circle. Show that (ABCD) =
v abed.

Exercise 4.6 Let ABC' D be a convex quadrilateral. Prove that its area K is given by

K2 = (s —a)(s — b)(s — ¢)(s — d) — abed cos® (A;C> .

Exercise 4.7 Let ABCDE be the pentagon whose vertices are intersections of the extensions of
non-neighboring sides of a pentagon HI.J K L. Prove that the neighboring pairs of the circumcircles
of the triangles ALH, BHI, C1J, DJK, EK L intersect at 5 concyclic points P, @, R, S, T

Figure 4.13: Miquel’s 5-circle theorem

[Hint: Note that J, S, B, E are concyclic since /EBS = /ZHBS = ZCIS = £ZCJS. Simi-
larly, J, @, E, B are concyclic. Thus J, S, B, E, @ are concyclic. Now try to show P, T, S, (Q are
concyclic by showing that ZQPT + ZQST = 180°.]
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Remark 4.1 This is Miquel’s 5-circle theorem first proved by Miquel in 1838. This problem was
proposed by president Jiang Zemin of PRC to the students of Hdo Jiang Secondary School in Macau
during his visit to the school in 20 December 2000.

4.4 Pedal triangles

Definition 4.2 For any point P on the plane of a triangle ABC, the foot of the perpendiculars from
P onto the sides of the triangle ABC form a triangle A1 B1C called the pedal triangle of the point
P with respect to the triangle ABC.

Figure 4.14: Pedal triangle

Theorem 4.8 Let A1 B1C1 be the pedal triangle of the point P with respect to the triangle ABC.

Then

R? - OP?
4R?

where O is the circumcentre and R is the circumradius of the triangle ABC.

(A1B,Ch) = (ABC),

Proof. Extend B P meeting the circumcircle of AABC' at Bs. Join BoC'. As in the figure, ZA; =
a+ 8 =24BCP.

Figure 4.15: Area of the pedal triangle
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Thus
1 1
(AlBlCl) = 514131 . A101 . sinA1 = i(PCSIHC)(PBbIDB) blnLB20P
Also,
sin /BoCP  sin/B;CP  PBy
sin A ~ sin/BB,C  PC’
1
Thus, (A1B1C1) = =PBy - PBsin Asin BsinC

= E(R2 - OPQ) sin A sin Bsin C
R?—-0P?
= 471%2(1430).

The above result is a generalization of Simson’s theorem.

Corollary 4.9 The point P lies on the circumcircle of NABC' if and only if the area of the pedal

triangle is zero if and only if A1, By, Cy are collinear.
Exercise 4.8 Show that the third pedal triangle is similar to the original triangle.

Exercise 4.9 Let P be a point on the circumcircle of the triangle ABC'. Prove that its Simson line
with respect to the triangle ABC bisects PH, where H is the orthocentre of the triangle ABC'.

\\Y
\
‘A
P
/
/
/
1 Hz
/
d Z
/
/ R \H
/
1
/
/
/
/
V In'
B £ = c

Hy

Figure 4.16: The Simson line bisects PH .

[Hint: Let X, Y and Z be the feet of perpendiculars from P onto the sides BC, C'A and AB
respectively. It is well-known that X, Y and Z are collinear. The line on which they lie is called the
Simson line. Extend AH, BH and C'H meeting the circumcircle of the triangle ABC at Hy, Ho
and Hj respectively. Let PH; intersect BC at D, PH, intersect C'A at E and P Hj3 intersect AB
at F'. Join PB.]
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Exercise 4.10 Let P and P’ be diametrically opposite points on the circumcircle of the triangle
ABC. Prove that the Simson lines of P and P’ meet at right angle on the nine-point circle of the
triangle.

Exercise 4.11 Prove Brahmagupta-Mahavira formula: Let ABCD be a cyclic quadrilateral with
AB=0b,BC =¢,CD =d,DA =aand AC = m,BD = n. Then
m  ab+cd

n ad+be

Figure 4.17: Brahmagupta-Mahavira formula
[Hint: Interchange the sides with lengths a and b, also a and d. Apply Ptolemy’s theorem.]

Exercise 4.12 A cyclic quadrilateral ABCD is called a harmonic quadrilateral if AB - CD =
BC - AD. Show that ABC'D is a harmonic quadrilateral if and only the tangent at B, the tangent at
D and the line AC' are concurrent or parallel.

B

SN

Figure 4.18: Harmonic quadrilateral

Exercise 4.13 Let ABC D be a harmonic quadrilateral and let AC' intersect BD at (). Suppose the
tangent at B intersects the extension of C'A at P.

(a) Prove that PQ—Q = (ﬁ + %c)

(b) Let M be the midpoint of BD. Then ZCAB = ZDAM.



Chapter 5

Concurrence

When several lines meet at a common point, they are said to be concurrent. The concurrence of
lines occurs very often in many geometric configurations. The point of concurrence usually plays a
significant and special role in the geometry of the figure. In this chapter, we will introduce several
of these points and the classical Ceva’s theorem which gives a necessary and sufficient condition for
three cevians of a triangle to be concurrent. We will illustrate with many applications that stem out
from Ceva’s theorem.

5.1 Ceva’s theorem

Definition 5.1 The line segment joining a vertex of NABC to any given point on the opposite side

(or extended) is called a cevian.

c’ B

B A C

Figure 5.1: Three cevians meet a point

Theorem 5.1 (Ceva) Three cevians AA’, BB', CC’ of AABC are concurrent if and only if

BA' CB AC'
AC BA OB

[ Here directed segments are used. |

43
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Proof. First suppose the 3 cevians AA’, BB’, CC’ are concurrent. Draw a line through A parallel
to BC' meeting the extension of BB’ and C'C” at D and F respectively. See Figure 5.2. Then

CB' BC AC' EA

B'A~ AD’ C'B BC’

BA" AO AC
AD ~ 04~ EA MM 0 T Ea
BA" CB" AC" AD BC FEA
AC B'A C'B~ EA AD BC
To prove the converse, suppose

Since

BA" OB AC'
A'C B'A C'B
Let’s consider the case where A’, B’, C’ lie in the interior of BC, C'A, AB, respectively. The case
that two of them are outside is similar. Let BB’ and C'C’ meet at a point O. Then connect AO

(5.1)

meeting BC' at a point A”. It suffices to prove A’ = A”. By the forward implication of Ceva’s

theorem ,we have
BA" CB' AC’

A'C B'A C'B (>-2)
. . BA’ BA”
Comparing equations (5.1) and (5.2), we have Y elnl ok Thus A’ = A”.

There is an alternate proof using area. As
BA" (ABA') (OBA') (ABO) CB' (BCO) AC" (CAO)

A'C (AA'C)  (OA'C)  (ACO)’ B'A - (BAO)’ C¢'B  (CBO)
we have
BA" CB" AC"
A'C B'A C'B
There is a trigonometric version of Ceva’s theorem in terms of the sines of the angles that the

cevians make with the sides of the triangles at the vertices. Refer to Figure 5.3. Let ZCAA’ = ay,
LA'AB = a9, /ABB' = ﬂl, AB/BC = 52, ABCC/ =71 and ZCIOA = 2.

sin ¢ so that - Similarl
AA AA sna;  A'CsnC ¥
sinffy  CB’sinC siny,  AC’ sin A

sinfy, B'AsinA siny;, C'BsinB’
Therefore, by Ceva’s theorem, AA’, BB'CC’ are concurrent if and only if

sin B sinas BA'sinB

Then sina; = A'C sinay = BA'-

sinay sinfy  sinvys

sina; sinfB; siny
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c’ B

B2 e
B A c

Figure 5.3: Trigonometric version of Ceva’s Theorem

Example 5.1 We can use the trigonometric version of Ceva’s theorem to deduce that the three alti-

tudes of a triangle are concurrent.

5.2 Common points of concurrence

The common points of concurrence that arise from a triangle consist of the following.

1.  The 3 medians of AABC are concurrent. Their common point, denoted by G, is called the
centroid of AABC.

2. The 3 altitudes of AABC are concurrent. Their common point, denoted by H, is called the
orthocentre of AABC.

3. The internal bisectors of the 3 angles of A ABC are concurrent. Their common point, denoted
by I, is called the incentre of AABC'.

4.  The internal bisector of ZA and the external bisectors of the other two angles of AABC are
concurrent. Their common point, denoted by [, is called the excentre of AABC. Similarly,
there are excentres I, and 1.

5. The three perpendicular bisectors of a triangle AABC' are concurrent. Their common point,
denoted by O is called the circumcentre of AABC.

6.  The cevians where the feet are the tangency points of the incircle (or excircle) of a triangle
are concurrent. This common point is called the Gergonne point. Thus there are 4 Gergonne

points for a triangle.
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A A

Figure 5.4: Gergonne point

Example 5.2 In AABC, D, E and F are the feet of the altitudes from A, B and C onto the sides
BC, C A and AB respectively. Prove that the perpendiculars from A onto EF’, from B onto DF

and from C onto EF' are concurrent.

Figure 5.5: A point of concurrence

Solution. We shall use the trigonometric version of Ceva’s theorem. Firstsin /F AP = cos ZAFP =
cos C. Similarly, sin /PAFE = cos B, sin ZECR = cos B, sin ZRCD = cos A, sin ZDBQ =
cos A and sin ZQBF = cos C. Thus
sin /FAP sin/ZECR sin ZDBQ
sin /PAE sin/ZRCD sin ZQBF

and by Ceva’s theorem, AP, BQ) and C'R are concurrent. In fact the point of concurrence is the

L

circumcentre of the triangle ABC.

Example 5.3 In an acute-angled triangle ABC, N is a point on the altitude AM. The line C'N,
BN meet AB and AC respectively at F' and E. Prove that ZEMN = ZFMN.

Solution. Construct a line through A parallel to BC' meeting the extensions of M F' and M E at P
and @) respectively. Thus ZM AP = 90°. As APAF is similar to AM BF and AQAE is similar

to AMCE, we have

AF-BM, AQ:E—A-MC.

PA=Tg EC
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Figure 5.6: ZEMN = ZFMN

PA AF BM E
Thus — = C— = 1, by Ceva’s Theorem. Therefore, PA = AQ. It follows

AQ FB MC EA
that /ZEMN = /FMN.

Example 5.4 On the plane, there are 3 mutually and externally disjoint circles I';, I's and I'5 centred
at X, X5 and X3 respectively. The two internal common tangents of I'; and I's, (I's and I'y, 'y
and I'3) meet at P, (Q, R respectively). Prove that X; P, X5(@) and X3R are concurrent.

Solution. Let the radii of I';, 'y and I's be 1, 72 and r3 respectively.

VAN

—_/ Q
o R

P

Figure 5.7: X1 P, X>(@ and X3 R are concurrent

Then X 1R : RX5 :=1r1 :719, XoP : PX3:=19:r3and X3Q : QX1 := 173 :71. Thus

XiR XoP X3Q

=1
RX, PX; QX

By Ceva’s Theorem, X; P, X2@ and X3Z are concurrent.
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Example 5.5 Prove that the 3 cevians of a triangle ABC such that each of them bisects the perime-
ter of the triangle ABC' are concurrent.

Solution. Let BC' = a,AC = b,AB = cand s = %(a +b+c¢). Let A’, B',C’ be the points on
BC, AC, AB suchthat AA’, BB’, CC' each bisects the perimeter of AABC'. Then BA'+A'C = a
and c+ BA’ = b+ A'C. Thus BA' = s —cand A’C = s —b. Similarly, CB’ = s —a,B'A =
s—c,AC' =s—band C'B = s — a. Thus
BA . CB’ . AC" 1
A'C B'A (C'B

so that by Ceva’s Theorem, AA’, BB’, CC" are concurrent. The point of concurrence is called the

)

Nagel point of AABC. 1t is also the point of concurrence of the cevians that join the vertices of the
triangle to the points of tangency of the excircles on the opposite sides.

Figure 5.8: Nagel point

Remark 5.1 If D, E, F are the points of tangency of the incircle to the sides BC, C'A and AB, and
DX, EY, FZ are the diameters of the incircle respectively, then AX, BY, C'Z concurs at the Nagel
point. In fact we can prove that the extension of AX, BY and CZ meet BC, CA and AB at A’, B’
and C’, respectively. To see this, we show that the point A’ on BC which is the point of tangency
of the excircle with the side BC' together with the points X and A are collinear. This is because a
homothety mapping the incircle to this excircle must map the highest point X of the incircle to the
highest point A’ of the excircle.

Exercise 5.1 Let ABC D be a trapezium with AB parallel to CD. Let M and N be the midpoints
of AB and C'D respectively. Prove that M N, AC and BD are concurrent.

Exercise 5.2 Suppose a circle cuts the sides of a triangle A; As A3 at the points X1, Y7, X5, Y5, X3, V3.
Show that if A1X, A> X5, A3X3 are concurrent, then A,Y7, A>Y5, A3Y3 are concurrent.
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Pt

/ T

Figure 5.9: The incircle and excircle

[Hint: Observe that X1A2 . Y1A2 = X3A2 . Y3A2.]

Exercise 5.3 Let P be a point inside the triangle ABC. The bisector of /BPC, ZCPA, and
/APBmeet BC,CAand AB at X, Y and Z, respectively. Prove that AX, BY, C'Z are concurrent.

A
Y
Z
P
B X C

Figure 5.10: AX, BY, C'Z are concurrent

Exercise 5.4 Let I be a circle with center I, the incentre of triangle ABC. Let D, E, F' be points of
intersection of I" with the lines from [ that are perpendicular to the sides BC, C' A, AB respectively.
Prove that AD, BE, C'F are concurrent.

[Hint: Let the intersection of AD, BE, CF with BC, CA, ABbe D', E', F' respectively. It is easy
to establish that /FAF' = /EAFE', /FBF' = /DBD’', /DCD’ = /ECE'. Also AE = AF,
BF = BD,CD = CE. The ratio AF’/F' B equals to the ratio of the altitudes from A and B on
CF of the triangles AFC' and BFC and hence equals to the ratio of their areas. Now apply Ceva’s
theorem.]

Exercise 5.5 Let A1, By and C be points in the interiors of the sides BC, C' A and AB of a triangle
ABC respectively. Prove that the perpendiculars at the points A;, By, C; are concurrent if and only
if BA? — A;C? + CB} — B1 A% + AC? — C1 B% = 0. This is known as Carnot’s lemma.

Solution. Suppose the three perpendiculars concur at a point O. Note that O is inside the triangle
ABC. As BA? — A,C? = (OB? — 0OA?) — (OC? — 0A?%) = OB? — OC?, OB} — B1A? =
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Figure 5.11: A generalization of the Gergonne point

A

Cy B,

B A c
Figure 5.12: Carnot’s lemma

(0OC? —OB?) - (0A%2 —0OB3?) = OC? — 0OA?%,and AC? — C1B? = (OA? — OC?) — (OB? —
OC?) = OA? — OB?, we thus have BA? — A,C? + CB? — B1A? + AC} — C1B? = 0.

Conversely, suppose BA? — A;C? + CB? — By A? + AC? — C1B? = 0. Let the perpendiculars at
Bj and C meet at a point O. Note that O is inside the triangle ABC. Drop the perpendicular O A’
from O onto BC'. We want to prove A’ = A;. By the proven forward implication, we know that
BA”? — A'C? + CB? — B1 A% + AC? — C1B? = 0. Together with the given relation, we obtain
BA? - A'C? = BA? — A,C?. Thatis (BA'+ A'C)(BA' — A'C) = (BA; + A;C)(BA; — A, O).
As BA'+ A'C = BC = BA; + A1C, we have BA' — A'C = BA; — A;C. From these equations,
we deduce that BA" = BA; and A'C = A;C. Thus A’ = A; and the three perpendiculars are

concurrent.



Chapter 6
Collinearity

Problems on collinearity of points and concurrence of lines are very common in elementary plane
geometry. To prove that 3 points A, B, C are collinear, the most straightforward technique is to
verify that one of the angles ZABC, ZACB or Z/BAC is 180°. We could also try to verify that
the given points all lie on a specific line which is known to us. These methods have been applied
in earlier chapters to prove that the Simson line and the Euler line are lines of collinearity of cer-
tain special points of a triangle. In this chapter, we shall explore more results such as Desargues’
theorem, Menelaus’ theorem and Pappus’ theorem which give conditions on when three points are
collinear.

The concept of collinearity and concurrence are dual to each other. For instance, suppose we wish
to prove that 3 lines PQ, M N, XY are concurrent. Let P() intersect M N at Z. Now it reduces to
prove that X, Y, Z are collinear. Conversely, to prove that X, Y, Z are collinear, it suffices to show
that the 3 lines PQ), M N, XY are concurrent.

6.1 Menelaus’ theorem

Theorem 6.1 (Menelaus) The three points P, Q, R on the sides AC, AB and BC respectively of a

triangle ABC are collinear if and only if
AQ BR CP_
@B RC PA ’
where directed segments are used. That is either 1 or 3 points among P,(Q), R are outside the

triangle.

Proof. Suppose that P, @), R are collinear. Construct a line through C parallel to AB intersecting
the line containing P, @), R at a point D. See figure 6.1. Since ADCR ~ AQBR and APDC ~
APQA, we have

QB - RC AQ-CP
= DC =
BR ¢ PA
From this, the result follows.
Conversely, suppose
AQ BR CP
QB RC PA

51
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Figure 6.1: Menelaus’ theorem

Let the line containing R and Q intersect AC at P’. Now P’, ), R are collinear. Hence,

AQ BR CP'

it
QB RC P'A

Therefore, CP’'/P'A = C'P/PA. This implies that P and P’ must coincide.

Definition 6.1 The line PQ R that cuts the sides of a triangle is called a transversal of the triangle.

Example 6.1 The side AB of a square ABCD is A 5 P
extended to P so that BP = 2AB. Let M be the
midpoint of C'D and @ the point of intersection Q@ -
between AC' and BM. Find the position of the
point R on BC such that P, R, () are collinear. D M c
Figure 6.2

Solution. First we know that AP : PB = 3 : —2. Next we have AABQ ~ ACMQ. Hence,
CQ:QA=CM : AB = % By Menelaus’ theorem applied to triangle ABC, the points P, R, Q)

are collinear if and only if
AP BR (CQ _

PB RC QA
Thatis BR: RC =4: 3.

Example 6.2 In the figure, a line intersects
each of the three sides of a triangle ABC' at
D,E F. Let X, Y, Z be the midpoints of the
segments AD, BE, C'F respectively. Prove
that X, Y, Z are collinear.

Figure 6.3
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Solution. Let Ay, B; and C; be the midpoints of BC, AC and AB respectively. Then B,C] is
parallel to BC and B;,Cy and X are collinear. Hence, BD/DC = C1X/XBj. Similarly,
CE/EA = A1Y/YC, and AF/FB = B1Z/ZA,. Now apply Menelaus’ theorem to AABC
and the straight line DEF'. We have

BD CE AF _

DC EA FB - 1

)

That is
X BiZ AY

XB, ZA, YO,
Then, by Menelaus’ theorem applied to AA; B;C; and the points X, Y, Z, the points X, Y, Z are
collinear.
(The line XY Z is called the Gauss line. )

—1.

A
Example 6.3 A line through the centroid G of
AABC cuts the sides AB at M and AC at N.
Prove that N
M
AM -NC + AN -MB = AM - AN.
P B K e,
Figure 6.4

Solution. The above relation is equivalent to NC /AN + M B/AM = 1. If M N is parallel to BC,
then NC/AN = MB/AM = GK/AK = . Therefore the result is true.

Next consider the case where M N meets BC' at a point P. Apply Menelaus’ theorem to AAK B
and the line PMG. We have (BP/PK) - (KG/GA) - (AM/MB) = 1 in absolute value. As
KG/GA = L, we have BP = (2M B - PK)/AM. Similarly, by applying Menelaus’ theorem to
AACK and the line PGN, we have PC = (2CN - KP)/NA.

Note that PC — PK = KC = BK = PK — PB. Substituting the above relations into this

equation, we obtain the desired expression.

