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§0. Introduction: In his celebrated Acta paper [ 1, André Weil
constructed a certain (projective) unitary representation of a symplectic
group over a local field.* This representation has many fascinating pro-
perties which have been brought gradually to light by the work of numerous
authors (see the bibliography). It now appears that thils representation
1s a central phenomechL linking apparently diverse topics, including
classical invariant theory, the theories of theta and abelian functions
and of automorphic forms, and quantum mechanics. Until now, thils repre-
sentation has enjoyed the rather ad hoc name "Weil representation'". How-
ever, in view of the increasing evidence that it is a fundamental object,
and because of its origins in physics and by analogy with the origin of
the temm "ﬁpin represeﬁtation" for esrthogonal groups, I am so bold as to
attempt to rechristen it: in this paper we shall refer to this represen-

tation as the oscillator representation.

The goal of the paper is to give an overview of the more purely

group theoretic aspects of the oscillator representation. We limit

*

For the real field, this representation had been discussed previously
by Shale [ 1.
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discussion to the case of finite fields for two reasons. On the one kand,
most of the phenomena of the general case show up here, and they show up
clearly, unobscured by the usual technical analytical smog overspreading
the infinite field. On the other hand, this theory has direct and signi-
ficant applications to the representation theory of the finite groups
themselves. The philosophy of cusp forms, enunciated by Harish-Chandra

[ ], has served as a fruitful organizing principle for studying the
representation theory of reductive groups. In particular, it suggested
the conjectures of MacDonald [ ], recently spectacularly verified by
Deligne-Lusztig [ ] and by Kazhdan [ ]. The duality phenomenon asso-
ciated with the oscillator representation also suggests an organizing
principle for the representations of the classical groups. This new
principle is almost orthogonal to the philosophy of cusp forms, and it
may be hoped that combining the two will significantly clarify the problem
of computing representations of the classical groups. We will expand
this remark. Roughly speaking, one has a notion that "most'" representa-
tions of a finite reductive group have a certain size, whereas some are
smaller, or "singular”. The philosophy of cusp forms seems to distinguish
very effectively between the non-singular representations, but it does
not cope well with singular representations. The duality principle, on
the other hand, seems to be sensitive precisely to the degree of singu-
larity of represeqtations, but offers no particular insight into the
non-singular representations. Thus the two principles complement each

other very well, and should combine effectively.



In order to keep the account on a human scale (ann attempt too
rarely made in this theory) and to keep the narratlve flowing, with
focus on the main elements of structure, we do not give complete proofs.
Some proofs are omitted, others sketched. Many of the omitted arguments
can be found in the existing literature (see bibliography). 4 fuller

account will follow at same time.

’

§1. The Heisenberg group.

The root and cause of this discussion is the canonical commutation
relation of Heisenberg. This is embodied group theoretically in the
Heisenberg group, which we now define. Let Fq= F be our finite field.
We assume the characteristic of F is odd. Let V be a vector space
over F, and let < ,> be a symplectic (non-degenerate, bilinear, anti-
symmetric) form definmed on V. The pair (V, <,>) are said to form a
symplectic vector space. Often we will mention only V, the form <, >
being implicit. From (V,<>), we form H = H(V), the Heisenberg

group attached to V as follows. As set H =1V & F. The multiplication

in H d4is given by
w (v,8) (" ,8") = (v, sts'+(P) <v,v'> )

One checks instantly that (1) indeed defines a group law on H,
and moreover the following facts hold.
i) H is two step nilpotent.
ii) TF 4is the center Z(H) of H, and the commutator subgroup

of H.



iii) A subspace U cV which is isotropic for <,> (i.e., on
which <, > 1s trivial) is an abelian subgroup of H. If U is
maximal isotropic, them U ® F is maximal abelian in H.

iv) If X and Y are two maximal isotropic subspaces of V,
and V=X Y, then H is isomorphic to a semidirect product
X *(Y e 7).

s

We see from b) that H/Z(H) is isomorphic to V and from (1)
that taking commutators in H induces the given form <, > on this
quotient. We will throughout this paper regard V as either a subset
or a quotient of H according to convenlence. When regarding elements
of V as elements of H, we embed them in an ordered pair. Thus, if
v €V, then (v,0) € H. We will generally write Z(H) rather than F
for the center of F to avoid confusion.

A maximal isotropic subspace of V will also sometimes be called

a polarizing subspace or polarization. A pair (X,Y) of polarizing

subspaces, which are complementary, so that X & Y =V, as in iv) will

be called a complete polarization of V. We denote the set of polarizing

subspaces of V by Q.
Suppose ,V1 and V2 are two vector spaces over F, equipped

with two symplectic forms <, >l and <, >2. Then we may form

V3 = Vl & VZ’ and equip V3 with the symplectic form <, >3 such

that <, > restricts to <, > or <, > on V., or V, and

3 1 2 1 2
< V1Y, >3 =0 if vj € Vj. This V3 is called the orthogonal direct
sum of Vl and VZ' Denote the inclusion of Vj in V3 by ij for



Write Hj = H(Vj) for j =1,2,3. It is easy to see that there

is a unique inclusion ij:Hj - H3 for j = 1,2 such that

commutes, the vertical arrows being the canonical inclusion and quotient

maps. The groups ij(H ) are mutual centralizers in H3, and the

3

combined map

il x 12:H1 X H2 - H3

is surjective. The kernel of il X 12 is the antidiagonal
{(t,=t)} ¢ F x F = Z(H) x Z(H).
Again let V be a symplectic vector space and put H = H(V).
The unitary representations of H are the base on which our whole deve-
lopment builds, and we now describe them. Let X be a non-trivial

unitary character of Z(H). Let LZ(H,x) be the space of complex-valued

functions f on H such that
2) f(hz) = X T(2)f(h) for h€H and z & 72(H).

We normalize Haar measure on H so that Z(H) has mass 1. We then

regard LZ(H,X) as a Hilbert space with the corresponding inner product.

- 2
(3) (f,8) = fo(h)g(h)dh, for f,g € L"(H,x).
In (3), the function é is the complex-conjugate of g. We note that

L2(H,X) is also an algebra under convolution, given by the usual formula.



%) £ % g(h) = fo(x)g(x—lh)dx, for f,g¢ L2,y

Since a given f € LZ(H,x) is determined by its restriction to V, we
have an iscmorphism rX = r:LZ(H,x) - LZ(V). If we cndow V with
counting measure and LZ(V) with the corresponding Hilbert space
structure, then r is an isometry. Convolution in LZ(H,X) is expressed

in LZ(V) by twisting the usual convolution with a cocycle

(5) (£ % 8)(v) = [r() (Mr(e) vy X(F Dy,

The basic result on the representations of H 1is the following version

of the Stone-vonNeuman theorem.

Theorem 1.1: a) For a non-trivial unitary character X omn ("),
there is, up to unitary equivalence, a2 unique irreducible unitary repre-

sentation px of H with the property that pX(z) = X(2)1, where 1

%
here denotes the identity operator.

b) Let H(px) = *{ be the space of pX . Let LZ(H) be the
algebra of endomorphisms of H. Regard LZ(H) as a Hilbert space with
respect to the normalized Hilbert-Schmidt inner product
(T,8) = (dimH)_ltrace(TS*), where S* ig the adjoint of S. Then
pX:Lz(H,X)+ LZ(H) is an isometric *-isomorphism. In particular the

operators {px((v,o)),v € V} form an orthomormal basis for LZ(H).

"
Also dimpX = #(V)I/“, where # indicates cardinality. Also

tracepx(f) = (dimpx)f(l).

¢) Let V., be the orthogonal direct sum of vy and Vs and

3
let jpx for j=1,2,3 be the representation of Hj= H(Vj) described in

1

a). Then 3px o(ilxiz) = px ] 2px(outer tensor product).



Here is the standard manner of realizing the representation px.
Let (X,Y) be a complete polarization of V. Let Xy be the extension
of X to Y & Z(H) which is trivial on Y. Then p is realizable as
X

the representation induced from XY:

"
(6) o, 1y o 7y

We can be more explicit. The space H = H(Y,X) of this indirect

representation consists of functions £ on H such that
7 £(hy) = x;l(y)f(h) for h €H,y €Y & Z(H)
and the actlon is given by left translation:

(8) o, WER) = £ m).

' From fact iv) above, we see the restriction map T:H(Y,X) -+ LZ(X) is

an isomorphism. Moreover for suitable pormalizations of the natural

inner products (we will take Haar measure on X to be cour;ting measure),

r 1s an isometry. Thus the space of OX may be taken to be LZ(X) .

If this is done, we obtain the followiﬁg explicit form for the action -

of px .

(9 a) px((x,O))f(X')
b) px((Y»O))f(X')

c) px((o,t))f(x')

f(x'-x) for x,x'€ X.

X(< y,x' »)f(x") for y € Y,x'€ X.

X(t)f(x') for tE€F,x'€ X.

The relization of px on L2(X) by the formulas (9) is called the

Schr;dinger model of px attached to (X,Y). By virtue of the existence

of the Schrodinger model, we obtain the following key fact from Frobenius

reciprocity.
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Theorem 1.2: For every polarizing subspace Y & V, there is in
H a vector qY, unique up to multiples, which is invariant under px(Y).
X

Recall g 1s the set of polarizing subspaces of V. Theorem 1.2

gives a well defined map

(10) Q:2 > BH,

where @Hx is the projectivization of Hx. Of course @ takes Y to

the line through Gy The map @ 1is called the quantization map.

