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0.1. Introduction and main results. The problem of identifying G-invariant
tempered distributions for the action of a classical group G on a vector space has
been around for some time. In particular, the case of G O(p, q) acting on P+q
was studied by many people, among them Methee, de Rham, Gfirding, Tengstrand,
Gelfand, and Shilov, in [Me], [dR], [Ga], [Te], [GS], etc. In this article, we consider
the following.

Let G be a classical group of one of the following types:

(0.1.1) O(p, q), U(p, q), Sp(p, q), Sp(2m, ), O*(2m),

and let V be its standard module, namely,

(0.1.2) p+q, (,p+q, ..p+q, 2m, []m.

The action of G on V induces an (linear) action of G on Lz(Vk) given by

(0.1.3) g-1 1/)k)(g" f)(v v Vk) f(g-v V2 g-

where f e L2(vk), v e V, 1 < < k.
Let 5(Vk) be the Schwarz space of rapidly decreasing functions on Vk and 6t’*(Vk)
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be its continuous dual. In usual terminology z*(vk) is called the space of tempered
distributions on Vk. See [Tr-I.
G acts on 5v(Vk) by the restriction of (0.1.3). Thus, we have the induced action of

G on 9O*(Vk):

(0.1.4) (g" A)(f) A(g-x f), A e 9O*(Vk), f e 5a(V*).

Let W Vk ( Vk. We can define a real symplectic form ( ) on W (1.1) such
that our original Vk is a maximal isotropic subspace (a polarization). Also, there
exists a classical group G’ such that G and G’ are mutual centralizers in Sp Sp(W),
the isometry group of ( ). In other words, G and G’ form a reductive dual pair in
Sp ([H1]).
We list below five corresponding dual pairs:

(1) (O(p, q), Sp(2k, ))
_

Sp(2(p + q)k, ),

(2) (U(p, q), U(k, k))
_

Sp(4(p + q)k, ),

(0.1.5) (3) (Sp(p, q), O*(4k))
_

Sp(8(p + q)k, ),

(4) (Sp(2m, ), O(k, k))
_

Sp(4mk, ),

(5) (O*(2m), Sp(k, k))
_

Sp(8mk, ).

Let Sp be the unique double cover of Sp and re" Sp Sp be the projection map.
For a subgroup B of Sp, let r- (B).

Since V is a polarization of the symplectic form, the oscillator representation of
S-p, denoted by o9, has a Schr6dinger realization in LZ(v/) ([Ge]). By twisting o91,
with a character of G, the resulting action can be made to factor through the linear
G-action on Lz(vk) given by (0.1.3). Below, we shall always twist o917, by such a
character. Thus, we shall be concerned with G instead of G.
We denote the induced action of S-p on 9O*(Vk) still by the same symbol o9 for

reasons which shall be explained at the beginning of 2.1. But this slight abuse of
notation shall not cause any confusion.

Since (’ commutes with G, 9O*(V), the space of G-invariant tempered distribu-
tions is a G’ module under o9. Let K’ be a maximal compact subgroup of G’. The
set of isomorphism classes of irreducible finite-dimensional representations of K’ is
denoted by K’ and likewise for any compact group.

THEOREM I. (a) 9o*(vk) is the closed span of the set {og(g’)61O’ e ’}, where
is the Dirac distribution at the orioin of Vk. In fact, it is the closed span of the set
{og(k’)6lk’ e

(b) The multiplicity of in 9*(vk) is at most one for any e :’. All the ’-types
which do occur in 9O*(V*) can be explicitly described. In fact, we shall exhibit
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G-invariant tempered distribution with one of those K’-types by proving that the
projection of the Dirac distribution to such a K’-type is nonzero.

We pause to describe (o1,. Let P’ be the subgroup of G’ which stabilizes the first
factor of W Vk Vk. Then G’ is generated by P’ and an element of order four.
For simplicity we shall only give explicit formulas of o91, and the action of that
element of order four for the case G O(p, q), G’ Sp(2k, ). We shall use the
following notation throughout this article. For two integers a and b, M,,b denotes
the space of matrices of order a x b. A superscript denotes transpose, and tr X
denotes the trace of a square matrix X. lk denotes the identity matrix of order k x k,

and lp, q ( -Iq0)’ Jk (O_lk ). Then, obviously, vk can be identified with

M,/,k(), and under this identification O(p, q) acts on M,/,k() via matrix multi-
plication on the left.
We have P’ MN, where

(0.1.6)

M= m(a)
(a,)_

a Gl(k, )

b b’ Mk,k()},
and G’ Sp(2k, ) is generated by P’ and the element Jk.

Let ;to be the following character of tr { (m(a), e,)la Gl(k, ), e +_ 1 }.

1,
;to(m(a), e) e.

i,

if det(a) > 0,
if det(a) < 0.

;to is of order four. We then have

(0.1.8)

[(o(m(a), e)f] (x) ;to(m(a), e)’ldet alt’+’/2f(xa), a e Gl(k, ),

[oo(n(b))](x) ei/2t’tlr",xbxt)f(x), f e L2(M,+,k()), x M,+,,(),

[(Jk)f] (x) Vo \-] ,+,.,,(n)
eimX%.qr)f(y) dy.

Hence, p q (mod 4), and vo is an eighth root of unity. See [KV], [Ge], etc.
For explicit formulas in the other four cases, we refer the reader to [KV], [Ge-I,

and [GK2].
In order to state our second main result, we shall develop some more notations.

Throughout this article, if a Lie group is denoted by a capital letter, its Lie algebra
is denoted by the corresponding lower case German letter, and vice versa. Also, for
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a compact subgroup E ofSp, the set ofE-types occurring in the oscillator representa-
tion 09 is denoted by R(E, co).

Let U be a maximal compact subgroup of Sp. We have U ’ U(1), the unitary
group in variables where 21 dim R W. Let be the (p, U)-module of co, namely,
the derived (p, U)-module on the space of U-finite vectors of co, and let

(0.1.9) ) E co,
/(0, co)

be the U-isotypic decomposition.
Let C-(Vk) co-oo be the space of formal linear combinations

(0.1.10) f, f

We shall refer to co as the space of formal vectors of co, fv’s as the U Fourier
components ofthe formal vectorvR(0, ,)f. Thus, C-(Vk) is the space of general-
ized functions on Vk with Fourier components. Moreover, 5(Vk) (resp. S’*(Vk))
can be characterized as the subspace of C-(Vk) consisting of those elements such
that their U Fourier components decay rapidly (resp. grow at most polynomially).
See (2.1.2) and (2.1.3).

Because of the simple way P’ acts in the oscillator representation (see 0.1.8), we see
that for any b 5(Vk), the function

(0.1.11) 9’-- co(9’)I(0), 9’ G’

is in the space of the induced representation Ind,’(Z) for a character Z of fi’ trivial
on ). See 2.3 for details. We denote this natural map by 2" (Vk) Ind,’(Z).

Since (’= g’P’, we can define the spaces C-(Indff,’(Z)), 6(Ind,’(Z)),
5*(Indff,’(Z)) according to the growth behavior of their/’ Fourier components
(2.3).
We extend 2’ Q(Vk) Ind,’(t) to 2: C-(Vk) -- C-(Ind,’(jt)) by linearity.