Theorem 6.2 In the convex quadrilateral ACGE, AG intersects CE at H, the extension of AE
intersects the extension of CG at I, the extension of EG intersects the extension of AC at D, and
the line I H meets EG at F and AD at B. Then

(i) AB/BC = —AD/DC,

(ii) EF/FG = —ED/DQG.

Here directed line segments are used.

Proof. (i) Refer to Figure 6.5. Applying Ceva’s Theorem to AAC'I, we have
IE ABCG

EABC GI
Next by Menelaus’ Theorem applied to AACT with transversal EG D, we have

ADCG IE

DC GI EA~
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Figure 6.5: A complete quadrilateral

Thus, AB/BC = —AD/DC.
(ii) To prove the second assertion, apply Ceva’s Theorem to Al EG with cevians I F, EC and G A.

They concur at H. Thus, we have
IA EF GC _

AEFG CI
By Menelaus’ Theorem applied to AIEG with transversal ACD,

EDGC IA

DG CI AE —
Thus EF/FG = —ED/DG.

6.2 Desargues’ theorem

Theorem 6.3 (Desargues) Let ABC and A1B1C4 be two triangles such that AA,, BB,,CCy
meet at a point O. (The two triangles are said to be perspective from the point O.) Let L be the
intersection of BC and B1C1, M the intersection of C' A and C1 Ay and N the intersection of AB
and A1By. Then L, M and N are collinear.

Figure 6.6: Two triangles in perspective from a point
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Proof. The line LB, C4 cuts AOBC at L, By and C7. By Menelaus’ theorem,

BL CCy OB

- . = _1.
LC Ci0 BB

Similarly, the lines M A1C1 and NB1A; cut AOCA and AOAB respectively. By Menelaus’

theorem, we have

CM AA, OC, _ AN BB OA _
MA 4,0 C,C '

NB B,O AjA
Multiplying these together, we obtain

BL CM AN _

LC MA NB
By Menelaus’ theorem applied to AABC, the points L, M and N are collinear.

Exercise 6.1 Prove the converse of Desargues’ theorem: Let ABC and A; B1C be two triangles
such that BC intersects B1C7 at L, C'A intersects C7A; at M and AB intersects A; By at N.
Suppose L, M, N are collinear. Then AA;, BB; and CC are concurrent.

[Hint: Refer to figure 6.6. Let AA; intersect BB, at O. It suffices to prove O, C, Cy are collinear.
To do so, apply Desargues’ theorem to the triangles M AA; and LB B; which are perspective from
the point IV.]

6.3 Pappus’ theorem

Theorem 6.4 (Pappus) If A, C, E are three
points on one line, B, D, F on another, and if the
three lines AB, CD, EF meet DE, FA, BC re-
spectively at points L, M, N, then L, M, N are

collinear.

Figure 6.7

Proof. Extend F'E' and DC' meeting at a point U as in the figure. If F'E and DC' are parallel,
then the point U is at infinity. The proof is still valid if the problem is suitably translated in terms of
projective geometry. Let’s not worry about this situation as this would take us too far in the direction
of projective geometry. We may as well consider the intersection point between BC' and F' A if they
are not parallel. The case where F'E || DC and BC || F A can be proved directly. The reader is
invited to try by himself or herself.
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Apply Menelaus’ theorem to the five triads of points L, D, E; A, M, F; B,C,N; A,C,E; B,D, F
on the sides of the triangle UV W . We obtain

VL WD @__1 VA WM UF VB WC M——l
LW DU EV 7T AW MU FV  'BW CU NV 7
VA WC UE VB WD UF

aw Cu BV “BW DU FV . -

Dividing the product of the first three expressions by the product of the last two, we have

VL WM UN _
LW MU NV

By Menelaus’ theorem, N, L, M are collinear.

Exercise 6.2 Prove that the interior angle bisectors of two angles of a non-isosceles triangle and the

exterior angle bisector of the third angle meet the opposite sides in three collinear points.

Exercise 6.3 (Monge’s Theorem) Prove that the three pairs of common external tangents to three
circles, taken two at a time, meet in three collinear points.

Figure 6.8: Monge’s theorem

Exercise 6.4 Let I be the centre of the inscribed circle of the non-isosceles triangle ABC, and let
the circle touch the sides BC, C A, AB at the points Ay, By, C; respectively. Prove that the centres
of the circumcircles of AAI A, ABIBy and ACIC are collinear.

[Hint: Let the line perpendicular to C'I and passing through C meet AB at C>. By analogy, we
have the points Ay and Bs. It is obvious that the centres of the circumcircles of AAT A, ABIB;
and ACIC, are the midpoints of Az, Byl and Cal, respectively. So it is sufficient to prove that
As, By and C5 are collinear.]



Chapter 7

Circles

A circle consists of points on the plane which are of fixed distance 7 from a given point O. Here O
is the centre and r is the radius of the circle. It has long been known to the Pythagoreans such as
Antiphon and Eudoxus that the area of the circle is proportional to the square of its radius. Inevitably
the value of the proportionality 7 is of great importance to science and mathematics. Many ancient
mathematicians spent tremendous effort in computing its value. Archimedes was the first to calculate
the value of 7 to 4 decimal places by estimating the perimeter of a 96-gon inscribed in the circle.
He obtained 223/71 < 7 < 22/7. Around 265AD, Liu Hui in China came up with a simple
and rigorous iterative algorithm to calculate 7 to any degree of accuracy. He himself carried out
the calculation to 3072-gon and obtained m = 3.1416. The Chinese mathematician Zu Chongzhi
(429-500) gave the incredible close rational approximation % to m, which is often referred to as
“Milu”.

7.1 Basic properties

Circles are the most symmetric plane figures and they possess remarkable geometric properties. In
this chapter, we shall explore some of these results as well as coaxal families of circles. In addition,
figures inscribed in a circle or circumscribing a circle also enjoy interesting properties. We begin

with some basic results about circles which we will leave them for the readers to supply the proofs.

1. Let AB and CD be two chords in a circle. The

followings are equivalent.

@) AAB:CAD, where AAB is the length arc of AB.

(i) AB = CD.
(iii) ZAOB = /COD.
(iv) OF = OF.

Figure 7.1
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2. Let AB and C'D be two chords in a circle. The
followings are equivalent.

(i) AB>CD

(ii)) AB > CD.

(iii) LZAOB > ZCOD.

(iv) OF < OF.

3. Let D be a point on the arc AB. The followings
are equivalent.

(i) AD=DB.

(i) AC = CB.

(iii) LAOD = ZBOD.

(iv)OD 1 AB.

4. The angle subtended by an arc BC' at a point A
on a circle is half the angle subtended by the arc
BC at the centre of the circle.

That is ZBOC = 2/BAC.

5. The angle subtended by the same segment at any

point on the circle is constant.

Thatis ZBAC = ZBDC.
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Figure 7.2
A c B
D
Figure 7.3
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Figure 7.4

Figure 7.5
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6. A chord BC is a diameter if and only if the an-
gle subtended by it at point on the circle is a right

angle. B

That is ZBAC = 90° for any point A # B or C
on the circle.

D

Figure 7.6

7. Let ABCD be a convex quadrilateral. The fol-
lowings are equivalent.

(1) ABCD is a cyclic quadrilateral

(i)) LBAC = ZBDC.

(iii)) LA+ £C = 180°.

(iv) LZABE = ZD. B

S
sy
Q
o)

Figure 7.7

8. Alternate Segment Theorem. Let A, B, C' be \J

three points on a circle. Let T'A be a line through B
A with T and B lying on the same side of the line

AC. Then the followings the equivalent.

(i) AT is tangent to the circle at A.
(i) OA L AT. J

(iii) ZBAT = ZBCA. oA
Figure 7.8

~

9.Let PS and PT be tangents to the circle. Then

(i) PS = PT,

(ii) OP bisects ZSPT

(>iii) OP bisects ZSOT

(iv) OP is the perpendicular bisector of the seg-
ment ST

N

Figure 7.9

Definition 7.1 Four points are concyclic if they lie on a circle.
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Theorem 7.1 (Euclid’s theorem) Let A, B,C, D be 4 points on the plane such AB and CD or
their extensions intersect at the point P. Then A, B, C, D are concyclic if and only if

PA-PB=PC-PD.

Q

Figure 7.10: Euclid’s theorem

Proof. The result follows from the fact the triangles APC and D BC are similar.
Definition 7.2 The power of a point P with respect to the circle centred at O with radius R is
defined as OP? — R2.
(i) If P is outside the circle, then
the Power of P
=0P? - R?
=PT? = PA-PB,

which is positive.

B
Figure 7.11
(i)  If P lies on the circumference, then
the power of P = OP? — R?2 = 0.
Z
(iii)  If P is inside the circle, then
the power of P R B
_ 2 2 _ 2
=0P*—-R*=—-PZ x v
o /P
=—PX -PY
=—PA-PB,
which is negative. A
Figure 7.12

Exercise 7.1 Let D, FE and F be three points on the sides BC, C A and AB of a triangle ABC
respectively. Show that the circumcircles of the triangles AEF, BDF and C DE meet a common
point. This point is called the Miquel point.
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Theorem 7.2 (Euler’s formula for O1)
Let O and I be the circumcentre and the incen-
tre, respectively, of NABC with circumradius

R and inradius r. Then

OI*> = R? — 2rR.

Proof. As Z/CBQ = 1/A, it follows that
/QBI = ZQIB and QB = QI. The abso-
lute value of the power of I with respect to the
circumcircle of ABC' is R? — OI?, which is
also equal to TA - QI = TA- QB = ¢ -
2Rsin 4 = 2Rr.

sin 3

Figure 7.13

Corollary 7.3 R > 2r. Equality holds if and only if ABC is equilateral.

Exercise 7.2 Prove the isoperimetric inequality 52 > 3v/3A, where A is the area and s is the semi-
perimeter of the triangle. Show that equality holds if and only if the triangle is equilateral.

7.2 Coaxal circles

Let C be a circle and P a point. Suppose AA’ and BB’ are two chords of C intersecting at P. Then
PA-PA" = PB - PB’. Let R be the radius of C and d the distance from P to the centre of C. We
have PA- PA’ = d*> — R? or R?> — d?, depending on whether P is outside or inside C'. Recall that
the quantity d> — R? is called the power of P with respect to the circle C. Note that the power of P
with respect to C'is positive if and only if P is outside C.

A

Figure 7.14: The power of a point with respect to a circle

If P is outside C' and PT is a tangent to C' at T, then the power of P with respect to C'is PT2. The
power of P with respect to C can also be expressed in terms of the equation of C'. (The coefficients
of 22 and y? are both 1.)

The standard equation of a circle centred at (— f, —g) is of the form

C(z,y) =2> +y* +2fx + 29y +h=0.
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Theorem 7.4 The power of a point P(a,b) with respect to a circle C = 0 is also given by C(a, b).

Definition 7.3 The locus of the points having equal power with respect to two non-concentric circles
C1 and Cy is called the radical axis of C1 and Cs.

Theorem 7.5 For any two non-concentric circles C1 = 0 and Co = 0, the radical axis is given by
Cy—Cy=0.

Proof. If P(a,b) is on the radical axis, then C}(a,b) = C3(a,b), i.e, P is on the line C; — Cy = 0.
Conversely, any point P(a, b) on the line has equal power with respect to the two circles.

(D O O

Figure 7.15: Radical axis

Exercise 7.3 Show that the radical axis of 2 circles is perpendicular to the line joining the centres
of the 2 circles.

Theorem 7.6 Let C'5 = \C1 + uCy = 0, where A + p = 1.

(i) Any point P(a,b) on the line Cy (z,y) — Ca(z,y) = 0 has equal power with respect to the three
circles C,Cs, Cs.

(ii) For any point Q(c,d) on Cs, the ratio of the powers of Q w.r.t Cy and Cy is —p/ )\, which is a
constant.

Proof. (i) The power of P with respect to C; and C3 are equal to k = Cj(a,b) = Cz(a,b). Its
power with respect to Cj is

ACi(a,b) + uCo(a,b) = (A + p)k = k.
(i) Since Q is on Cs5, we have AC (¢, d) + uCa(c,d) = 0 or Cy(c,d)/Ca(c,d) = —p/ A

Definition 7.4 The collection of all circles of the form Cs = AC1 + uCa, where A + u = 1, forms
a so-called pencil of circles. Any two such circles have the same radical axis, and they are called

coaxal circles.

Theorem 7.7 Suppose C1, Co, Cs are three circles such that for any point P(a,b) on Cs, the ratio
of the powers of P w.r.t to Cy, Cy is a constant k(£ 1), then C3 = ACy + uCs, where i = k/(k—1)
and A = =1/(k —1).

Proof. We have C(a,b)/Cs(a,b) = k. So C1(a,b) — kCy(a,b) = 0. Thus C3 = A\Cy + uCs.
Note that for the above statement to be true we need the condition to hold for 3 points on C'5 because
3 points determine a unique circle, i.e. if Cy(a;,b;)/Ca(a;,b;) = k for 3 distinct points (a;, b;),

1 =1,2,3, then C3 above is the circumcircle of the triangle whose vertices are (a;, b;).
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Example 7.1 Let C; and Cs be two circles tangent at a point M. If A is any point on C, with AP
as the tangent to C, then AP/AM is a constant as A varies on C1.

Solution. Regard M as a circle of 0 radius. Then the 3 circles Cy, M, C5 are coaxal with the tangent
at M as the radical axis. Thus, AP/AM is the ratio of the powers of A with respect to Cy and M

which is constant.

Figure 7.16: AP/AM is a constant as A varies on Cy

Theorem 7.8 The three radical axes of three non-concentric circles C1, Cy, Cs, taken in pairs, are

either parallel or concurrent.

Proof. The three radical axes are Cy —Co = 0, Co — C3 = 0, C3 — C7 = 0. Any point that satisfies
two of the equations must satisfy the third. Thus if two of the lines intersect, then the third must
also pass through the point of intersection, i.e., they are concurrent. Otherwise, they are pairwise
parallel.

Definition 7.5 The point of concurrence of the 3 radical axes of 3 circles is called the radical centre
of the 3 circles.

Figure 7.17: Coaxal circles and the radical centre of three non-coaxal circles

Exercise 7.4 Consider the pencil of circles 2+ y2 — 2ax + ¢ = 0, where c is fixed and a is the
parameter. (If ¢ > 0, a varies in the range R \ (—/c, v/c).) Any two of its members have the same
line of centres and the same radical axis. Hence it is a pencil of coaxal circles. Prove the following.
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(a) If ¢ < 0, each circle in the pencil meets the y-axis at the same two points (0, =/—c), and the
pencil consists of circles through these two points.

(b) If ¢ = 0, the pencil consists of circles touching the y-axis at the origin.

(c) If ¢ > 0, the pencil consists of non-intersecting circles. Also when a = ++/c (¢ > 0), the circle
degenerates into a point at (£+/c, 0).

7.3 Orthogonal pair of pencils of circles

Two non-intersecting circles give rise to a pencil of non-intersecting coaxal circles together with
two degenerate circles, called the limit points of the pencil. For any point on the radical axis of this
pencil of circles, the tangents to these circles are all of the same length. Therefore, the circle centred
at that point with radius equal to the length of the tangent is orthogonal to all the circles in this
pencil. All such circles form another pencil and any two of them uniquely determine the original
pencil. Moreover, each circle in one pencil is orthogonal to each circle of the other pencil.

Figure 7.18: Two orthogonal pencils of coaxal circles

Exercise 7.5 Consider the two pencils of circles P; : x2 +y? — 2ax +c = 0and Py : 22 4 y? —
2by — ¢ = 0 where ¢ > 0 is fixed, a and b are the parameters.

(a) Show that P; consists of non-intersecting circles, and P» consists of intersecting circles all
passing through the points (+4/c, 0).

(b) Show that each circle in P; is orthogonal to each circle in Ps.
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7.4 The orthocentre

A
Theorem 7.9 Let AD, BE and C'F be the altitudes of
the triangle ABC'. The circle with diameter AB passes » S
through D and E. Hence HA- HD = HB - HE. Sim-
ilarly, HB-HFE = HC - HF.

-

B D c
Figure 7.19

Theorem 7.10 If X,Y, Z are any points on the respective sides BC,C A, AB of a triangle ABC,
then the circles constructed on the cevians AX, BY,CZ as diameters will pass through the feet of
the altitudes D, E, F' respectively.

Theorem 7.11 If circles are constructed on 2 cevians of a triangle as diameters, then their radical

axis passes through the orthocentre of the triangle.

Theorem 7.12 For any 3 non-coaxal circles having cevians of a triangle ABC' as diameters, their
radical centre is the orthocentre of NABC.

Theorem 7.13 If circles are constructed having the medians, (or altitudes or angle bisectors) of
NABC as diameters, then their radical centre is the orthocentre of NABC.
7.5 Pascal’s theorem and Brianchon’s theorem

Theorem 7.14 (Pascal) If all 6 vertices of a hexagon lie on a circle and the 3 pairs of opposite sides

intersect, then the three points of intersection are collinear.

Theorem 7.15 (Brianchon) If all 6 sides of a hexagon touch a circle, then the three diagonals are

concurrent (or possibly parallel).

Figure 7.20: Pascal’s Theorem Figure 7.21: Brianchon’s theorem

Proof of Pascal’s theorem. We assume the lines AB,C D, E'F form a triangle. Let AB intersect

CD at WW. The intersection points between various lines are shown in the figure.
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Figure 7.22: Proof of Pascal’s theorem

Apply Menelaus’ theorem to the transversals ELD, AMF, BNC with respect to AUVW. We
have

VLWDUE  VAWMUF  VBWCUN _

i i el A 1

LW DU EV ~ 7AW MU FV 7 BW CU NV

Therefore
VLWMUN _ DUEV AWFV BWCU _
LW MU NV~ WDUE VAUF VBWC

since DU-CU =UFE-UF,EV -FV =VA-VBand AW - BW = WC - WD. By Menelaus’

theorem, L, N, M are collinear.

)

Note that the 3 equations obtained by applying Menelaus’ theorem to the transversals ELD, AMF,
BNC with respect to AUVW are the same as those in the proof of Pappus’ theorem. In Pap-
pus’ theorem, there are two more such equations arising from the 2 original lines which are also
transversals to AUV W. In Pascal’s theorem, these are replaced by the 3 equations arising from the
condition on equality of powers of the three vertices of AUV W with respect to the circle.

Proof of Brianchon’s theorem. Let R, Q, T, .S, P,U be the points of contact of the six tangents
AB,BC,CD,DE,EF, FA, as in the figure. For simplicity, we assume the hexagon is convex so
that all three diagonals AD, BE, C'F are chords of the inscribed circles and they are not parallel.
On the lines, FE, BC, BA, DE, DC, F A extended, take points P', Q’, R’, S, T", U’ so that

PP =QQ =RR =SS =TT =UU’,

with any convenient length, and construct circles I touching PP’ and QQ’ at P’ and @', II touching
RR’ and SS’ at R and S’, and III touching 77" and UU’ at T’ and U’. This is possible because
ABCDEF has an incircle.
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Figure 2.23: Proof of Brianchon’s theorem

Now AU’ = UU’ — AU = RR' — AR = AR and DT = DT +TT' = DS+ SS' = DS so
that A and D are of equal power with respect to the circles II and III. Thus AD is the radical axes
of II and III. Similarly, BE is the radical axis of I and II, and C'F’ is the radical axis of I and III.
Consequently, AD, BE and C'F are concurrent.

Example 7.2 Tangents to the circumcircle of AABC at points A, B, C' meet sides BC', AC, and
AB at points P, ) and R respectively. Prove that points P, ) and R are collinear.

Solution. As ARCA is similar to ARBC, we have
RB/RC = RC/RA = BC/AC. Hence, RB/RA =
(RC/RA)? = (BC/AC)?. Similarly, we have
QA/QC = (BA/BC)? and PC/PB=(AC/BA)%.
Consequently, (BR/RA) - (AQ/QC) - (CP/PB) =
1. Therefore, by Menelaus’ theorem, P,Q, R are

collinear.

Figure 2.24
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2nd solution. Alternatively, the result can be proved by applying Pascal’s theorem to the degenerate
‘hexagon” AABBCC.