We may define in the standard manner an action UX of HXH

on LZ(HX) by the formula
_ -1 2
(11) Gx(hl,hz) (T) = Ox(hl)TDX(hz ) for h;,h, €H, and T€ L (Hx)‘

Of course o 1is the outeg tensor product pX 8 p:, where p; is the
contragredient of px. Moreover, theorem 1.1 says UX is disomorphic to
the joint left and right actions on LZ(H,x). It is important that we
can think of cx as a SchrSdinger model for another Heisemberg group.
Explicitly, given a symplectic vector space V, with form <, >,
define V~ to be the same vector space, equipped with the form -<,> ,
Denote by ? the orthogonal direct sum V & V . The form on % is
written 46:5 + We call V the double of V. We write
n(¥) = #(v) = .

There are two injections il and 12 of B dnto ﬁ, given by
(12) il(v,t) = ((v,0),t) and iz(v,t) = ((0,V) ~t).

We see the following diagram commutes

1, %4,

{13) H X | iy
¢ ) ()

X — X U .
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By means of i1 x 12, we may think of B as a quotient of H x H. It
is also quite clear that qx = EX o(i1 X 12), Qhar; 3& is the irredu~
cible representaticn of ﬁ associated to Y. Thus the explicit action
of HxH on L2(H,x) via right and left translation gives a realiza-
tion of BX. Let us identify this realization. Our conventions yield

the following formula

h ¢ H.

(14) 3X(11(h1) x i,(h,) |£(h) = f(hIlhhz) for hy,h,

1°h

In particular

(15) a) px((v,V),O))f((V',O) = x(<v,v' >)f(v',0)
b) px((v,-V),O))f(V',O) = f(v'-2v).
Let At <V @V be the diagonal: A+='{(v,v):v € V}. Similarly, let

A= {(v,-v):v € V} be the anti~diagonal. One easily sees that
R n
(A ,A") form a complete polarization in V. Moreover the formulas (15)

immediately imply the following fact.

Proposition 1.3: Let d:A” >V be the map given by d(v,-v) = 2v.
Then recalling that r:Lz(H,x) =* L2(V) is the restriction map, we see
that d*é r:Lz(H,x) > LZ(A-) identifies the realization of gx on
LZ(H,X) with the Schradinger model of SX attached to (A-,A+).

It will be important for us to have an explicit formula for the
quantization map Q 1n the codrdinates provided by a SchrSdinger model.
First we will give the well known,cosrdinatization of @ provided by a

choice of complete polarization (X,Y) for V. Let T be the projection

of V onto X with kernel Y. Let Z €V be a third polarizing subepace.
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Define a bilinear form B = Bz on Z by the formula B(zl,zz)=<1r(zl),z2>
Using the isotropy of X, Y and Z, it may be checked that B 1is
symmetric. Therefore B factors to 7 (Z), and so may be regarded as a
bilinear form on ¢ (Z). Thus to Z we may associate the pair
Gr(Z),B;), and this pair_gqgsist§>of a subspace of X and_a symmetric
Pilinear form on the subspace. It is nof hard to check that the corres-
pondence between Z €  and the set of such pairs is bijective.,

Now consider the Schrodinger model attached to (X,Y). We will

compute the action of pX(Z) in this model. If z € Z, write

z =1(z) + (1r)z. Therefore

(16) (z,0) = ((lﬂﬂ)z,o)ﬁr(z),o)(o(%aB(z,z)) where B = Bz.

Using the formulas (9) we then see that
an b, (2,00 E(x) = X(< (1-1)2,5 MX(B(z,2)) E(x7 (2)).

From (17) it is easy to check the truth of the following assertion.
Proposition 1.4: Given 2 €0, let OT(Z),BZ) be its coordi-
natizing pair relative to the complete polarization (X,Y). Then in the

Schrsdinger model of px attached to (X,Y), the vector 4, is given by

qZ(X) = x(- %Bz(x,x)) for x €™ (2)

0 for x<£T(Z).

qZ(X)
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§2: The oscillator representation

Let Sp = Sp(V) = Sp(V, <, >) be the groﬁp of isometries of the
symplectic form <, > on V. From the definition of H(V), it is clear
that for g € Sp, the map g:(v,t) » (g(v),t) of H is an automor-
phism of H. WNote that g preserves V and acts trivially on Z(H).
Conversely, one sees that any automorphism of H which preserves V
and acts trivially on Z(H) comes from Sp. Thus we may canonically
identify Sp with this subgroup of Aut(H) ., We will not distinguish
notationally hbetween the action of Sp on V and on H.

Since the action of Sp on H is trivial on Z2(H), it preserves
each character of the center. Thus if we define g*(px) by the rule

* . *
g (px)(h) = px(g l(h)), we see g (DX) = p_  for any g € Sp. There

X
arises in the usual way a projective unitary representation of Sp.
That is, for each g € Sp, there is a unitary operator wx(g) GILZ(HX)
such that

W P (8(0) = o (g (v (27T,

The wx(g) satisfy wx(gg') = c(g,g')wx(g)wx(g'), where c(g,g') 1is
a scalar. In our case, a basic fact is that we may arrange for c(g,g')
to be 1.

Theorem 2.1: The wx(g) may be chosen so that wx:g + wx(g) is
a representation. That is, so that wx(gg') = wx(g)mx(g') for all

g,8' £ Sp. Moreover, the representation w is uniquely determined

X
except in the' case #(F) =3 and dim V = 2,



The representation mx defined (except in the one exceptional

case) by theorem 2.1 will be called the oscillaﬁor representation of Sp.

Of course it depends on . Let us clarify the extent of this dependence.
Let Z(H)" denote the Pontrjagin dual of Z(H). First note that

since Z(H) * F, and in particular may be viewed as a one-dimensional

vector space over F, if we pick a non-trivial Xl € 7(H)" then any

other X in 7(H)" has the form
(2) X(z) = Xl(az)

for some a € Fx, the multiplicative group of F. We write X = Xa
when (2) holds.

Next note that besides Sp, there are automorphisms of H
which preserve V but do not act trivially on Z(H). Specifically, let
(X,Y) be a complete polarization of V. Let T be projection onto X

along Y. For a € F, define 5a:H +H by
(3 5a(v,t) = ((a-1)" (v)+ v,at).

It is immediate that Ga is an automorphism of H. Further it is easy

to see that

®
(4) Ga(pxb) - pxa_lb .

Moreover 6a normalizes Sp inside Ad(H), so it also acts on the

wX, and the analcgue of (4) holds

*
6 =
© a(mxb) wxa_lb
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Thus the p and ¢ are all conjugate to one another under outer
automorphisms. Something more is true. For a ¢ Fx, define

ca(v,t) = (av,azt). Then o, is again an automorphism of H, and Oa
not only normalizes, but centralizes the action of Sp. Thus, from the

*
obvious relation Oa(px ) =p , we conclude

b Xa-zb
(6) w = g for a,b € .
Xazo Xb
On the other hand it will be seen below that wX and wX are non-
a b

isomorphic if a_lb is not a square in Fx. We summarize.

*
Proposition 2.2: The action w_ =W = § (w, ) defines a
X% Xap %

. o x2 . .
simply transitive action of FX/F on the isomorphism classes of
osclllator representations. Moreover is the contragredient of
-a
w L]
Xa

Since #(FX/FXZ) =2 for finite fields, we see there are precisely
2 1isomorphism classes of oscillator representations. Further, if -1
is a square in F, that is, if #(F) =1 (mod 4), then each represen-
tation will be self-contragredient, and there will be two such, one of
which may be taken to be wX . The character of mX will then be real.

1 1

If #(F) Z 3 (mod 4) so that -1 is not a square, then wx+
1

the two isomorphism classes of oscillator representations, and are

represent

mutually contragredient.
In the 1light of this discussion it seems reasonable to normalize
matters by fixing once and for all the character X = xl’ and to under-

stand by "oscillator representation" the particular representation wx.
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We do so, and henceforth let X be implicit, so this representation
will be denoted simply by w.

As 1s well known, the group FX/Fxz may be thought of as a
generating set for the Grothendieck-Witt semigroup of quadratic forms
over F. Indeed, there is a strong connection between the oscillator
representation and groups of forms, as we will no— partially explain.
To do so, we must show how to combine Weil representatioﬁs. Let V

1

and V2 be symplectic vector spaces, and let V3 = Vl & V2 be their
orthogonal sum. We can define injections ij:Sp(Vj) =% Sp(V3) in the

obvious manner:
@) il(g)(vl,vz) = (2(vq),v,) and iz(g')(vl,vz) = (vi58"(v,))

for g € Sp(Vl) and g' e Sp(VZ) and vj @ Vj' We have the following
immediate consequence of theorem 2.1 and theorem 1.1 c).

Proposition 2.3: If jw is the oscillator representation of
Sp(Vj), then 3 O(i1 X 12) = lus % (outer tensor product).