THEOREM II. 2] s*(vk): 5e*(Vk) C-(Ind,’(;0) is injective. Possibly except for
G Sp(p, q), we have

21.*(vk)" " *(vk) 5e*(Ind,’(X)),

and it is a topological embeddin9 with closed image.

Remark 0.1.12. The complete description of 5e*(W’+q)(’), i.e., the case G
O(p, q), k 1, was obtained by various people (Methee [Me] in the Lorentzian ease,
Tengstrand [Te], etc.), though the results were not stated in our form. Here, it
is worthwhile to mention that certain structure results of 5e.(+q)o0,.) can be
effectively used to give an elegant treatment for the fundamental solution of the
indefinite Laplacian ([dR], [HT]). For G O(p, q) and arbitrary k, the description
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of 5e*(vk)G as the closed span of the set {og(g’)flg’ t’} is due to Kudla and Rallis
[KR]. Our method is very different from theirs, and it is quite "canonical" from the
point of view of invariant theory.
We want to emphasize that there is another realization of the oscillator represen-

tation called the Fock model (1.2). We shall exclusively work in this model.
Basically, there are two parts in our approach: uniqueness and existence. In the
uniqueness part we use extensively the fine structure of reductive dual pairs in the
Fock model as developed by Howe in [H2], in particular, "seesaw" dual pairs ([Ku])
and "diamond" dual pairs (1.3). What we actually prove is that, for any z K’, the
multiplicity of in (o-)g’x) is at most one, where K is a maximal compact
subgroup of G. In the process we also single out all the possible K’-types which can
have a (g, K)-invariant in co-. In the existence part we show that the projections
of the Dirac distribution to those "possible" K’-types are always nonzero. Except
for the case G Sp(p, q) where we turn to a general result about multiplicity-free
actions ([Zhu2]), we accomplish this task by explicitly computing in the Fock model
the inner product ofthe Dirac distribution with some lowest highest-weight vectors.
This computation is made possible by a critical use of the famous Capelli identity
in classical invariant theory ([W1])). Then the explicit inner product formulas are
used to derive some growth estimate for the K’ Fourier components of the Dirac
distribution, which implies Theorem II.
One feature of our approach is that the proof for various cases is parallel, and

therefore, in order to bring out the ideas clearly, we shall only give a complete proof
of Theorem I and Theorem II for G O(p, q) (2.1, 2.2, 2.3). The adjustments
needed for the other four cases are sketched in 3.1, 3.2.

1.1. Preliminaries: reductive dual pairs. Let F be one of the three division
algebras over ; i.e., F , C, H as usual. Recall that, as a real vector space, H has
a standard basis consisting ofthe four elements 1, i,j, k with rules for multiplication:

2 j2 k2 1, ij -ji k, jk kj i, ki ik j.

F has a standard involution , namely,

identity, F ;
complex conjugation, F C;
quaternionic conjugation, F H.

We shall use a subscript L (resp. R) to denote a left (resp. right) vector space over
F. Let V F/q be equipped with the nondegenerate -hermitian form )1

(z, w) z’I.,.w", z w v.
Zp+q Wp+q
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Let G be the isometry group of )x; i.e.,

(1.1.1) G O(p, q), when F .
(1.1.2) G U(p, q), when F C.

(1.1.3) G Sp(p, q), when F H.

We also introduce two other series of classical groups. We use the same notations
for convenience.

Let V RTM be equipped with the symplectic form )1

(x, Y)I X’JmY, x y 2,

X Y2.

/
where J |

\
as usual. Let G be its isometry group; i.e.,

(1.1.4) G Sp(2m, ).

Next, let V H’ be equipped with the -skew-hermitian form

(h, h’)l h’(jlm)h’, h h’ ".
h’m

Let G be its isometry group. We identify H" with CTM by the rule

[]-i]m h Z CTM

’m 2rn

if hz z + Zm+lJ, 1 m.

Then, it is easy to see that G is isomorphic to the subgroup of GL(V, C) preserving
the two forms: ztz and ZtJm. In other words,

(1.1.5) G O*(2m).

See [He1] for this description of O*(2m).

Definition 1.1.6. Let (W, ( )) be a real symplectic vector space. A pair of
subgroups (G, G’) of the symplectic group Sp(W, ( )) is called a reductive dual
pair if
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(i) G’ is the centralizer of G in Sp(W) and vice versa, and
(ii) both G and G’ act (absolutely) reductively on W.
Below we introduce five reductive dual pairs listed in (0.1.5).
Let W vk Vk, where V is one of the five vector spaces equipped with a

-hermitian or -skew-hermitian form (,)1 specified above. Consider the
isomorphisms

Here, the right vector space structure ofF (resp. F2Rk) is obtained by composing the
standard left vector space structure of Fk (resp. F2k) with the involution .
Fk has a -skew-hermitian form )2"

((u, v), (u’, v’))z uv’’ vu’’,

and a -hermitian form, again denoted by )2"

((u, v), (u’, v’))z uv’’ + vu’’

where u (Ul, u2, Uk) Eft., etc. For the first three series of classical groups, we
take )2 to be -skew-hermitian, and for the last two we take )2 to be
-hermitian.

Let v be the reduced trace map from F to E, namely, v(2)= 1/2(2 + 2), 2 F.
Define( )=v(( )x(R)(, )2);i.e.,

(z (R) z’, w (R) w’) v((z, w)(z’, w’)), Z, W . V, z t, W Flk

Notice that, although the tensor product of forms over F does not make sense for
F H, when you take the reduced trace, you do get a well-defined E-bilinear form.
In fact, a straightforward computation yields that ( ) is a real symplectic form
on W ([H4]). We denote the corresponding symplectic group by Sp Sp(W).

Let G’ be the isometry group of )2. Obviously,

(1.1.7)

Sp(2k, ),
U(k, k),

G’ O*(4k),
O(k, k),
Sp(k, k),

if G O(p, q)
if G U(p, q)
if G Sp(p, q)
if G Sp(2m, )
if G O*(2m).

From [H1] we have the following proposition.

PROPOSITION 1.1.8. G and G’ form a reductive dual pair in Sp.
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1.2. Preliminaries: the Fock model. For the following discussions we refer the
reader to [Ge], [Ba], [Ca], [Fo-I.

Fix a symplectic vector space(W, < )), dim W 21, and a complete polarization
W X Y; i.e., both X and Y are maximal isotropic with respect to < ). We
may select a basis {ej}=l for X, a basis {f}=l for Y such that

(ei, ej) O, (f, f) O, (ei, f)

{e, f}l=l is called a standard symplectic basis for the symplectic form ( ). Taking
the coordinates

(1.2.1) w (xiei + Yif), w W
i=1

identifies W with R2t and the symplectic group Sp(W) with Sp(21, R), the isometry
group of the symplectic form on R2. given by

where x (x, x), y (yl, Yt) e R, etc.
S-p(W) acts on L2(X) via the Schr6dinger realization of the oscillator representa-

tion o9. (See [Ge, Introduction].) As usual, let p be the Lie algebra of Sp Sp(W).
Then og(p) consists of the differential operators of total degree 2, i.e.,

where {x}’s are as in (1.2.1).
Now introduce a complex structure on W by setting

(1.2.2) z x 4- iyj, 1 < j < l.