Example 7.3 Let ABC be any triangle and P any point in its interior. Let P;, P be the feet of the
perpendiculars from P to the sides AC and BC'. Draw AP and B P and from C drop perpendiculars
to AP and BP. Let (Q; and ()2 be the feet of these perpendiculars. Prove that the lines Q1 P, Q2 Py
and AB are concurrent.

Solution. Since ZCP,P, ZCP,P, /ZCQ-P,
/C@Q1 P are all right angles, one sees that the points
C,Q1, P, P, Py,Q lie on a circle with C'P as di-
ameter. C'P; and Q1P intersect at A and ()P and
CP; intersect at B. If we apply Pascal’s Theorem
to the crossed hexagon C' Py Q2 PQ1 P>, we see that
P>@1 and P;(Q), intersect at a point X on the line
AB.

Figure 2.25

Example 7.4 A, E, B, D are points on a circle in a clockwise sense. The tangents at F' and B meet
at a point N, lines AE and DB meet at M and the diagonals AB and DE meet at L. Prove that
L, N, M are collinear.

Solution. Apply Pascal’s theorem to the de-
generate hexagon ABCDEF with B = C
and F = F. The sides BC and EF degener-
ate into the tangents at B and E respectively.

Figure 2.26

Example 7.5 Prove that the lines joining the tangency point of the incircle of a triangle to its oppo-
site vertices concur at a common point.

Solution. The result is obvious by Ceva’s theorem. Alternatively, the result follows by applying
Brianchon’s theorem to the hexagon AC' BA’C'B’, where A’, B', C' are the tangency points of the
incircle of AABC to its sides. This point is called the Gergonne point of AABC'. See also example
5.1 in chapter 5.
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A
B/
C/
B c
A/
Figure 2.27

Example 7.6 Suppose ABC'D has an inscribed circle. Show that the lines joining the points of

tangency of the inscribed circle on opposite sides are concurrent with the two diagonals.

D
Z

Solution. The proof is by a degenerate case of Brianchon’s c
theorem. For example, by taking the hexagon ABY CDW,
we see that AC, BD,Y W are concurrent; and by taking the Y
hexagon AXBCZD, AC,BD,XZ are concurrent. Conse-

quently, AC,BD, YW and XZ are concurrent. Moreover,

WZ AC, XY (same for W X, ZY, D B) are concurrent by suit- A X B
ably applying Brianchon’s theorem. Figure 2.28

Exercise 7.6 Let ABC be a triangle, and draw isosceles triangles BC D,C AFE,ABF externally to
ABC, with BC,C' A,AB as their respective bases. Prove that the lines through A, B,C' perpendicular
to lines EF, FD, DF, respectively, are concurrent.

[Hint: Draw three circles with centres D, E/, F' and radii DB, EC and AF respectively.]

Exercise 7.7 A convex quadrilateral ABCD is inscribed in a circle centred at O. The diagonals
AC and BD meet at P. Points E and F', distinct from A, B, C, D, are chosen on this circle. The
circle determined by A, P, I and the circle determined by B, P, F meet at a point () distinct from
P. Suppose AF and BE intersect at R, and DF and C'F intersect at X. Prove that the four points
P, Q, X, R are collinear.

[Hint: Apply Pascal’s theorem to the crossed hexagon AF DBEC']

7.6 Homothety

Definition 7.6 A bijective map h : R?> — R? is called a homothety if there exist a point C and
a number k # 0, such that h(C) = C, and for any point P distinct from C, the point P' = h(P)
lies on the line CP with CP' = kCP. The point C' is called the homothetic centre and k is the

similitude ratio. A homothety is also called a similitude.

Exercise 7.8 Show that if o : R?> — R? is a homothety with homothetic centre C' and similitude

ratio k, then A1 is a homothety with homothetic centre C' and similitude ratio 1/k.
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Two figures are said to be homothetic if there exists a homothety mapping one to the other. If two
figures are homothetic, then the lines joining the corresponding points all meet at the homothetic
centre C'. Note the corresponding sides of two homothetic figures are parallel. If £ = 1, & is just
the identity map. If |k| > 1, h enlarges any figure. If |k| < 1, h contracts any figure. If £k > 0, h
preserves orientation. If k& < 0, h reverses orientation.

A common homothety arises when two circles touch at a point C'. Then the ray from C' meeting the

two circles at two corresponding points is a homothety that maps the circles to each other.

Figure 7.29: A homothety between two circles

In the above figure, one can show using similar triangles that CA’/CA = CO’/CO = O'A’/OA =
r’/r = k, where r and r’ are radii of the circles. As OA is parallel to O’ A’, we have ¢ is parallel to
¢'. Thus the homothety also maps £ to .

Example 7.7 Three circles I'1, I's, I's of equal radius passing through a common point O lie inside
a triangle ABC such that T'; touches the sides AC and AB, I's touches the sides BA and BC,
and I's touches the sides C'A and C'B. Prove that the point O, the incentre and the circumcentre of
ANABC are collinear.

Solution.

M

Figure 7.30: A homothety

Let the centres of the circles I'1,'5,I's be P, @ and R respectively. Since the circles are of equal
radius, we have PR is parallel to AC, RQ is parallel to CB and P( is parallel to AB. Thus,
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APQR is similar to AABC'. Note that AP, BQ) and C'R are the angle bisectors of AABC'. They
meet at the incentre I of AABC'. So I is the centre of the homothety that maps APQR to AABC.
Note that O being equidistant to P, and R is the circumcentre of APQR. Therefore, under
the homothety, O is mapped to the circumcentre M of AABC. In other words, I,O and M are
collinear.

Exercise 7.9 Let I'1,I'5, '3 be three circles inside and tangent to a circle I' such that I's is tangent
to I'y and I's externally; and I';, I's lie outside each other. Suppose the common tangent between

T'y,T's and the common tangent between I's, '3 meet at a point P on I'. Prove that 'y, I's, '3 touch

a line.

P

Figure 7.31: A common tangent to the three circles

N

7.7 The Apollonius circle of two points

Theorem 7.16 Let A and A’ be two distinct points on the plane. The locus of the points P such that

PA: PA" = \ where \ is a positive constant, is a circle with centre O on the line AA’ and radius
r=(0A-04"z.

Figure 7.32: The Apollonius circle of two points
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Proof. Let P be a point such that PA : PA’ = \. Consider the circle passing through P, A, A’. Let
the tangent at P to the circle intersect the line AA’ at a point O. Then Z/PAO = ZA’PO. Thus the
triangles PAO and A’ PO are similar so that A\ = AP : PA' = OP : OA’ = AO : PO. Therefore,
AO A0 opP _ )2
OA" PO 04 =
Thus the point O, which lies outside the segment AA’, is a fixed point on the line AA’. As OP? =
OA-OA’, the length OP is a constant. This means P moves along a circle w with centre on the line
AA’ and radius r = (OA - OA’)2. Conversely, one can chase back the above argument to prove
that any point on this circle w satisfies the property that PA : PA" = \.

Definition 7.7 The circle in theorem 7.16 is called the Apollonius circle of the two points.

Remark 7.1 Since OA - OA’ = 72, the points A and A’ are inverses of each other under the

inversion in w.
Remark 7.2 If A\ = 1, the Apollonius circle is the perpendicular bisector of the segment AA’.

Remark 7.3 Let the Apollonius circle intersect the line AA’ at two points F and E’, where E
and E’ are respectively inside and outside the segment AA’. Then by the angle bisector theorem,
PE and PE’ are respectively the internal and external angle bisectors of ZAPA’. Also EE’' is a
diameter of the Apollonius circle of the two points A and A’ since ZEPE’ = 90°.

Exercise 7.10 Let a > 0. Let A(a,0) and A’(—a, 0) be two distinct points on the zy-plane.
(a) Let A > 0 and X\ # 1. Show that the equation of the Apollonius circle wy of A and A’ (with ratio

PA:PA =))is
A2 +1
x2—|—y2—2a:c<)\2t1) +a%=0.

(b) Show that for any A > 0, A # 1, the pencil of circles w) are coaxal with radical axis z = 0.
(c) Show that the pencil of circles w,,

2?4+ y? —2uy —a* =0

is orthogonal to the Apollonius circle wy of A and A’ in (a).

7.8 Soddy’s theorem

Frederick Soddy (1877-1956) being a famous chemist and an economist discovered the following
beautiful formula relating the radii of 4 mutually tangent circles. He was so fascinated by this
formula that he stated the result in the form of a poet in an article in Nature 137 (1936), p1021.
See [3, page 158].

Theorem 7.17 (Soddy) Let the radii of four mutually and externally tangent circles be 11,712,713

and ry. Then
1 1 1 1 1 1 1 1
A5+ +5+5)=(—+—+—+)
T Ty Tz Ty TR T2 T3 T4
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Figure 7.33: Soddy’s theorem

Proof. Let the centres of the four circles be A, B, C' and S. We may suppose the circle centred at .S
is the one which is inscribed inside the region bounded by the other three circles. There is another
circle with centre S’ containing and tangent to these three circles. In the triangle ABC, let’s take
7N =8—a,re = s—band rg = s — c. Also let the radii of the circles centred at S and S’ be 4 and

7} respectively. Then
SA=r4+s—a, SB=r4+s—b, SC=ry,+s—c.

If we consider the circle centred at S’ as the fourth circle, then S’A = r4 — (s — a) etc., and the
calculations below give the same result with r4 negative.
Let a, 3, v denote the angles at S in the three triangles SBC, SC' A, S AB respectively. Applying to

these triangles the formulas

A s(s—a) . oA (s=b)(s—¢)
2 —_= — 2 —_——=—
cos 5 o and sin 5 be

for the angle A of any triangle ABC, we obtain
ol wtan b (soBseo
2 (rq+s—=Db)(ra+s—c) 2 (rg+s—=b)(ra+s—c)
and similar expressions for 8 and .

Since 5 + g + 3 = 180°, they form the angles of a triangle. By cosine law applied to this triangle,

siHQ%—sin2§—sin2%+2sin§sin%cos% =0.

we have

Thus
(s = b)(s — ) (s = )(s — ) (s —a)(s — b)

(ra+s=0b)(ra+s—c) (ra+s—c)(ra+s—a) (ra+s—a)(ra+s—0>)
L9 (s —c)(s—a) . (s —a)(s—b) . (ra +a)ry —0
(rat+s—c)(rat+s—a) (ra+s—a)(ra+s—>5) (ra+s—>b)(ra+s—c) '

(NI




74 CHAPTER 7. CIRCLES

Multiplying throughout by (T4+S(S‘i)é;‘€:fl5?3(_r§;r 5=¢) and writing 74 +a =714 + 5 — b+ s — ¢, we

get
ry+s—a rs+s—0>b r4+sfc+2 ra(ra+s—b+s—c) %—O
s—a s—b s—c (s —b)(s—c) -
Dividing by 74, we obtain
1 1 1 1 1 1 1
——————— +2A—+—+—)F =0.
1 2 3 T4 r2r3 T3y 4T3
Thus
1 1 1 1 1 1 1
(r-s-=-= ) =1 .
T1 T2 T3 T4 ror3 3Ty raT3
Using this, we obtain
1 1 1 1., 1 1 1 1 1 1
(—+—4+—+—)=4 + + + + +
T1 T2 T3 T4 172 T1irs3 T1r4 Tar3 374 472

1 1
Y (i R B Nl LI Y (Rl s S Ml
(r1+r2+r3+r4) (r%+r§+r§+r2)

Therefore,
1 1 1 1 1 1 1 1
z(r—2+r—2+r—2+—2)=(—+—+—+—)2.
1 b 3 Ty (&1 T2 T3 T4

Exercise 7.11 Given 3 circles of radii r1, r3, 73 touching each other, show that the radii of the circles

touching all three of them are given by

-1
[7’1_1 + 7‘2_1 + rg_l + 2\/(7’11"2)*1 + (rors)~t+ (rgrl)*l} .

7.9 A generalized Ptolemy theorem

One can prove a generalized Ptolemy theorem by replacing the 4 points on a circle I' with four
circles tangent to it. The 4 circles can be inside or outside I'. The distance between two points will
then by replaced by the length of the common external or internal tangent between the two circles.
In this section, we only treat the case! where all the 4 circles are inside and tangent to T".

Let’s denote the length of one of the external common tangents of two circles with centres O, and
O which do not contain each other properly by O; 0. Whenever we refer to O, 02, we assume the

two circles do not contain each other properly. If the two circles are tangent internally at a point,
then 0105 = 0.

Lemma 7.18 Let I'1,I's and T" be three circles centred at O, Oy and O with radii r1,79 and r

respectively. Suppose I'1 and 1"y are both inside I' and touch I" at points Py and P respectively.

Then 0/10\2 = —Plrpz (r—r1)(r —r2).

I'The discussion for other cases can be found in the reference: Shay Gueron, Two Applications of the generalized
Ptolemy Theorem, Amer. Math. Monthly, Volume 109, 4 (2002) 362-370.
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Proof. Let 77 on I'y and 75 on I's be the points of tangency of an external common tangent of
I'; and T's. Then 0/1622 = T1T§ = 0;0% — (r; — r2)?. By Cosine Law applied to AOO;0x,
we have 0103 = 0037 + 003 — 200, - 002 cos Z01005 = (r —r1)? + (r — rg)? — 2(r —
r1)(r — 7r9) cos Z0100,. Also using Cosine Law on AP;OP,, we have cos 20,005 = (2r% —
Py P3)/(2r?). Substituting these expressions for 0103 and cos Z0100, into the expression for

_Z

07104 and simplifying, we obtain the require result.

Figure 7.34: External common tangent

Theorem 7.19 (Generalized Ptolemy theorem - John Casey) Let " be a circle, and let Py, Py, P3, P,
be four distinct points in this order on I'. Let four circles centred at O, 02, O3, Oy4 be inside and

tangent to I" at Py, P>, P, Py respectively. Then

0105 - 0505 + 0104 - 0,05 = 0,05 - 0504

Ove
50)

Figure 7.35: A generalized Ptolemy theorem

3

Proof. Let the radii of the 4 circles be r1, 3, 3, 4 and the radius of I" be r. By Ptolemy’s theorem,
we have
PP, - P3Py + PP, - P,P3 = PiP3 - P,P,.
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Multiplying throughout by % /(r — 1) (r — r2)(r — r3)(r — r4) and using lemma 7.9, we get
0,05 - 0504 + 0,0, - 0,05 = 0,03 - 0505.

Theorem 7.20 (The parallel tangent theorem) Ler 'y, 's be 2 circles lying outside each other,
both inside and tangent to a circle I'. Let ¢ be one of the external common tangent to I'y and I's. Let
the two internal common tangents meet I at points X and'Y where X and Y are both on the same
side of . Then XY is parallel to £.

Figure 7.36: The parallel tangent theorem

Proof. Let I'; and I's be tangent to I' at S and T respectively. Let ¢ touch I'y at G and I's at H.
Consider the homothety centred at .S mapping I'; to I'. It maps G to a point M on I" and also ¢
to the tangent « to I' at M. Similarly the homothety centred at 7" mapping I'y to I" maps H to a
point M’ on T" and ¢ to the tangent /3 to I" at M’. Since « and 3 are both parallel to £ and on the
same side of ¢, they must coincide. Thus M = M’ and SG, T H meet at the point M on I'. Note
that ZM ST = LZEMT = ZM HG so that the triangles M HG and M ST are similar. This means
MG-MS = MH - MT so that M is of equal power with respect to I'; and I's. If we can show M
is the midpoint of the arc XY, then XY is parallel to the tangent to I" at M, and thus parallel to £.
This can be achieved by using the generalized Ptolemy theorem.

Let the internal common tangent of the two circles through X meet I'; at A and I's at B, and the
one through Y meet I'; at C' and I'5 at D respectively. Denote the length of the tangents from M to
T'y and to I's by t. (M is of equal power with respect to I'; and I's.) Regarding M, X, Y as circles
with zero radii and applying the generalized Ptolemy theorem to M, X, I';,Y and M, X, I3, Y, we
have

MX - YD+ MY - XA=tXY,

MX . YC+ MY  -XB=tXY.

Subtracting, we get
MX-(YD-YC)=MY - (XB-XA).

Thatis MX - CD = MY - AB. Since AB = CD, we have M X = MY proving the result.
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Figure 7.37: The tangent at M is parallel to XY.

Exercise 7.12 Circles I'; and I's intersect at two points A and B. A line through B intersects '
and I's at points C' and D, respectively. Another line through B intersects I'; and I'; at points E
and F, respectively. Line C'F intersects I'; and I's at points P and @, respectively. Let M and N
be the middle points of the minor arcs PAB and Q/\B respectively. Prove that if CD = EF, then
C,F,M, N are concyclic.

kS

. ¥\> 1
e

E

Figure 7.38: The points C, F, M, N are concyclic.

[Hint: This problem appears in China Mathematical Olympiad 2010. Let O, and O3 be the centres
of I'; and I's respectively. Let AB intersect O104 at X. Note that O; O is perpendicular to AB.
Join O, to the midpoints K of the chord BC and L, of the chord BFE, and join Oy to the midpoints
K, of the chord BD and Lo of the chord BF, respectively. Let O1.5 be the perpendicular to
O3 K5, and O3 R the perpendicular to O1L;. Thus O; K1 K55 and O3 RL4 L, are rectangles. Since
CD = EF, wehave L1 Ly = K1 Ks. Thus RO = SO;. This implies that the two right-angled
triangles RO105 and SO50; are congruent. Hence ZRO,02 = £S5050,. Also /K101R =
/CBE = /FBD = /L505S. Consequently /K101 X = ZK->05X, and this implies that
LABC = ZABF. Therefore, BA is the bisector of ZC' BF'. Now complete the proof by showing
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that the incenter [ of the triangle BC'F is of equal power with respect to I'y and I'5.]

Exercise 7.13 Let ABC be atriangle, H its orthocentre, O its circumcentre and R its circumradius.
Let D, E, F be the reflections of A, B, C across BC, C' A, AB respectively. Prove that D, E, F' are
collinear if and only if OH = 2R.

[Hint: Let G be the centroid of the triangle ABC, and A’, B’ and C’ be the midpoints of BC,
C'A and AB respectively. Let A” B”C" be the triangle for which A, B and C' are the midpoints of
B"C",C" A" and A" B”, respectively. Then G is the centroid and H is the circumcentre of triangle
A"B"C". Let D', E’ and F’ denote the projections of O on the lines B”C", C"" A" and A" B”,
respectively. Consider the homothety h with centre G and ratio —1/2. It maps A, B, C, A”, B” and
C"into A’, B',C’, A, B and C respectively. Note that A’ D’ is perpendicular to BC' which implies
AD : A'D' =2:1=GA: GA and LDAG = ZD'A'G’. We conclude that h(D) = D’
and similarly, h(FE) = E’, h(F) = F’. Thus D', E’ and F" are the projections of O on the sides
B"C",C" A" and A" B”, respectively. Now apply Simon’s theorem.]

Figure 7.39: D, E, F are collinear if and only if OH = 2R.

Exercise 7.14 A circle w is tangent to the circumcircle of a triangle ABC' at P internally, and the
sides AB and AC at U and V respectively. Prove that the line UV passes through the incentre of
the triangle ABC. w is called the mixtilinear incircle oppoiste to A.

Exercise 7.15 For ¢ = 1,2, 3, a circle w; is drawn internally tangent to the circumcircle of a tri-
angle ABC, and two sides of the triangle ABC at U; and V; respectively. Prove that the lines
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U.V1, Uy Vy, U3 Vs are concurrent.

Figure 7.40: U, I,V are collinear.

Exercise 7.16 Show that the power of the centroid with respect to the circumcircle of a triangle is
%(a2 +b% + ¢?).

Exercise 7.17 Two circles ¢; and 5 intersect at two points X and Y. A circle w; inside §; is tangent
to d; internally and tangent to o externally. Another circle wy inside d5 is tangent to d5 internally
and tangent to &7 externally. The two internal common tangents of w; and ws intersect at P. Prove
that P lies on the line XY

Figure 7.41: P lies on the line XY'.

Exercise 7.18 Let 6 be one of the angles between the circumcircle and the nine-point circle of an

obtuse angled triangle ABC'. Prove that
g @AY+ —4R?
cosf =
4R? ’

where a, b, c are the lengths of the sides of the triangle and R is its circumradius.