On the basis of proposition 2.3, we may set up the following
formal scheme which gives a framework in which to state our results on
the representations of the finite classical groups. The scheme bears
some similarities to definitions of L-functions. Let G be any group.
Let V be a symplectic space over F. Let ¢:G - Sp(V) be a2 homo-
morphism. Then write ®(G,$) = w 0 ¢, We call w(G,d) the Weil

repregentaticn of G associated to ¢.
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If ¢j:G - Sp(Vj), for j = 1,2 are two homomorphisms into
two symplectic groups, then we say ¢l and ¢2- are equlvalent if there
is a symplectic isometry T:Vl - V2 such that ¢2°T =ToO ¢1. Whether
or not the ¢i are equivalent, we let V3 = Vl @-Vz, and define
¢1 + ¢2:G -+ Sp(V3) by the rule ¢1 + ¢2 = ¢lo il X ¢2 o) 12, where
ij:Sp(Vj)+ Sp(V3) are the maps of (7). We let RS(G,F) = RS(G) be
the collection of 21l possible homomorphisms from G  to various SP(V),
modulo the above notion of equivalence. With the addition just defined,
RS(G) 1is a commutative semigroup. With this language, we see that
proposition 2.3 says that the correspondence ¢ =+ w(G,9) for
¢ € RS(G) defines a homomorphism from RS(G) to the multiplicative
semigroup of unitary representations of G, with tensor product as

operation. In other words

(® () +9,,6) = w($;,6) 8 w(hy,0) .

Given cur particular symplectic vector space (V, <, > ) we
might in the above discussion incestuously take G = S=(V, <, > ).
If we do so, we note there is a distinguished subsemigroup of RS(Sp(V, <, >)).
To define it, consider the sympleciic vector space (V,a< , ») where
a € F*. Of course Sp(V,< , >) = Sp(V,a< , >) as sets. However, 1if
a ¢‘F2, the symplectic similitude of V which takes < , > to
a <, > will define a non-trivial outer automorphism of Sp(V,< , >)
so as an element of RS(Sp(V,< , >)), the identity map
la:Sp(V,< , 7)) > Sp(V,a< , *») ds equivalent to this automorphism of

Sp(V,< , ), and not the identity of Sp(V,< , >). We will call the
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subsemigroup of RS(Sp(V,< , >)) generated by the identity maps 1a

the linear subsemigroup of RS(Sp(V,< , >). We call the corresponding

Weil representations linear Weil representations. Recalling that

w=w » it is clear that w ol =w_ , that is, is just another
X1 a Xy
oscillator representation. We summarize this discussion.

Proposition 2.4: The linear subsemigroup of RS(Sp) 1is naturally
isomorphic to'VSb(F), the Grottiendieck-Witt semigroup of (isomorphism
classes of) quadratic forms over F. Therefore the semigroup of repre-
sentations of Sp generated by tensor products of oscillator represen-
tations is a homomorphic image of lab(F). (Actually, it is an isomorphic
image.

Particularly interesting representations in this semigroup are
the representations mX ] w;, the tensor product of an arbitrary
oscillator representation with its adjoint. Of course, this 1s just
the action of conjugation on LZ(HX) by wX(Sp). It was by this action
that W_ was originally defined using equation (1). From (1) and

X
theorem 1.1 b), and the system of maps

P
(9) L2« 12m,0—2 L2)

defined in 81, we arrive at the following conclusion.

*
Theoren 2.5: The representation wX @ wX is isomorphic to the

natural permutation acticn of Sp omn LZ(V). This isomorphism is

-1

X in the system (9).

accomplished hy r 0 P
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Corollary 2.5.1: If G CSp, then the intertwining operators

1

for are spanned by the images of the G-orbits in V under DXO r .

x|€
In particular, the G-intertwining number of wx is equal to the cardi-
nality #(V/G) of the orbit space (6f G acting on V).

Corollary 2.5.2: 1In particular, wx consists of 2 dirreducible

components which are the eigenspaces of mx(—l). (Note that 21 is
the center of Sp). These spaces have dimensions %(#V)llzil).

Coroliary 2.5.3: We have |trace wx(g)l2 = #(ker(g—l) for any
g € Sp.

Remarks: a) Were we striving for logical nicety, we could have
carried the discussion to this point without theorem 2.1, that is,
treating wx as a projective representation (which in fact it is for
infinite fields). Then combining proposition 2.4 and theorem 2.5 with
the known structure of lab(F), we could have concluded that the

F d
obstruction to making W, into an actual representation had order

X
dividing 4 . But this obstruction also has order dividing dim px= #(V)l/z.
Since we have taken our field F to have odd characteristic, dim DX
and 4 are relatively prime, so the obstruction is trivial, and theorem
2.1 follows. In characteristic 2, this argument fails and theorem 2.1
also fails.
n

b) Again using the structure of Wo(F), and particularly the
fact that the sum of 4 coples of any quadratic form over F 1s split,
we see the values of the character of W must be either real or pure

imaginary. Of course, when #(F) S 1(mod 4) we already knew the

characters of distinct oscillator representations takes values only 1.
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It is probably a good idea to get a somewhat concrete picture of
what @ looks like, and, indeed, this will be useful for certain
purposes. We can do so quite nicely, at least on a subgroup of Sp,
by using a Schrddinger model. Let (X,Y) be a complete polarization
for V. Let P(Y) =P be the subgroup of Sp which preserves Y.

Let N = N(Y) be the subgroup of P which acts trivially on Y. Let
M = M(X,Y) = P(X) N P(Y). Then the following facts are well known.
1) P(¥) = M(X,V)IN(Y) (semidirect product)

11) The restriction map «

X’ sending m& M ¢to m|X is an

isomorphism r_:M + GL(X).

X
iii) N(Y) acts simply transitively on the set of a2ll maximal

isotropic subspaces of V complementary to Y. Attaching n(X) to
o €N defines an isomorphism from N(Y) to SZ(X*), the space of
symmetric bilinear forms on X, Otherwise put, for every n €N, the
form Bn(x,x') = < x,n(x') > is a symmetric bilinear form on x, and
n>* Bn igs the stated isomorphism.

Consider the Schrodinger model of px attached to (X,Y). The

space of this model is LZ(X). It may be computed without difficulty

that in this model, the elements of P(Y) act as follows.

(10) w (@) £(x) = X(~(1/2)B (6,2 E() for n CN, £E€LX.

wx(m)f(x) sgn(m)f(m_l(x)) for m € M.

Here sgn 1s the unique character of order 2 on M.
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Remark: From (10) one can read off the eigenspaces for wx(-l).
These are the even and the odd subspaces of functions on X. We may
refer to the corresponding components of wX as wX+ and wX- respec-
tively. The smaller component wX" has dimension 1/2(#(X)-1), and is
irreducible on P and multiplicity free on N. It has the smallest
possible dimension for a2 non-trivial representation of Sp.

We will again drop the y from .

Recall that § is the set of polarizing subspaces of V, and
that theorem 1.2 gives us an embedding Q0 + PHX. Of course 2 is a
homogeneous space for Sp. In fact £ = Sp/P(Y) for Y €. From
the definition of q and formula (1) defining W, we see that @ 1is

equivariant for the permutation action of Sp on & and the action

induced by W omn PHX. The hyperplane section bundle induces a line

bundle

(11) h()
¥
Q

Theorem 2.1 says h(f!) is a homogeneous line bundle. If we observe

that in the Schradinger model for DX attached to (X,Y) the vector

9y 1s just evaluaticn at 0 in X, then formulas (9) tell us that h

arises from the principle bundle
P(Y) * Sp

¥
Q

by taking the character sgn of P(Y).
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Evaluation (e.g., taking inner products with) on the vectors Gys YR

gives a map
(12) e:fl, > c(h(Q),

where C(h(Q)) is the space of sections of h(f). The fact that @
was equivariant makes e an intertwining map. Since the vectors q(f)
are all even functions in the Schrodinger models, we have the following
result.

Proposition 2.6: The intertwining map e of (12) defines an
injection of w+ into the induced representation indszsgn.

As we saw in 81, the space L2(HX), the operatéfg on H

X
"
themselves be viewed as a module for H, the double of H. Thus if

may

n
5 is the set of isotropic subspaces of V, then Qﬁab may be viewed

n
as a certain set of operators on H (Strictly speaking Q(f2) Q;PLZ(HX),

X
but we may for purposes of this discussion choose suitable representatives
in LZ(HX)). It is important to us to know what operators belong to
Qﬂa), and we will now compute then.

Recall that by (9) we have the isomorphism r O pil:Lz(HX) -+ LZ(V).
Under this identification, multiplication in LZ(HX) becomes the convo-
lution in LZ(V) given by formula (5) of §1. Since (A—,A+) is a
complete polarization of %, we may identify W € 5 to a pair
(U',B") where U'e AT and B' is a symmetric bilinear form on U'.
Let d be the map of proposition 1.3, and let (U,B) = (d(U"),B' O d-l).

Then according to proposition 1.4, we have the following formula for

2
q, on LY.
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(13) 4, () = (o 1f v &U
i ¥(-1/2B(v,v)) 1if v € U.

