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Abstract. In this paper we study the performance of time-splitting spectral approximations for
general nonlinear Schrödinger equations (NLS) in the semiclassical regimes, where the Planck con-
stant ε is small. The time-splitting spectral approximation under study is explicit, unconditionally
stable and conserves the position density in L1. Moreover it is time-transverse invariant and time-
reversible when the corresponding NLS is. Extensive numerical tests are presented for weak/strong
focusing/defocusing nonlinearities, for the Gross–Pitaevskii equation, and for current-relaxed quan-
tum hydrodynamics. The tests are geared towards the understanding of admissible meshing strategies
for obtaining “correct” physical observables in the semiclassical regimes. Furthermore, comparisons
between the solutions of the NLS and its hydrodynamic semiclassical limit are presented.
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1. Introduction. Many problems of solid state physics require the solution of
the following general nonlinear Schrödinger equation (NLS) with a small (scaled)
Planck constant ε (0 < ε� 1):

iεuεt +
ε2

2
∆uε − V uε − f(|uε|2)uε − ετ arg(uε)uε = 0, t > 0, x ∈ R

d,(1.1)

uε(x, t = 0) = uε0(x), x ∈ R
d.(1.2)

In this equation, V = V (x) is a given real-valued electrostatic potential, f is a real-
valued smooth function, τ ≥ 0 is a constant relaxation rate, uε = uε(x, t) is the
(complex-valued) wave function, and arg(uε) is defined (up to an additive constant)
as

ε arg(uε(x, t)) = Sε(x, t), ∇Sε = Jε/ρε, when ρε �= 0,(1.3)

where ρε (the position density) and Jε (the current density) are primary physical
quantities and can be computed from the wave function uε:

ρε(x, t) = |uε(x, t)|2,(1.4)

Jε(x, t) = ε Im(uε(x, t) ∇uε(x, t)).(1.5)
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Here “—” denotes complex conjugation.

The general form of (1.1) covers many (non)linear Schrödinger equations arising
in various different applications. For example, when f ≡ 0 and τ = 0, (1.1) reduces to
the linear Schrödinger equation; when V ≡ 0, f(ρ) = βε ρ, and τ = 0, it is the cubic
NLS (called the focusing NLS if βε < 0 and the defocusing NLS if βε > 0); when
V (x) = ω

2 |x|2 with ω > 0 a constant, f(ρ) = ρ and τ = 0, it is related to a Bose–
Einstein condensation (BEC) (Gross–Pitaevskii equation (GPE); cf. [12]). For τ > 0
the equation can be rewritten as a current-relaxed quantum hydrodynamical system
for ρε and Jε (cf. [22, 23, 26]). It is well known that (1.1) propagates oscillations
in space and time, preventing uε from converging strongly as ε → 0. On the other
hand, the weak convergence of uε is, for example, not sufficient for passing to the
limit in the quadratic macroscopic densities (1.4)–(1.5). The analysis of the so-called
semiclassical limit is a mathematically complex issue.

Much progress has been made recently in understanding semiclassical limits of the
linear Schödinger equation, particularly by the introduction of tools from microlocal
analysis, such as defect measures [14], H-measures [33], and Wigner measures [13, 15,
27]. These techniques have provided powerful technical tools to exploit properties of
the linear Schrödinger equation in the semiclassical limit regime, allowing the passage
to the limit ε → 0 in the macroscopic densities by revealing an underlying kinetic
structure. However, these techniques have not been successfully extended to the
semiclassical limit of the (cubically) NLS, which was solved in the one-dimensional
defocusing nonlinearity using techniques of inverse scattering [19, 20]. For results
regarding the semiclassical limit of the focusing NLS, see [7, 30, 11, 9].

The oscillatory nature of the solutions of the Schrödinger equation with small ε
provides severe numerical burdens. Even for stable numerical approximations (or un-
der mesh size and time step restrictions which guarantee stability) the oscillations may
very well pollute the solution in such a way that the quadratic macroscopic quantities
and other physical observables come out completely wrong unless the spatial-temporal
oscillations are fully resolved numerically, i.e., using many grid points per wave length
of O(ε). In [28, 29], the finite difference approximation of the linear Schrödinger equa-
tion with small ε was studied. These results show that, for the best combination of
the time and space discretizations, one needs the following constraints in order to
guarantee good approximations to all (smooth) observables for ε small [28, 29]:

mesh size h = o(ε), time step k = o(ε).(1.6)

Failure to satisfy these conditions leads to wrong numerical observables. In [3], we
studied the time-splitting spectral approximation for the linear Schrödinger equation.
We proved the following meshing strategy which guarantees good approximations of
all observables for ε small [3]:

h = O(ε), k independent of ε.(1.7)

In this paper we systematically study the time-splitting spectral discretizations
of the general NLS in the semiclassical regimes (1.1), (1.2). Such a discretization was
studied previously for ε = O(1) in [32], which does not give any clue to its performance
in the semiclassical regimes, where ε � 1. Since the semiclassical limit behavior of
NLSs is largely unknown, a scheme that performs well (allowing largest possible mesh
size and time step for a given ε) is important for the investigations of the semiclassical
behavior of NLSs and to predict their semiclassical limits.
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The goal of this paper is to understand the resolution capacity and mesh strate-
gies of the time-splitting spectral method for the NLS and investigate the semiclassical
limit of the NLS numerically by using the time-splitting spectral method. Our nu-
merical experiments suggest the following meshing strategies for obtaining the correct
observables: k = O(ε) and h = O(ε) for defocusing nonlinearities and weak O(ε) fo-
cusing nonlinearities; k = o(ε) and h = O(ε) for strong O(1) focusing nonlinearities
(when the Krasny filter is applied). Furthermore, comparisons between the solutions
of the NLS and its formal hydrodynamic semiclassical limit are presented.