Let

z (za z) (Xl + iyx,..., xt + iyt)

with

Set

j=l
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so that

[z[ 2 z" ,
From [Ba], [Ca], we know that o may also be realized in the Hilbert space

f(z) holomorphic on W: [f(z)lEe-I1"- dzx dx ...dz d < oz
2

with the inner product

(A, f2) f(z)f2(z)e-I1" dzl d ...dz, d,,

This is called the Fock realization. A straightforward calculation gives

(1.2.3) z, 1 < j <

where A* is the adjoint operator of A acting on the Hilbert space .
It is possible to write down the explicit isomorphism between the Schr6dinger

model and the Fock model. (See [Fo].) For our purpose we need the following
properties of this isomorphism:

L2(X) e-Y’,=’ x]/2 t-- 1 "
and

1 (z) --0 1 (z)_(1.2.4) x--,- + z Ox -- z

The following is an immediate consequence.
Let 6 be the Dirac distribution at the origin of X. Since 6 satisfies

x6=O,

it must have the form

(1.2.5) 6 e-EJ-x 4/2 (up to a scalar)

in the Fock model.
Let U be the isometry group of z. ’. It is isomorphic to the unitary group in

variables, and it is a maximal compact subgroup of Sp. Now U can be identified
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with { (g, 2)lg U,/2 det g}. In the Fock model, acts in a simple manner:

(1.2.6) co(9, 2)f(z’) ,-lf(/-lz,), (g, 2) t.

We remark that (1.2.6) is often abbreviated as

(1.2.7) co(g)f(z’) (det g)-X/Zf(g- z’).

1.3. Preliminaries: structure of dual pairs in the Fock model. We now review
some results we will need from [H2]. We shall state everything in the Fock model
09 of the oscillator representation of S-p S-p(21, ), sometimes without explicitly
mentioning
Choose a maximal compact subgroup U of Sp as in 1.2. In the Fock model,

the space of 0-finite vectors in 09 is isomorphic to , the space of polynomials on
C with complex coordinates z, Zl as in (1.2.2).

Using this identification, we have

(1.3.1) (D(]3C) 5p(1,1) ) ip(2,0) ( p(0,2)

where

fip(1,1) span of Z,z + zzZ,
(1.3.2) pt2,o) span of {zizj},

ip
(0’2) span of

czic

Here and afterward, a subscript C denotes complexification.
Let

(1.3.3) p u ) q

be the Cartan decomposition ofp with this choice of U. We then have

(1.3.4) co(uc) ip(1’1), (_D(qc) 5p(2,0)@ 5)(0,2).

Consider a reductive dual pair (G, G’)_ Sp. We may assume G and G’ are
embedded in Sp in such a way that the Cartan decomposition (1.3.3) of p also
induces Cartan decompositions of and ’. Thus,

(1.3.5)
’= f@p’, f’= um’, p’= qm’.
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FACT 1.3.6. and f are themselves members of reductive dual pairs (, m’) and
(m, ’)(In2, p. 539]):

IN IN

m m

The pairs of Lie algebras placed in the opposite position of the above diagram
are reductive dual pairs. Therefore, they are called "seesaw" dual pairs. See [Ku].
We have the inclusions

If)

(1.3.7)

IA If)

IT[ m

Since [

_
u (resp. [’

_
u), ad [ (resp. ad [’) preserves the decomposition (1.3.1), and

since m’ (resp. m) is the full centralizer of [ (resp. [’) in p, we have

(1.3.8)
m’c m,(, x) ) m’(2,) ) m’(,2),

11-i C 1,11(1,1) ) 11t(2,0) ) 1TI(0’2)

m’(i’j) m’C t’3

tll(i,J) 111C 5p(i’j)

Let

(1.3.9) 111(01,1) m1’1) m’(1’1)

Clearly, intox’ 1) (resp. ml’ 1)) is the Lie algebra of a maximal compact subgroup of
M (resp. M’).

FACT 1.3.10. (m(o1’1), m1’1)) is a reductive dual pair in ta ([H2], p. 540).

Thus, we can expand (1.3.7) to

(1.3.11)

111(01,1) 111 1’1)

Ol "
The pairs of Lie algebras similarly placed in the two diamonds are reductive dual
pairs. Therefore, they are called "diamond" dual pairs.

Lastly, we have the following embeddin# property.
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FACT 1.3.12 ([H2, p. 540])

m(2’) m(’2) Pc ) m(’2) m(2’) ) Pc.

List of "’diamond" dual pairs ([H2-1)
Case 1. G=O(p,g), G’=Sp(2k,).

(1.3.13)

U(p) x U(q)

0(p) x O(q) U(p, q)

O(p, q)

U(k) x U(k)
,9/

Sp(2k, ) x Sp(2k, )

Sp(Ek, )

U(k)

Case 2. G U(p, q), G’ U(k, k).

(1.3.14)

U(p) x U(q) x U(p) x U(q)

U(p) x U(q) U(p, q) x U(p, q)

U(p, q)

U(k) x U(k) x U(k) x U(k)

U(k, k) x U(k, k) U(k) x U(k)

U(k, k)

Case 3. G Sp(p, q), G’= O*(4k).

(1.3.15)

U(2p) x U(2q)

Sp(p) Sp(q) U(2p, 2q)

Sp(p, q)

U(2k) x U(2k)
,9/

O*(4k) x O*(4k) U(2k)

O*(4k)

Case 4. G Sp(2m, ), G’ O(k, k).

(1.3.16)

U(m) x U(m)

U(m) Sp(2m, ) x Sp(2m, )

Sp(2m, )

U(k) x U(k)

U(k, k) O(k) x O(k)

O(k, k)

Case 5. G O*(2m), G’= Sp(k, k).

(1.3.17)

U(m) x U(m)

U(m) O*(2m) x O*(2m)

O*(2m)

U(2k) x U(2k)
o/ \,6

U(2k, 2k) Sp(k) x Sp(k)

Sp(k, k)
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Let us define the space of K’-pluriharmonics.

(1.3.18) (K’) {P e lX" P 0 for all X e m(’2)}.

(By [H1], m(’2) consists of all t’-invariant differential operators of second order in. Therefore, we have the name K’-pluriharmonics for F(K’).)
Let

(1.3.19) E :
/(/’, ,)

be the isotypic decomposition of as a K’-module.
The following theorem is a generalization of the classical theory of spherical

harmonies.

THEOREM 1.3.20. (See [H2], p. 542.)
(a) The joint action of m x K’ on is irreducible for each z R(K’, co).
(b) ,.(K’), ,, rg(K’) consists precisely of the space of polynomials of lowest

deoree d(z) in .
(c) One has ,_, (mt2’)) (K’), where (mt2’)) is the universal envelopin9

aloebra of mt2,).
(d) The 9roup ’ and the Lie aloebra mt1’1) 9enerate mutual commutants in gg(K’).