[Hint: For an obtuse angled triangle, the circumcircle and the nine-point circle always intersect at
two points. Let P be one of the intersection points. Apply cosine rule to the triangle PON and use
the fact that ON = 30G/2.]
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Chapter 8

Using Coordinates

Coordinate geometry is invented and developed by Ren Descartes (1596-1650). First a coordinate
system in which two mutually perpendicular axes intersecting at the origin is set up. In such a
system, points are denoted by ordered pairs of real numbers while lines are represented by linear
equations. Other objects such as circles can be represented by algebraic equations. Finding inter-
sections between lines and curves reduces to solving equations. It has the advantage of translating
geometry into purely algebra. For instance, concurrence of lines and collinearity of points can also
be expressed in terms of algebraic conditions.

8.1 Basic coordinate geometry

In this section, we shall review some basic formulas in coordinate geometry.

1. Ratio formula. Let A = (aj,a2) and B = (b1, bs). If P is the point that divides the line
segment AB in the ratio r : s, (i.e. AP : PB = r : s), then the coordinates of P is given by
( )-

sai; +1rb; sas + rbo
r+s ' r4+s

2. Incentre. Let the coordinates of the vertices of a triangle ABC'be (2 4,ya4), (x5,y8B), (xc,yc)
respectively. The coordinates of the incentre I of AABC' are

ars+bxp + cxe aya +byp + cyc
and y; = .

= at+b+ec at+b+ec

Proof. Let the sides BC, AC, AB of AABC be a,b, c respectively. Let BI meet AC at B'.
Then using the Angle Bisector Theorem, AB’ : B'C = c: a,and BI : IB’ = (a+¢) : b. (For
the second ratio, extend AB to AB; so that BB; = a and extend Al to meet B1C at I’. Then
B C is parallel to BB’. Hence BI : IB' = ByI' : I'C = (a+ ¢) : b. From this, we obtain the
coordinates of 1.

3. Family of lines. If a1« + b1y + ¢; = 0 and asx + bay + co = 0 are two lines intersecting at a
point P (i.e. a1by # asby), then the family of lines passing though P can be expressed as

)\1(0,1.% —+ bly + Cl) + )\2((121’ + bgy + CQ) =0.

81
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Area. The algebraic area of a triangle with vertices A(z4,ya), B(xp,yp), C(xc,yc) is given

by $(ya +ys)(@a —xp) + 5(ys + yo)(@p — x¢) + 3(Yc + ya)(@we — xa) = 3(zByc —
oy + Toya — Tayc + rays — Tpya) which can be expressed as a determinant

g ya 1
5| ¥B B 1
zc yo 1

This is only the algebraic area. If the ordering of the vertices of the triangle ABC'is changed to
AC'B, then the value of this area changes by a sign. Thus (ABC) is the absolute value of this
determinant.

The determinant can also be expressed as

1 0 0 1
5| ¥B— %A YB—Ya 01,
zc—2a Yo —ya O

which is just £ (AB x AC) - k.

Tangent to a circle. Let C be the circle with equation 22 + y? + 2fx + 2gy + h = 0 and
P = (z0,yo) be a point on C. The equation of the tangent line to the circle C' at P is given by
zox +yoy + f(z + o) + g(y + yo) + h = 0.

Proof. The center of the circle is (—f, —g). Thus if (x,y) is a point on the tangent line, then

(@ — 20,y — y0), (20 + f,y0 + g)) = 0. Using a3 + y3 + 2f0 + 2gy0 + h = 0, the result
follows.

Coaxal circles. The standard equation of a circle is of the form
C(x,y) =x* +y* +2fz +29y +h=0.

The power of a point P(a, b) with respect to a circle C' = 0 is also given by C(a, b).

The locus of the points having equal power with respect to C7 and Cs is called the radical axis
of C and Cs. For any 2 circles C; = 0 and C5 = 0, the radical axis is given by

Ci—Cy=0

(b P OC

Figure 8.1: Coaxal circles

The collection of all circles of the form C3 = AC 4+ uCs, where A 4+ u = 1, forms a so-called
pencil of circles. Any two such circles have the same radical axes, and they are called coaxal

circles.
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Example 8.1 Let C; : 22 + 92 = 10 and C> : 2% + 3% — 22 + y = 10. Find the equation of the
circle passing through the points of intersection of C; and C5 and the point (5, 5).

Solution. The radical axis of C and C5 has the equation given by (22 + y? — 10) — (22 + ¢? —
2z +y — 10) = 0. That is y — 22 = 0. Thus the equation of the required circle is of the form
(2% + y? — 10) + My — 2x) = 0. Since it passes through the point (5,5), we find that A = 8.
Consequently, the equation is 22 + y? — 10 + 8y — 162 = 0.

Example 8.2 Let / be a line outside a circle C. Take any point 7" on £. Let T'A and T'B be the two
tangents from 7" to C. Prove that the chord AB passes through a fixed point.

Figure 8.2: The chord A B passes through a fixed point

Solution. Let the centre O of the circle be the origin. Choose coordinate axes so that ¢ is parallel to
the y-axis. Let r be the radius of the circle and (c, t) the coordinates of T'. Here r < ¢. The equation
of the circle is 22 + 3% = 2.

Next, we wish to find the equation of the chord AB. To do this, it is not necessary to find the
coordinates of A and B. Let the coordinates of A be (x 4,y4). The equation of the tangent line T'A
is w42 + yay = 72. (Itis a straight line passing through A and perpendicular to OA.) As it passes

through 7', we have x 4¢ + yat = r2. Therefore, A lies on the straight line

cx +ty =72, (8.1.1)

Similarly, B lies on ( 8.1.1). So ( 8.1.1) is the equation of AB! Clearly, the line defined by ( 8.1.1)
passes through the point (r2 /¢, 0) which is independent of ¢.

There is also another easy way to find the equation of the line AB. Observe that O, A, T, B lie on a
circle C' with diameter OT'. The equation of this circle is (x — ¢)z + (y — t)y = 0. (Take a point
X on C’. Then OX is perpendicular to TX. The scalar product gives the equation satisfied by X.)
Now C and C’ both pass through A and B. Hence the difference of their equations is the equation of
AB. Note that the line AB is the radical axis of C and C’.

Exercise 8.1 Let P = (a, b) be a point outside the unit circle 2% + y? = r? and let PT; and PT,
be the tangents to it. Show that the coordinates of T and 75 are given by
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ar?—brv/a2+b2—1r2 br+arva2+b2—r2 ar?+brva2+b2—r2 br2—arva2+b2—r2
a2+b2 bl a2+b2 bl a2+b2 bl a2+b2 .

Exercise 8.2 Let C be the circle with equation 2% + y? + 2ax + 2by + f = 0 and P = (9, 0) a
point outside C'. The tangents from P touch C' at the points X and Y. Show that the equation of the
line XY is given by

zox + yoy + a(x + xo) + b(y +yo) + f = 0.

Exercise 8.3 Show that the equation of the circle passing through the points (p1, p2), (¢1, ¢2), (r1,72)
is given by

r—p1 y—p2 pi+ps—a’—y?

i@ pa—q2 ¢i+q—pi—ps |=0.

GL—7T1 qa—r2 TP T34 — 43
[Hint: The form of this determinant shows that it is an equation of a circle. The substitution of the
coordinates of each of the three points clearly makes the determinant zero. Consider the 4 points:
(z,v), (p1,02), (q1,q2), (r1,72) on the circle, the perpendicular bisectors of any three of the chords
among these 4 points must concur at the centre of the circle. Thus 4 points are concyclic if and only

if the above determinant is zero. ]

8.2 Barycentric and homogeneous coordinates

Let A; As A3 be a triangle on the plane. For any point M, the ratio of the (signed) areas
[MA2A3] : [MAgAl] : [MAlAQ]

is called the barycentric coordinates or areal coordinates of M.
Here [M A3 A3] is the signed area of the triangle M A2 A3. It is positive, negative or zero according
to both M and A; lie on the same side, opposite side, or on the line A3 A3. Generally, we use

(1 : pe : ps) to denote the barycentric coordinates of a point M.
A Ay
3
N2

M1

As Asz Asg M3 N, K2 As

Figure 8.3: Barycentric coordinates

Theorem 8.1 Let [M Ay As] = 1, [MAsAq] = po, [MA1As] = g and [A1 A3 As] = 1 so that
1+ po + pa = 1. Then

1. A3Nsy: NoAy = py : s, etc.

2. AyM : MNy = (ug + p3) : p1-

3. AoM = u3AsAs + 1 AsAg.
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Proof. Let prove 2. Let [M N1 As] = o, [M A2 N1] = 3. Then ﬁ]]\‘,{ = £2 and ]‘:‘/[1% = % Thus

AM_ potps patps
MN, a+ p

Properties

1. The barycentric coordinates of a point are homogeneous. Thatis (1 : po : u3) = (kuy : kus :
kus) for any nonzero real number k. As such, it can also be identified with the homogeneous

coordinates of the point.
2. For the points A, Ay and As, wehave A; = (1:0:0),A2 =(0:1:0)and A3 =(0:0:1)
respectively.

3. Let the Cartesian coordinates of A, B,C be (xa,ya), (xB,yB), (rc,yc) respectively. If

the barycentric coordinates of M is (u; : pe : u3), then the Cartesian coordinates of M is

prratpexptpsre pryatp2yptpsyc
H1+p2+ps ? H1tp2tps

4. The centroid of AA; A3 Agisthe point G = (1:1:1).
5. The circumcentre of AA; Aj As is the point O = (sin2A4; : sin 24, : sin 243).
6. Suppose A; Ms3/M3Ay = my and Ao My /M1 As = ms. Then M = (1 : mq : myms).

A
mi

M; Mo

Az m2 M, 1 A3z
Figure 8.4: The barycentric coordinates of M

Proof. As [MAgAg] : [MAgAl] = M3A2 : A1M3 =1: mq, and [MAgAl] : [MAlAQ] =1:
mg = My : M1My, WE have [MA2A3] : [MA3A1] : [MAlAQ} =1: mi i Mmims.

7. The incentre of AA; A5 As is the point (ay : as : asz), where a1, as, az are lengths of the sides
AN AyAg As. This follows from the angle bisector theorem.
8. For the excentres of A A1 Ay As, we have
I =(-a1:a3:a3), Ir=(a1:—as:a3), I3=(a1:a2:—a3).
9. The orthocentre of AA; As As is the point
1 . 1 _ 1

H = (tan A7 : tan Ay : tan A3) = : :
( ) (—a%—&—ag—i—a% a —a3+a3 a?+a3—a

2)-

10. The Gergonne point of AA; Ay Az is the point

(1:1:1).

S —ay S —az S —as
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A2 s—a2 M, s—as Az

Figure 8.5: Gergonne point

11. The Nagel point of AA; Ay Az isthe point N = (s — a1 : s —ag : s — as).

12. The symmedian point of AA; Ay Aj is the point (a? : b% : ¢?).

13. The equation of the line passing through the points (a1 : as : a3) and (b; : by : bs) is
r1 X9 I3

ar ay a3z | =0+
b1 by b3

as asg
by b3

a; as
b1 b3

a1 a2
by by

xr1 — To + 1’3:().

This is a linear relation of the homogeneous coordinates of a point. In general the equation of a
straight line in homogeneous coordinates is of the form

{:prxy + poxs + psxs = 0.
Usually, the coefficients are used to denote such a line. In notation, we write
0= [py : po : ps].
Thus the line passing through (a; : as : a3) and (b; : ba : b3) is given by

{= [a2b3 — asby : —a1bg + asby : a1by — agbl].

14. Three points A = (a1 : ag : a3), B = (b : ba : b3),C = (c1 : ¢2 : ¢3) are collinear if and only
if
a; a2 as

by by b3 |=0.

C1 (6] C3
15. The intersection of the lines 1 = [a; : a2 : a3] and €5 = [b; : b : bs] is given by

P= (a2b3 — asbs : —a1bs + asbg : a1by — agbl).

16. Three lines £ = [a; : as : as],m = [by : ba : b3],n = [c1 : ¢z : c3] are concurrent if and only if

a1 a2 as
by by by | =0.

1 C2 C3
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Proof. The intersection of ¢ and m is (a2b3 — asbe : —a1b3 + asbs : a1bas — azby). Itliesonn

a1 as

by b3

17. LetP = (p1 :p2:ps)and @ = (q1 : q2 : q3) Withp; +pa+ps = land g1 +go+q3 = 1. If M
divides PQ in the ratio PM : M@ = § : «, then the point M has homogeneous coordinates
(ap1 + Bq1 : apz + Bg2 : aps + Bg3).

as a3 ap az

if and only if c1 — co + c3 = 0.

2 b3 bl 2

Example 8.3 In any triangle A; A3 As, the centroid G, the incentre I and the Nagel point N are
collinear.

1 1 1
Solution. This is because aq as as = 0. In fact G divides the segment I N in

sSs—ay S—az S—ag
the ratio 1:2.

Theorem 8.2 (Menelaus) In the triangle A1 A3 As, points By, Bo, and Bs are on the sides Az As,
A3 Ay and Ay As respectively such that As By : B1As = «y : 1, A3By : BoAy = as @ o and
A1B3 : B3As = a3 : 83. Then By, By and Bs are collinear if and only if ayasag = —[315233.

Proof. Take Ay = (1:0:0),42=(0:1:0),A3 =(0:0:1). Then By = (0: 31 : 1),
By = (g : 0: f53) and B = (B3 : a3 : 0). Thus

0 /1 o

az 0 B | =arazaz + B1520s.

B3 az 0
Therefore, B, By and Bj are collinear if and only if ay o = — 1 8253.

Ay

Bs
Ca

03 B2

N AN

B, C

Figure 8.6: A generalization of Ceva’s theorem

Theorem 8.3 Let By and Cy, By and Cs, Bs and C3 be respective pairs of points on the sides
Ao Az, A3Aq, A1 As or their extensions of NAy A As such that
AgBl A3B2 A1B3
= )\17 = )‘27
B A3 By A, B3 A,
A3Cy A1Cy ACs
CiA, M1, Oy As = H2, CsA; = H3-
Then B1Cy, BoCs, BsC1 are concurrent if and only if

:)\37

A1A2A3 + pipops + Apr + Aapre + Azpz — 1 = 0.
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Remark 8.1 Suppose C; = A3, Cy = Ay,(C5 = Ay so that u; = ps = ps = 0. The conclusion is
that By Ag, Bo Az, B3 Aj are concurrent if and only if A\; Ao A3 = 1, which is Ceva’s Theorem.

Proof. Take A; = (1:0:0),A2=(0:1:0),A3 =(0:0:1). Then
Bl:(0212)\1),32:()\22021),33:(11)\320>
and

Ci=0:p1:1),C3=(1:0:p2),C5=(u3z:1:0).

Ty T2 I3

The line B1Cy is given by | 0 1 ); | =0. Thatis B;Cy = [ug : Ay : —1]. Similarly,
L0 pe

ByC3 =[—1: pz: A2 and BsCy = [A3: —1: uq]. They are concurrent if and only if

125 )\1 -1
-1 U3 )\2 = 0,
Az =1

which is the required expression.

Exercise 8.4 Prove that in any triangle the 3 lines each of which joins the midpoint of a side to the
midpoint of the altitude to that side are concurrent.

[Hint. Take A1 = (1:0:0), A3 =(0:1:0), A3 =(0:0:1). Let Fy, F> and F3 be the midpoints
of the altitudes A; N1, Ao Ny and A3 N3 respectively. If My, My and Mj are the midpoints of the
sides Ay A3, A3 Ay and A; Ao respectively, show that M7 Fy = [tan Az —tan Ag : tan Ao +tan As :
—tan Ap — tan Az], MoF; = [—tan A; — tan A3 : tan A; — tan A3 : tan A; + tan A3], and
M3F5 = [tan Ay + tan Ap : —tan Ay — tan Ay : tan A — tan A4].

Exercise 8.5 (Euler line) Prove that the circumcentre, the centroid and the orthocentre of a triangle
are collinear.

Exercise 8.6 (Newton line) Let ABC'D be a quadrilateral. Let H, I, G, J, E, F' be the midpoints of
AB,BC,CD,DA, BD,C A respectively. Let I.J intersect HG at M, AB intersect CD at U, BC
intersect AD at V. Let IV be the midpoint of UV Prove that /|, F, M, N are collinear.

Exercise 8.7 In triangle ABC, let D, E, F' be the midpoints of BC,C A, AB, respectively. Let
M, N, P be points on the segments F'D, FB, DC, respectively, such that FM : FD = FN :
FB = DP: DC. Prove that AM, EN, F P are concurrent.

8.3 Projective plane

The real projective plane usually denoted by P? consists of all lines in R? passing through the origin.
That is

P? = {L : Lis aline through O in R?}.
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We can represent each line L through O by any non-zero vector OA along L. This suggests we can
represent L by homogeneous coordinates consisting of a triple of three numbers (« : 3 : ). (That
is (a: B :7) = (ka: kp : kv) for any non-zero k.) Thus

P2={(a:B:7) : a,B,7 € Randnotall a, 3,7 = 0}.

For any two distinct lines L; and Lo through O, it determines a plane ax + by + xz = 0 through O.
We can represent this plane by the three coefficients a, b, c. As any non-zero multiple of ax + by +
xz = 0 represents the same plane, this plane can be represented by the homogeneous coordinates
[a : b : c]. Furthermore, the vector {a, b, ¢) is a normal vector to this plane. Thus if L1 = (ay : 5y :
1) and Lo = (g : B2 : 72), the plane ¢ determined by L; and L» has a normal vector given by the

cross product of (a1, B1,71) and (aw, B2, v2). That is the homogeneous coordinates of the plane ¢

B m
B2 2 .

If we denote the collection of all planes through the origin by P2", then

1S

a3

ay B

ar M

Q2 72

P> ={la:b:c] : a,b,c € Randnotall a,b,c = 0}.

Figure 8.7: The projective plane

There is a one-to-one correspondence between P2 and P2” given by associating a line L the plane
perpendicular to L.

Consider the plane p : z = 1, or any plane not containing the origin. Any element L of P? not
contained in the zy plane intersects p in a unique point Pr. See figure 8.7. In this way we can
think of R? = p lying inside P2. Any plane containing two distinct lines L; and Ly in P? (both L,
and Ly are not contained in the xy-plane) intersects p in a line ¢ joining Pr,, and Pr,. Thus we can
represents a point in R? = p by the homogeneous coordinates (« : 3 : ), and a line in R? = p by
[a:b: (.

In fact we can think of P? as R? with a “line” w added at infinity. This “line” w corresponds to
the zy-plane. With this correspondence, every “line” in P2 meets w in a unique point, and any two

“lines” in P2 meet.
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If 52 denotes the unit sphere in R?, then every line in R? intersects 52 in a pair of antipodal (diamet-
rically opposite) points. In this way, we can regard P2 as the space obtained by identifying antipodal
points of the unit sphere.

Though the geometry of P? is different from R?2, the properties of concurrence and collinearity are
equivalent in both P? and R2. Thus many of the results involving concurrence and collinearity in R?
can be stated and proved in P2

8.4 Quadratic curves

A quadratic curve (or a conic) is a curve with equation az? + bxy + cy? + dx + ey + f = 0. Thus
the general equation of a quadratic curve is determined by 6 coefficients. So it only requires 5 points
to determine a quadratic curve. Quadratic curves are classified into the following types: parabola,
circle, ellipse, hyperbola, and 2-straight line. They are the possible cross-sections obtained by slicing
a double cone with a plane, thus they are also called conics. If Fy(z,y) = 0 and Fy(z,y) = 0 are
two such curves, their intersection points are given by the roots of the system of these two equations.
Since F and I, are quadratic, there are generally 4 solutions for this system. Thus two quadratic
curves generally intersect in 4 points (or less). Suppose Fi(x,y) = 0 and F5(x,y) = 0 intersect in
Py, Py, P3, Py. Then for any real numbers A; and A\ not both equal to 0, A\; F; + Ao Fy = 0 is also
a quadratic curve, and it passes through P;, P», P3, P,. Conversely, any quadratic curve passing
through Py, P,, P3, Py is of the form A1 F; + Ao F5 = 0 for some suitable A\; and A,.