The paper is organized as follows. In section 2 we present the formal semiclassical
limit of the NLS (1.1). In section 3 we discuss time-splitting spectral discretizations of
the NLS (1.1), (1.2) in one dimension. In section 4 numerical tests for different types
of NLS are presented. Further comparisons between the solutions of the NLS and its
hydrodynamical semiclassical limit are also made. In section 5 some conclusions are
drawn.

2. Formal semiclassical limit. Suppose that the initial datum uε0 in (1.2) is
rapidly oscillating on the scale ε, given in WKB form:

uε0(x) = A0(x) exp

(
i

ε
S0(x)

)
, x ∈ R

d,(2.1)

where the amplitude A0 and the phase S0 are smooth real-valued functions. Plugging
the radial-representation of the wave function

uε(x, t) = Aε(x, t) exp

(
i

ε
Sε(x, t)

)
=
√
ρε(x, t) exp

(
i

ε
Sε(x, t)

)
(2.2)

into (1.1), one obtains the following quantum hydrodynamic form of the Schrödinger
equation for ρε = |Aε|2, Jε = ρε∇Sε [25]:

ρεt + div Jε = 0,(2.3)

Jε
t + div

(
Jε ⊗ Jε

ρε

)
+∇P (ρε) + ρε∇V + τ Jε =

ε2

4
div(ρε∇2 log ρε),(2.4)

with initial data

ρε(x, 0) = ρε0(x) = |A0(x)|2, Jε(x, 0) = ρε0(x)∇S0(x) = |A0(x)|2 ∇S0(x).(2.5)

(See Grenier [17], Jüngel [22, 23], and Lin and Li [26] for mathematical analyses of this
system.) Here the hydrodynamic pressure P (ρ) is related to the nonlinear potential
f(ρ) by

P (ρ) = ρf(ρ)−
∫ ρ

0

f(s) ds,(2.6)

i.e., f ′ is the enthalpy. Letting ε → 0+, one obtains formally the following Euler
system:

ρt + div J = 0,(2.7)

Jt + div

(
J ⊗ J

ρ

)
+∇P (ρ) + ρ∇V + τ J = 0.(2.8)

Note that 1
τ is the actual relaxation time. In the case f ′ > 0 we expect (2.7), (2.8) to

be the “rigorous” semiclassical limit of (1.1) as long as caustics do not occur, i.e., in
the prebreaking regime. After caustics the dispersive behavior of the NLS takes over
and (2.7), (2.8) are no longer correct. Note that the NLS (1.1) is time reversible iff
τ = 0, i.e., iff no current relaxation occurs.
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3. Time-splitting spectral approximations. In this section we present time-
splitting Fourier spectral approximations of the NLS (1.1), (1.2) for periodic problems.
For simplicity of notation we shall introduce the method in one space dimension
(d = 1). Generalizations to d > 1 are straightforward for tensor product grids and
the results remain valid without modifications. For d = 1, the problem becomes

iεuεt +
ε2

2
uεxx − V (x)uε − f(|uε|2)uε − ετ arg(uε)uε = 0, a < x < b, t > 0,(3.1)

uε(x, t = 0) = uε0(x), a ≤ x ≤ b,(3.2)

uε(a, t) = uε(b, t), uεx(a, t) = uεx(b, t), t > 0.(3.3)

Clearly, the NLS is time-reversible iff τ = 0, so we could equally pose (3.1) for t ∈ R

in this case.
We choose the spatial mesh size h = ∆x > 0 with h = (b− a)/M for M , an even

positive integer, the time step k = ∆t > 0 and let the grid points and the time step
be

xj := a+ j h, tn := n k, j = 0, 1, . . . ,M, n = 0, 1, 2, . . . .

Let Uε,n
j be the approximation of uε(xj , tn) and uε,n be the solution vector at time

t = tn = nk with components Uε,n
j .

The first-order time-splitting spectral method (SP1). From time t = tn
to t = tn+1, the NLS equation (3.1) is solved in two steps. First one solves

iεuεt +
ε2

2
uεxx = 0(3.4)

for one time step (of length k). Then one solves

iεuεt − V (x)uε − f(|uε|2)uε − ετ arg(uε)uε = 0(3.5)

for the same time step. Equation (3.4) will be discretized in space by the Fourier
spectral method and integrated in time exactly. For t ∈ [tn, tn+1], the ODE (3.5)
leaves |uε| invariant in t:

∂t
(|uε|2) = 2 Re(uεt u

ε)

= −2

ε
Re
(
i
(
V (x) + f(|uε|2) + ετ arg(uε)

) |uε|2) = 0
(3.6)

(since V and f are real-valued) and therefore (3.5) becomes

iεuεt − V (x)uε − f(|uε(x, tn)|2)uε − ετ arg(uε)uε = 0 .(3.7)

If τ = 0, (3.7) can be integrated exactly, and the solution is given by

uε(x, t) = e−i(V (x)+f(|uε(x,tn)|2))(t−tn)/ε uε(x, tn), t ∈ [tn, tn+1].(3.8)

If τ �= 0, since |uε| remains invariant for the ODE (3.7), we set

uε(x, t) = |uε(x, tn)| exp
(
i

ε
Sε(x, t)

)
, t ∈ [tn, tn+1],(3.9)
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where Sε is a function to be determined. Plugging (3.9) into (3.7), using (1.4) and
(1.5), one obtains

Sε
t (x, t) + τSε(x, t) + V (x) + f(|uε(x, tn)|2) = 0,(3.10)

Jε(x, t) = ρε(x, tn)S
ε
x(x, t).(3.11)

Differentiating (3.10) with respect to x gives

Jε
t (x, t) + τJε(x, t) +

[
Vx(x) + f(|uε(x, tn)|2)x

]
ρ(x, tn) = 0 .(3.12)

Solving this ODE, one obtains

Jε(x, t) = e−τ(t−tn)Jε(x, tn)

− [Vx(x) + f(|uε(x, tn)|2)x
]
ρ(x, tn)

1− e−τ(t−tn)

τ
.