Equivalently, each ff(K’), is irreducible under the joint action of m(1’1) x/’, and, if
we write (K’) - p(z) (R) z for z R(K’, c), then z determines p(z) and vice versa, so
that z- p(z) is an injection from R(I’, a) into R(mt1’1), o), defined similarly.

Below, we give the description of R(K’, o), the correspondence z-- p(z) for
G O(p, q), G’ Sp(2k, ). See [KV] for the other cases. In the present case we
have U - U((p + q)k), K’ U(k), M U(p, q), Mt1’1) U(p) x U(q).
The U-finite vectors of o form a space isomorphic to +,k, the space of

polynomials on M+q,k(C). Moreover, if we write the coordinates in terms of a

(p + q) x k matrix
W

(1.3.21)

Zll Zlk

Zpk

Wlk

then U(p) x U(q) x U(k) acts by

(1.3.22) (1, 2, D) o
\b-kdq(g2)-I
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where 1 (91, a) O(p) with a2 det gl, z (gz, b) O(q) with bz det g2,
and/3 (D, d) 0(k) with d2 det D. (See 1.2.6 of Preliminaries.)

rrt(’2), being the space of [’-invariant differential operators of second order in ,
is spanned by

k 2
Ai,j E 1 < < p, 1 < j < q,

OZOW
and, therefore, dCg(K’) is the space ofpolynomialsfon Mp,k(C) x Mq,k(C) satisfying

(1.3.23) (A,df)(z, w) O.

We denote by b-, b the upper and lower triangular Borel subalgebras of lI(k, C),
i.e., the Lie algebras of the upper and lower triangular matrices of order k x k,
etc. With respect_to b x b x b the simultaneous highest weight vectors of
/(p) x /(q) and U(k)in drf(K’) are of form ([KV])

(1.3.24)

where

Zll Zli 1di(Z) det

Zil Zii

Wl,k-j+l

j(W)- det

Wj, k-j+

Wl’k 1Wj, k

1 < < min(p, k),

1 < j < min(q, k),

, flj are nonnegative integers.
Parametrizing the irreducible representations of U(p) U(q) (resp. U(k)) by their

highest weights with respect to b b (resp. b), we have the following theorem.

THEOREM 1.3.25 ([KV]).

+ (al, a2, at, 0,..., O, -bs, -bs_,..., -b);

a > a2 > > at > O, b > b2 > > bs > O

< min(k, p), s < min(k, q).
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(b) If z R(K’, o) and if

p- q q}’ + (a a2 at, O, O, -b -b_ -b)P
19

/

then the representation p(z) is equal to p (z) (R) p2(’iO, where

pl(z)=( k ) -a)2’ + (0,.. ,0, -a, -a_l,...,

2.1. K’-multiplicity-one property: G = O(p, q) case. We begin with some
discussions about formal vectors (see 0.1.10 for the definition) and tempered
distributions.

Let Sp Sp(W) be a real symplectic group and let U be a maximal compact
subgroup of Sp. Let a be the oscillator representation of Sp, be the space of
U-finite vectors of 09, and 09 be the space of formal vectors of o, as in the
Introduction.

Recall the Fock model of 09. Let {zl, z} be the complex coordinates in this

model. (See 1.2.2.) Then the monomials {(N//_),/2 (k 1 },... k!)/2zk...zk form an

orthonormal basis of. Recall also that the Schr6dinger model of 09 is realized in
L2(X), where X is a factor of the complete polarization W X ) Y. Let {k, k, }
correspond to ’ ’ under the isomorphism from the

(x//)l/2(kl!... k/!) 1/2
Schr6dinger model to the Foek model. Then, in fact, {bx ,}’s are the so-called
normalized Hermite functions (IHS]). They are inside the Sehwarz space 6e(X), and
they form a basis of in the Schr6dinger model. Since is dense in ff’(X), we see
that a tempered distribution is determined by its values on b ,. This fact allows
us to represent a tempered distribution A by the formal vector

where 2k, k, A(bk, k,).

Thus, we have

c *(X) 0

Moreover, if we let {x, xt} be the real coordinates in X (see 1.2.1), then we
have k, k, I= (k, + 1/2)k, k,, where c is the Hermite operator I= x2

-2. From that it is quite easy to see that a formal vector k,
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is of Schwarz class if and only if

(2.1.2) IXk, k,l(l+k2+’’’k2)’<
kl k!

for any positive integer r ([H5]). Similarly, k, k,’k, k,bk, k, is a tempered
distribution if and only if

(2.1.3) 12k, k,l<(l+k+’"k)

for some N.
Let us look at the reductive dual pair (G, G’) (O(p, q), Sp(2k, R)) Sp(21, ),
(p + q)k. We shall write Sp instead of Sp(21, ). Let 09 be the (twisted) oscillator

representation ofSp associated to the above dual pair. (See the Introduction.) Recall
that K O(p) O(q) is a maximal compact subgroup of G and that K’ U(k) is
a maximal compact subgroup of G’. We may choose a maximal compact subgroup
U of Sp in such a way that (see 1.3.5)

(2.1.4) K U G and K’ U G’.

We have the (p, U) module o9-. For e K’ define

M((og_oo),r)) de=f multiplicity of z in (m-oo)t,,r)de=f dim Hom, (z, (og-)t’r)).

The purpose of the remaining part of this section is to prove M((og-)’r)) < 1.
For the compact case G O(p) we use the following "seesaw" dual pairs (see 1.3.6)
and explore the fact that O(p) U(p) is a compact spherical pair, i.e., dim rctp) < 1,
for rc e U(p).

(2.1.5)

O(p) U(k)

U(p) Sp(2k, )

For the noncompact case G O(p, q) we use the following "diamond" dual pairs
(see 1.3.13) and prove a reduction result which essentially says the following: A
holomorphic representation of U(p, q) has an O(p, q) invariant only if its lowest
U(p) x U(q)-type has an O(p) x O(q) invariant.

U(p) x U(q) U(k) x U(k)
e \ ,2/

(2.1.6) O(p) x O(q) U(p, q) Sp(2k, ) x Sp(2k, ) U(k)

O(p, q) Sp(2k, )
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We shall deal with the case G O(p), G’ Sp(2k, ), first.

PROPOSITION 2.1.7. M((co-)(’)) < 1 for z O(k). It is equal to one if and only
if z has highest weight

( P ) + (at a2, a,, O, O, 0),2’’"’

at > a2 >/"" >/at > 0, all even integers a for j < < min(p, k).

Proof. Recall the "seesaw" dual pairs (2.1.5). For z e U(k) let ’ be the z-isotypic
component of as before. By the standard result ofHowe ([H2]) or [KV], we have

where tr(z) U(p). Thus,

Observe that the injection

Hom(,) (, ) - Hom()(z, 09-(R))

induced by co is an isomorphism. Therefore,

M(((o-)()) dim Hom(k) (, ((o-)()) dim Hom(k)(z, o())

dim (r(z)().

Observe also that the pair O(p)
_

U(p) is a compact symmetric pair with 0 as the
involutive automorphism:

O(p) U(p), O(X) X.

