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Abstract. We present a previously unpublished proof of the conservativity

of WKL0 over IΣ1 using the Arithmetized Completeness Theorem, which, in

particular, constitutes an ω-interpretation of WKL0 in IΣ1. We also show that
WKL∗

0 is interpretable in I∆0 + exp.

IΣ1 and WKL0 are prominent theories in the study of arithmetic and the foun-
dations of mathematics [3, 8]. The intimate connections between these theories
can best be seen from a fundamental and influential theorem of Leo Harrington’s
which states that every countable model of IΣ1 expands to a model of WKL0. This
theorem, in particular, implies WKL0 is conservative over IΣ1.

In this short note, we demonstrate how (several strengthenings due indepen-
dently to Hájek [2] and Avigad [1] of) Harrington’s theorem can be established
simply by putting together a number of standard facts in the literature. While the
usual proof of Harrington’s theorem is based on tree forcing [8, Section IX.2], our
approach uses instead a version of the Arithmetized Completeness Theorem, which
can be proved by a forcing argument in which the conditions are binary strings of
bounded lengths.

The notation in this paper is more or less standard. Unless otherwise stated,
‘definable’ means ‘parametrically definable’. We assume familiarity with Hájek–
Pudlák [3] and some acquaintance with Simpson [8]. Nevertheless, let us first
briefly review some basic definitions and facts.

The language for first-order arithmetic LI has symbols 0, 1,+,×,6. A bounded
quantifier is one of the form Qx6t, where Q ∈ {∀,∃} and t is a term not involving x.
An LI formula is ∆0 if all the quantifiers it contains are bounded. Formulas of the
form ∃v̄ ϕ(v̄, x̄) where ϕ ∈ ∆0 are called Σ1. A formula θ is ∆1 if, modulo logical
equivalence, both θ and ¬θ are Σ1. The closure of Σ1 under Boolean operations
and bounded quantification is denoted ∆0(Σ1). Axiomatize IΣ1 by the theory of
the non-negative parts of discretely ordered rings (commonly referred to as PA−)
and the induction scheme for Σ1 formulas. Define I∆0 similarly. The theory BΣ1

consists of I∆0 and the Σ1 collection scheme, which asserts that

∀z̄ ∀a
(
∀x6a ∃y ϕ(x, y, z̄)→ ∃b ∀x6a ∃y6b ϕ(x, y, z̄)

)
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whenever ϕ ∈ Σ1. We denote by exp a fixed LI sentence expressing the totality of
x 7→ 2x over I∆0. It is commonly known [3, Sections I.1(c), IV.1(f), and V.1(a)]
that IΣ1 ` BΣ1 + exp and BΣ1 0 exp. Within I∆0 + exp, the usual operations on
sequences and syntactical objects are well behaved [3, Section V.3].

The language for second-order arithmetic LII has a first-order sort for num-
bers and a second-order sort for sets of numbers. We write LII structures as
pairs (M,X ), where M is the universe for the first-order sort, and X is the universe
for the second-order sort. The language LII has a copy of LI on the first-order sort,
and a membership relation linking the two sorts. All LII structures are required
to satisfy the axiom of extensionality. The definitions of Σ0

0,Σ
0
1,∆

0
1, IΣ

0
0, IΣ

0
1, . . .

are analogous to those of ∆0,Σ1,∆1, I∆0, IΣ1, . . . , except that we now allow the
appearance of second-order variables. Weak König’s Lemma asserts that every
unbounded 0–1 tree has an unbounded branch. The theory WKL∗

0 consists of
IΣ0

0 + exp, the ∆0
1 comprehension scheme, and Weak König’s Lemma. Define

WKL0 = WKL∗
0 + IΣ0

1. The following theorem shows that WKL0 is conservative
over IΣ1, i.e., every LI sentence provable in WKL0 is already provable in IΣ1.

Theorem 1 (Hájek, Avigad). Every M |= IΣ1 expands to (M,X ) |= WKL0.

Proof. First, it is well known [3, Corollary I.4.34(2)] that IΣ1 proves the consis-
tency of I∆0 + exp. Second, the Low Arithmetized Completeness Theorem in
Hájek–Pudlák [3, Theorem I.4.27] tells us that, provably in IΣ1, every ∆1-definable
consistent theory has a definable model all of whose Σ0

1 properties are ∆0(Σ1)-
definable. These two facts together yield K |= I∆0+exp properly end extending M
such that whenever c̄ ∈ K and θ is an LI formula,

(∗) {x̄ ∈M : K |= θ(v̄, x̄, c̄) for some v̄ ∈M} is ∆0(Σ1)-definable in M .

As is usual in Arithmetized Completeness Theorem constructions (for example,
that in Paris [6, page 254]), the embedding M → K hinges on the observation
that every a ∈ M is represented by a term ǎ in the LI in M . The image of this
embedding is closed downwards because I∆0 + exp ` ∀x6ǎ

∨∨
i6a x = ı̌ for all a,

provably in IΣ1.
Let us say that an element c ∈ K codes a subset A ⊆M if

A = {i ∈M : ith digit in the binary expansion of c is 1}.

Denote the collection of all subsets of M coded in K by Cod(K/M). A standard
overspill argument [9, Theorem 4.8] shows (M,Cod(K/M)) |= WKL∗

0. For the sake
of completeness, we include a sketch of this argument here. Consider ∆0

1 comprehen-
sion. If A ⊆M that is ∆0

1-definable in (M,Cod(K/M)), then its ∆0
1-ness overspills

into K \M , producing a bound which enables K to see A in a ∆0 way. Bounded
∆0 comprehension, available in K from I∆0 + exp, then gives what we want. Next,
if B is an unbounded 0–1 tree in (M,Cod(K/M)), then its code contains a node
whose length is in K \M by overspill, and the predecessors of such a node trace an
unbounded branch in B. This shows Weak König’s Lemma in (M,Cod(K/M)).