(3.13)

For τ �= 0 we substitute (3.13) into (3.11), and using (1.4) and (1.5), we find

Sε
x(x, t) =

Jε(x, t)

ρε(x, tn)

=
e−τ(t−tn)Jε(x, tn)

ρε(x, tn)
− [Vx(x) + f(|uε(x, tn)|2)x

] 1− e−τ(t−tn)

τ

= e−τ(t−tn)ε Im

(
uεx(x, tn)

uε(x, tn)

)
− [Vx(x) + f(|uε(x, tn)|2)x

] 1− e−τ(t−tn)

τ
(3.14)

and set

Sε(x, t)

ε
= e−τ(t−tn)

∫ x

a

Im

(
uεv(v, tn)

uε(v, tn)

)
dv − [V (x) + f(|uε(x, tn)|2)

] 1− e−τ(t−tn)

ετ

= e−τ(t−tn) Im

(∫ x

a

uεv(v, tn)

uε(v, tn)
dv

)
− [V (x) + f(|uε(x, tn)|2)

] 1− e−τ(t−tn)

ετ

≡ Sε(uε, t)− [V (x) + f(|uε(x, tn)|2)
] 1− e−τ(t−tn)

ετ
.(3.15)

Plugging (3.15) into (3.9), one obtains the solution of (3.5) in the case τ �= 0. Notice
that Sε(x, t) is determined up to a constant and the choice of the constant does not
affect the observables.

The detailed method is given by

(3.16)

Uε,∗
j =

1

M

M/2−1∑
l=−M/2

e−iεµ2
l k/2 Ûε,n

l eiµl(xj−a), j = 0, 1, 2, . . . ,M − 1,

Uε,n+1
j =


e−i(V (xj)+f(|Uε,∗

j
|2))k/ε Uε,∗

j if τ = 0,

e−i(V (xj)+f(|Uε,∗
j

|2))(1−e−kτ )/ετ+iSε
j (Uε,∗,k) |Uε,∗

j | if τ �= 0,

where Ûε,n
l , the Fourier coefficients of Uε,n, are defined as

µl =
2πl

b− a
, Ûε,n

l =

M−1∑
j=0

Uε,n
j e−iµl(xj−a), l = −M

2
, . . . ,

M

2
− 1,(3.17)
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with

Uε,0
j = uε(xj , 0) = uε0(xj), j = 0, 1, 2, . . . ,M,(3.18)

and Sε(U, k) is an approximation Sε(uε, t) in (3.15). Here we use the composite
trapezoidal rule to obtain Sε numerically:

Sε
j (U, t) = e−τt

j∑
l=1

h

2
Im

(
Ds

x U |x=xl−1

Ul−1
+
Ds

x U |x=xl

Ul

)
,(3.19)

j = 1, 2, . . . ,M, S0(U, k) = 0,

with Ds
x the spectral approximation of ∂x:

Ds
xU |x=xj

=
1

M

M/2−1∑
l=−M/2

iµl Ûl e
iµl(xj−a),(3.20)

with

Ûl =

M−1∑
j=0

Uj e
−iµl(xj−a), l = −M

2
, . . . ,

M

2
− 1.(3.21)

Note that the only time discretization error of this method is the splitting error, which
is O(k) for any fixed ε > 0.

Remark 3.1. If τ �= 0, the spectral accuracy in space is lost due to the use of
the quadrature formula in (3.19). The spatial accuracy can easily be improved by
choosing high-order numerical integration for approximating the integral (3.15) and
using the spectral interpolant of uε,n for pointwise values of the integrand.

The Strang splitting spectral method (SP2). From time t = tn to t = tn+1,
we combine the splitting steps via the standard Strang splitting:

Uε,∗
j =


e−i(V (xj)+f(|Uε,n

j
|2))k/2ε Uε,n

j if τ = 0,

e−i(V (xj)+f(|Uε,n
j

|2))(1−e−kτ )/2ετ+iSε
j (Uε,n,k/2) |Uε,n

j | if τ �= 0,

Uε,∗∗
j =

1

M

M/2−1∑
l=−M/2

e−iεµ2
l k/2 Ûε,∗

l eiµl(xj−a), j = 0, 1, 2, . . . ,M − 1,

Uε,n+1
j =


e−i(V (xj)+f(|Uε,∗∗

j
|2))k/2ε Uε,∗∗

j if τ = 0,

e−i(V (xj)+f(|Uε,∗∗
j

|2))(1−e−kτ )/2ετ+iSε
j (Uε,∗∗,k/2) |Uε,∗∗

j | if τ �= 0,

(3.22)

where Ûε,∗
l , the Fourier coefficients of Uε,∗, are given by

Ûε,∗
l =

M−1∑
j=0

Uε,∗
j e−iµl(xj−a), l = −M

2
, . . . ,

M

2
− 1 ,(3.23)
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and Sε(U, t) is as (3.19). The overall time discretization error now is O(k2) for fixed
ε > 0.