Let U be an arbitrary subspace of V. To U we may attach

the space 6(U)€'5 by the rule
(14) Sy = A N @ewed n @ er),

where U™ is the annihilator of U in V with respect to < , > .
From this it i1s clear that the pair corresponding to §(uy is (U,0),
where O means the zero bilinear form. Hence qﬁ(U) is just the
characteristic function of U. The following fact may be read off from
the convolution formula (5) of §1.

Proposition 2.7: If U C V is isotropic, then up to nultiples

q6(U) is orthogonal projection of HX onto the subspace of DX(U)

fixed vectors. In particular, if U = {0}, then qs({o}) is the
identity operator.
a n A
We know is a homogeneous space for Sp = Sp(V,< , >). More-

n
over, we have the two embeddings i1 and i2 of Sp into Sp,

defined by (7). We will compute the action of il(Sp) X iz(Sp) on a.

N = -
Take W€ a. Write V=V @&V . Let Wl =W NV and WZ =W NV,

Let Wi be the projection of W on V, and let Wé be projection of

5 On V'. Then it is easily seen that Wi g;w{i where again Wl is

the annihilator of Wy with respect to < , > . Similarly Wé S:Wéf

Of course Wl and W2 are both isotropic. I claim W] = W;‘ for

i
i = 1,2. If not, then we could find a larger isotropic subspace in Wii3

W
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contradicting maximality of W, so the claim is true. Finally we see
that if a,b,c,d €V and (a,b) and (c,d) 5elong to W, then
0 =< (a,b), (c,d)>m =< a,c > - <b,d >, so that W defines an isometry

from Wi/wl to Wé/w2 if both wi are considered subspaces of V.

The fnllowing result is thus clear.
Propositicn 2.8: To every W € 5 may be associated a triple

t(W) = (Wl’WZ’S)’ where W. and W, are isotropic subspaces of V,

1 2

with dim Wl = dim WZ’

, -1
If glsgz € Sp, then t(ll(gl) x 12(82) (W)) = (ql(wl)sgz(wz)snggz )'

L AL
and s is an isometry from W2/W2 to Wl/Wl.

In particular the il(Sp) X iz(Sp) orbit of W 1is determined by dim Wl.
Also the map g > il(g)(A+) embeds Sp bijectively in 5.

Note also that if UC V is isotropic, then tS(u) = (U,U,1),
where 1 1is here the identity from Ut to itself, and 6 is defined
by (14). Thus any element of a has the form il(g)G(U) for appro-
priate g € Sp and isotropic U ¢ V. Similarly, any element of 6
also has the form iz(g)5(U).

Since it is evident that for g & Sp, g(il(g)) is left multi-
plication by w(g), and a(iz(g)) is right multiplication by w(g)_l,
the first part of the next result is clear.

Theorem 2.9: a) Up to multiples, for g € Sp we have
01, () (8% = U, @A) = u(e).

b) An arbitrary element of Q(a) may be expressed in either of
the forms w(g)PU or PU,w(g'), where g,2'€ Sp, and U,U' are
isotropic subspaces of V, and P indicates projection onto the

U
pX(U)-fixed vectors.
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c) Q(ﬁ) forms a multiplicative semigroup in LZ(HX), of which

w(Sp) constitute the invertible elements. That is again belongs

qwqw t
to Qﬂﬁ) for any WW'E d.

Proof: It remains omly to prove c). To do this, it suffices

by b) to show that PUPU' again belongs to Q(ﬁ) for any isctropic

UU' in V. Let Z=U+TU'. Put Uy =0 2" and U, =U' N zt,

2 2
Let {ei}i=l be a basis for U modulo UO° Let {fi}i=l be a set in

U' such that < ei,f > = Gij (Kronecker's §&). Then the {fi} form

3

a basis for U’ modulo Ué. Let Vi’ for 1 < i< & be the span of
. -
4
e and fi’ and let V0 = (X Vi) . Then we have direct sum decom-
% =17
positions V= & V,, and U= @& U., where U.=UnV,, and
i i i i
2 i=0 i=0
U'= @& Ui. The decomposition of V is orthogonal. Therefore p
i=0

i

decomposes as a tensor product of the pX attached to the V by

i’
theorem 1.1 ¢). Thus it is enough to prove it in the cases when either

dimV = 2 with V=U®7U', or U+ U' is isotropic. In the latter

case it is obvious that PUPU' = PU+U" In the former case, PU has

rank 1, sc if g ¢ Sp 1is such that g(U') = U, we see that PUPU'
is a multiple of w(g)PU,. This proves the theorem.

Remarks: a) We note that P is non-zero. In fact, if

Uy’
(Uu,U") form a complete polarization, the wcrst possible case, then
_ -1
trace (PUPU') = (dim pX) i
b) According to the theorem, the operators w(g) for g € Sp
correspond to functions on V of the form (13). We will compute the

correspondence explicitly. Take g &€ Sp. As we have noted,

w(g) = Q(il(g)A+). Take (g(v),v) in il(g)A+, and write
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(15 (5(v),) = 2((eHD)v, (V) + F((g=D)v,~(g-1)v)

Then compute %'<(g—l)V,-(5-l)V)s(8(V),V)>N = %< (g=D)v,(gtl)v > .
Putting u = (g-1l)v, we see that %( (g-1)v,(g+)v > = %< u,(%é%)u >,
Thus according to (13), the function on V defined by w(g) 1is

(16) w(g) (u) = S’O if u & (g-DV

2\(dim px)-ltrace w(g)x(—-%< u,(%%%ﬁu >) if u € (g-1)V

¢) Note that g%%— is just the Cayley transform of V, at
least if g-1 is invertible. Thus we have a purely geometric descri-
ption of the Cayley transform. Note that the open cell of 5 consisting
of polarizing subspaces of % which are transverse to A+ is canonically
isomorphic to the space of symmetric bilinear forms on V, and this
in turn is canonically isomorphic to the Lie algebra of 8p. If g-1
is mon-singular, then il(g)A+ is transverse to A+, so the Cayley
transform maps the Zariski open set of Sp consisting of elements
without fixed points to the Lie algebra of Sp.

d) It is possible to characterize those pairs (U,B) which
correspond via (13) to spaées W€ 5 such that t(W) = (Wl,Wz,s)
with Wi # {0}. (These are the W such that Ay is not invertible).

It may be computed that W, = {w € U:B(u,w) = %< u,w>}.

1

§3: Reductive dual pairs.
Let S be any group, and let (G,G') be a pair of subgroups of

S. We will say G and G' are in duality irn S, or that they form a

dual pair if G is the centralizer of G' in S and vice versa.
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Let (V,< , >) be our symplectic vector space, and consider a
pair of subgroups (G,G') of Sp = Sp(V,< , >). We will call (G,G")

a reductive dual pair in Sp if they are in duality and if they each

act (absolutely) reductively on V.
We will classify reductive dual pairs. Suppose V = V1 & V2
is an orthogonal direct sum, and suppose (G,G') is a reductive dual

pair in Sp(V), such that V., and V, are invariant under both G

1 2
and G'. Let Gy be the image in Sp(Vi) of the restriction of G
to Vi' Define Gi the same way. Let ij:Sp(Vi) + Sp(V) be the

canonical injections. A moments thought shows that G = il(Gl) x iZ(GZ)
and likewise for G'. 1In this situation we will say that (G,G'")

is a direct sum of the pairs (Gi,G;). If (G,G") 4is not the direct

gum of smaller reductive dual pairs, we say (G,G') is irreducible.
The usual considerations give

Propositicn 3.1: Every reductive dual pair is the direct sum
of irreducible pairs in an essentially unique way (i.e., up to renum-—
bering of the subpairs.)

Therefore we concentrate on irreducible reductive dual pairs.

Proposition 3.2: Let (G,G’) be an irreducible reductive dual
pair in Sp(V). Then one of two possibilities obtains.

I. G°G' acts irreducibly on V, and V consists of a single
isotypic component (which is self-contragredient) for G or G'.

II. There exists a complete polarization (X,Y) invariant under
GeG' and the images by restriction of G and G' in GL(X) or

GL(Y) are in duality.
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According to which possibility above holds, we will refer to
(G,G') as being irreducible of type I or type iI respectively. Pairs
of type II are classically known, usually in the context of the theory of
associative algebras, by virtue of the double commutant theorem. The
pairs of type I come up classically also, in the theory of "semisimple
algebras with involution," or the "multiplications of Riemann natrices"
(I 1,0 1). The main features separating the present approach from say
[ 1, is the primacy of Sp, and the lack of favoritism between G
and G'. We list below the 3 types of reductive dual pairs occurring
over finite fields. The first two are the basic examples of types I
and II and are the only examples over algebraically closed fields. The
third example, though of type I, would become type II after extension
of scalars.

A: Let (VO,< s >0) be a symplectic vector space. Let (UO;(,))
be an orthogonal vector space. That is, (,)0 is an inner product (a
non-degenerate, symmetric bilinear form) on UO. Put V = Vo 8 UO. On

V, define a form < , > by

(1) <v8u,w u> =<v,v'> 0(u,u')0 for wv,v’ V0 and u,u’'¢g UO.