By a classical result due to Cartan (see [He2-1), it is a compact spherical pair. Thus,

(2.1.8) M((og-)’))<l, and M((o-(p)) )=1 if and only if a(z)(p):AO

From the theory of models of representations for the classical groups ([BGG-I)
or from classical invariant theory ([HI]) (see also I-He2]), we know tr(z) : 0 if
and only if the highest weight of a(z) is of the form

(2.1.9) D (at, a2, a,), ai 27/, 1 < < p.

Let us describe tr(z) in the Fock model of 09. This is more or less a special case of
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Theorem (1.3.25) for q 0, except that our ol&p) here is twisted by a character of
O(p). For that reason we still give some details.
The U-finite vectors ofo form a space isomorphic to p,k, the space of polynomi-

als on

Moreover, U(p) x U(k) acts by

Z11 Zlk 1Zpl Zpk

(, ) o Z akd-t’gZD-1

where (g, a) e (p) with a2 det g and / (D, d) e t(k) with d 2 det D.
From [KR] we know that the action of U(p)l&p) x U(k)

(2.1.10) (tj, ) o Z d-V#ZD-
descends to O(p). We also know from Theorem (1.3.25) that, if e U(k) has the
highest weight

then the representation o’(z) e U(p) has the highest weight

2’ 2’ + (0, O, -at, -at-l, -a).

Thus, it is the representation of U(p) with the highest weight (0,..., 0,-a,,
-at-, -a) which descends to the linear O(p) action.
Combining the above with (2.1.8) and (2.1.9), Proposition (2.1.7) follows.

Now we deal with the noncompact case: G O(p, q), G’= Sp(2k, ). Recall
K O(p) x O(q), K’ U(k), M U(p, q), and g ) is the Cartan decomposi-
tion of g, mc rnt’ ) mt2, mt’2 is the Harish-Chandra decomposition of
mc as in (1.3.8). For other notations in the following, we refer the reader back to 1.3.

Recall also the K’-isotypic decomposition of

where R(/’, 09) is defined as in 0.1, namely, as the set of the g’-types occurring in
the oscillator representation o associated to the dual pair (G, G’)

_
Sp.
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Fix z R(K’, 09). By part (c) of Theorem (1.3.20)

, q/(m(2,o)). Yt(K’),.

Since all of the operators in m2’) raise the degree by 2, we have the following
(unique) decomposition for a vector v ,:

(2.1.12) /) /)d -F" /)d+2 -F Ud+4 "+"

where d d(z), the lowest degree in , and deg va+2i d + 2i, 0.
We denote by P: v va, for v ,.
Since K commutes with K’, it preserves ,, and, since K __= U, it preserves the

degree. Therefore, the decomposition (2.1.12) is K-equivariant. In particular, if v is
(1, K)-invariant, va+2 is K-invariant for any i.

PROPOSITION 2.1.13. P: (co-)’r) (,,r)
_

;;t(K,) is injective for z R(’, co).

Proof. Suppose v ,(,r) and va 0. Let be the smallest nonzero integer such
that va+2 4: 0. We shall arrive at a contradiction so that v 0, and the proposition
will follow.

For any X Pc we have X.v 0 by the -invariance assumption. Since we
choose K, K’, and U so that (2.1.4) is satisfied, we have the "embedding" property
(see 1.3.12)

(2.1.14) 111(2,0) t) 11t(0,2) PC 111(0’2) YIt(2’0) ) :PC"

Thus, we can write (uniquely)

X Lx + Rx, Lx m(’2), Rx m(2’).

Now

0 X" v (Lx + Rx)’(va+2i -F" Od+2i+2 "" "’)

Lxva+2i -F Rxva+2i -F Lxva+2i+2 "F Rxva+2i+2 "F"

Since Lx lowers the degree by 2, Rx raises the degree by 2; the above implies

Lxva+2i O.

Since {Lx}x,c spans m(’2) by (2.1.14), we see that Ud+2i is K’-pluriharmonic, and
therefore, it has to be of the lowest degree d, a contradiction. E!

By Theorem (1.3.20), 9rg(K’), p(z)(R)’c, where p(’c)e O(p)x O(q). So we
have ar,e(K’),x ’’(K’)t’)tq) p(z)’) (R) z. Since the pair O(p)x O(q)_
U(p) x U(q)is the product ofcompact spherical pairs O(p)

_
U(p)and O(q) U(q),
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the dimension of p(z)tp)t) is at most one. It is equal to one precisely when the
highest weights of p(z) are "even" as in (2.1.9). Using the explicit description of
in Theorem 1.3.25 and adjusting for the fact that we are using the twisted oscillator
representation (see [KR] and the proof of Proposition 2.1.7), we obtain the follow-
ing theorem.

THEOREM 2.1.15. Let (G, G’) (O(p, q), Sp(2k, [)) be the reductive dual pair in
Sp(2(p + q)k, ) and 09 be the (twisted) oscillator representation of Sp(2(p + q)k, ).
Then M((og-)’r) < 1 for any z U(k). It is equal to one only if the highest weight
of z is from the set Ro

(P-- q P-- q P-- q) + (al a2 a, O, O, -b, -b2 -bl),
2 2 ’"" 2 ’""

al>a2>’">at>0, bl>b2>’">b>0, t<min(k,p), s<min(k,q),

at, bj are all even inteoers.
Remark 2.1.16. The injective map P in Proposition (2.1.13) has to be bijective,

for the multiplicity of z in ,(K’)r is at most one. Thus, we can replace the word
"only if" in Theorem (2.1.15) by "if and only if". We caution the reader that, even
with this improved version, we are still not sure whether there are O(p, q)-invariant
tempered distributions with the U(k)-types specified in the above theorem. At this
point we have only_ proved that there are (o(p, q), O(p) x O(q))-invariant formal
vectors with these U(k)-types.

2.2. Existence of invariant distributions: G = O(p, q) case. In this section we
shall exhibit O(p, q)-invariant distributions with appropriate U(k)-types by showing
that the projections of the Dirac distribution onto those U(k)-types are nonzero.
Our strategy is as follows: For G O(p) we first use a variant of procedure (1.2.5)
to give an explicit formula of the Dirac distribution i as a formal vector in the Fock
model. We then explicitly compute the inner product of di with the simultaneous
U(p) x U(k) highest-weight vectors. For G O(p, q) the desired result is an easy
consequence of these inner product formulas together with the explicit description
of U(k)-pluriharmonics and functorial properties of the Dirac distribution.

Let (G, G’) (O(p), Sp(2k, R)) Sp(2l, ), pk. Let (Xo)l <<p,1 <j<k be the real
coordinates of Vk Mp,k() and Z (zj)l <p,1 <<k_be the complex coordinates
in the Fock model of the oscillator representation of Sp(2l, ), as in 2.1.

Since the isomorphism ofthe Schrfdinger model with the Fock model is such that

and since the Dirac distribution at the origin of Vk satisfies

xO& O,
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then it must have the form

(2.2.2) 6 e-Y..,.jz/. (up to a scalar)

in the Fock model. See (1.2.4) and (1.2.5).
Recall the "seesaw" dual pairs (1.3.6)

O(p) U(k)

U(p) Sp(2k, ).