Our numerical experiments later show that, when ε is small, SP1 and SP2 work
very well for all considered cases except when the strong O(1) focusing nonlinearity,
i.e., f(ρ) = −βρ and β = O(1) > 0. In this case, due to the modulational instability
(see [7]), the numerical solution is stable but qualitatively wrong for small ε with the
accumulation of round-off errors. Therefore, we apply the Krasny filter [24] to the
solution at each time step (see also [9] for similar applications). That is, we set to
zero all the Fourier coefficients of the numerical solution whose magnitudes are below
a certain filter threshold. In our numerical experiments, we take the threshold to be
10−12 as all our computations are performed with double precision arithmetic (with 15
accurate digits). This filter is applied only for the strong O(1) focusing nonlinearity.
It is not needed in all other cases.

For benchmark comparisons, we also define another spectral method, the Crank–
Nicolson-type spectral method (CNSP) which was proposed in [9] for the cubic focusing
NLS (V (x) ≡ 0, τ = 0, and f(ρ) = −ρ in (3.1) ):

Uε,n+1
j − Uε,n−1

j

2k
=
iε

4

(
Ds

xxU
ε,n+1

∣∣
x=xj

+ Ss
xxU

ε,n−1
∣∣
x=xj

)
− i
ε
f(|Uε,n

j |2)Uε,n
j , j = 0, 1, . . . ,M − 1,(3.24)

Uε,n+1
0 = Uε,n+1

M , Uε,n+1
1 = Uε,n+1

M+1 ,

Uε,0
j = Uε,1

j = uε0(xj), j = 0, 1, 2, . . . ,M − 1.

Here Ds
xx and Ss

xx are the spectral approximation and smoothed spectral approxima-
tion, respectively, for ∂xx:

Ds
xxU |x=xj

= − 1

M

M/2−1∑
l=−M/2

µ2
l Ûl e

iµl(xj−a),(3.25)

Ss
xxU |x=xj

= − 1

M

M/2−1∑
l=−M/2

µ2
l r

2(l) Ûl e
iµl(xj−a),(3.26)

with

r(l) = e−10(l/M)25 .

In this method, the authors used the smoothed spectral approximation in the explicit
terms in order to suppress aliasing instabilities for long time computations. In fact,
the role of r(l) is to damp the highest modes to suppress aliasing.

The schemes SP1 and SP2 are time reversible, just as the IVP is for the NLS if
τ = 0. Also, a main advantage of the time-splitting methods is their time-transverse
invariance, when τ = 0 in (3.1), just as it holds for the NLS itself. If a constant α is
added to the potential V , then the discrete wave functions Uε,n+1

j obtained from SP1

and SP2 get multiplied by the phase factor e−iα(n+1)k/ε, which leaves the discrete
quadratic observables unchanged. This property does not hold for a finite difference
scheme, like CNSP. The schemes SP1, SP2 were analyzed for the linear Schrödinger
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equation (f = 0, τ = 0) in the semiclassical regime in [3], where the above cited
properties were shown.

Let u = (U0, . . . , UM−1)
T and let ‖·‖l2 be the usual discrete l2-norm, respectively,

on the interval (a, b), i.e.,

‖u‖l2 =

√√√√b− a

M

M−1∑
j=0

|Uj |2.(3.27)

For the stability of the time-splitting spectral approximations SP1 and SP2, we
cite the following lemma, which shows that the total charge is conserved.

Lemma 3.2. The time-splitting spectral schemes SP1 (3.16) and SP2 (3.22) are
unconditionally stable. In fact, for every mesh size h > 0 and time step k > 0,

‖uε,n‖l2 = ‖uε
0‖l2 , n = 1, 2, . . . .(3.28)

Proof. The proof follows the line of the analogous result for the linear case in [3].
Remark 3.3. For the linear Schrödinger equation in the semiclassical regime

0 < ε� 1, it was proved in [3] that h = O(ε), k independent of ε, gives convergence
of the (quadratic) observables.

4. Numerical examples. In our computations, the initial condition (1.2) is
always chosen in the classical WKB form:

uε(x, t = 0) = uε0(x) = A0(x) e
iS0(x)/ε =

√
ρ0(x) e

iS0(x)/ε,(4.1)

with A0 and S0 independent of ε, real-valued, regular and with A0(x) decaying to
zero sufficiently fast as |x| → ∞. We always compute with SP2 on the interval [−8, 8],
which is large enough for the computations such that the periodic boundary conditions
do not introduce a significant (aliasing) error relative to the whole space problem.

In the first two examples, analytic solutions of the semiclassical limit are available
from [8] and are used for numerical comparisons.

Example 4.1 (weak O(ε) cubic defocusing nonlinearity, i.e., in (1.1), V (x) ≡ 0,
f(ρ) = ερ, τ = 0). The initial condition is taken as

A0(x) = e−x2

, S0(x) = −x
2

2
+ ε e−2x2

ln
1

ε
, x ∈ R.(4.2)

We choose these initial data for this example such that the weak limits of the position
density ρε and current density Jε can be obtained analytically [8]. The weak limits
ρ0, J0 of ρε, Jε, respectively, as ε→ 0, are given in [8], e.g., before breaking

ρ0(x, t) =
1

1− t
e−2x2/(1−t)2 , J0(x, t) = − x

(1− t)2
e−2x2/(1−t)2 , 0 ≤ t < 1.