Then (V,< , >) is a symplectic vector space. Define jl:GL(VO) + GL(V)
by jl(g)(v 8 u) = g(v) 8 u. Define jz:GL(UO) + GL(V) similarly. Let
O(UO,(,)O) = 0(U) = 0 be the group of isometries of (,)O on U. Then
(Sp,0) or mecre properly (jl(Sp(VO))1 jz(O(ﬁ))) form a reductive dual

pair of type I in Sp(V).
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B. Let Y1 and Y2

% :
put V=Y&Y ., On V, define a symplectic form < , > by

be vector spaces. Put Y = Yl e Y2 and

%* * % * * * %
(2) <y ),(zy2) >=2 (y) -y (2) for y,z€Y and y ,z2 €Y.

Define an injection :GL(Y) » Sp(V,< , >) by a(g)(ysy*) = (g(y),g*'l(y*)),
where g* is the usual adjoint of g, given by the formula
g*(y*)(y) = y*(g(y)). Define an injection jlzGL(Yl) + GL(Y) by
il(gl)(y1 8 y2) = gl(yl) & Yo for ykts Yk and g1 G:GL(Yl). Define
j2:GL(Y2) +> GL(Y) similarly. Then (GL(Yl), GL(YZ)), or more precisely
(a(jl(GL(Yl))), a(jz(GL(Yz)))) is a reductive dual pair of type II in
Sp(V).

C: Let F' be a quadratic extension of F. (For our finite F,

there is precisely one F'.) Let T be the non-trivial Galois involu-

tion of F' over F. Let (Wi,(,)i) for i=1,2 be two Hermitian

vector spaces over F'., That is (,)i is an F’'~valued, F-bilinear
form on Wi satisfying (aw,w')i = a(w,w‘)i = 0(w‘,aw)i for w,w' € Ui
and a€F'., Put V= Wl gv W2. On V, define another Hermitian form
(,) by

' 1 — LAY * Vo=
(3) (wl 8 Wps W 8 w2) (Wl,wl, (WZ’Wz) for VoWl = Wi'

In F', choose any element B such that o(B) = - 8. On V, define
a symplectic form < , > by

< F i
Let Ui = U(Wi,(,)i) be the isometry groups of the forms (,)., and

let U =7U(V,(,)) he the isometry group of (,). Then we have
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injections ji:Ui + U, and U is obviously a subgroup of Sp(V). Thus
U500, or (3000, ()1)),3,(UW,,(,),))) forn a reductive dual pair
of type I in Sp(V).

The classes of groups listed in A, B and C above have some
formal and geometric properties which will be important to us. We discuss
the formal properties first. Let G denote any one of these groups.

We refer to G as a classical group. We will call G type I or type

II according to the type of pair to which it belongs. In any case, it
will be observed that G is always defined as the isometries of a
certain form (,) on a certain module Z. (if G is cof type II,

the form may be considered to be identically zero.) We call Z the

standard module of G, and (,) we call the defining form. We call

the pair (2Z,(,)) together a formed space. Without defining it

explicitly we clearly have a notion of different kinds of forms, e.g.,
symmetric, symplectic, Hermitian and trivial. Moreover if (G,G') are
two classical groups, and if the defining form of G is of ome kind, the
defining form of G' will be of a definite other kind. The two kinds of
forms are zlso said to be dual to c¢ne another.

Membership of the classical group G 1in a reductive dual pair
(G,G") in Sp(V) dmplicitly defines an embedding j:G = Sp(V), and
j in turn defines an element in the semigroup RS(G), defined in §2,
An element in RS(G) arising in this way will be called linear. From
our classification A,B,C, of reductive dual pairs, we see that a linear

element in RS(G) arises as follows. Let (Z,(,)) be the formed space
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defining G. Let (Z',(,)") be a formed space of the dual kind. Then,
if G is of type I, we have (V,<, >) =~ (Z @ 2',() 8 (,)'). (These
tensor products must be appropriately understood in case C). If G is
of type II, then of course V = (Z & Z2') & (Z*O'Z'*). In any case, we
see that if (Zi,(,)i) and (Zz,(,)é) are two formed spaces of the
kind dual to (Z,(,)), we may form the orthogonal direct sum

(Zi& Zi,(,)i & (,)5) in the obvicus fashion. This makes formed spaces

of a given kind into a semigroup, which we will call the Witt semigroup

of these forms. We denote a typical such semigroup by W, or more
specifically by LJSp;bJO, etc. With this language, we see that the
operation which associates to a formed space (Z',(,)') of the kind dual

RS(G) defines a

m

to (Z,(,)) the corresponding linear embedding j

homemorphism

(5) I W' =+ RS(G)

Here LJ' is the Witt semigroup of forms of the type dual to (Z,(,)).

The image JG(LU) will be called the linear semigroup of RS(G) and

denoted LR3(G).
The Weil representations of G arising from LRS(G) are called

linear Weil representations of G. One of our main goals 1s to analyze

their structure. For this we will need to know a little about the
structure of LRS(G), hence of W' . We recall some standard facts
and establish terminolcgy. The type II case is trivial, so we assume
the type I case. For convenience, we drop primes. TFirst it is known

that WAJ is generated by one-dimensional forms (except for a/Sp, which
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is generated by the unique form of degree 2). (This follows from Graham-
Schmidt orthogon alizaticn.) Second, if (Z,(,)) is a formed space,
then z € Z is called isotropic if (z,z) = 0. If Z has no isotropic
vectors, it is called anisotropic. If Z is not anisotropic, and

2z, € Z is an isotropic vector then we may find a second isotropic

1
vector z, € Z such that (zl,zz) = 1. The span of such a pair

{zl,zz} is called a hyperbolic plane, and the pair itself is called a

standard or hyperbolic basis for the plame. If (Z,(,)) is the sum of

hyperbolic planes we say 2 is split. An arbitrary formed space

(Z,(,)) can be expressed as the direct sum of an anisotropic space and
a split space, and the anisotropic space is determined up to isomorphism.
(This is because of Witt's theorem, see [ ].) Half the dimension of
the split part of 2, which is also the dimension of a maximal isotropic
subspace of Z is called the Witt index of Z. Two formed spaces whose
anisotropic parts are isomorphic are said to be of the same Witt type.
The anisotropic space of a given Witt type is the anisctropic model of
that type. Given a formed space (Z,{,)), the space (Z,-(,)), also

denoted Z  when forms are implicit is called the nezative or Witt

inverse of (Z,(,}). If Zl and Z2 have the same Witt type and

conversely then Zl$ Z; is split. Therefore, if_hfo is the set of
Witt types, then LJO may be thought of as the quotient semigroup of 1/
by the subsemigroup of split spaces, and 1gb is actually a group. The

sun Z<=Z & Z is the double, or split double of Z.
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By convention, all zero dimensional forms are anmisotropic.
For orientation, we remark that over the finite-field F, the only
other anisotropic forms are:
a) the two one-dimensional quadratic forms x2 and axz, a é:Fz;
b) the two-dimensional quadratic form defined by the norm form
of the quadratic extension F';
¢) the one-dimensional Hermitian form xrty) on F', where
T 1is the Galois involution of F' over F.
We pass now to geometric topics. Let G be a classical group.

In analogy with the discussion above a linear module for G will mean

the direct sum of a finite number of copies of the basic module of G
with a finite number of copies of the contragredient of the standard
module. (Explicit inclusion here of the dual module is necessary only
~in the type II case, since the standard modules of type I groups are
self-dual.) Thus if Z is the standard module for G, a linear module
has the form Zk 43 Z*z. It may be conveniently represented also as
Hom(Fk,Z) & Hom(Z,FZ) (for unitary groups, replace F by its quadratic
extension.) Writing things this way turns the action of g dinto post

and pre-multiplication.
-1 k 8
(6) 2(s,T) = (gS,Tg ) for g& G, S € Hom(F ,Z2), and T g Hom(Z,F ).

L
We may of course also replace Fk and F by any convenient auxiliary
vector space of the appropriate dimensions. For type I groups, we may

take ¥ = 0 without loss of generality.
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Qur first geometric fact is a descrintion of the G-orblts in a
standard G-module» For type 1 groups, the result follows quickly from
Witt's Theorem [ ]. For type II groups, it is straightforward.

Proposition 3.3: Let G be a classical group with standard
module Z.

a) Let G be of type I. Let .A be an auxiliary vector space,
and consider the linear G-module Hom(A,Z), where G acts by multi-
plication on the left. If T & HOM(A,Z), then the G-orbit of T
consists of all S € Hom(A,Z) such that

i) ker S = ker T

ii)  the pullbacks to A/ker T (,)0S8 and (,)oT of the defining

form of G are equal.

In other words, G orbits in Hom(A,Z) may be parametrized by pairs
(L,B) where L C A is a subspace, and B 1is 2 form on A/L, of the
same kind as (,). B may be degenerate. The pairs (L,B) which
actually come from orbits satisfy the conditions: a) dim A/L < dim Z,
and b) B must make A/L isometric to some subspace of Z. 1In
particular, all possible pairs arise if and only if the dimension of A
is no more than the Witt index of Z. )

b) Let G be of type II. Let A1 and A2 be auxiliary vector
spaces, and consider the linear G-module Hom(Al,Z) @ Hom(Z,Az). Let

(S,T) be a pair of homomorthisms in this module, and let (Q,R) be

another pair. Then (Q,R) is in the G-orbit of (S,T) 1if and only if



-33-

i) ker Q = ker S and
ii) im R = im T and

iii) RQ = TS.