We know that all the simultaneous highest-weight vectors of t](p) x O(k) are of the
form

(2.2.3) d,dz d

where

Zll Zln 1d,, d,,(Z) det

Zn Znn

gl, g2, gt are nonnegative integers, n < min(p, k). See (1.3.24). Let

(2.2.4) O. det

O O O

0Zll Z12 lOZln

0Z21 0Z22 OZ2n

OZn OZn2 OZnn

Therefore, since -_6 -zo6, we see that

(2.2.5) 0.6 .s. sgn(tr)
t3z.<l)l 0Ztr(2)2 OZtr(n)n

(-- 1)" sgn(tr)z.tl)lzt2)2.., zt.)n6 (-- 1)"d.6.
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Let us now recall the Capelli identity ([Wl], [H1]). In our context it asserts

(2.2.6)

where

d,c3 det(Ej + 6o(t i)) <i<t,l<j<,

det

Etx + 1) Eta 2 Etl

E, Ett2 Ettt

and det(Ai), for a matrix {A, 1 < i, j < n} of noncommuting variables, is defined
to be

sgn(a)A(1)l A(2)2...
aS

LEMMA 2.2.7. r;, ta,d,_ d’) O, 1 < < j < t.qv,

211 21t 1Proof. Gl(t, C) acts on Zt by right translation with the derived

Ztl Ztt
is the x t matrix with one at the (i, j)action of gI(t, C) given by eo E0, where e0

entry and zeros elsewhere. The lemma follows by observing that dldz2...d’ is
invariant under the upper triangular matrices with ones in the diagonal.

Applying the Capelli identity to d d’-.., d", we get

d,O(d’d...d’) det(E + 6o(t- i))d’d...d (by 2.2.6)

[-I (E, + (t- i))d’dz.., d’ (by 2.2.7)
i=1

where

(2.2.8)

In other words,

(2.2.9) Ot(d’d]’-...d’) B(ox, 2, ot)d’d]"...d’-1.
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Since in the Fock model, we have zo (see 1.2.3), we have

(2.2.10) d* 3,.

We compute the inner product

(2.2.11) (6, dxdz’-...d)

(di, d, .d’ dz.., d’’-

(06, d’dz.., d’-) (by 2.2.10)

(by 2.2.5)

(by 2.2.10)

(- 1)’B(x:, z2, oq- 1)(6, d’d:.., d‘-2) (by 2.2.9).

By the above recursion formula we obtain the following proposition.

PROPOSITION 2.2.12. Let G dldz2... d’ for
min(p, k). Then

if and only if ei e 2Z+, 1 < < t. Moreover,

odd

if , 2, , are all even.

For Theorem II we need a formula for (G, ). We derive it by similar means.

PROPOSITION 2.2.14.

(at, at) ( <i<t <ci<iH B(x, 2,’", Q-i, ci))(1,1)"
Proof. We have

(, ) (d,dz .d,, dIdz. d,)

(3,(d,dz...d,), d’dz...d’-)

(B(zl, O2, t)dOldz’...d’-x,

By induction we get the desired formula for (, G).
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Now assume G O(p, q). Let Ro be the set of z U(k) specified in Theorem
(2.1.15).

THEOREM 2.2.15. The Dirac distribution at the origin of l/’k= (p+q)k has a
nonzero projection to the z-type for any z Ro.

Proof. Recall again the two diamonds of reductive dual pairs (1.3.13)

U(p) x U(q) U(k) x U(k)

O(p) x O(q) U(p, q) Sp(2k, ) x Sp(2k, )

O(p, q) Sp(2k, )

U(k).

From Theorem (1.3.25) we know that, if z Ro U(k) has the highest weight

q| + (a, a2, a,, O, O, -b,,

al >/a2 /> >/at > 0, bl > b2 > >/b > 0, < min(k, p), s < min(k, q),

ai, b all even, then the simultaneous highest-weight vector~ of~off(K’) (_the K’ U(k)-
pluriharmonics of type ) under the joint action of U(p) x U(q) x U(k) is

where

and

vt, d (z)a’-azd2(Z)az-as at(Z)at

See {}1.3 for the notations.
Let 6p (resp. 6q) be the Dirac distribution at the origin of (Rp)k (resp. (Rq)k), the

direct sum of k-copies of W’ (resp. Rq) for which R+q R Rq. Since al, at,
bl,..., bs are all even integers, we have (5, v,q) # O, (5q, vq) # 0 by the inner product
formula (2.2.13).
Now the Dirac distribution 6 at the origin of (ffCp+q)k can be expressed as

(2.2.16)

We have

(2.2.17)
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Combining Theorem (2.1.15) with our present Theorem (2.2.15), Theorem I
follows for G O(p, q).

2.3. A topological embedding. In this section we show Theorem II for G
O(p, q).

Recall the dual pair (G, G’) (O(p, q), Sp(2k, )) Sp(2(p + q)k, ). Recall also
the Siegal parabolic subgroup P’ of G’. P’ MN, where M, N are given in (0.1.6).
For a 7//47/, s C, let ;t(s) be the following character of M:

;t(s)(m(#), e) Idet(g)lS;to(m(0), e)

where ;to is as in (0.1.7)_. We extend this to a character of P’ by letting N act trivially
and define I(s) Ind;;t(s) to be the representation of (’ induced from ;t(s), i.e.,

(2.3.1) U(s) {f: t’ -+ Clf(g’p’) ;t(s)(p’)f(#’), O’ ’, P’ e

G’ acts on I(s) by left translation.
From the explicit formula (0.1.8) of the oscillator representation, we see that the

image of the natural map

(v*) + 4 o(g’)(o)

p+q
lies in U(So) for So 2 ao P q (mod 4). We denote this map by

(2.3.2) 2: (Vk) -+ U(So).

Recall C-(Vk) (D-, the space of formal vectors of the oscillator representa-
tion. (See the Introduction.) We would like to extend the domain of the map 2 from
5(Vk) to C-(vk). To do this we need to define the space C-+(UO(So)).

Recall that K’ U(k) is a maximal compact subgroup of G’. Since G’ K’P’ and
K’ P’ O(k), we see that restriction to K’ yields an isomorphism: UO(So)-

J0<k)(;t,o), where ;t,o is the character of 0(k) whose differential on the maximalnb(k)

torus is given by the weight
p q
2 (1, 1, 1). Obviously, we have Tncltk)t’O(k)" =

I Jr(k)1 (R) ;to L2(U(k)/O(k))(R) ;to, where 1 is the trivial representation of t(k),nOb(k)
LE(U(k)/O(k)) is the U(k) module by left translation. Thus,

(2.3.3) UO(So) , L2(U(k)/O(k)) (R) ;t,o.

This isomorphism allows us to identify UO(So) with the space of functions on
U(k)/O(k).

Let

(2.3.4) L2(U(k)/O(k)) L2(U(k)/O(k)),
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be the U(k)-isotypic decomposition, where R is the set of U(k)-types occurring in
L2(U(k)/O(k)). By (2.1.9), z e R if and only if the highest weight of z is "even". But
we shall not need this fact.