When t → 1, they are singular distributions (“δ-like”). Here we test the meshing
strategy of the time-splitting spectral approximation SP2 (3.22). Figure 1 shows the
numerical results at t = 0.5 (before breaking) with k = 0.02, fixed and independent

of ε, and three different mesh sizes and ε’s, T ε,h
0 = (ε0, h0) = (0.01, 1/128), 1

4T ε,h
0 ,

1
16T ε,h

0 , which corresponds to the meshing strategy h = O(ε) and k independent of ε.

We also output the solutions at t = 1.5 (after breaking) with T ε,h,k
0 = (ε0, h0, k0) =

(0.01, 1/128, 0.005), 1
4T ε,h,k

0 , 1
16T ε,h,k

0 , which corresponds to the meshing strategy
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Fig. 1. Numerical solutions of Example 4.1 by SP2 for the weak O(ε) defocusing nonlinearlity.
V (x) ≡ 0, f(ρ) = ε ρ, τ = 0.0. (a) At t = 0.5 (before breaking) under the meshing strategy h = O(ε),
k = 0.02, independent of ε. (b) At t = 1.5 (after breaking) under h = O(ε), k = O(ε). (c) At t = 1.5
under h = O(ε), k = 0.02 (independent of ε).

h = O(ε) and k = O(ε), and k = 0.02–fixed, T ε,h
0 = (ε0, h0) = (0.04, 1/32), 1

4T ε,h
0 ,

1
16T ε,h

0 , which corresponds to the meshing strategy h = O(ε) and k independent of ε.
In order to get a better visualization in this figure and the following, we depict the
solution in a subinterval instead of the whole computational interval. In this figure
and the following, if a type of line, e.g., “- - - ” or “. . .”, is not visible from the figure,
then it coincides with the solid line.

These experiments suggest that, for weak O(ε) cubic defocusing nonlinearity, the
SP2 or SP1 gives very accurate results in the semiclassical regime under the meshing



36 WEIZHU BAO, SHI JIN, AND PETER A. MARKOWICH

strategy: k independent of ε, h = O(ε) before breaking and h = O(ε), k = O(ε) after
breaking.

Example 4.2 (weak O(ε3/2) cubic defocusing nonlinearity, with V (x) ≡ 0, f(ρ) =
ε3/2ρ3/2, τ = 0). The initial condition is taken as

A0(x) = e−x2

, S0(x) = −x
2

2
, x ∈ R.(4.3)

The initial data are chosen from [8] where the semiclassical limits of the position den-
sity ρε and current density Jε are given analytically. Introduce the Wigner transform

W ε(uε)(x, ξ, t) =
1

2π

∫
uε
(
x− εv

2
, t
)
ūε
(
x+

εv

2
, t
)
eiξv dv,(4.4)

(cf. [13, 15, 27, 8]). The Wigner measure (i.e., the weak limit of W ε(uε) as ε → 0+)
of this problem is given in [8]:

µ(x, ξ, t) =


1

1−t

∣∣∣A0

(
x

1−t

)∣∣∣2 dx⊗ δ
(
ξ − x

t−1

)
, t < 1,

1
t−1

∣∣∣ZA0

(
x

1−t

)∣∣∣2 dx⊗ δ
(
ξ − x

t−1

)
, t > 1;

where the operator Z is related to the scattering operator [8]. From the above formula
we know that for fixed t, the “peak” of the Wigner function is the line ξ = x

t−1 in the

x − ξ plane. The weak limits ρ0, J0 of ρε, Jε, respectively, as ε → 0, are the zeroth
and first moments of µ, respectively.

As a postprocessing we compute numerically the Wigner function corresponding
to the wave function obtained by SP2. After obtaining the solution of the NLS (3.1),
we compute the Wigner function via (4.4) by using the composite trapezoidal quadra-
ture formula on a very fine grid of an interval in the v-axis for each fixed (x, ξ). Here
we also test the meshing strategy of SP2. Figure 2 shows the surface plot and contour
plot of W ε(uε)(x, ξ, t) for ε = 0.04 at t = 0.5 (before breaking, peak line at ξ = −2x),
t = 1.0 (peak line at x = 0), and t = 1.5 (after breaking, peak line at ξ = 2x).
Furthermore, Figure 3 shows the results at t = 0.5 (before breaking) with k = 0.02,

independent of ε when we choose T ε,h
0 = (0.04, 1/32), 1

4T ε,h
0 , 1

16T ε,h
0 corresponding to

the meshing strategy h = O(ε) and k independent of ε, and at t = 1.5 (after breaking)

when we choose T ε,h,k
0 = (0.01, 1/128, 0.005), 1

4T ε,h,k
0 , 1

16T ε,h,k
0 , which corresponds to

the meshing strategy h = O(ε) and k = O(ε), and finally the same set of parameters
for ε and h (h = O(ε)) with k = 0.02 fixed and independent of ε.

From Figure 2 we can see that the peak line of the numerical Wigner function is
at the exact position and moves at the correct speed of the analytic solution. Figure 3
indicates that the same meshing strategy is required for the weak O(ε3/2) defocusing
nonlinearity as for the weak O(ε) nonlinearity.