Thus G orbits may be parametrized by triples (K,M,D) where K £=Al

and M c A are subspaces and D ¢ Hom(K,M). In order for a triple

2
(K,M,D) to arise, it is necessary and sufficient that: a) dim Al/Ki dim Z;
B) dim M < dim Z; and c) dim Al/K + dim ¥ - rank D < dim Z.
In particular all possible pairs occur if and only if dim Al + dim A f_dim Z.
. Next se conside; the action of an irreducible reductive dual pair
(G,6') in Sp(V) on Q, thg Yariety of maximal isgtroPiq_gubspéces
of V. In particular we are interested in QG, the fixed points of“_
G. They are best described in terms of G'.
Propogiticn 3.4: Let (G,G') C Sp(V) be an irreducible reductive
dual pair. Let Z and Z' be the standard modules for G and G'
respectively. Note that QG is invafiant under G,
a) If (G,G') 4is of type I, then QG is naturally and
G-equivariantly isomorphic to the variety of isotropic subspaces of Z'
of dimension %-dim Z'. Thus QG is homngeneous for G', and is non-
empty if and only 1f G' is split.
b) If G is of type II, then QG is naturally and G-equi-
variantly isomorphic to the union of the Grassmann varieties of subspaces

of Z' of all dimensions. Thus QG is a finite union of homogeneous

flag manifolds for G'.
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Proof: If (G,G') is of type I, then V =2Z & Z', so any
G-invariant subspace of V has the form Z @ E. where E 1s some
subspace of Z'. The formula for <, > on V in terms of the defining
forms of G and G', given by formulas (1) and (3) above, shows that
Z @ E is isotropic if and omnly if E 1is isotropic. Clearly also, the
equality 2 dim (Z 8 E) = dim V holds if and only if 2 dim E = dim Z'.
The correspondence Z 8§ T + E is thus the desired correspondence.

If (G,5' is of type II, then V = (Z 8 Z') & (Z* 8 Z'*).

Thus any G-invariant subspace of V has the form (Z 8 E) & (Z* & D),
where E and D are subspaces of Z' and Z'* respectively. We see
such a space will be maximal isotropic im V if and only if D is

the annilator in Z'* of E. In particular, E may be arbitrary, and

D 4s then determined. This proves the propositicn.

For our‘fhirﬁfgeometric topic we consider two classical groups,
G1 and G2,

their standard modules, have the same Witt type. Put 23 = Z1 & Z;,

both of the same kind. In fact, we assume Zl and ZZ’

so that Z3 is split. Put G3 = G(Z3,(,)l & —(,)2). We have the

standard injecticons 1 :Gi -~ G

X for k = 1,2, defined as in (7) of §2.

3

Since Z3 is split, it contains, in the type I case, isotropic subspaces

of dimension (%) dim 2 Let ' be the variety of these spaces. In

3°
the type II case, let ' be a Grassmann variety of subspaces of Z3

of some dimension. We will describe the Gl X G2 orbit structure of

' generalizing proposition 2.8. The proof is essentially the same as

for that result.
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Proposition 3.5: Notations as above.

a) Let G1 and G2 be of type I. Then each space Y €T

can be associated to a triple t(Y) = (Dl,D2§), where Y N Zk = Dk is
an isotropic subspace of Zk’ and S:D;7D2a-Di7Dl is an isometry. Here
-L yndicates the annihilator with respect to the appropriate form. (Note
L L
that then necessarily dim D2/D2 = dim D1/D1, or dim Z; - 2 dim D, = dim Z, -

2 dim D,. This is the only restriction on D, and D2.) The action of

G1 X G2 on T is given by

Dty x 15 M) = (8(0;),8, 08158, )5 for g E Gy

In particular the G1 X G2 orbits consist of those Y such that dim Dk

is constant. Thus the number of orbits is the minimum of the Witt

indices of Z and Z

1 99 plus one. Hence if 22 is anisotropic, the

action of G1 is transitive.
b) Let G1 and G2
attached a quintuple q(¥) = (Dl’El’DZ’EZ’T) where Dk =Y N Zk’ and

be of type II. Then to Y &I can be

= pk(Y), where Py is projection onto Zk’ and T:EZ/D2 g E1/Dl

~

Ey
is an isomorphism. The relations dim Dl + dim E2 = dim D2 + dim E1 =
d4m Y hold. Otherwise the D's and E's are arbitrary. The action

of Glx G2

on I' is given by
; _ -1
(8) q(i;(g)) x1,(g)(¥)) = (81(D1) 581 (E1) ,8,(D,) 585 (Ey) »81T8) )
Finally we should note that if (z,(,)) is a split formed space,
there is a "cell decomposition" of the variety I of maximal isotropic

subspaces of Z analogous to that for a symplectic space described in

the discussion preceding proposition 1l.4. We stateiit formally.
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Proposition 3.5: Let (Z,(,)) be a split formed space. Let
(X,¥) be a pair of maximal isotropic subspaces such that Z = X & Y.
Let 1 be projection along Y onto X. Let W be another maximal
isotropic subspace. Define BW =B on W by B(wl,wz) = (ﬂ(wl),wz).
Then B factors to w(W) and defines there a form, still denoted B,
of the kind dual to (,). The map W = (n(W)‘,BW) is bijective from
the variety of maximal isotropic subspaces 5f Z to the set of pairs

(M,B) where M < X 1s any subspace, and B is any (possibly degenerate)

form on M of the kind dual to (,).

§4: Invariants and duality.

The main goal of this study of the oscillator representation is
to describe of its restriction to a dual reductive pair (6,G'), and
in particular to establish a certain relationship, which we will refer
to as duality, between the representations of G and of G' occurring
in this restriction. The central result in our development, however,
appears much more modest. It describes only a small G-submodule of w G

As before, we let 0 be the variety of maximal isotropic sub-
spaces of our symplectic space V. We recall the quantization
0:0 +-THX. Let (G,G') be a reductive dual pair in Sp(V). From
theorem 1.2 and formula (1) of §2, we know that given Y € QG, there

is a linear character &, on G, such that
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(1) w(@) (ay) = 8(g)ay for g €6G.

Here ® 1is as before the oscillator representation.

A priori, § depends on Y, but we will see that actually it does not.
(From formulas (10) of 82, we see § must have nrder 2, so the
possibilities for § are very limited. In fact, § will often be
trivial.) Proceeding cautiously, we select a linear character & of

G, and put
2) 1(G,8 = {x E.HX:w(g)(x) = §(g)x, for all g € G}.

We refer to I(G,8) as the §-eigenspace of G for W . We also put

(3) %= xeq q € 16,8

It will turn out that QG’G is non-empty for at most one G-

.Theorem 4.1: Let (G,G') be a reductive dual pair in Sp(V).
Let & be a linear character of G such that QG’S is non~-empty.
Then Q(QG’G) spans 1(G,9).

Remark: This theorem makes nc statement if QG’G is empty.
We will see later, that in a certain stable sense, the theorem remains
true when QG’G is empty. That is, if Z and Z' are the standard
modules for é% and (%', and if dim Z' is less than dim Z, then if
QG’G is empty, the space I(G,8) is zero.

Proof: As a preliminary reduction, note that if (G,G") is

] ‘ ? =6
the direct sum of (Gl,Gl) and (GZ’GZ)’ then if 61 lG , we have

§ G..0 i

) G ’ 9 1

8% ol lxqp? 2 and also I(G,8) = I(Gl,ﬁl) ] I(GZ,GZ). Thus it
suffices to prove the theorem when (G,G') is irreducible, so we now

consider that case.
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Take Y & QG’S. Then we may find X € QG complementary to Y.
We realize pX by the Schr#dinger model attached to (X,Y). In this
case, restriction of G to X induces an injection r:G -+ GL(X).
We use r to consider G as a subgroup of GL(X), and will not dis-
tinguish between g and x(g) for g €G. The formula (10) of 82

gives mlG. As we have arranged matters, ¢ is the point mass at the

Y

origin in X, soc we see § = sgn Moreover W is simply the

ek le

twisting by § of the permutation representation of G acting cn X.
We can see from proposition 1.4, that if M € QG, then dy is left-
invariant by the transformation any g € G 1induces on X. Therefore

QG,5 - qC

Let 0 ¢ X be a G-orbit. From the explicit form of w, we
see that thbere is precisely omne S-eigenvector for G supported on O,
namely the characteristic function of @. Call this A(). It is
clear that the A(Q), as (¢ rums through all orbits, form a basis
(even an orthoponal basis) for I(G,8). Thus to prove the theorem, it
will suffice to show that, for each 0, A(0) is a linear combination
of qY's for Y & QG. To do this amounts to comparing propositions 3.3
and 3.4, using proposition 3.6. As in those results, it 1s convenient
to argue separately the cases of type I and type IT.