Let C-(U(k)/O(k)) be the space of formal linear combinations

(2.3.5) f, f e L2(U(k)/O(k)),.

We define 6a(U(k)/O(k)) to be the subspace of C-(U(k)/O(k)) consisting of those
elements such that its U(k) Fourier component f decreases rapidly; namely,

(2.3.6) (1 + 11112 )’11f1122 < o for any positive integer r.

(See [Wall for the definition of I111, etc.) We also define 6e*(U(k)/O(k)) to be the
subspace of C-(U(k)/O(k)) such that

(2.3.7) IIfll < (1 + 11112) for some positive integer N.

It is well known that these characterizations completely determine the topologies
of 6e(U(k)/O(k)) and 6e*(U(k)/O(k)).
We now transport everything back to I(So) by using the isomorphism in (2.3.3)

and define the corresponding spaces C-(R)(lO(So)), 6e(IO(So)), 6e*(IO(So)).
We extend 2: ff’(Vk) --. I(So) to : C-(Vk) C-(IO(So)) by linearity.

THEOREM 2.3.8. ;[se*tvko,,.q, is injective. Moreover,

2" 6e,(lz)ot. *(IO(So)),

and it is a topological embedding with closed image.

Proof. lnjectivity. For A 6e*(vk)tp’q let

,4 ,4
Ro- U(k)

be its isotypic decomposition into U(k)-types. (Ro is given in Theorem 2.1.15.) Also,
let

Ro- O(k)

By Theorem (2.2.15), i 0 for z e Ro.
Suppose that A - O. We can pick some z Ro - U(k) such that A O. Now for

k’ e U(k) we have

(2.3.9) 2(A,)(k’) w(k’)A,(O) (6, co(k’)A,) (6, o(k’)A,).

See convention (2.1.1) for the equality og(k’)A,(0) (6, og(k’)A).
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Since S*(Vk)O, ’’q) is multiplicity one, {(k’)A, Ik’ e (k)} spans S*(vk), ’’’. Since
0 4: 6, S*(Vk),’’), expression (2.3.9) cannot be identically zero. This proves that
21 *(v)o(.o)is injective.

Topolo_flical embedding. For G O(p) let us prove the following growth estimate
for the U(k) Fourier components of the Dirac distribution:

(2.3.1O)
(q" q’)
P()
(1, 1) < ](6, b)l 2 < (b, b,)(1, 1)

where (1, 02, ,) is "even" as in (2.1.9), P is some polynomial. See Proposi-
tion (2.2.12) for the notations here.
From (2.2.13) and (2.2.14) we have

(3, b) ( l-I I-I (-1)iB(ol,o2,...,oi-l, ci))(1,1),li<t { <c<oti-1
odd

Therefore,

Since

(2.3.12) B(I, (2, i-1, X) n(0l, 2, (i-1, Y), 0 < x < y,

by the explicit formula (2.2.8) of the function B, we obtain the second equality in
(2.3.10).
On the other hand, we have

B(I, 02, ...__ O__i-_l_ Ci)I-I :-. +<c<oq-1
odd



112 CHEN-BO ZHU

again by inequality (2.3.12). Clearly, B( ) is a polynomial of 1, ti; so
we arrive at the first inequality in (2.3.10).
A consequence of the above estimate is the following: Let z, be the irreducible

representation of O(k) generated by the highest-weight vector ,. Since 1(6, b,)l 2

l(6t, at)] 2 (6a, tt)(at, at) by the Schwarz inequality, we have (6,,, 6,) > (1,e().l) On
the other hand, since 6 is tempered, we have (6,, 6,) < (1 + 11112) for some N. (See
2.1.3.) Thus,

(2.3.13)
(1,1)
P() 6,, 2 (1 + 2)N.

We continue the proof ofTheorem (2.3.8) for G O(p). Let A e *(V’)’). From
(2.3.9), 2(A,)(k’) (6, o.)(k’)a,). Thus,

1
(2.3.14) IIA(A,)II22 1(6,, og(k’)A,)l 2 dk’ dim(z 11112 IIh’ll2

(k)

by the Schur orthogonality relation ([Wa2-1), where dim(r) is the dimension of z.
Notice that we have used the multiplicity,one property of 5/’*( zk(p)-,, namely,
*(vk)) is an irreducible representation of O(k) via o. Also, by the Weyl dimen-
sion formula, dim(r) is a polynomial of z, meaning a polynomial of the highest
weight of z.
Combining the above with (2.3.13), we conclude that
(i) 21 se,(vk),o,,): 5e*(vk),’) --+ 2(,-g*(vk)O(p)) is a partial isometry, and
(ii) IIA, 2 is (at most) of polynomial growth if and only if 112(A,)II is (at most) of

polynomial growth.
For G O(p) Theorem (2.3.8) clearly follows from these two assertions. For

G O(p, q) we use (2.2.17), and, therefore, we can obtain a similar growth estimate
for the U(k) Fourier components ofthe Dirac distribution as in (2.3.10). Then exactly
the same argument as for G O(p) yields the desired result for G O(p, q). El

3.1. K’-multiplicity-one property: other four cases. Let (G, G’) Sp be one of
the four reductive dual pairs (2-5) in (0.1.5) and let 09 be the (twisted) oscillator
representation of Sp. Recall that K (resp. K’) is a maximal compact subgroup of G
(resp. G’) and that M((og-)’r)) is the multiplicity of z in (o9-)t’r), the (, K)-
invariants in the space of formal vectors of 09.

We now state the analog to Theorem (2.1.15). Our parametrizations for various
irreducible representations are the same as in [KV].

THEOREM 3.1.1. M((og-)’r)) < 1 for any z K’. It is equal to one only if the
following conditions are satisfied.

(2) G U(p, q), G’ U(k, k), z zx (R) Z2, Zl, Z2 U(k), Z2 Z, and the highest
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weight of z is

2 + (al, a2 a,, 0,..., O, -b,..., -b2, -b),

ax > a2 ... a > 0, b > b2 b > O,

< min(k, p), s < min(k, q).

(3) G Sp(p, q), G’ O*(4k), e 0(2k), the highest weight of is

(P--q,P--q,...,p--q)

+ (a, al, a2, a2, a, a,, 0, 0, -b, -b, -b2, -b2, -bx, -bx),

a >a2...at>0 bx > b2 > bs > O

< min(k, p), s < min(k, q).

(4) G=Sp(2m,[), G’ O(k, k), z z (R) z2, z, z2 (k), z2 - z’, and the
highest weight of z is, if k is odd, k 2r + 1,

2 + (a, az, a, O, O;

o?’

a > a2 >’" > a > O, < min(m, r),

2’"" + (a, az, a,, 0 ,0; e),

al >a2>...>a,>0 2r+ 1-rn<t<min(m,r),

or, if k is even, k 2r,

2’"" + (al’ a2’ at, 0,..., 0)+,

or’

a > a2 ... a, > 0, < min(m, r).