Example 4.3 (strong O(1) cubic defocusing nonlinearity, V (x) ≡ 0, f(ρ) = ρ,
τ = 0). The initial condition is taken as

A0(x) =

{
1− |x|, |x| < 1,
0, otherwise;

S0(x) = − ln(ex + e−x), x ∈ R.(4.5)

These initial data are not analytic at x = 0 and x = ±1. For numerical study
of NLSs with cubic defocusing nonlinearity and analytic initial data, we refer to
[3, 20, 28, 29]. To test the numerical method, for each fixed ε, we compute the
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Fig. 2. Surface plot and contour plot of the Wigner function by SP2 in Example 4.2 for the
weak O(ε3/2) defocusing nonlinearity by using SP2. V (x) ≡ 0, f(ρ) = ε3/2 ρ3/2, τ = 0.0, ε = 0.04,
h = 1

32
, k = 0.02. Left: surface plot; right: contour plot. (a) t = 0.5, (b) t = 1.0, (c) t = 1.5.

numerical solution with a very fine mesh, e.g., h = 1
4096 , and a very small time step,

e.g., k = 0.00001, as the reference “exact” solution uε. Figure 4 shows the numerical
results at t = 0.5 with T ε,h,k

0 = (0.04, 1/32, 0.01), 1
4T ε,h,k

0 , 1
16T ε,h,k

0 corresponding to
the meshing strategy h = O(ε) and k = O(ε), and the results by choosing k = 0.01

fixed, T ε,h
0 = (0.04, 1/32), 1

4T ε,h
0 , 1

16T ε,h
0 , which corresponds to the meshing strategy

h = O(ε) and k independent of ε. In Figure 5 we show ρ = |uε|2 in space-time for
ε = 0.0025.

To verify the weak convergence (in the x-variable) of ρε as ε → 0, we compute
the integral ∫ x

−∞
ρε(s, t) ds(4.6)
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Fig. 3. Numerical solutions in Example 4.2 for the weak O(ε3/2) defocusing nonlinearity by
using SP2. V (x) ≡ 0, f(ρ) = ε3/2 ρ3/2, τ = 0.0. (a) At t = 0.5 (before breaking) under h = O(ε),
k = 0.02, independent of ε. (b) At t = 1.5 (after breaking) under h = O(ε), k = O(ε). (c) At t = 1.5
under h = O(ε), k = 0.02, independent of ε. In this figure and the following, if a type of line, e.g.,
“- - - ”, is not visible from the figure, it means that it coincides with the solid line.

for various ε’s. Figure 6 displays this integral (using the reference “exact” solution)
at t = 0.5 for three different values of ε: 0.04, 0.01, and 0.0025. Figure 6 clearly
demonstrates the strong convergence of the position density integral as ε goes to zero.

Example 4.4 (weak O(ε) cubic focusing nonlinearity, V (x) ≡ 0, f(ρ) = −ερ,
τ = 0). The initial condition is taken as

A0(x) = e−x2

, S0(x) = − ln(ex + e−x), x ∈ R.(4.7)

This set of compressional initial data was widely used for numerical study of the
semiclassical limits of the linear Schrödinger equation [3, 28, 29] and the NLS with
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Fig. 4. Numerical solutions at t = 0.5 in Example 4.3 for the strong O(1) defocusing nonlin-
earity by using SP2. V (x) ≡ 0, f(ρ) = ρ, τ = 0. “—”: “exact” solution, “+ + +”: numerical

solution. (a) T ε,h,k
0 = (0.04, 1/32, 0.01), (b) 1

4
T ε,h,k
0 , (c) 1

16
T ε,h,k
0 . Here h = O(ε), k = O(ε).

cubic defocusing nonlinearity [3, 28, 29, 20]. Here we use it for the NLS with weak
O(ε) cubic focusing nonlinearity. The reference “exact” solution uε is obtained in
the same way as in Example 4.3. Figure 7 shows the numerical results at t = 1.5
with T ε,h,k

0 = (0.04, 1/32, 0.02), 1
4T ε,h,k

0 , 1
16T ε,h,k

0 , which corresponds to the meshing

strategy h = O(ε) and k = O(ε), and the solutions by choosing k = 0.02 fixed, T ε,h
0 =

(0.04, 1/32), 1
4T ε,h

0 , 1
16T ε,h

0 , which corresponds to the meshing strategy h = O(ε) and
k independent of ε. Figure 8 plots ρ = |uε|2 in space-time for ε = 0.0025. Figure 9
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Fig. 4. (cont.) k = 0.01. (d) T ε,h
0 = (0.04, 1/32). (e) 1

4
T ε,h
0 . (f) 1

16
T ε,h
0 . Here h = O(ε), k is

independent of ε.

shows the position density integral (4.6) at t = 1.5 for four different values of ε: 0.04,
0.01, 0.0025, and 0.000625.

Figures 1, 3, 5, and 7 seem to suggest the following meshing strategy in order to
guarantee good approximations of observables for defocusing nonlinearities and weak
O(ε) focusing nonlinearities:

h = O(ε), k = O(ε).(4.8)

A weaker constraint on the meshing, e.g., h = O(ε) and k independent of ε, gives
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Fig. 5. Evolution of the position density in Example 4.3 for ε = 0.0025.
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Fig. 6. Indefinite integrals of the density ρε(x, t = 0.5) in Example 4.3 illustrating weak con-
vergence.
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Fig. 7. Numerical solutions at t = 1.5 in Example 4.4 for the weak O(ε) focusing nonlinearity
by using SP2. V (x) ≡ 0, f(ρ) = −ε ρ, τ = 0. “—”: “exact” solution, “+ + +”: numerical solution.

(a) T ε,h,k
0 = (0.04, 1/32, 0.02). (b) 1

4
T ε,h,k
0 . (c) 1

16
T ε,h,k
0 . Here h = O(ε), k = O(ε).

incorrect observables.
Example 4.5 (strong O(1) cubic focusing nonlinearity: V (x) ≡ 0, f(ρ) = −ρ,

τ = 0). We present computations for two types of initial values A0 and S0:
I. zero initial phase data:

A0(x) = e−x2

, S0(x) = 0, x ∈ R;(4.9)
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Fig. 7. (cont.) k = 0.02. (d) T ε,h
0 = (0.04, 1/32). (e) 1

4
T ε,h
0 . (f) 1

16
T ε,h
0 . Here h = O(ε), k is

independent of ε.