Begin with type I. We know from porposition 3.4 that if
QG’G = QG is non-emp:y then G' is split. Let Z and Z' be the
standard modules for G and G', so that V =~ Z 8 Z'. By proposition

3.4 wenmay write Y =28 Y' and X =128 X', where X' and Y' are
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maximal isotropic subspaces of Z' such that 2' = X'®# Y'. Similarly,
if W is any other point in QG, then W=2Z Q&W' with W' a
maximal isotropic subspace of Z'. By proposition 3.5, we may attach to
W' a pair (M',B') where M' ¢ X' is a subspace, and B' is a form
on M', of the same kind as (,), the defining form of G. Also, by
the discussion preceding proposition 1.4, we may attach to W a pair
(M,B) where M c X 1is a subspace, and B 1s a symmetric bilinear

form on M. The relation between (M',B') and (M,B) is seen easily

to be
%) M=28M', and B = (,) 8 B',

(Again one must interpret these tensor products appropriately in the
unitary case (case C).)

Now consider orbits. By means of the defining form (,)' omn
Z', there is defined a faithful pairing between X' and Y'. This

*
allows us to define an isomorphism o:X' + Y’ by the formula
(5) a(x)(y) = (y,x) for x€ X' and yc¥'.

By means of ¢ we have X =2 8 X' = Hom(Y',Z). By proposition 3.3 we
may associate to a G-orbit 0 in X a pair (L',C'), where L'Lg Y!
is a subspace and C' is a formon Y'/L' of the same kind as (,).
Note that the linear span of 0 in X is 2Z 8 a_l(L' ), where
y 4 W,
L'7cyY is the annihilator of L.
Consider simultaneously an orbit 0 with associated pair

(L',C') and a point W ¢ QG, with associated pair (M',B'). Suppose
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that M = Z @ M' dis the span of @ so that oM') =L'Y Then .

is non-zero on (), and since W is G-invariant, considered as

qW’
a function on X, is constant on (). Hence we may speak of the value
qw(O). (We take q, Bas given in proposition 1.4.). Let us compute
this value. Observe that Y'/L' and M' « L't are mutually dual.
Therefore, the space of forms of the same kind as (,) on Y'/L' and
M' are also dual, and two such forms may be paired to yield an element

of F. Precisely, a form C' on Y'/L' defines a map TC,:Y'/L' > M'

by the formula
(6) alTo (y)) (yy) = C'(y,5y;) for y.,y, €Y'/L,
Similarly a form B' on M' defines a map TB,:M' +Y'/L'., We put

(7 {3',c'} = trace(TC,T :)

B

If we trace through the relationships outlined above we find the formula

1
(8) 4,(0) = x(- 3{8",¢™h).
v
Now let W wvary through all elements W of QG whose associated
\d v

pairs are (M',E‘) with M' = M and B’ arbitrary. Consider the sum
(9 5, = txCG{B',C Ny

0 T KRR T

W

L4
We know ZO is supported in M C X. Let 0 be another orbit contained

v w Y

in M. If 0 spans M, then 0 is associated to the pair (L',C'),
v A\

with C' # C'. Elementary Fourier analysis therefore says 20(0) = 0.

On the other hand, clearly ZO(O) is equal to the cardinality of the
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space of forms on M' of the kind of (,), and in particular is non-
zero. Therefore the support of ZO is 0 LJ{Oa} , where the Oa are
G-crbits whose linear span is a proper subséihe of M. By induction
on the dimension of the span of (, we may assume each A(Oa) is a
sum of qw's. By the construction of ZO , therefore, we see we can
continue the induction, and the result is proved.

The proof in the type II case is similar but easier. In this
case we have Vv =~ (Z 8 Z") 9 (Z* 8 Z’*), where 7 and Z' are the

G,0 _ 4G

basic modules for G anl G' respectively. Since @ N, we

* *
may as well take X =29 Z' and Y =2 8 Z' . By proposition 3.4,

QG is in bijection with subspaces M of X of the form M =Z 8 M',
with M' an arbitrary subspace of 2Z'. Furthermore, Q(QG) consists
simply of the characteristic functions of the spaces M. On the other
hand, propositicn 3.4 tells us that each G-orbit 0 in X is deter-
mined by its linear span. Thus it is again clear that an argument by
induction on the dimension of the linear span of 0 will prove the
result.

By proposition 3.4, we see that implicit in theorem 4.1 is a
description of I(G,8) as a G'-module. The following point of view
makes this clearer. Recall from the discussisn preceding proposition 2.6
that the embedding 0Q:) -+ PHX allows us to pull back the hyperplane
section bundie to obtain a line bundle h over §. The bundle h is
Sp(V)-homogenecus, so Sp(V) acts on C(h()), the space of sections

of h. TFurther taking inner products with the Gy Y €2 vyields an
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intertwining map e:HX + C(h(Q)) between  and the natural action
of Sp(V) on C(h(Q)). Since QG is a subvariety of , we may
restrict h to QG. This will give a G'-homogeneous line bundle over
QG. Theorem 4.1 says that if we restrict e to I(G,8), and restrict

the resulting sections of h to QG, we get an injective mapping
G
(10) e 1(6,8) ~ C(h(n ™)) .

Since e is an intartwining operatcr for G', we have described
I(G,8) as a G' submodule of C(h(QG))° In this connection, and for
zeneral reascns also, it is of interest to know the possible G’
submodules of C(h(QG)) and which of these are in the image of eqe
This matter will be taken up more thoroughly later on. Now we wish
simply to point out that the structure of the proof of 4.1 yields some
preliminary information on this score. First, it reduces the question
of the dimension of I(G,§) to counting orbits. Second, we know that
QG has a "cell decomposition' as described in proposition 3.6. We
see from the proof that the restricticn of s to those elements Y
of QG such that the support of qY has dimension at most (dim Z)2
is already faithful. In the other direction the following fact is a
consequence of proposition 3.3.

Corollary 4.11: If (G,G') 1is an irreducible reductive pair,
with Z and Z' as standard modules, and QG non-empty, then
eG:I(G,é) - C(h(QG)) is surjective if and only if the dimension of a

maximal isotropic subspace of Z' 1is no greater than the dimension of a

maximal isotronic subspace of Z.
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Now we will see how the theorem 4.1 describing the §-isotypic

component of leads to a description of the whole representation

,G
o ~» 2and to a duality between G and G'. We will assume (G,G')
,G
is irreducible for this discussion. This arises from two facts.
First, as 1s well-known, the G-intertwining operators for ( are just
* A
the G-invariants for (; & w . Second, if V is the double of V,
v y
and if 7' 1is the double of the basic module for G', then ¥ =2 8 2'.
b
Let ¢' = 6(Z',(,)" # ~(,)"). Recall the injectioms 1, and 1, of
a *
Sp(V) dinto Sp(V). Then on the one hand w 8 w = w o(il X iz) by
n
proposition 2.3. ©On the other hand ((i1 X iz)(G),G') are a reductive
Y

dual pair in Sp. In the language of §3, if the pair (G,G') corres-
ponls to an imbedding j:G = Sp(V), and if -j is the corresponding
mapping when Z' is replaced by Z' , then knowledge of the inter-~
twining operators for the linear Weil representation w(G;j) is the same
as knowledge of the G-invariants for the linear Weil representation
w(G,3 & -3).

In any case, as a preliminary result we may state the following

")

corollary of theorem 4.1. As befcre @ is the variety of maximal
. 3y Ay 2
isotropics in V, and Q:Q - [ (HX) is the operator-valued quantization

P

Y %]
map. We let oG Le the il X 12(G) fixed points in €,

Corollary 4.1.2: Given an (irreducible) reductive dual pair
(G,G") € Sp(V), the algebra of intertwining operators for w|G is

a G Q NG .
spanned by (%7)., The elements of (£7) are linearly independent if

dim Z' 1is at most the dimension of a maximal isotropic subspace of Z.
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By theorem 2.9, the (projectivization of) Q(HG) is a semigroup
containing (G') as a subgroup. Similarly aﬂan) is a semigroup
containing (G). If we were willing to consider that these semigroups
were the correct objects of study, then we could rephrase corollary 4.1.2
to say that each of a(aG) and a(ﬁgv) spanned the others commuting
algebra. Thus there is a perfect duality between the two semigroups. If,
however, we arc more conventional - minded and insist on a duality
between G and G’, rather than the semigroups containing them, we
must do more work. It turns out that this extra work reveals more
interesting sturcture for w.

To begin, fix a classical group G, and consider all linear
Weil representations »f G simultaneously. These form a semigroup
under tensor product, and this semigroup is an image of W', the Witt
group of forms of the kind dual to the defining form of G. There is a
homomorphism deg:al' 7% take a formed space (2',(,)') to the integer
dim Z'. A Well representation of G corresponding to an element of Ny

of degree W/ will ke called a Weil representation of degree £ of G.

Weil representations of degree zero are the trivial representation.
Also there is in W' a unique smallest split form. For type I forms,
this is the hyperbelic plane. For the type II situation, this is just
the class of ocne-dimensional spaces (linss) over TF. The Weil repre-
sentation of G corresponding to this smailest split space is, up to
twisting by &, just the permutation acticn on LZ(Z), where 2Z is

the basic module for G. If this smallest split space arises by
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doubling an anisotropic form (e.g., for WO and WU) then the Weil
representation is precisely the permutation reéresentation, that is,

§ = 1. For the other cases (e.g., WSp and TGL), however, §

may be non-trivial. Since in these cases, the smallest split form
generates /', we may twist all Weil representations by an appropriate
power of §, din such a way that they still form a semigroup under temsor
product, and are homomorphic with LJ', but now the smallest split form
in W' corrasponds exactly to the permutation action of G on LZ(X).