It remains to prove (M,Cod(K/M)) |= IΣ0
1. Notice for each ϕ ∈ Σ0

0, we can
find ψ ∈ ∆0, simply by replacing set parameters by their codes, such that if Ā ∈
Cod(K/M) coded by c̄ ∈ K, then for all x̄ ∈M ,

(M,Cod(K/M)) |= ϕ(x̄, Ā) ⇔ K |= ψ(x̄, c̄).
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Hence, every Σ0
1 property of (M,Cod(K/M)) translates to a ∆0(Σ1) property

of M by (∗). Since IΣ1 proves the induction scheme for ∆0(Σ1) formulas [3,
Lemma I.2.14], this implies (M,Cod(K/M)) |= IΣ0

1, as required. �

A similar proof was independently discovered by F. Félix Lara-Mart́ın [personal
communication]. It solves the second part of Problem 1 in Paris [6]. Analogous
arguments for higher levels of the arithmetic hierarchy can be found in Paris’s
paper. The original proofs by Hájek and Avigad both go via an ω-interpretation
of WKL0 in IΣ1. The reader may consult Section III.1(a) of Hájek–Pudlák [3] for
background information about interpretations.

Definition. An interpretation of an LII theory in an LI theory is an ω-interpretation
if its restriction to the first-order sort is the identity interpretation.

Essentially, an ω-interpretation of an LII theory T in an LI theory T0 is a uniform
recipe for expanding every M |= T0 to (M,X ) |= T . Hájek’s ω-interpretation [2,
Section 3] employs a notion of ‘very low’ sets with respect to which Weak König’s
Lemma is true. Avigad’s ω-interpretation [1] involves a formalization of the usual
forcing proof. While the former of these is slightly cleaner, the latter has the
advantage of being applicable also to general models (M,X ) |= IΣ0

1, not only the
ones in which X is finite. Upon closer inspection, one sees that our proof is uniform
enough to give rise to an ω-interpretation too. Notice our ω-interpretation, unlike
theirs, is iteration-free.

Theorem 2 (Hájek, Avigad). There is an ω-interpretation of WKL0 in IΣ1.

Proof. By looking into the proof of the Low Arithmetized Completeness Theorem,
the reader can verify that the definition (of the elementary diagram) of K in our
proof of Theorem 1 does not depend on M . Since every element of K codes a set
in Cod(K/M), we can use the definition of K as the interpretation of the second-
order sort. The membership relation is interpreted accordingly. (We do not have a
choice on how the other symbols are interpreted.) �

As shown by Simpson and Smith [9, Theorem 4.6], an analogue of Theorem 1
holds at the BΣ1 + exp level: every countable model M |= BΣ1 + exp expands
to (M,X ) |= WKL∗

0. It is not known whether the countability condition can be
omitted here. In particular, it is not known whether there is an ω-interpretation
of WKL∗

0 in BΣ1 + exp. What we can prove here is that WKL∗
0 is interpretable

in BΣ1 + exp. Since BΣ1 + exp is interpretable in I∆0 + exp [2, Theorem 2.4], this
is equivalent to interpretability in I∆0 + exp. It answers Question (5) in Hájek [2].

Corollary 3. There is an interpretation of WKL∗
0 in I∆0 + exp.

Proof. We only describe how to make a model of WKL∗
0 from a model of I∆0 +exp.

Modulo the finite axiomatizability of IΣ1 [3, Theorem I.2.52], it is straightforward
to check that this description gives rise to an interpretation.

Take any M |= I∆0 + exp. If M |= IΣ1, then apply Theorem 2. Suppose
M 6|= IΣ1. Follow Ko lodziejczyk–Yokoyama [5, Lemma 9] to find a parameter-free
Σ1-definable proper cut I of M that is closed under x 7→ 2x. Then (I,Cod(M/I)) |=
WKL∗

0 as in our proof of Theorem 1. This is the model we want. �
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Having known the conservativity of a stronger theory T over a weaker theory T0,
the natural question is then whether T helps make proofs of theorems of T0 sig-
nificantly shorter. Ignjatovic [4, Chapter 3] observed that ω-interpretations can be
utilized to obtain negative answers to such questions.

Definition. Let T0 be (an axiomatization of) a theory, and T be an extension
of T0, possibly in a bigger language. We say T has at most polynomial speed-up
over T0 if there exists n ∈ N such that for every proof from T with ` symbols of
a theorem of T0, there exists a proof from T0 with at most `n + n symbols of the
same conclusion.

It does not matter whether we mean sequence-proofs or tree-proofs here because
these two notions are polynomially related to each other [7, Theorem 4.1]. With
sequence-proofs in mind, it is easy to see that for every finitely axiomatized LII the-
ory T , if one has an ω-interpretation of T in an LI theory T0, then T has at most
polynomial speed-up over T0.

Corollary 4 (Hájek, Avigad). WKL0 has at most polynomial speed-up over IΣ1.

Proof. Since WKL0 is finitely axiomatizable [8, Lemma VIII.2.10], this follows di-
rectly from Theorem 2. �

We do not know whether WKL∗
0 has at most polynomial speed-up over I∆0+exp.
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Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Austria

E-mail address: tin.lok.wong@univie.ac.at