II. symmetric initial data with nonzero phase:

A0(x) = e−x2

, S0(x) =
1

ex + e−x
, x ∈ R.(4.10)

These sets of initial data were already used in [9] for numerical study of the semiclas-
sical limits of the NLS with cubic focusing nonlinearity by using a different numerical
method. Here we use them to study our numerical method SP2. In fact, the initial
data are very similar to the pure soliton data studied by Miller and Kamvissis [30]:
A0(x) = 2sech(x), S0(x) = 0. For Miller and Kamvissis’s data, the Zakharov–Shabat
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Fig. 8. Evolution of the position density in Example 4.4 for ε = 0.0025.
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Fig. 9. Indefinite integrals of the density ρε(x, t = 1.5) in Example 4.4 illustrating weak con-
vergence.



TIME-SPLITTING SPECTRAL DISCRETIZATION OF NLS 45

0

0.2

0.4

0.6

0.8

1 0
0.5

1
1.5

2

0

5

10

15

t

ε=0.1

x

ρ

Fig. 10. Evolution of the position density in Example 4.5 with zero initial phase data for ε = 0.1.

operator has pure imaginary eigenvalues and the reflection coefficients are exactly
zero. For our data set I, the eigenvalues are almost pure imaginary and the reflection
coefficients are exponentially small for small ε; for set II, the eigenvalues are symmet-
ric about the pure imaginary axis and are located roughly on a convex “parabola”
whose vertex is at the origin [9, 7]. They illustrate the main numerical difficulties and
qualitative phenomena for the focusing NLS. The reference “exact” solution uε is
obtained in the same way as in the Example 4.3. One sees “seas of solitons” after the
formation of caustics. Figures 10–12 show ρε = |uε|2 in space-time with zero initial
phase data and ε = 0.1, 0.05, and 0.025, respectively. Figure 13 shows the position
density integral (4.6) at t = 1.2 for five different ε’s: 0.1, 0.05, 0.025, 0.0125, and
0.00625.

To compare SP2 with the CNSP, in Figure 14 we show the numerical density ρε

for zero initial phase data at t = 0.8 and t = 1.2 obtained by the two methods with
T ε,h

0 = (0.2, 1/32) and k0 = 0.01, 1
2T ε,h

0 and 1
4k0,

1
4T ε,h

0 and 1
40k0, which corresponds

to the meshing strategy h = O(ε) and k = o(ε).
In Figure 15 we show ρε = |uε|2 in space-time for the nonzero initial phase data

for ε = 0.025. Figure 16 shows the indefinite integral at t = 1.0 for ε = 0.05, 0.025,
0.0125, and 0.00625. Figure 17 shows the comparison between SP2 and CNSP for
the nonzero initial phase data. Figure 18 depicts the densities at t = 0.2, 0.3, 0.4 for
ε = 0.0125 and the nonzero initial phase data obtained by SP2 with and without the
Krasny filter.

Figures 14 and 17 show that SP2 gives much better density approximations than
those obtained by the CNSP using the same mesh size and time step. Figure 18 shows
that, for the strong O(1) focusing nonlinearity the Krasny filter is needed for small ε
in order to obtain the correct solution to longer times. In fact, the solution obtained
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Fig. 11. Evolution of the position density in Example 4.5 with zero initial phase data for ε = 0.05.
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Fig. 12. Evolution of the position density in Example 4.5 with zero initial phase data for
ε = 0.025.



TIME-SPLITTING SPECTRAL DISCRETIZATION OF NLS 47

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

1.2

x

In
de

fin
ite

 In
te

gr
al

Fig. 13. Indefinite integrals of the density ρε(x, t = 1.2) in Example 4.5 with zero initial phase
data illustrating weak convergence. Curves with more “corners” correspond to smaller ε’s, with
ε = 0.1, 0.05, 0.025, 0.0125, and 0.00625.

by SP2 without the filter is not even with respect to x = 0 while the correct solution
is an even function. This was due to the round-off error which is an issue of concern
for physically unstable problems. Our numerical experiment indicates the following
meshing strategy for strong O(1) focusing nonlinearity (using Krasny’s filter):

h = O(ε), k = o(ε).

Example 4.6 (cubic nonlinearity with confining potential: V (x) = ωx2

2 , f(ρ) =
βρ, τ = 0). This is the GPE related to BEC; see [12]. For the physical background
and mathematical model of the BEC, we refer to [18, 31, 1, 2], and for a systematic
numerical study of the GPE in terms of the BEC, see [5, 6, 4]. BEC occurs when
interacting trapped bosons are cooled down to a temperature below the critical one.
Then the particles fall into the same quantum mechanical ground state. The GPE de-
scribes the evolution of this ground state due to, say, a change in the trap frequencies.
Here we report only sample computation for the GPE, where we chose the following
initial condition (nonground state!):

A0(x) = e−x2

, S0(x) = − ln(ex + e−x), x ∈ R.(4.11)

Figure 19 shows the density ρε = |uε|2 of the solutions in space-time for the defocusing
nonlinearity, i.e., β = 1, with ε = 0.01 for different ω. Figure 20 shows similar results
for the focusing nonlinearity, i.e., β = −1 with ε = 0.025 for different ω’s.