We call the resulting representations modified (linear) Weil represen-

tations. For the rest of this section, all Weil representations will
be understcod to be linear and modified. Modifying the Weil represen-
tations has the effect of making theorem 4.1 into simply a computation
of invariants, rather than of §-eigenvectors.

Let v be the modified Weil representation corresponding to the
smallest split space in W/*'. Let vz be the 2-fold tensor power of wv.
Let w be any modified Weil representation corresponding tec an aniso-
tropic space. (We include the possibility that w is of degree zero,
i.e., trivial). The representations w 8 vz are the modified Weil
representations corresponding to forms of a given Witt type. We will
call them a Witt series of Weil representations. If w. and w, are

1
] * k
members nf the same Witt series, then wg 8 w, =V for

k =-%(deg wl+ deg wz) for G type I, and k = deg w1+ deg w, for
*

G type II. 1In particular Wy 8 W, is split. Therefore theorem 4.1

*

describes the invariants in wl B wz, that is, the intertwining operators
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from Wy to wy * Thus we will use theorem 4.1 to study a given Witt
gseries of G. Then we will discuss the relations between different
Witt series.

We will treat types I and II separately, beginning with type I.
In the representation y of G on LZ(Z), the point mass at the
origin is an invariant vector for G. Furthermore, 2 is implicitly
identified with the first member of a complete polarization (Z,Y)
of a symplectic vector space V. Thus the point mass at the origin is
actually qY, Further, the projection onto 9y commutes with G,
and is actually an element of 'hﬁ, namely the element PY or qé(Y)
in the notations of propcsition 2.7 and theorem 2.9. Inlthe ensuing
discussion we will denote it by P. We will denote the point mass at
0, the image of P, by u. Let @ he any Weil representation of G.

We define an intertwining operator R:w - w ® v by the formula
(11) R(x) = x 8 y, for any x in the space.
*
It is clear that, if R is the adjoint of R, then
* *
(12) RR = Iw, the identity of @, and RR = Iw R P.

Tix an anisotropic Weil representation Wy of Gl and put

w, = u%@ vi. The Wy form a Witt series of Weil representations.

i

Let Ri:wi - wi be the intertwining operator defined by taking

w, =w in (11). For i > j, define Sij by the rules

+1
i

(13) Si+11 = Bye and 8y = RySyge
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*
For 1 f.j’ put Sij = Sji’ and let Sii be the identity omn w; -
From (12) one sees that the Sij satisfy the following rules
(14) Siijk = Sik if i <] f_k or 1 >3 >k or j>15>k
Si4554 = Sy if §>1
sijsji is a projection operator in w; » of the form PU’

in the sense of theorem 2.9, when j < 1.

Let Z! be a formed space representing the element of W o

0
which W corresponds.  Let Zﬂ be the hyperbnlic plane - the minimal
i *
: . 1T = e v
split space. Then wy corresponds to Zi ZO & Zh , and Wy & mj
corresponds to Zi & Zg— = Zij. Let I(wi’“ﬁ) he the space of inter-

twining maps from “ﬁ to Wy - Let Ii* be the variety of maximal

J

isotropic subspaces of Zij' From theorem 4.1, we know that by means

of proposition 3.4 and the quantization map @ = Q.

% 5 the variety Pij

is mapped to a spanning set in I(wi’“ﬁ)' Lat Gi be the isometry

is acted on by Gi X Gj, and I(wi,w ) is

3

a 6, x Gj module, and Q_i_i is equivariant for these actions. The
o

v T1
group of Zi' hen rij

Gi X Gj orbit structure for rij is described in proposition 3.9.

Supposing that i < j, that propcosition says there is one Gi X Gj

orbit for each possible dimemsion 2, 0 < & < i, of isotropic subspace
of Zi. We will denote the ortit corresponding to the isotropic subspaces

of Z' of dimension. % T and refar to it as the stratum of level

i ij, e’
& in Pij' Note that rij,O’

geneous space for Gj acting alone. The following result is more or

the stratum of level zero, is a homo-

less immediate from equations (11) through (14).
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Theorem 4.2: Notations as above
a) For & <1l <j the operator SiZSQj belongs to the stratum
of level i-2 in Qij(Iij)' Thus
(15) Q.. (T ) = L} w, (6GNs, S, .w.(G))
ij 1] Q=Oiiiﬂ,2jjj
and the union is disjoint.

b B i < i id om
b)Y For i < j, consider the map m from Q(Iij,o) X Q(Fij,O)

to I(ug,wj) given by

%
(16) n(s,T) =S T for S,TC Q(Iij,o)'

Then m is equivariant for the obvious actilons of Gj X Gj’ and the

).

image of m is preeisely Q(I, . .
jsJ_l
As we have seen, we may always embed Wy in wi+l' Furthermore,

for small i,‘ the representation wi is quite small, and it grows
with 1 until eventually every representation of G mwmust occur in Wy -

Let wi be the subrepresentation of W, consisting of all isotypic

i
components of w, which do not occur in wj for any j < i. (It
would suffice to take j = i=1). Let wij’ for j < i, be the sum of

all isctypic compeonents of Wy which occur in wjj also. Then clearly
i
an w, = L wij (orthogonal direct sum)

Of course for large 1, some nof the summands will be zero. Of course
orthogonal prcjection onto wij will be in I(wi,wi), and will be a

central idempotent, generating a two-sided ideal I4j in I(wi,wi).
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i
Theorem 4.3: a) For any j < i, the set of operators U QT )
and . k=i 1i,k

form a subsemigroup of Q(Tii). This subsemigroup spans the ideal

3
I I,..
k=0 ik
b) The restriction of G; to wii gencrates the commuting

algebra of G there. In particular, Gé generates the commuting algebra

of G for wo,

Proof: We proceed by induction on i. Tt is clear that the

* J
operators S T, with §,T € I(w,,w,) generate the ideal I I,
J i k=0 ik

J
in I(wi,wi). Therefore theorem 4.2 b) shows Q(Fii,i-j) g_kiolik.

On the other hand, we may assume the result is true for j-i. Further,

from theorem 4.2. a), we know that Q(Tij 2? for 2> 0 actually
j-1 ’
intertwines ®, with I ®, . Therefocre I(w,,w,) is spanned by
E k=0 1K 3ti -1
Q(T,. .) together with intertwining operators with images in I w_, .
1j,0 j k=0 k
Therefore, using 4.2 b) again, we conclude I I is spanned
j-1 k=0 ¥
by I I,, together with QT ), and part a) is proved. Part b)
k=0
follows now from part a), using theorem 4.1 and recalling that

ii,i-j

Ti1,0 = W6y
Turn now to the type II case. Here V, the permutation action
cf G on LZ(Z), generates the semigroup of linecar modified Weil
representations, which are all of the form Vg; for some positive
integer &. In V there are two G-invariant vectors, the point mass at
the origin, and the ccnstant function on Z. We call them “1 and uz.
If v=2¢% Z*, with the usual symplectic form, them Z and Z* are

the two G-invariant maximal isotropic subspaces of V, and u1= Ak >
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and Uy = Qy- Let P and Q respectively be projections onto Yy and
Uoo These are PZ and PZ*’ or qa(z) and qs(z*) in the terminology
of proposition 2.7 and theorem 2.9, For 1 <1i< g, define on vl
an operator Pi by letting Pi act as P on the i-th factor in the
tensor product and as the identity cn all the other factors. Define

Q similarly. Note that the Pi's, the Qj’s and P, and Qj for

i # j, commute. For any triple of integers i, j,k, with 1 <i,j<k<1,

define Tij,k by
1 k i k
(18) T,, ., ={(OP)( I QJ)(N PHC T Q).
135k "o @ geitr Boy=r ¥ g=iHL O

As in the type I case, vQ can be embedded in v2+1. Let vi

be the sum of all the isotypic components in vg which do not occur in
vm for m< &. For m< &, let vi be the sum of the isotypic compo-

nents of vQ which intertwine with vz. We bave the orthogonal direct

sum decomposition

'3
(19) W= g W
m
m=0
Let Izm be the ideal in I(vg;vg) generated hy orthogonal projection
onto vl.
m

Theorem 4.4: Notations as above.
a) The operators {Tij k} defined by (18) form a set of repre-
9
[
gentatives for the G x G orbits in Q(ﬁv (G)).

b) For any m, 0 <m< g the GxG orbits of the T,.
2 - - ij,k
with k >nmn span I . 9-n’ and constitute a subsemigroup of
- , 2=

n=m
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2
v (G
o’ ).
' Ly '8 *Q
c) If Gg is the group dual to V (6) in spz" @2 7),
then Gi restricted to vi generates the commuting algebra of G on
L
\)SL-
Proof: (sketch). It is evident by inspection that Tij K
R/ 5
belongs to I I One checks a) using the definition of P and

—
a=k Ly 4-n

Q and proposition 3.5. From this much c¢) follows. The refinement b)
of corollary 4.1.2 is checked by analyzing all I(vz,vm) in analogy

with theorems 4.2 and 4.3