Theorem 8.4 (Butterfly theorem) Through the midpoint O of a chord GH of a circle, two other
chords AB and C'D are drawn; chords AC and BD meet GH at E and F respectively. Then O is
the midpoint of E'F.

Figure 8.8: Butterfly theorem

Proof. Let the equation of the circle be 2% + 4% —2by + f = 0. Let the equations of the lines AB and
CDbey = kix and y = kox respectively. Therefore the pair of lines (y — k1 2) (y — kox) = 0 passes
through the 4 points A, B, C, D. Each quadratic curve passing through the 4 points A, B, C, D is
represented by

22+ y? =2y + f+ My — k12)(y — ko) = 0.
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In particular the pair of lines AC' and BD is of this form for some suitable \. Setting y = 0 for the
equation of this pair of lines, we get (1 + Akiks)x? + f = 0. From this we see that the roots of
this equation give the intercepts F and F' of this pair of lines with the z-axis, and they are of equal
magnitude but opposite sign. Thus OF = OF.

Remark 8.2 We can also take the lines AD and BC meeting the z-axis at £’ and F” respectively.
Then OF' = OF".

Example 8.4 Suppose AB and C'D are non-intersecting chords in a circle and that P is a point on
the arc AB remote from C' and D. Let PC' and PD intersect AB at ) and R respectively. Prove
that AQ - RB/QR is a constant independent of the position of P.

Solution. Let AQ = z, QR = y and RB = z. Suppose we draw the circle through P, Q) and D to
cross AB extended at E. In this circle, the chord @ D will subtend equal angles 6 at P and F. Now,
as P varies, ZCPD = 6 remains the same in the given circle, implying that, for all positions of
P, this second circle through P, () and D always goes through the same point £ on AB extended.
Consequently, the segment BE always has the same length k.

p
A QE

Figure 8.9: Haruki’s lemma

Therefore,(z + y)z = PR - RD = y(z + k) giving zz = yk, thus zz/y = k is a constant. [This
is called Haruki’s lemma and can be used to prove the Butterfly Theorem and the double Butterfly
Theorem. See Mathematics Magazine vol 63, No 4, October 1990, pp256.]

Exercise 8.8 Using the result of Example 8.4, deduce the Butterfly theorem 8.4.
Exercise 8.9 In Figure 8.10, the point O is the midpoint of BC' Prove that OX = OY'.
Exercise 8.10 Let A, B,C, D, E, F be 6 points on the plane such that AB intersects DF at L, BC'

intersects E'F" at N and C'D intersects F'A at M. Prove that if L, N, M are collinear, then there is a
conic passing through A, B,C, D, E, F.
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Figure 8.10: Butterfly theorem for 2-straight lines

[Hint: Use the fact that for any 5 points in general position, there is a conic passing through them.
Let o be a conic passing through A, B,C, D, E. Let EN meet « at F’ and let the intersection of
AF’" and CD be M’. By Pascal’s theorem which also holds for the six points A, B,C, D, E, F’ on
the conic «, L, N, M’ are collinear. Show that M’ = M and hence F’ = F. This is the converse of

Pascal’s theorem.]

Exercise 8.11 Show that the Butterfly theorem holds for any quadratic curve ax? + by + cy? +
der+ey+ f=0.

[Hint: Position the chord PQ of the quadratic curve so that P and () lie on the x-axis with the origin
as their midpoint. Show that in this coordinate system, the coefficient d = 0. Then follow the proof
of theorem 8.4.]

Remark 8.3 A direct proof of the Butterfly theorem is as follow.

Figure 8.11: A direct proof of the Butterfly Theorem

In figure 8.11, M is the midpoint of GH. Let K and L be the midpoints of the chords AC and BD
respectively. Join K, E/, M, F', L to the centre O of the circle. Join K M and LM. Since the triangles
AMC and DM B are similar, we have 2CK/CM = CA/CM = BD/BM = 2BL/M B so that
the triangles KCM and LBM are similar. Thus Z/CKM = Z/BLM.

AsO,K,E, M and O, L, F, M are concyclic, we have /EOM = /CKM = /BLM = ZFOM.
Since OM is perpendicular to GH, we conclude that M is the midpoint of EF.
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Exercise 8.12 (A generalized Butterfly theorem) Let AB be a chord of a circle with midpoint P,
and let the chords XW and ZY intersect AB at M and N respectively. Let AB intersects XY at
C and ZW at D. Prove thatif M P = PN, then CP = PD.

Z
m
A C M P N B

w
Y

Figure 8.12: A generalized Butterfly theorem

[Hint: Use Haruki’s lemma.]

Exercise 8.13 (A Double Butterfly theorem) If a chord PP’ of a circle cuts two “butterflies”
at points A, B,C, D and A’, B’,C’, D’ such that PA = P'A’,PB = P'B',PC = P'C’, then
PD=P'D'.

/
P D|C[ \B\ A AllBY D’ P

Figure 8.13: A double Butterfly theorem
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Chapter 9

Inversive Geometry

Given a circle on the plane, it is possible to turn it inside out by a mapping. It has the effect of
mapping circles into circles and preserving angles. This map called “inversion” was first introduced
by J. Steiner in 1830. In many situations, solutions to the geometric problems become clear after

doing the inversion.

9.1 Cross ratio

Definition 9.1 Two pairs of points AC and BD are said to “separate each other” if they all lie on
a circle (or on a straight line) in such an order that either of the arcs AC (or the line segment AC)

contains one but not both of the remaining points B and D.

e
e
Qe
e

Figure 9.1: Separation of points

Definition 9.2 Any 4 distinct points A, B, C, D determine a number { AB,CD} called the “cross
ratio” of the points in this order; it is defined by

AC x BD

{AB,CD} = 1D < BC"

95
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C'

e
e
Qe
e

Figure 9.2: The cross ratio of 4 points

Theorem 9.1 Let A, B, C, D be 4 distinct points on a line. Then AC and BD separate each other
ifand only if {AD, BC} + {AB,DC} = 1.

Proof. Consider A, B, C, D in this order. Let AB = 2, BC = y and CD = z. Then {AD, BC} +

_ ABxDC | ADxBC _ ABxDC+ADxBC _ zz+(ztytz)y _
{AB,DC} = 46355 + 465D = Ao~ 8D = Ty +s — L Theother cases can be

checked similarly.

Theorem 9.2 Let A, B, C, D be 4 distinct points on a circle. Then AC and B D separate each other
ifand only if {AD, BC} + {AB,DC} = 1.

Proof. By Ptolemy’s theorem and its converse, AB x C'D + BC' x AD > AC x BD with equality

if and only if D lies on the arc AC not containing B. Dividing by AC' x BD, we have 422¢2 4

ACxBD
ﬁg:gg = 1 if and only if D lies on the arc AC' not containing B.

C

Figure 9.3: Ptolemy’s theorem
Thatis {AD, BC} + {AB, DC'} = 1if and only if AB separates C'D.
Corollary 9.3 The cross ratio of 4 distinct points A, B, C, D satisfies

{AD,BC}+{AB,DC} =1

if and only if AC separates BD.

Exercise 9.1 Prove that {AB,CD} = {BA,DC} = {CD,AB} = {DC,BA}
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Remark 9.1 Any 3 distinct points A, B, C' determine a unique circle (or a line), which may be
described as consisting of the 3 points themselves along with all the points X such that BC' separates
AX, or C'A separates BX, or AB separates C' X .

Exercise 9.2 Let P, A, B, C, D be five distinct points on a circle. Prove that

sin ZAPC x sin Z/ZBPD
sin ZAPD x sin Z/ZBPC"

Exercise 9.3 Let w and w’ be two circles tangent at a point P. Let A, B, C, D be 4 distinct points
on w such that the lines PA, PB, PC, PD intersect w’ at A’, B’,C’, D’ respectively. Prove that
{A'B',C'D'} ={AB,CD}.

{AB,CD} =

Theorem 9.4 Let P, A, B,C, D be five distinct points on a circle. Suppose a chord of the circle
intersects the segments PA, PB, PC,PD at A’, B',C", D' respectively. Then {A'B',C'D’} =
{AB,CD}.

Figure 9.4: {A’B’,C'D'} = {AB,CD}

Proof. Using exercise 9.2, we have

we < g (B sinZAPCT) - (825 sin ZB'PD)

sin o sin 8

(AB.0D) = -
A'D' X B'C" " (BDL gy s 1pDY) - (PTCB sin 4B/Pc')

3 sin ZA'PC" - sin /B'PD’ _ sin ZAPC - sin /BPD
T sinZA'PD' -sin /B'PC’ ~ sin ZAPD - sin /BPC

= {AB,CD}.

Remark 9.2 The cross ratio of 4 rays PA, PB, PC, PD isdefined as {AB,CD}p = :g jﬁgg:?ﬁ jg?g.

Example 9.1 The Haruki’s lemma in example 8.4 is the consequence of the fact that { AR, QB} is
a constant.

Exercise 9.4 Use 9.4 to prove the Butterfly theorem 8.4.

Exercise 9.5 Using cross ratio, prove the result in exercise 8.9.
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9.2 Inversion

Definition 9.3 Given a circle w with centre O and radius k and a point P different from O, we
define the “inverse” of P to be the point P' on the ray OP such that OP - OP' = k2.

Figure 9.5: Inversion

Basic Properties.

1. Inversion is a map from R? \ {O} onto itself.

2. (P’) = P. Thus inversion is a bijection of order 2.

3. If P isinside (outside) w, then P’ is outside (inside) w.

4. If P lies on w, then P’ = P. Thatis P is fixed under the inversion with respect to w.

5. If a is a circle centred at O with radius r, then o' is also a circle centred at O with radius
k2 /r.

6.  Any line ¢ through O is its own inverse. That is ¢/ = /.

7. Let P # O be a point inside w. To determine the position of P’ on the ray O P, draw a chord
through P perpendicular to O P meeting w at T and S. Then the tangents to w at T and S

meet at the inverse point P’.

Figure 9.6: The inverse of a point

Proof. As AOPT is similar to AOTP’, we have OP/OT = OT/OP’ so that OP - OP" = k2.
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10.

11.

If P is a point outside w, then the two tangents from P to w determine the chord 7'S. The
intersection between TS and the ray O P gives the inverse point P’.

Alternatively, draw the circle with diameter OP intersecting w at T' and S. Then P’ is the
midpoint of T'S.

The inverse of any line /, not through O, is a circle through O (minus the point O itself), and
the diameter through O of this circle is perpendicular to /.

Proof. Let A be the foot of the perpendicular from O onto ¢, and let A’ be the inverse of A.
Then OA-OA’ = k2. Consider the circle with diameter OA’. Let P be a point on £ and let OP
intersect this circle at P’. As AOAP is similar to AOP’A’, we have OP/OA = OA’/OP’
sothat OP-OP’' = OA-OA’ = k2. Therefore the inverse of P is the point P’ on this circle.

P

Figure 9.7: The inverse of a circle

The inverse of any circle through O (with O omitted) is a line perpendicular to the diameter
through O. That is a line parallel to the tangent at O to the circle.

A pair of intersecting circles « and 3, with common points O and P inverts into a pair of
intersecting lines o’ and 3’ through the inverse point P’.

Figure 9.8: The inverses of a pair of circles intersecting at the centre of inversion
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12. If o and 3 are tangent to each other at O, then o’ and 3’ are parallel.

Theorem 9.5 For a suitable circle of inversion, any 3 distinct points A, B, C' can be inverted into

the vertices of a triangle A’ B'C" congruent to a given triangle DEF.

Proof. Construct isosceles triangles BC'O; and ACO- on the outside of AABC such that the base
angles Z01BC = Z/0:CB = ZA+ /D —90° and ZO, AC = LO;CA = /ZB+ /ZFE —90°. If the
base angle is negative, then the point O, or O3 is on the other side of the base. Let the circle centred
at O with radius O;C intersect the circle centred at Os with radius O5C' at the point O (and C').
Now consider the inversion with respect to the circle centred at O with radius &, where

_ OA-OB-DE

k2
AB

Figure 9.9: Inverting a triangle to another triangle

Let A’, B’, C’ be the inverses of A, B, C respectively under this inversion. First observe that AOBA
is similar to AOA’ B’ and AOBC is similar to AOC’B’. Thus ZABO = Z/B’A’O and ZCBO =
/B'C’'O. Therefore, /B+ /B’ = /B'+/B'A'O+/B'C'O = ZAOC. Similarly, ZA+ /A" =
/BOC and ZC + £C' = LAOB.

By the construction of the isosceles triangles BC'O, and ACOs, we find that ZAOC = /B + ZFE,
and /BOC = LA+ /£D. Thus Z/ZE = /B’ and /D = ZA’. From this Z/F = ZC’. Thus ADEF
is similar to AA’'B’'C".

Lastly, A’B'/AB = OA’/OB so that

AB-OA-OB-DE _

Il _ . r_ (12 _ _
A'B' = (AB/OB) - OA" = (AB/OB) - (k*/OA) 5B 04 i DE.

Therefore ADEF' is congruent to AA’B'C".
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9.3 The inversive plane

Theorem 9.6 If two points A and B are inverted into the points A’ and B’ respectively, then
k2AB

OA-OB’

Proof. Since AOAB is similar to AOB’A’, we have

A'B' =

AB OA OA.0A K2
AB ~ OB OA-OB O0A-OB

B

Figure 9.10: The inversive distance
Theorem 9.7 If A, B, C, D invert into A’, B', C', D' respectively, then
{A'B',C'D'} = {AB,CD}.

Proof.

2 2

(A'B,C'D'} = A'C'-B'D' _ gisc - osop _ AC-BD
’ . 2AD _ k’BC :

AD"-B'C" 555 opoc ADBC

— {AB,CD]}.

Theorem 9.8 If A, B,C, D invert into A’', B',C', D’ respectively, and AC separates BD, then
A'C’" separates B'D'.

Proof. Since inversion preserves the cross ratio, we have
{A'B',C'D'}y+{A'B',D'C'"} = {AB,CD} + {AB,DC} =1
so that A'C” separates B'D’.
Theorem 9.9 The inverse of a circle not passing through O is a circle not passing through O.

Proof. Any given circle can be described, in terms of three of its points, as consisting of A, B, C
and all points X satisfying BC separates AX or C'A separates BX or AB separates C X. Hence
the inverse of a given circle consists of A’, B’, C’, and all points X’ satisfying B’C" separates A’ X’
or C’ A’ separates B’ X' or A’ B’ separates C’ X’. That is, the inverse is the circle (or line) A’B’C’.
Also we know that the inverse is a line if and only if the given circle passes through O. Therefore

we have proved the result.
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Remark 9.3 If we regard a line as a circle of infinite radius, then the terminology “circle” includes
“line” as a special case. At the same time, let’s add a point P, at infinity which corresponds to
the inverse of the centre of any circle of inversion. The plane, so completed, is called the “inversive
plane”. Since a circle with centre O inverts any circle through O into a line, we regard a line as a
circle through P.,. Since two circles tangent to each other at O invert into parallel lines, we regard
parallel lines as circles tangent to each other at P,. With this convention, we can state our result for

the inversive plane as the following.
Theorem 9.10 The inverse of a circle is a circle.

Remark 9.4 Note that the centre of o/ is usually not the centre of o under an inversion.

Figure 9.11: The inverse of the centre of a circle is not necessarily the centre of the inverse circle

Exercise 9.6 In the above figure, show that P, P/, A’ A are concyclic. Show also that P, P', Q’, Q

are concyclic.

Now let’s investigate how the equation of a circle is transformed under inversion. Let w be the circle
with equation 2 + y? = k2. Then the inverse of the point P(x, ) is the point P’(z’,y’), where

, xk? yk?

/
€T :77 = —- .
2y VT Rty

Theorem 9.11 If « is the circle with equation x> + y? + 2 fx + 2gy + h = 0, then the inverse circle
o under the inversion by w : 2 + y2 = k2 has the equation

ha? + hy? + 2fk*x + 29k%y + k* = 0.

Remark 9.5 If h = 0, then the original circle « passes through O so that ' is a straight line with
equation: 2fx + 2gy + k? = 0.
If h # 0, then ¢ is a circle centred at %(—f, —g), with radius r’ = Er where r = ViE+g®—h

[h|”

is the radius of .
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Proof of the theorem. Let (x,y) be a point on «. Then 2’ = % and 3/ = gcz”’—_’iﬁ Since (x,y)
satisfies the equation of o, we can replace 22 + y? by —(2fx + 2gy + h). Thus 2’ = %

2
2fz+2gy+h- Solving for x and y, we obtain

and y' =

—hax' d —hy'
x€r = ant = .
2fa’ + 29y + k2’ Y 2fx’ + 2gy’ + k?

Substituting this into the equation of o and simplifying, we obtain the required equation satisfied by
(@, y").

Exercise 9.7 Let three circles be mutually tangent to each other. Show that there are exactly two
circles tangent to all the three circles.

9.4 Orthogonality

In this section, we shall study circles which intersect at right angles. As we shall see, such circles
gives a generalization of the definition of inversion. The concept of orthogonal circles plays an
important role in the theory of inversion.

The two supplementary angles between two circles are naturally defined as the angles between their
tangents at a point of intersection. If two circles intersect at P and (), then the angles at P and )
are easily seen to be equal by the reflection in the line of the centres.

Figure 9.12: The angles between two intersecting circles.

To see how angles are affected by inversion in a circle w with centre O, let § be one of the angles
between two lines a and b through the point P. See Figure 9.13. The line a is inverted to a circle
« passing through O whose tangent at O is parallel to a. Similarly, the line b is inverted to a circle
[ passing through O whose tangent at O is parallel to b. Since € is one of the angles between these
tangents at O, it is one of the angles of intersection of «w and 3. As « and 3 also intersect P’, the

inverse of P, the same angle 6 also appears at P’.
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Figure 9.13: Inversion preserves angles

Exercise 9.8 Investigate the case when a or b happens to pass through O.

Now for any two circles through P, we can let a and b be their tangents at P. The inverse circles
touch « and S respectively at P’ so that they intersect at the same angle as a and b.

Theorem 9.12 If two circles intersect at an angle 0, then their inverses intersect at the same angle.

Definition 9.4 Two circles are said to be orthogonal if they intersect (twice) at right angles, so that
at either point of intersection, the tangent to each is a diameter of the other.

Figure 9.14: Orthogonal circles

Theorem 9.13 Orthogonal circles invert into orthogonal circles.

Exercise 9.9 Let w be the circle 22 + y? = k2, and « the circle 2% + y? + 2fx + 29y + h = 0.
Prove that « is orthogonal to w if and only if h = k2. Show that, in this case, the inverse circle o/
under the inversion in w has the same equation as a.

Suppose « is orthogonal to w. Let T' be one of the points of their intersection. See figure 9.15.

For any ray emanating from the centre O of w intersecting « at two points P and P’, we have
OP - OP' = OT? = k? so that P and P’ is a pair of inverse points.
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€

Figure 9.15: Orthogonal circles are invariant under inversion

Theorem 9.14 Every circle orthogonal to w is its own inverse.

Theorem 9.15 Any circle through two distinct points, inverses of each other in w, is its own inverse,
and is orthogonal to w.

Proof. Suppose P and P’ is a pair of inverse points under the inversion in w. Then OP - OP’ = k2,
where k is the radius of w. Let « be any circle with centre O passing through P and P’. Let OT
be a tangent from the centre O of w to a. Then OP - OP' = OT?. Thus OT = k. Therefore
Z0'TO = 90° and « is orthogonal to w. Furthermore, « is its own inverse.

We can redefine inversion in terms of orthogonality as follow.

Theorem 9.16 Any point on w is its own inverse; the inverse of any other point P is the second
intersection of any two circles through P orthogonal to w.

Proof. Let P be a point not on w, and let o and /3 be two circles through P orthogonal to w.

Figure 9.16: Inversion by means of orthogonal circles

As « inverts back to itself, P’ lies on «. Similarly P’ lies on 3. Thus P’ is the second point

of intersection between o and 3. (Thus if O is the centre of w, then O, P, P’ are collinear and
OP - OP' = k?, where k =radius of w.)
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Exercise 9.10 Let P and ) be two points which are not inverse of each other with respect to the
circle w. Give a construction of the circle through P and () orthogonal to w.