2’"" + (al’ a2’ at, 0,..., 0)_,

ax > a2 ... >/at > 0, 2r- m < < min(m, r).
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(5) G=O*(2m), G’=Sp(k,k), z zt (R) z2, zt, z2 Sp(k), z2 - z, and the
hi#hest weight of zt is

2’ + (at, a2 a,, 0, 0),

at >a2 >"" >a>0, < min(m, k).

We give ideas about the proof in the following. We refer the reader to [Zhul] for
details.
One first proves an analog of Proposition (2.1.7) for G U(p), Sp(p). To do this,

one just needs to replace the "seesaw" dual pairs (1.3.6)

O(p) U(k)

U(p) Sp(2k, )

with the "seesaw" dual pairs

and

U(p)

U(p) x U(p)

U(k) x U(k)

U(k, k)

Sp(p) U(2k)

If) Ill

U(2p) 0*(4k),

and then applies the corresponding result for the spherical pairs U(p)
_

U(p) x
U(p), Sp(p)

_
U(2p) from the theory of models of representations ([BGG-I) or from

classical invariant theory ([H1]), as follows.
An irreducible finite-dimensional representation of U(p) x U(p), n (R) n2, has a

U(p)-invariant if and only if r2 is isomorphic to the contragradient of nt. Moreover,
the dimension of U(p) invariants is one.
An irreducible finite-dimensional representation of U(2p) has a Sp(p)-invariant if

and only if its highest weight is of the form

(al, al, a2, a2, ap,

Moreover, the dimension of Sp(p) invariants is one.
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For the noncompact cases the reduction result (Proposition 2.1.13) is still valid;
i.e., P: (o-)g’r)= g’r) f(K’) is injective for z R(/’, o9), except that, in
its proof, one uses the other four sets of diamond dual pairs instead (1.3.14-
1.3.17).
Now in all cases except G Sp(p, q), we have explicit descriptions of pluri-

harmonics ov’(K’) given in [VK]. For G Sp(p, q) the description is analogous;
see [Zhul]. Combining these descriptions with the result in the compact
cases, the reduction theorem, everything follows. (See the proof of Theorem
(2.1.15).)

3.2. Existence of invariant distributions: other four cases. Let R(/’, O)o be the
set of z R(/’, 09) such that f(K’) = 0. All the highest weights of z R(/’, 09)o
are listed in Theorem 3.1.1 for the four cases we are concerned with.

THEOREM 3.2.1. The Dirac distribution at the origin of Vk has a nonzero projection
to the z-type for any z R(K’, O)o.

The present theorem together with Theorem (3.1.1) imply Theorem I for G
U(p, q), Sp(p, q), Sp(2m, [), O*(2m).

Sketch of proof of Theorem (3.2.1) for G U(p, q), Sp(2m, ), O*(2m). One first
proves analogs of the inner-product formulas (2.2.13), (2.2.14) for the dual pair
(U(p), U(k, k)), again using the Capelli identity. Since their derivation is parallel to
the case of the dual pair (O(p), Sp(2k, )), we state below the result without proof.
(See [Zhul] for details.)

In the Fock model the U(2pk)-finite vectors in o form a space isomorphic to
’,,k,,r,, the space of polynomials on

(Q, Q)=

q q12 qtk q q12 qlk

q21 q22 q2k q21 q22 q2k

The Dirac distribution at the origin of Vk is of the form

(up to a scalar).

With respect to a suitable Borel subgroup, the simultaneous highest-weight
vectors of U(p) x U(p) x U(k) x U(k) are of the form
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ql q12 qi IF/ 12 li

d det
qEt q22 q2i i det [ 21 22 2i

fl are nonnegative integers for < < min(p, k).
Denote by ff,a d’d2...d’’l2"...lft, for

f12, fit). Then we have

(6, ,/,,) o

if and only if 0 =/3. Moreover,

1-I 1-I
<i<t <Cia

FI H
< < < <

(-2)c’+2c2+’"+’CtB(cl, 2, c,)(1, 1),

(2)2’++"’+2ttB(cl, c2, c,)2(1, 1),

and, therefore,

Combining the above inner-product formulas with the explicit descriptions of
(K’) ([KV]), one proves Theorem (3.2.1) for G U(p, q), Sp(2m, R), O*(2m). (See
the proof of Theorem 2.2.1 5.)

Sketch of proof of Theorem (3.2.1) for G Sp(p, q). Unfortunately, the author
was unable to obtain similar inner-product formulas for the pair (Sp(p), O*(4k)). In
this case we proceed as follows.

In the Fock model the U(4pk)-finite vectors in 09 form a space isomorphic to
2p, 2k, the space of polynomials on

X1,1 X1,2 X1,2k-1 X1,2k

Xp, Xp, 2 Xp, 2k- Xp, 2k
Yl,1 Yl,2 Yl,2k-1 Yl,2k

Yp, Yp,2 Yp,2k-1 Yp,2k.
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The Dirac distribution at the origin of Vk has the form

where

A J, XtY- Y’X,

(up to a scalar)

a 2k x 2k complex skew-symmetric matrix with rank less than or equal to
min(2p, 2k). Let Pf.(A) be the nth principal Pfaffian of A, 1 < n < min(p, k). (See
I-Wl] for its definition.)

Observe that in the twisted oscillator representation, U(2k), a maximal compact

subgroupofO*(4k) actsby(Xy)--(detg)-p(Xy)9-x.(See 1.2.6.)Therefore, U(2k)

acts on A J, by

A= ()’J,() (det 9)-((Xy)9 J(Xy)#-1

(det g)-g,-X Ag-1, 9 U(2k).

This action is multiplicity-free ([Shi], [HU]).
For ax > a2 > > at, < min(p, k), let p be the irreducible representation of

Gl2k generated by the highest-weight vector (with respect to bk, the upper Borel
subgroup of Gl2k)

at at atVo Pf(A)a’-azPf2(A)a-a3... Pf_(A) Pf(A)

with the highest weight D = (p, p, p) + (ax, al, a2, a2, at, at, 0, 0). Let 60
be the projection of 6 e-1/2 Y,I,j,A2j-,.,j to the isotypic component of Pk and

where No is a sum of weight vectors in this isotypic component with weights strictly
less than that of vo.

Let H be stabilizer in Glzk of the linear functional
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Clearly, H is isomorphic to Sp(2k, C). Since Pk contains a Sp(2k, C)-invariant
([Shi], [HI]), we see from [Zhu2], Theorem 1’ that 2o :/: 0. This implies Theorem
(3.2.1) for G Sp(p).

For G Sp(p, q), Theorem (3.2.1) follows from the nonvanishing of 2o in the
above, the explicit description of U(2k)-pluriharmonics (see [Zhul-l)and functorial
properties of the Dirac distribution. (See the proof of Theorem 2.2.15.) El

Finally, the topological embedding for the case of G U(p, q), Sp(2m, ), O*(2m)
can be proved by following exactly the same argument as for G O(p, q) and using
1(6, I/at, at)[ 2 (Ipat, at ,,)(1, 1) instead of (2.3.10). The lack of inner-product formulas
for G Sp(p) explains the possible exclusion of Sp(p, q) in Theorem II.
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