Remark 9.6 Using this definition, one can regard reflection about a line as an inversion.

9.5 Concentric circles

Theorem 9.17 Any two non-intersecting circles can be inverted into concentric circles.

Proof. Let « and 3 be two disjoint circles. Take a point on the radical axis of « and 3 and draw the
tangents from it to « and 5. Thus the two tangents are of equal length. Let v be the circle using this
point as centre and the tangent as radius. Then +y is orthogonal to e and 8. Construct a similar circle
0 orthogonal to both o and /3 so that § and v meet at two points O and P.

Figure 9.17: Inverting two circle into concentric circles

Consider the inversion in the circle centred at O with certain radius. The circles v and § are inverted
into two lines " and ¢’ intersecting at a point P’, which is the inverse of P. As « and (3 are orthog-
onal to both ~y and ¢, their inverses o’ and 3’ are also orthogonal to both lines ~" and ¢’. However,
the circles orthogonal to two intersecting lines are those centred at the point of the intersection, and
are all concentric. This proves the result.

If o and w are two distinct circles, the inverse of o in w belongs to the pencil (denoted by aw) of
coaxal circles determined by a and w. If « inverts into o, we call w is a “mid-circle” of a and o/.

Since o belongs to the pencil aw, w belongs to the pencil aa’.

Theorem 9.18 Any two circles have at least one mid-circle. Two non-intersecting or tangent circles

have just one mid-circle. Two intersecting circles have two mid-circles, orthogonal to each other.

Proof. If o and [ intersect, we can invert them into intersecting lines, which are transformed into

each other by reflection in either of their angle bisectors. Inverting back again, the intersecting
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circles e and 8 have two mid-circles, orthogonal to each other and bisecting the angles between «
and f.

If o and 3 are tangent, we can invert them into parallel lines. Thus they have a unique mid-circle.
If « and 3 are non-intersecting, we can invert them into concentric circles, of radii a and b. These
concentric circles can be transformed into one another by an inversion in a concentric circle of
radius v/ab. Inverting back again, we see that the two non-intersecting circles v and /3 have a unique

mid-circle. If « and g are congruent, their mid-circle coincides with their radical axis.
Exercise 9.11 Prove that any two circles can be inverted into congruent circles.

[Hint: Invert the figure in a circle centred at a point on a mid-circle of the two given circles.]

9.6 Steiner’s porism

Given two non-concentric circles with one inside the other, one can draw circles within the ring-
shaped region bounded by these two circles, touching one another successively and all touching the
original two circles. It may happen that the sequence of tangent circles closes so as to form a ring of
n circles with the last touching the first. Steiner’s porism is the result that gives the condition on n
that such a chain is possible.

Figure 9.18: Steiner’s Porism

The solution is very simple. Simply invert the two non-intersecting circles into concentric ones as
in the above figure on the right. Let the radii of the outer and inner concentric circles in this figure
be a and b respectively. Then OT A is a right-angled triangle with

OA=(a+b)/2, and AT = (a—b)/2.

Suppose it is possible to inscribe n small circles between these two concentric circles. By symmetry,
all these small circles are congruent. Then ZT'OA = *. Thus
n AT a-b a/b-1

sin — =

n OA a+b afb+1
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or

a 1+sinZX

_ n

b 1 —sinZ

When n = 8, the result is shown in the above figure with a/b = 2.24. When n = 4, a/b =
(\/§ + 1)2. In this case, there are 6 circles, each touching four others.

Exercise 9.12 Given 4 circles touching one another to form a chain. Show that the 4 tangency points

lie on a circle.

Figure 9.19: Four circles touching one another
[Hint: Invert the figure in a circle centred at one of these tangency points.]
Exercise 9.13 (The six-circles theorem) A pair of circles intersects another pair of circles in two

sets of 4 points each. Prove that if the 4 intersection points in one set are concyclic, then the 4

intersection points in the other set are also concyclic.

Figure 9.20: Two intersecting pairs of circles

[Hint: Invert in a circle centred at one of the intersection points of the first set. Then use the result

in exercise 7.1.]
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9.7 Stereographic projection

The map from the unit sphere with the north pole deleted to the plane given by

LL)
1—-2"1—2

(z,y,2) = (

is called the stereographic projection. Thatis ¢ : S?\{(0,0,1)} — R?, andif (X,Y) = ((x,y, 2),
we have
x=—"yv=_"

1—2’ 1—2°

It is obtained by drawing a ray from the north pole to the point (z,y, z) on the sphere so that its

extension meets the equatorial plane at the point {(x, y, z). The inverse of  is given by

2X 2y —14+X%24Y2
1+X24+Y2"14+X24Y2 14+X24Y2

CTHXLY) = ( )-

The fact that stereographic projection preserves angles was first proved by Edmond Halley (known

for his comet) in 1695.
\ .

(z,y,2)

Figure 9.21: Stereographic Projection

Theorem 9.19 The stereographic projection maps circles on the unit sphere to circles on the plane.

Proof. A circle w on the unit sphere S? of R? can be defined as the intersection of a plane P :
ax+by+cz+d=0with S? : 22 +y? + 22 = 1. For PNS? # (), we shall require a® +b% +c? = 1
and |d| < 1. Let (x,y, z) be a point on w and let its image under ¢ be (X,Y"). Thus

2X 2y 1+ X24+Y?

iy xe v Y T Irx Yy T Irx2yve

Since (x,y, z) lies on P, we have

2X 2y —1+X24+Y?

d=0,
Ui Vg Yyt

Simplifying, we get

(c+d)X?+ (c+d)Y? +2aX +2bY +d—c =0,
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which is the equation of a circle €.

1
The centre of € is (cjr“d, cjrl;), and the radius is [%} ‘Ife + d = 0, then the plane P passes
through the north pole (0,0, 1) so that € is a straight line a X + bY = c.

In particular, if d = 0 so that the plane P passes through the origin and the circle w = PN S%is a
great circle, then the circle  has centre (—%, —2) and radius |c|~*.

It is easy to see that any tangent vector to the unit sphere at a point is the tangent vector to a great
circle at that point. Suppose u and v are two unit tangent vectors to S2 at a point p. Consider the
great circles w and w’ through the point p such that the tangent vector to w at p is u and the tangent
vector to w’ at p is v. Let the planes containing w and w’ have unit normal vectors a = (a1, as, as)
and b = (b1, bo, b3) respectively. Thus their equations are given by a1z + asy + azz = 0 and
biz + by + bz = 0. We may assume a3 > 0 and bs > 0. It is easy to observe that angle between

u and v is the same as the angle between a and b. Thus cos(u,v) = cos(a,b) = a - b.

The image 2 of the circle w has centre (—2+, —92) and radius a3 !, Similarly, the image €’ of the
as as
circle w’ has centre (— 2, ——22 ) and radius b3 '
3 3

Let p = (z,y, ). Note that p satisfies the equations 2% + 3> + 2% = 1, a1z + azy + azz = 0 and

biw + bay + b3z = 0. Recall that the point ((p) is given by (7%, 12 ). The radius vector from the

centre of () to ((p) is given by (% + ¢, 5 + £2). Similarly, the radius vector from the centre of

Q' to {(p) is given by (£ + l%, 4+ g—i). The lengths of these vectors are respectively the radii

1—z 11—z
a3 " and b3 ' of Q and €'. Thus the inner product between these two vectors is equal to

T a Y as x by y bo

<1—2z a3’1—z a3’ ‘1—z b3'1—2 %>

_ X aq b1 X a1b1 y2 as bg X agbg
_(1—2)2+<a3+b3>1—Z+a3b3+(1—2)2+ a3+b3 1—z+a3b3
B 2 + 9 n a1bsx + asbix 4 asbsy + asboy  a1by + azbsy

- (1 — 2)2 a3b3(1 — Z) Cl3b3

1—22 _(a2b3y + (13b32’) — (a362y + a3b32) + a2b3y + a3b2y a1by + asbs
= + +

(1—2)? azbs(1 — z) asbs
_ 1-— 2’2 2z a1b1 + a2b2
T (1-2)?2 1-2z asbs
=14 a1b1 + a2b2 _ a1b1 + a2b2 + a3b3 _ (a ) b)/(a3bg)

a3b3 a3b3

This shows that the angle between w and w’ equals the angle between {2 and €. The conclusion
holds also if ag = 0 or b3 = 0.

Corollary 9.20 The stereographic projection preserves angles.

Exercise 9.14 Prove that if a quadrilateral (not necessarily planar) touches the unit sphere at four
points, then these four points are coplanar.

[Hint: First show that there exists a chain of 4 circles where the points of tangency are the 4 points
of tangency of the quadrilateral with the unit sphere. Now apply the stereographic projection and

use the result of exercise 9.12.]
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9.8 Feuerbach’s theorem

Theorem 9.21 (Feuerbach) The nine-point circle is tangent to the incircle and the excircles of the

triangle.

Proof. Let M, My, M, be the midpoints of the sides of the triangle ABC, and let G, Gy, G, be
the tangency points of the incircle with the sides of the triangle. Let the internal bisector of /A meet
the side BC at V. Let B'C" be the reflection of the line segment BC' about AV. Note that B'C" is
tangent to the incircle at the point G/,. Join CC” and let the extension of AV meet CC” at P. Note
that P is the midpoint of CC"’. Thus M, P is parallel to AC’. Also M, P passes through M,. Let
M, P intersect B'C" at Q.

Figure 9.22: The nine-point circle is tangent to the incircle of the triangle

Then M, P = |M,M, — PM,| = 3|AB — AC| = }|BG. — CGy| = $|BG, — CG,| = M,G,
which is also equal to %|b —c|. As AMyM,C is similar to AABC, AABYV is similar to APM,V,
and ABC'V is similar to AM,QV, we have

M,P  BC' M,Q
M,M, BA M,P’

Thus M,G? = M,P? = M,Q - M,M,. Let w be the circle centred at M, with radius M,G,.
Therefore, the inverse of M, under the inversion in w is the point @ lying on the line B’C”. The
same is true for the point M.. Hence inverse of the nine-point circle is the line B’C’. Note that
the incircle is orthogonal to w so that it is inverted onto itself. Since the line B’C" is tangent to the
incircle, the nine-point circle is tangent to the incircle.

The proof for the excircle is similar.
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Exercise 9.15 Show that the nine-point circle is tangent to the excircles of the triangle.

Figure 9.23: The nine-point circle is tangent to the excircles of the triangle

[Hint: Let M,, My, M, be the midpoints of the sides of the triangle ABC'. Let UV be the other
common external tangent to the two excircles whose centres lies on the external bisector of ZB. Let
w be the circle centred at M;, with radius %(a + ¢). These two excircles are orthogonal to w. Also
MyM, - MyU = MyM, - M,V = %(a + ¢)2. Thus the nine-point circle is inverted under w to the

line UV which is tangent to the two excircles.]

Exercise 9.16 Prove Ptolemy’s theorem 4.5 by using inversion.

Figure 9.24: Proof of Ptolemy’s theorem using inversion

[Hint: Let ABCD be a quadrilateral inscribed in a circle w. If we invert in a circle centred at
D, the circle w is inverted into a line w’, the points A, B, C are inverted into points A’, B', C"
on «’ respectively. Then A’B’ = (k*/DA - DB) - AB, B'C" = (k?/DB - DC) - BC, and
A'C" = (k*/DA - DC) - AC. The result follows from A'C’ = A'B’ + B'C".]



Chapter 10

Models of Hyperbolic Geometry

Non-Euclidean geometry, hyperbolic geometry in particular, was discovered independently by Janos
Bolyai (1802-1860) and Nicolai Ivanovitch Lobachevsky (1793- 1856), in an attempt to prove Eu-
clid’s 5th Postulate by way of contradiction. In their work, results of a consistent but new geometry
were discovered by assuming the negation of Euclid’s 5th Postulate. In this chapter, we shall assume
the following form of the negation of the 5th Postulate.

Given a line and a point not on the line, it is possible to construct more than one line through the
given point parallel to the line.

This postulate has become known as the Bolyai-Lobachevsky Postulate, and is also known as the hy-
perbolic postulate. A geometry constructed from the first 4 Euclidean postulates, plus the hyperbolic
postulate is known as the hyperbolic geometry.

Recall that the first 28 propositions in Euclid’s Elements are valid in a neutral geometry in which
the 5th Postulate is not assumed. In particular they are valid in the hyperbolic geometry. Here as in
the Elements, we assume Pasch’s axiom and that straight lines can be extended infinitely. These rule
out the spherical geometry and non-orientability. In this chapter, we shall introduce some models of
hyperbolic geometry.

10.1 The Poincaré model

In the Poincaré Model for 2-dimensional hyperbolic geometry, a point is taken to be any point in the

interior of the unit disk
D= {(z,y) e R? : 22+ < 1}.

The collection D of all such points will be called the Poincaré disk.

Definition 10.1 A hyperbolic line is a Euclidean circular arc, or a Euclidean line segment, within
the Poincaré disk that meets the boundary circle at right angles. Thus if it is a Euclidean line

segment, then it must be a diameter of D. See Figure 10.1.

Let’s examine the first 4 postulates of Euclid.

113
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)
Qe
Q
~—do--

Figure 10.1: Hyperbolic lines in the Poincaré model

To draw a straight line from any point to any point.

2 To produce a finite straight line continuously in a straight line.
3. To describe a circle with any centre and distance.
4

That all right angles are equal to one another.

For the first axiom, let P, ) be two points in D. If P and @ lie on a diameter. Then that diameter
is the unique line passing through P and ). Suppose P and Q do not lie on a diameter. Let P’ be
the inverse of P under the inversion in the boundary circle of D. Then the circle passing through
P, P’ and Q is the unique circle orthogonal to the boundary circle of ID. Thus the circular arc in the
interior of D is the unique hyperbolic line passing through P and (). Since the boundary of D is
excluded, lines can always be extended continuously. Thus the second axiom is satisfied. To define
circles for the 3rd postulate, we need a notion of distance. As the boundary of the Poincaré disk is
not reachable, we need a distance that approaches infinity as we approach the boundary.

Figure 10.2: The hyperbolic distance between two points in the Poincaré model

Definition 10.2 The hyperbolic distance from P to Q) in the Poincaré Model is defined to be
PS -
dp(P,Q) = ‘m <SQR>

bl

PR-QS
where R and S are the points where the hyperbolic line through P and @) meets the boundary

circle. Here PS| QR etc are the usual Euclidean distances of the line segments. That is dp(P, Q) =
|In{PQ, SR}| = |In{PQ, RS}|.
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It can be proved that dp satisfies the usual properties of a metric (or distance). That is
L dp(P,Q) > 0,and dp(P,Q) = 0 if and only if P = Q.

IL dp(P,Q) = dp(Q, P).

III. (Triangle Inequality) dp(P,R) < dp(P,Q) + dp(Q, R).

Note that when P approaches R or () approaches S, the distance approaches infinity.

Theorem 10.1 Let ¢ be a hyperbolic line in the Poincaré disk, which intersects the boundary circle
at Rand S. Then

f(P) =In(PR/PS),

for P € { defines a bijection f : £ — R, for which

dp(P,Q) = [f(Q) — f(P)]

for all points P,Q € .

Proof. The function f is a strictly increasing map from ¢ to R, such that f(P) tends to oo when P
approaches S, and f(P) tends to —oco when P approaches R.

This shows that if X, Y, Z are 3 points on a hyperbolic line in this order so that f(X) < f(Y) <
f(Z),thendp(X,Z) =dp(X,Y)+dp(Y, Z).

Definition 10.3 A hyperbolic circle o of radius r centred at a point O in the Poincaré disk is the set
of points in the Poincaré disk whose hyperbolic distance to O is r.

Figure 10.3: Hyperbolic circles in the Poincaré model

To construct the circle of radius  at O, we note that on any line passing through O, we can find
points that are r units away (measured in the hyperbolic distance function). The locus of a hyperbolic
circle in the Poincare model is a Euclidean circle. Note that the hyperbolic centre of a hyperbolic
circle is not necessary the Euclidean centre of the circle.

Theorem 10.2 Let r > 0 and C a point in the Poincaré disk. Then the locus of points X such that
dp(C, X) = r in the Poincaré disk is a Euclidean circle.
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Proof. Leta = {X € D : dp(C,X) = r}. That s, a is a hyperbolic circle with hyperbolic centre
at C'. Denote the center of D by O and the boundary of D by . Let X € « and let ¢ be a hyperbolic
line through X and C' with endpoints R and S on §. We may suppose R, C, X, S are in this order
along ¢. Thus dp(C, X) = |In{CX, SR}|.

If C = O, then RS is a diameter of 5. Then dp(O, X) = |In{C'X,SR}| = In (gg))g). Thus

10X
Therefore « is a Euclidean circle centred at O of radius k.

dp(0, X) = r is equivalent to In (M) =r,or OX = k, where k = (e" — 1)/(e" + 1).

Let w be a circle orthogonal to ¢ such that C' is inverted into O in w. (Give a construction of w).
Consider the inversion in w. We have C' = O, §' = ¢ and ¢ passes through O = C’ and is
orthogonal to 6’ = §. Thus ¢’ is a diameter of J.

Since inversion preserves cross ratio, the inverse point X’ of X satisfies dp(O, X') = dp(C', X') =
dp(C,X) = r. Thus «is inverted into o/ = {X' € D : dp(O, X’) = r}, which is a Euclidean
circle. Therefore «v is also a Euclidean circle.

For the 4th postulate, we shall define angles just as they are defined in Euclidean geometry. That is
we use the Euclidean tangent lines to the hyperbolic lines (Euclidean circular arcs) in the Poincaré
model to determine angles. Hence, the angle determined by two hyperbolic lines will be the angle

made by their Euclidean tangents.

Figure 10.4: Angles in the Poincaré model

Since angles are defined in the Euclidean sense, the 4th postulate is automatically true.

For the 5th postulate, consider a line £ and a point P not on £. Let X and Y be the intersection points
of ¢ with the boundary circle. Then there are two Euclidean circular arcs, one through P and X and
the other through P and Y, both are orthogonal to the boundary circle. So these are two hyperbolic
lines through P parallel to £. In fact, any hyperbolic line through P within the two sectors adjacent
to the sector containing ¢ does not intersect ¢, hence parallel to . Thus there are more than 1 line
through P parallel to ¢. The hyperbolic lines PX and PY are called the limiting parallels to ¢ at P.
See Figure 10.5.

Let PN be a perpendicular to £ at N, and H a point on PY. Then /N PH (= 6) is called the angle
of parallelism for £ at P. This angle has the following property. Let £’ be a hyperbolic line through
P and H' a point on ¢’ situated on the same side of PN as Y. If ZNPH’ > 6, then ¢’ does not
intersect £. If /NPH' < 0, then ¢ intersects /.

Recall that there are two limiting parallels, one on each side of the common perpendicular PN.
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Figure 10.5: Limiting parallel lines and perpendiculars in the Poincaré model

They are called the right and left limiting parallels to £ at P respectively. Let PY” be the reflection
of PY about the common perpendicular PN. Since reflection preserves parallelism, PY’ must

separate intersecting lines from parallels. Thus PY’ = PX. Also reflections preserve angle, so
ZYPN =/ZXPN =4.

Exercise 10.1 Let P be a point in the Poincaré disk and ¢ a hyperbolic line. Show that there is a
unique hyperbolic perpendicular from P onto ¢.

[Hint: Invert at one of the boundary points of ¢.]

Exercise 10.2 Show that if a point A is located at a distance < 1 from the centre O of the Poincaré
disk, its hyperbolic distance from O is given by

dp(o,A)lnG”).

-Tr

Theorem 10.3 The angle of parallelism is always acute.

Figure 10.6: Limiting parallel in the Poincaré model

Thatis 0 < 6 < 90°.
Proof. This follows from the definition of limiting parallel and proposition 1.27.

Theorem 10.4 (Lobachevsky) Given a point P with a hyperbolic distance d from a hyperbolic line
£, the angle of parallelism, 0, for ¢ at P is given by

0
—d

= tan(=).
e an(2)
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Proof. Recall that inversion preserves the cross-ratio and angles between circles. Thus it preserves
the hyperbolic distance and angle. Therefore we can invert the configuration into a standard one
of which the formula can be verified easily. If we invert in a circle centred at the second point of
intersection between the circles defined by the arcs PN and PY, then P’ N’ and P’'Y” are straight

lines. Also ¢ will be a circular arc orthogonal to P’ N’ and tangent to P'Y”. The unit circle is
inverted into a circle orthogonal to P’ N’ and P'Y”, hence it is a circle centred at P’ and passes

through Y. See Figure 10.7.

Figure 10.7: The angle of parallelism depends only on the perpendicular distance

Consider this circle centered at P’ with radius P’Y”. By choosing a suitable radius for the circle of
inversion, we may take P'Y’ = 1. By a suitable translation, we may take P’ to be the origin and
thus it is the centre of the unit disk. Let G be the intersection of the tangent at Y with the line P’ N’.
Now N'G = Y'G = tanf and P'G = secf. Thus P’N’ = sec — tanf = %. Therefore,
d=dp(P,N) =dp(P',N') = In(3EN") That is
. 1— PN cosf+sinf — 1
14+ P'N’ cosf —sinf+1

cosf +sinf —1cosf +sinf + 1
cost —sinf + 1 cosf +sinf + 1

2cosfsinf  sind
2c0s20 4+ 2cosf  cosf+ 1

_ 2sin(4) cos(%) _ tan(g).

2cos?(%) 2
10.2 The Klein model

In the Klein model, points are again in the unit disk. However lines and angles are defined differently.
A hyperbolic line (or Klein line) in this model will be any chord of the boundary circle (minus its

points on the boundary circle).
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Figure 10.8: Hyperbolic lines in the Klein model

Definition 10.4 The hyperbolic distance from P to Q) in the Klein model is defined to be

1 PS-QR
wra-o (552

b

where R and S are the points where the hyperbolic line (chord of the circle) through P and () meets
the boundary circle.

Note the similarity of this definition to the definition of distance in the Poincaré Model. In fact the
two models are isomorphic. That is there is a one-to-one map between the models that preserves
lines and angles and also preserves the distance functions.

As in the Poincaré Model, a circle is defined as the set of all points having a fixed hyperbolic distance
from a centre point. The locus of a hyperbolic circle in the Klein model is a Euclidean circle. Again,
the hyperbolic centres are not the same as the Euclidean centres.

For the 5th Postulate, we see that given a line and a point not on the line, there are many parallels
(non-intersecting lines) to the given line through the point.

The notion of perpendicularity is slightly more subtle in the Klein model. We cannot use the usual
notion of measuring angle in the Euclidean sense as in the Poincaré model. Otherwise, the angle

sum of a triangle is 180°, which is an equivalent condition for Euclidean geometry.

Figure 10.9: Hyperbolic perpendiculars to a diameter in the Klein model
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For a hyperbolic line which is a diameter in the Klein model, the lines perpendicular to it are natu-
rally taken as the hyperbolic lines which are chords perpendicular to it in the Euclidean sense. The
observation is that all these perpendiculars pass through the inverse point (the point at infinity) of
the midpoint O of this hyperbolic line ¢. This generalizes to a notion of perpendicularity for other

hyperbolic lines.

Definition 10.5 The pole of the chord AB in a circle is the inverse point of the midpoint of AB with

respect to this circle.

Figure 10.10: The pole of a line in the Klein model
Note that the pole P of AB is also the intersection of the tangents to the circle at A and B.

Definition 10.6 A line m is perpendicular to a line ¢ in the Klein model if the Euclidean line for m
passes through the pole P of (. See Figure 10.10.

Pole AB

Figure 10.11: Limiting parallels and Perpendiculars in the Klein model

Let P be a point not on the line ¢ (defined by the chord AB). There are two chords AD and BC
passing through P. These two parallels of ¢ divide the set of all lines through P into two subsets:
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those that intersect ¢ and those that are parallel to /. These special parallels (AD and BC) are the
limiting parallels to { at P.

From P drop a perpendicular to ¢ at (). Consider the hyperbolic angle Z/Q PT', where 7' is a point on
the hyperbolic ray from P to B. This angle is the angle of parallelism for £ at P. Here the hyperbolic
angle in the Klein model is defined by means of an isomorphism between the Klein model and the
Poincare model.

The correspondence between the Poincaré model and the Klein model is given by the map f : D —

DD defined as
2z 2y

f($7y> = (1+x2+y27 1+x2+y2)
To obtain this map, first consider the stereographic projection ¢ from the north pole of the unit sphere

onto the equatorial plane. The map ¢ : Unit sphere in R3 \ {(0,0,1)} — R? is a bijection and
both ¢ and its inverse mapping ¢ ~! are continuous. The inverse mapping ¢ ~! maps the unit disk I
of the zy-plane bijectively onto the southern hemisphere. By projecting the points on the southern
hemisphere back to the unit disk D of the zy-plane, we get the map f. More precisely, f can be
obtained as follow.

]
A'{

Figure 10.12: The map f from the Poincaré model to the Klein model

Let (z,) be a point on D. Regard it as a point in R3, we write it as (x, y, 0). Then the coordinates
of a point on the line joining the north pole N = (0,0,1) and this point P = (x,y,0) is given
by AMx,y,0) + (1 — X)(0,0,1) = (Az, Ay,1 — A) for some A. The ray NP meets the southern
hemisphere at the point Y. As Y is on the unit sphere, we have (Ar)? + (Ay)? + (1 — \)? = 1.

Solving for A, we get A = . Thus

2
T+224y2

2x 2y 2
1+ 22492 1422+ 2’ o 1+x2+y2)'
Projecting back onto the xy-plane, we forget the z-coordinate of Y. Therefore,

2z 2
fe) =G i )

Let O be the centre of D and let P be a point D. Consider a circular arc ¢ passing through P

Y=

orthogonal to the boundary circle of D at its endpoints R and S. Thus ¢ is a hyperbolic line passing
through P in the Poincaré model. Let the Euclidean line O P intersect the chord RS at (). The chord
RS defines a hyperbolic line « passing through () in the Klein model.
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Figure 10.13: The map f maps a Poincaré line to a Klein line

Theorem 10.5 The map f maps { onto k.

Proof. Let the equation of the circular arc £ be 2% +y2 + 2hx 4+ 2gy + 1 = 0. Note that the constant
term is 1 because / is orthogonal to the boundary circle « of D. The Klein line  is the radical axis

of ¢ and . It’s equation is hz + gy + 1 = 0. Let (z,y) be a point on ¢, and let (X,Y") = f(z,y).
Thus
2x 2y

= YV=—-
1+m2+y2’ 1+$2+y2
Since (z,y) lies on £, we can replace the term 1 + 2 + y? by —2ha — 2gy. That is

_ -z Y — -y
 hx+gy’  hx+gy’

One can check easily that (X,Y") satisfies the equation hX + gY + 1 = 0. Therefore, (X,Y) lies
on k. Note that the points (0,0), (z,y) and (X,Y") are collinear.

Alternatively, one can prove this by using the fact that the stereographic projection preserves angles.
Note that ¢ is orthogonal to ~y at the two endpoints R and .S. Under the inverse of the stereographic
projection, it is mapped to a circle on the unit sphere and is orthogonal to y at R and S. So it must be
a vertical circle on the unit sphere through R and S. Thus its vertical projection onto the equatorial
unit disc is the chord RS which is the Klein line «.

Thus f can be defined as follow. Take any Poincaré line ¢ through P which is a circular arc orthog-
onal to the boundary of D with endpoints R and S. The chord RS is a Klein line x . The ray OP
intersects x at ). Then f(P) = Q. This is well-defined independent of ¢ by theorem 9.16.

The next exercise shows that f preserves distances (an isometry) of the two models.

Exercise 10.3 Show that for any point A in D,

dx (f(0), f(A)) = dp(0, A),

where O is the centre of D.

Exercise 10.4 Suppose in the Klein model /; and /5 are two parallel lines which do not meet at the
boundary. Show that there is a unique common perpendicular between them.
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10.3 Upper half plane model
In this model, we take the set of all points to be the upper half plane of R2. That is
H = {(z,y) € R? : y > 0}.

Note that the z-axis is not included in H. A hyperbolic line is either a Euclidean line perpendicular

to the x-axis or a Euclidean semicircle with its centre on the x-axis.

Figure 10.14: Hyperbolic lines in the upper half plane model

Exercise 10.5 Show that for any two points A = (a1,a2) and B = (b1,b2) in H with a; # by,
there exists a unique semicircle (i.e. a hyperbolic line) with centre on the z-axis passing through
them.

Let A = (a1,a2) and B = (b, by) be two points on a hyperbolic line £ in H. Define the hyperbolic
distance dy as follow. If a; = by, then dy (A, B) = |In(as/b2)|. If a; # by, then

di (A, B) = |In{AB,QP}|.

As in the other models, a hyperbolic circle consists of all points whose hyperbolic distance from a
given point is a positive constant. The locus of a hyperbolic circle in the upper half plane model is
a Euclidean circle. In the upper half plane model, angles are measured in the usual Euclidean sense
like the Poincaré model.

Figure 10.15: Limiting parallel lines in the upper half plane model

Given a point P not on a hyperbolic line ¢, there exist more than one semi-circle with centres on the
x-axis passing through P but not intersecting ¢. Thus the hyperbolic postulate is satisfied. The two

semi-circles through P tangent to ¢ at one of its end points are the limiting parallels to { at P.
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Exercise 10.6 Given a point P not on a hyperbolic line £ in H, construct the perpendicular from P
onto /.

All the three models can be shown to be isomorphic to each other. That is there is a bijective map
between any two of them preserving lines, angles and distances in the models. For example, if we
regard the Poincaré disk as the unit disk in the complex plane and upper half plane as the set of all
points on the complex plane with positive imaginary part, then the so-called Mobius transformation

2+
9(2) = —i——

is an isomorphism from the Poincaré model to the upper half plane model.
1-|z?

Note that g(0) = i, ¢(i) = oo and Img(z) = iz Thus the unit circle |z| = 1 is mapped onto

the real axis.

Exercise 10.7 (A generalized Butterfly theorem) In the Klein model, A, X, Z, B, W,Y are ideal
points on the boundary circle in this order. The hyperbolic line AB intersects the hyperbolic lines
XY, XW,ZY and ZW at the points C, M, N and D respectively. Let P be the midpoint of the
Euclidean segment AB. See figure 10.16.

(a) Prove that dx (C, M) = di (N, D).

(b) Deduce that if the Euclidean segments M P and PN are of equal length, then the Euclidean
segments C'P and PD are also of equal length. See exercise 8.12.

bS
ss]

C\ MNP /N \D

Figure 10.16: di (C, M) = dg (N, D)

Exercise 10.8 (Butterfly theorem revisited) In the Klein model, A, X, Z, B, W, Y are ideal points
on the boundary circle in this order. The hyperbolic line AB intersects the hyperbolic lines XY
and ZW at the points M and N respectively. Suppose the hyperbolic lines AB, XW and Y Z are
concurrent at a point O. Let Ny and Nz be the feet of hyperbolic perpendiculars from O onto the
hyperbolic lines XY and ZW respectively. See figure 10.17.

(a) Prove that di (O, N1) = dx (O, N3).

(b) Prove that the hyperbolic triangles OM N7 and ON N, are congruent.

(c) Deduce that if O is the midpoint of the Euclidean segment AB, then the Euclidean segments
OM and ON are of equal length.
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Figure 10.17: The hyperbolic triangles OM N; and ON Ny are congruent.

Exercise 10.9 Prove that in the Poincaré model, the angle sum of a hyperbolic triangle is less than
180°.

Figure 10.18: The angle sum of a hyperbolic triangle is less than 180°.

[Hint: Let § be the boundary circle of the unit disk, and ¢, m, n be the sides of a hyperbolic triangle.
Invert with respect to a circle centred at the intersection point of £ and m outside §. Let &', ¢/, m/, n’
be the respective inverses. Then ¢’ and m’ are straight lines orthogonal to §’. Thus they are the
diameters of §’. Since angles are preserved by inversion, the angle sum of the original triangle is the
angle sum of the triangle formed by ¢/, m/, n’, i.e., the angles is a + b+ ¢ and this is clearly less than
180°.]

10.4 The isomorphism between the Poincaré model and the Klein

model

Let f : D — D be the map given by f(2,y) = (752577 139457 )- 1t maps the Poincaré disk

bijectively onto the Klein disk. Also f~!(z,y) = (m(l_ v 1_m2_y2), vy 1_12_1’2)).

x2 +y2 x2 +y2

Geometrically, f can be defined as follow. Take any Poincaré line ¢ through P which is a circular

arc orthogonal to the boundary v of D with endpoints R and .S. The chord R.S is a Klein line « .
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The ray OP intersects  at ). Then f(P) = Q. This is well-defined independent of ¢ by theorem
9.16. In fact, if ¢’ is another Poincaré line through P, then Q is the radical center of £, ¢', v. We shall

show f is an isometry.

Theorem 10.6 Let O be the center of D. Let P € D and Q = f(P). Let the circular arc through P
centered at K be orthogonal to the boundary v of D at R and S. The ray O P intersects the chord RS
at Q. Let ZSOP = a and /POR = B and let /OSP = Z/PRS = 0 and ZORP = /PSR = ¢.

Then
sin o sin® 0

sinf  sin?¢’

Proof. Since the arc RS is orthogonal to the boundary of D, OR and OS are tangent to the arc RS
at R and S respectively. We have /PKS =2/PRS =20 and /ZPKR = 2/PSR = 2¢.
By Ceva’s theorem applied to the cevians OP, RP and S P, we have

sin ZSOP sin ZORP sin ZRSP _

SnZPOR smZPRS smZPSO

That is

sina  sin¢ sin¢_1

)

sinf8 sinf sinf
or equivalently,
sina sin’@

(10.1)

sinf  sin?¢’

Figure 10.19: The map f maps a Poincaré line to a Klein line and f(P) = @

Theorem 10.7 Let P1, P, € D and Q1 = f(P1), Q2 = f(P2). Then dx(f(Py), f(P2)) =
dp(P1, Py).

Proof. Let ASOPZ = Oy, ZPIOR = ﬂi, ZleS = 91 and ZPVS'R = ¢Z,'L = ]., 2
Let X be any point on the circle containing the arc RS. We may compute cross ratio of 4 points

on the arc RS by means of the cross ratio of the rays from X to these 4 points. The notation
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R

Q1

Figure 10.20: dK(f(Pl), f(PQ)) = dp(Pl, PQ)

{AB,CD}x denotes the cross ratio of the 4 rays: XA, XB, XC, XD in this order. Thus by
(10.1), we have

B _sinf;singy  (sinag sin fo 3 B 1 1
{P\P,,SR} = {P\P,,SR}x = Sn o sn, (sinﬁl sina2> ={Q1Q2, SR} = {Q1Q2, SR}=.
Therefore, dp(P1, P») = In{P1 P>, SR} = + n{Q1Q2, SR} = dk (Q1,Q2).

That is dK(f(Pl), f(Pg)) = dp(Pl, Pg)

Next we prove the triangle inequality in the Klein model. By means of the above isomorphism f,

we deduce the triangle inequality in the Poincaré model.

Lemma 10.8 Let R, R, P,Q,S’, S be 6 points on a line in this order. Then
(a) {PQ, SR} > 1.

(b) {PQ,S'R'} > {PQ,SR}.

(c)In{PQ,S'R'} > In{PQ, SR}.

Proof. (a) {PQ, SR} = 5537 > 1as PS > QS and QR > PR.

Figure 10.21: In{PQ, SR’} > In{PQ, SR}

(b) Let’s prove { PQ, SR’} > {PQ, S'R}.

Let RR' =t > 0. Then gg: = gg:i > % as this is equivalent to QR > PR.

Thus {PQ, 'R’} = L5-9% ~ LSOR _ (pQ, S'R}.

Next we prove { PQ, S'R} > {PQ, SR}.
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Let S’S = s > 0. Then ggi = gg:‘; > % as this is equivalent to PS > QS.

Thus {PQ, $'R} = 5590 ~ L3R — (pQ, SR},
Combining, we have { PQ, S'R'} > {PQ, SR}.

(c) follows from (a) and (b) as In is an increasing function and In(x) > 0 for z > 1.

Theorem 10.9 (Triangle Inequality) Let ABC' be a triangle in the Klein disk. Then di (B, A) +
dK(A, C) > dK(A7 C)

Proof. Consider the following configuration.

P

Figure 10.22: dx (B, A) + dx (A, C) > dx (4, C)

By lemma 10.8, we have

{BA,VU} = {BA,VU}p = {BM,S'R'} > {BM, SR},
{AC,YX} = {AC,YX}p = {MC,S'R'} > {MC,SR}.

Thus dg (B, A) > dg (B, M) and dx (A, C) > di (M, C).
Therefore, di (B, A) + dg(A,C) > dx (B, M) +dx(M,C) = dk(A,C).

Theorem 10.10 (Triangle Inequality) Let ABC be a triangle in the Poincaré disk. Then dp (B, A)+
dp(A, C) > dp(A, C)

Proof. Let A’ = f(A), B’ = f(B),C’ = f(C). Thus A’ B’C" is the corresponding triangle in the
Klein disk. By the triangle inequality for the Klein model, we have di (B’, A’) + dx (A’,C") >
dx(A’,C"). By the above result, we have dp(B, A) + dp(A,C) > dp(A,C).



Chapter 11

Basic Results of Hyperbolic
Geometry

In this chapter, we shall explore some basic properties of hyperbolic geometry. We shall prove
that the angle sum of any hyperbolic triangle is less than 180°. This is in fact equivalent to the
hyperbolic postulate. The crux of the proof is the concept of the so-called Saccheri quadrilateral.
It follows that rectangles do not exist in hyperbolic geometry. Recall that two segments AB and
PQ@ in hyperbolic space such as in the Poincaré model are congruent if and only if they have the
same hyperbolic length. We will derive our results without reference to any model. Basically, we
only assume Euclid’s first 4 axioms, Pasch’s axiom, a distance function along hyperbolic lines, a
continuous function of angle measure and of course the hyperbolic postulate.

In this chapter, the notation P(Q denotes the hyperbolic segment as well as its hyperbolic length.
Also PQQ = AB will mean they have the same hyperbolic length and they are congruent.

11.1 Parallels in hyperbolic geometry

As we saw in the Poincaré Model, if £ is a hyperbolic line and P a point not on ¢, there are always
two limiting parallel lines through P. This is true in any model of hyperbolic geometry. In fact,
this result is a consequence of the hyperbolic postulate, the continuity of the angle measure and
Proposition 27.

Theorem 11.1 (Fundamental theorem of parallels in hyperbolic geometry) Let ¢ be a hyperbolic
line and P a point not on L. Then there are exactly 2 lines m and n (the left and right limiting par-

allels) through P parallel to { satisfying the following properties.

(a) Any line through P within the angle between m or n and the perpendicular from P to £ must

intersect £ while all other lines through P are parallel to (.

(b) The limiting parallels m and n make equal acute angles (the angle of parallelism) with the

perpendicular from P to (.

Proof. Let IV be the foot of the perpendicular from P onto £. Consider all angles at P with the side
PN. The set of these angles are divided into those angles /N P A where the line P A intersects ¢

129
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Figure 11.1: Parallels in hyperbolic geometry

and those where P A does not intersect £. By the continuity of angle measure, there is an angle that
separates the angles where the line PA intersects ¢ from those where it does not. Let ZQPN be
this angle. Let PQ’ be the reflection of PQ across PN. Since reflections preserve parallelism, PQ’
must separate intersecting lines with £ from those parallel to ¢. Also reflections preserve angle so
that ZQPN = ZQ'PN. This proves (a).

To prove both these angles are acute, it suffices to prove neither can be a right angle. If /N PQ =
90°, then the left and right limiting parallels PQ and PQ’ coincide to one single line ¢'. By Euclid’s
proposition 27, ¢’ is parallel to £. By the hyperbolic postulate, there must be another line m through
P parallel to . But m has to lie within one of the two right angles /N PQ or ZNPQ’. This
contradicts the fact that /N PQ and N PQ’ separate intersecting and non-intersecting lines. Clearly
the angle of parallelism /N P() cannot be obtuse. Thus it is always an acute angle.

Exercise 11.1 Let ¢ be a hyperbolic line. For any point P, define the reflection P’ of P across £ as
follow. Drop a perpendicular n from P onto ¢ meeting ¢ at the point N. Let P’ be the point on n
such that P and P’ are on opposite sides of £ and P’N = PN. Prove the following.

(a) (P") = P.

(b) For any hyperbolic segment AB, A’B’ = AB, thatis A’ B’ is congruent to AB.

(¢) For any hyperbolic triangle ABC, AA’B’C" is congruent to AABC.

Theorem 11.2 Let ¢ be a hyperbolic line and P a point not on {. Let n be a hyperbolic line which
is right-limiting parallel to ¢ through P. Then for any point P’ on n, n is right-limiting parallel to
¢ through P'.

N N’

i
!

Figure 11.2: Each point on n is right-limiting parallel to £
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Proof. There are two cases to consider depending on which side of the line PN the point P’ lies.
Let’s consider the case where P’ lies on the right-hand side of the line PN. That is the ray PP’
is right-limiting parallel to . Let PN, P’ N’ be perpendiculars from P and P’ onto £ at N and N’
respectively. Note that PN is parallel to P’ N’ by proposition 27. Thus all points on the line P’ N’
lie on the same side of the line PN. Let E be a point on the extension of PP’. Let m be a line
through P’ within the angle ZN'P’E, and C' a point on m on the same side of £ as P’. We must
show m intersects £.

Since C'is a point in the interior of /N PFE, the ray PC must intersect ¢ at some point D. By
Pasch’s axiom, the ray PC also intersects the interior of the segment N P’ at some point A since the
ray PC does not intersect either of the other two sides of APNP’.

In AAN D, the line m intersects the side AD at C but it does not intersect AN as A and C are on
opposite sides of the line P’ N’. By Pasch’s axiom, m must intersect N D and thus intersects .

Remark 11.1 The same result holds for left-limiting parallels.

Theorem 11.3 [f m is right-limiting parallel to ¢, then ¢ is right-limiting parallel to m.

Figure 11.3: m are £ are limiting parallel to each other

Proof. Let P be a point on m. Drop a perpendicular from P to ¢ at (). Fix a point D on m and on
the right of P and a point B on ¢ and on the right of Q). Thus B and D are on the same side of the
line PQ. Drop a perpendicular from @ to m at R. As the angle of parallelism ZQPD is acute, the
point R must be on the right of P. To show that £ is right-limiting parallel to m, we have to show
that any ray QE interior to ZB(Q R must intersect m. We also denote the line Q E by n. Our goal is
to show n intersects m.

Drop a perpendicular from P to n at F. Since ZPQFE < ZPQB = 90°, the point ' must lie on
the same side of the line P(Q as E. In the right-angled triangle PQF', we have P() > PF. Note
that if ZF PQ > ZDPQ, then by Pasch’s axiom, m must intersect n, and we are done. So we may
assume F' is interior to ZDPQ).

Now let’s rotate the segments PF, F'E and PD about P by the angle § = ZF PQ. Since PQ >
PF, F will rotate to a point £’ on PQ and the line F'E will rotate to a line F’E’ parallel to £ as
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both the angles at Q and F” are 90°. Also the line PD will rotate to a line PD’ that is interior to
ZQ PR (the angle of parallelism) and so it intersects ¢ at some point G.

Since the line F’ E’ intersects A PQG and does not intersect QG, it must intersect PG at some point
H'’ by Pasch’s axiom. Now Rotating back about P through the angle —6 shows that n intersects m
at a point H.

Theorem 11.4 If m and n are right-limiting parallel to ¢, then m and n are right-limiting to each

other.

Figure 11.4: Limiting parallel is a transitive relation

Proof. There are two cases to consider. For the first case, m and n are on opposite sides of £. Let A
and C' be points on m and n respectively. Then m and n are right-limiting parallel to ¢ at points A
and C respectively. Note that the line AC intersects £ at some point G as A and C are on opposite
sides of /. Let CH be any ray interior to ZAC D, where D is a point on n to the right of C. We
must show C' H intersect m. As n is right-limiting parallel to ¢, the ray C'H must intersect £ at some
point J. Since right-limiting parallel is symmetric and m is right-limiting parallel to ¢, the line ¢ is
right-limiting parallel to m at any point along ¢ by Theorems 11.3 and 11.2. Therefore, the ray C'.J
intersects m at some point K. Since n and m do not intersect as they are on opposite sides of ¢, and
for any rays C'H interior to ZAC'D the ray C'H intersects m. Thus n is right-limiting parallel to m.
For the second case, m and n are on the same sides of £. Let C be a point on n. Let n’ through C
be right-limiting parallel to m. By the first part of this proof, n’ is right-limiting parallel to ¢. Since
n is also right-limiting parallel to ¢, we must have n’ = n and n is right-limiting parallel to m.

11.2 Saccheri quadrilaterals

Definition 11.1 A Saccheri quadrilateral is a quadrilateral ABC D such that AB forms the base,
AD and BC the sides such that AD = BC, and the angles at A and B are right angles. We shall
refer to the ZC' and £D as the summit angles, C D as the summit and AB the base.

Theorem 11.5 The summit angles of a Saccheri quadrilateral are equal.

Proof. Join AC' and BD. Then ADAB is congruent to AC BA by (SAS). Thus DB = C'A. That
is the two hyperbolic segments DB and C'A are congruent. Now AACD is congruent to ABDC
by (SSS). Therefore, ZC = £D.
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LA = /B =90°
AD = BC

Figure 11.5: Saccheri quadrilateral

Exercise 11.2 Prove that the summit of a Saccheri quadrilateral is parallel to the base.
Theorem 11.6 The summit angles of a Saccheri quadrilateral are acute.

Proof. Consider a Saccheri quadrilateral ABFEF in the Poincaré model. Point D is one of the
end points (called an ) point) of the hyperbolic line BA. The hyperbolic lines £D and F'D are
right limiting parallels to BA from points £ and F’ respectively. Note that ED and F'D are right
limiting parallels to each other. Since EB = F'A, we have /ZBED = LZAFD. Thus ZBED +
(DEC = /BEF = LAFE. As ZAFE + ZAFD + ZDFC = 180°, we have (/BED +
/ZDEC)+/ZBED+ ZDFC = 180°. By the Exterior Angle Theorem applied to ADEF, we have
ZDEC < ZDFC'. Then 24/BED + 2/DEC < 180°. This implies ZBED + ZDEC < 90°.
Therefore, the summit angles of the Saccheri quadrilateral are acute.

Figure 11.6: Summit angles of a Saccheri quadrilateral are acute

Exercise 11.3 Let m and ¢ be right limiting parallel lines meeting at the “2 point” C. Let A be a
point on £ and B a point on m. Show that for the triangle ABC, the exterior angle theorem holds.

Theorem 11.7 The angle sum of any hyperbolic triangle is less than 180°.

Proof. Let ABC be a hyperbolic triangle. Points D and E are midpoints of the segments AB and
AC, respectively. Segments AF, BG, and CH are drawn perpendicular to the line DE. Let’s
suppose ZADFE and ZAFED are both acute.

By the exterior angle theorem, the point F' must be within D F, G is on the side of AB opposite to F/,
and H is on the side of AC opposite to F. [If one of ZADFE or ZAED is obtuse, the other is acute.
For example, if ZADFE is obtuse, then F' is outside AABC and G is inside AABC, and ZAED
is acute.] As /BDG = LADF, /BGD = ZAFD = 90° and BD = AD. we have ABDG is
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Figure 11.7: An equivalent Saccheri quadrilateral

congruent to AADF by (AAS). Using a similar argument, ACEH is congruent to AAFF. Thus
ZGBD = /FAD and ZFAE = ZHCE. Hence /B + ZA+ /C = ZGBC + ZHCB. Also
BG = AF = CH. Therefore GHC B is a Saccheri quadrilateral. Consequently, the angle sum of
AABC is the same as the sum of the summit angles of the Saccheri quadrilateral GHCB. Since
the summit angles of a Saccheri quadrilateral are acute, the angle sum of AABC' is less than 180°.

Theorem 11.8 The sum of the acute angles of a right hyperbolic triangle is less than 90°.

Theorem 11.9 The sum of the interior angles of a convex hyperbolic polygon is less than (n — 2) X
180°.

Theorem 11.10 The angle sum of a quadrilateral is less than 360°.
Theorem 11.11 Rectangles do not exist in hyperbolic space.

Exercise 11.4 Prove that two Saccheri quadrilaterals with congruent summits and congruent sum-

mit angles must be congruent. That is the bases must be congruent and the sides must be congruent.

[Hint: If not, construct a rectangle from the quadrilateral with the longer sides.]

11.3 Lambert quadrilaterals

Definition 11.2 A Lambert quadrilateral is a quadrilateral having three right angles.

Theorem 11.12 Let ABC D be a Saccheri quadrilateral with summit C D, and let E and F be the
midpoints of AB and C'D respectively. Then ZAEF and ZEF D are right angles. Thus AEF D
and EBCF are Lambert quadrilaterals.

Proof. Join AF and BF. Then AADF is congruent to ABCF by (SAS). Thus AF = BF. It
follows that AAEF is congruent to ABEF by (SSS). Therefore, ZAEF = ZBEF = 90°.
Similarly by joining DE and EC, we can prove that /EFD = ZEFC = 90°.

Theorem 11.13 In a Lambert quadrilateral, the fourth angle must be acute.
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Figure 11.8: A Lambert quadrilateral

D F e}

Figure 11.9: Two Lambert quadrilaterals inside a Saccheri quadrilateral

Proof. We can embed a given Lambert quadrilateral in a Saccheri quadrilateral and we know that
the summit angles of a Saccheri quadrilateral are acute.

Theorem 11.14 In a Lambert quadrilateral, the sides adjoining the acute angle are greater than
the opposite sides.

Proof. Let ABC'D be a Lambert quadrilateral in which ZC is acute. We shall prove BC' > AD.
Suppose BC' < AD. Then we can mark off a point F on the extension of BC such that BE = AD.

Figure 11.10: Sides adjoining the acute angle are longer

Then ABED is a Saccheri quadrilateral with summit DE. Thus ZADE = ZBED and both are
acute. Since A and F lie on opposite sides of C'D, we must have ZADEFE contains ZADC = 90°,
so that ZADE is not acute, which is a contradiction. If AD = BC, then ABCD is a Saccheri
quadrilateral. But then the summit angle D is not acute which is again a contradiction. Thus BC' >
AD. Similarly DC > AB.

Definition 11.3 The shortest distance between two parallel lines is measured along a common per-
pendicular between the lines (if there exists one).
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Theorem 11.15 Let D and C be points on the parallel lines {1 and {5 respectively. Let AB be a
common perpendicular of {1 and ls, where A € {1 and B € fs, with A # D, C # B. Then
CD > AB.

Proof. Drop a perpendicular C D’ from C onto ¢;. Then ABC'D’ is a Lambert quadrilateral. Thus
/BCD' is acute. Since ZCD'D = 90° > ZCDD’, we have CD > CD’. For the Lambert
quadrilateral ABCD’, CD’ > AB. Therefore, CD > AB.

Theorem 11.16 Parallel lines cannot have more than one common perpendicular.

Proof. Let AB be perpendicular to AD and BC'. Assume that a second line C'D is also perpen-
dicular to both AD and BC'. Then the angle sum of the quadrilateral ABC' D is 360° which is a

contradiction in hyperbolic geometry.

11.4 Triangles in hyperbolic geometry

Definition 11.4 The defect of a hyperbolic triangle ABC' with degree angle sum is 180° — /A —
/B - /C.

Definition 11.5 The defect of a hyperbolic quadrilateral ABC D with degree angle sum is 360° —
LA—-/B—/C — 4D.

Theorem 11.17 Given a triangle ABC' and a line ¢ intersecting the sides AB and AC' at points
D and FE respectively, the defect of NABC' is equal to the sum of defects of NAED and the
quadrilateral EDBC.

We can use this result to prove one of the most amazing facts about triangles in hyperbolic geometry

- similar triangles are congruent!

Theorem 11.18 If two triangles have corresponding angles congruent, then the triangles are con-

gruent.

Proof. Let ABC and D E'F be two hyperbolic triangles such that /A = /D, /B = /ZE and ZC =
ZF. If any pair of sides between them is congruent, then by (AAS) the triangles are congruent. So
either a pair of sides in AABC is larger than the corresponding pair in ADFEF or smaller than the
corresponding pair. Without loss of generality, we can assume that AB > DFE and AC > DF.

A D

Figure 11.11: Similar triangles are congruent
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Then we can find points E' on AB, and F’ on AC so that AE’ = DE and AF’ = DF. By (SAS),
the triangles AE’'F’ are DEF are congruent, and thus have the same defect.

Since ADEF and A ABC have the same defect, we have AAE'F’ and ABC have the same defect.
Therefore the defect of the quadrilateral E’ F'C B is zero, which is impossible.

Definition 11.6 Two figures in hyperbolic geometry are equivalent if the figures can be subdivided

into a finite number of pieces so that pairs of corresponding pieces are congruent.

By using the notion of equivalence, we are able to base all Euclidean area calculations on the simple
figure of a rectangle. But this is not possible in hyperbolic geometry as rectangles do not exist in
hyperbolic geometry. Instead, area can be defined as a function satisfying the following axioms.

Area Axiom 1. If A, B, C are distinct and not collinear, then the area of ANABC is positive.
Area Axiom Il.  The area of equivalent sets must be the same.

Area Axiom IIl.  The area of the union of disjoint sets is the sum of the separate areas.

Theorem 11.19 If two triangles ABC and A’ B'C" have two sides congruent and the same defect,

then they are equivalent and hence have the same area.

Proof. Suppose BC' = B’C’. The triangle ABC' is equivalent to the Saccheri quadrilateral BCHG
with summit BC. The sum of the two summit angles equal to the angle sum of AABC, and thus
the summit angles are each half of the angle sum of AABC.

A

Figure 11.12: Angle sum of a triangle

Similarly the triangle A’B’C’ is equivalent to a Saccheri quadrilateral with summit B'C’. Now
BC = B’'C’ and the summit angles for both Saccheri quadrilaterals are equal because the two
triangles have the same defect which means they have same angle sum. Hence the two Saccheri
quadrilaterals are congruent. Therefore, the triangles ABC and A’B’C’ are equivalent and they
have the same area.

Theorem 11.20 If rwo triangles ABC and A’ B'C" have the same defect, then they are equivalent
and hence have the same area.
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Proof. If one side of AABC is congruent to a side of AA’B’C’, then the result follows from the
previous theorem.

Figure 11.13: Two equivalent hyperbolic triangles

Suppose A’B’ > AB. First construct the Saccheri quadrilateral BCHG of AABC with BC' as
the summit. Mark off a point F' on DFE such that BF = %B’ A’. Then F' # D because D is the
midpoint of AB. Extend BF to a point A” such that FA” = FB. Thus BA” = B’A’. Join A”C
and let it intersect the line DE at P. Let A” N be the perpendicular from A" onto the line DE.
Then by (AAS), ABGF is congruent to AA” NF so that BG = A”N. As CH = BG, we thus
have CH = A” N. Hence by (AAS), AA” NP is congruent to AC H P. This shows that P is the
midpoint of A”C'. Therefore BC HG is a Saccheri quadrilateral for A A” BC with summit BC.
The defect of AA”BC equals to the defect of AABC since each of their angle sums equals to
the sum of the summit angles of the Saccheri quadrilateral BCHG. So AABC and AA”BC are
equivalent. On the other hand the defect of AA’B’C’ equals to the defect of AABC and so it
also equals to the defect of AA”BC. Now AA’B’'C’ and A” BC have the sides A’B’ and A” B
congruent. Thus they are equivalent, and hence they have the same area. This completes the proof
of the theorem.

Conversely, if two given triangles are equivalent, then they can be subdivided into sub-triangles with
corresponding pairs congruent. Thus for each pair, the defect will be the same. As the defect of each
of the original triangles is the sum of the defects of their sub-triangles, the two given triangles have
the same defect. Combining with the last theorem, we have the following result.

Theorem 11.21 Tiwo triangles have the same defect if and only if they are equivalent, and thus they
have the same area.

Remark 11.2 In fact if we use a suitable “metric” say on the Poincaré model, the area of a triangle
can be shown to be equal to the defect of the triangle.

Let P(x,y) be a point in the Poincaré disk which is at a Euclidean distance p = y/x? + y? from the

centre O. Then its hyperbolic distance from the centre O is given by r = In %’;. Differentiating r
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with respect to p along the ray O P, we get g—; =

2
I—-p

dr =

5P,

and the hyperbolic arclength differential is
s — 2/dx? + dy?
o l—a2 g2

Therefore, it is natural to define the hyperbolic area differential as

4
A= ——— .
d (1ip2)2dxdy

For a region R in the Poincaré disk, define the hyperbolic area of R to be

Area(R / / d:rdy,

if this double integral exists. Changing to polar coordinates, we have

Area(R / / 5P dpdf.

By making the substitution = In 1+'; we can express this as

Area(R) = // sinh r drd#.
R

Here r is the hyperbolic distance from the point to the centre.

Example 11.1 Let A = (0,0),B = (QT\/g -1 %), C= (f 0). The hyperbolic line BC is given
by 22 4+ % — ‘Lsﬁx—&—l = 0.

Figure 11.14: Area of a hyperbolic right triangle

) = tan~1( \/%4), the Euclidean length AB = £1/15 — 61/3, and

v3
We have ZA = arctan( 52—

53
the Euclidean length BN = \/% From this, we obtain tan(B) = tan(/BO'N) = v/3 — 1.
That is /B = tan™(v/3 — 1).
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Defect of AABC'inradian=7—/A—/B—/C = 5 —tan"'(v/3—1)—tan™! (%) = 0.5236.

Next let’s find the hyperbolic area of AABC'. Let R = (pcos 6, psin #) be a point on the hyperbolic
segment BC'. The parametric equation satisfied by R in polar coordinates is given by

2 1
= —cosf — =v/12cos2 6 — 9,
RV 3

where 0 < § < ZA. This is obtained by substituting z = pcosé, y = psin 6 into z2 +y? — %ﬁx +

1 = 0, and solving for p.

Area of AABC' = // A dpdf
asape (1— )
ZA  pp(0)
= ———— dpdf
/0 /0 (1- p2)2
LA 2 p(0)
-/ [ a6
0 1-p 0
2
_— =2

tnl 2
—2| do
0 1 —p(0)? }
71(f+4 9
/ d
0 1—(\;30059— 1/12cos?20 — )
/ —9+4+24 cos?20 — 4+/3 cos0+/12 cos? 0 — d
0 9—1200529+2\/§c050\/12c0529
/ - 2v/3 cos 0(2+/3 cos @ — /12 cos? 0 -9)
0 (2\/30059—\/1200520—9)\/1200826‘—9
tan™ 1(f+4 2v/3 cos b
1+ ————2df
0 5 V12cos26 —9
—1 4
/t (53 - 2cosf 0
0 V1 —4sin?6
RS

=[-0+sin™!(2sin 9)} ran

4 4
:—tan_l(\[+ )—Q—sin*l L
13 47+ 23
:—tanfl(\/g+4)+tanil M
13 3v3-1
4 -1
:—tan_l(\/g+ )—Q—E—tan_l ﬂ
13 2 443
4
:g — tanfl(\/gf 1) — tanfl(\/gl;)r ) = 0.5236.

Thus hyperbolic area of AABC = defect of AABC.

Exercise 11.5 Prove that the hyperbolic circumference of a circle with hyperbolic radius 7 is equal

to 2w sinh r.
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Exercise 11.6 Prove that the hyperbolic area of a circle with hyperbolic radius r is equal to 47 sinh? 5
Exercise 11.7 Let A be a point in the Poincaré disk with centre O, and ¢ a hyperbolic line through
A with endpoints P and @ on the boundary circle. Let the Euclidean lines O A and P(Q intersect at

the point A;. Show that dp(O, A1) = 2dp(0, A).
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