Figures 19 and 20 illustrate the fact that the confinement becomes stronger as ω
increases.
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Fig. 14. Comparison of SP2 and CNSP in Example 4.5 for zero initial phase data. (a) T ε,h
0 =

(0.2, 1/32) and k0 = 0.01; (b) 1
2
T ε,h
0 and 1

4
k0; (c)

1
4
T ε,h
0 and 1

40
k0. Here h = O(ε), k = o(ε).

Example 4.7 (comparison between the solution of the NLS (3.1) and its hydro-
dynamical limit (2.7), (2.8) in the defocusing case, V (x) = 0.0, f(ρ) = γ

γ−1ρ
γ−1).

Accordingly, in (2.6),

P (ρ) = ργ , γ > 1.

The initial condition is taken as

A0(x) = e−x2

, S0(x) =
1

e3x + e−3x
, x ∈ R.(4.12)

The system (2.7)–(2.8) is solved by the second-order relaxed scheme [21]. Figure 21
shows the solutions of the Schrödinger equation (3.1) and (2.7), (2.8) at different times
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Fig. 15. Evolution of the position density in Example 4.5 with nonzero initial phase data for
ε = 0.025.

with different values of γ and τ . In this figure, “SHDE” represents the solution of
the hydrodynamic equations (2.7), (2.8), while the other lines represent the solution
of the Schrödinger equation with various values of ε. Figure 22 shows ρε = |uε|2 in
space-time with γ = 1.4 and ε = 0.01 for different values of τ .

Figure 21 indicates that, when the solution of (2.7), (2.8) is smooth (no caustics,
i.e., before breaking), the first two observables of the solution of the Schrödinger
equation (1.1) converge to the solution of the formal hydrodynamic limit when ε→ 0.
On the contrary, when a shock appears in the solution of (2.7), (2.8), its location
and speed are different from that of the Schrödinger equation. One also sees that the
larger τ , the later the shock appears. Furthermore when τ is sufficiently large, i.e.,
with a sufficiently small relaxation time, no shock appears in the solution of (2.7),
(2.8) (on the computed interval).

5. Conclusions. Time-splitting spectral approximations for the NLS in the
semiclassical regimes (i.e., for small scaled Planck constant ε) were studied. The dis-
cretization method is a time-splitting method with the Fourier spectral approximation
of the spatial derivative. This method conserves the total charge, is time-reversible,
time-transverse invariant when the corresponding Schrödinger equation is, and is very
effective in capturing oscillatory solutions of the NLS for small ε.

Our numerical study suggests the following meshing strategies for obtaining the
“correct” observables: k = O(ε) and h = O(ε) for defocusing nonlinearities and
weak O(ε) focusing nonlinearities, k = o(ε) and h = O(ε) for strong O(1) focusing
nonlinearities. Numerical results for the NLS related to BEC are also presented.
Furthermore, comparisons between the solution of the nonlinear Schrödinger equation



50 WEIZHU BAO, SHI JIN, AND PETER A. MARKOWICH

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

1.2

x

In
de

fin
ite

 In
te

gr
al

t=1.0

Fig. 16. Indefinite integrals of the density ρε(x, t = 1.0) in Example 4.5 with nonzero initial
phase data illustrating weak convergence. Curves with more “oscillations” correspond to smaller ε.
Here ε = 0.1, 0.05, 0.025, 0.0125, and 0.00625.

and its formal semiclassical limit (hydrodynamic equations) are presented. Before
shocks appear, the observables of the solution of the Schrödinger equation converge
to the solution of its semiclassical limit (Euler system) when the (scaled) Planck
constant ε → 0 (cf. Grenier [17]). On the contrary, after shocks appear, the shock
speeds of the Schrödinger equation and its formal semiclassical limit are different.

Acknowledgments. We thank Norbert J. Mauser, Hans P. Stimming, and Chi-
Wang Shu for their helpful discussions.
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Fig. 17. Comparison of SP2 and CNSP in Example 4.5 for nonzero initial phase data. (a)
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Fig. 19. (cont.) (c) ω = 4.0; (d) ω = 16.0.
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Fig. 20. Evolution of the position density in Example 4.6 for the focusing case, i.e., β = −1,
ε = 0.025. (a) ω = 0; b). ω = 1.0.
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Fig. 20. (cont.) (c) ω = 4.0; (d) ω = 16.0.
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Fig. 21. Numerical solutions in Example 4.7. (a) τ = 0.0; (b) τ = 0.2; (c) τ = 10.0. I.
γ = 2.0, at time t = 0.2.
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Fig. 21. (cont.) II. γ = 2.0 at time t = 1.0. (d) τ = 0.0; (e) τ = 0.2; (f) τ = 10.0.



TIME-SPLITTING SPECTRAL DISCRETIZATION OF NLS 59

Position density Current density

(g)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

ρ

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

x

J

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

(h)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

ρ

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

(i)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

x

ρ

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

0 0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

x

J

t=0.2

ε=0.025
ε=0.1  
ε=0.4  
SHDE          

Fig. 21. (cont.) III. γ = 1.4 at time t = 0.2. (g) τ = 0.0; (h) τ = 0.2; (i) τ = 10.0.
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Fig. 21. (cont.) IV. γ = 1.4 at time t = 1.4. (j) τ = 0.0; (k) τ = 0.2; (l) τ = 10.0.
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Fig. 22. Evolution of the position density in Example 4.7 for the defocusing case, i.e., γ = 1.4,
ε = 0.01. (a) τ = 0.0; (b) τ = 0.2.
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Fig. 22. (cont.) (c) τ = 1.0; (d) τ = 10.0.
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tions Appl., Birkhäuser, Basel, 2001.

[24] R. Krasny, A study of singularity formulation in a vortex sheet by the point-vortex approxi-
mation, J. Fluid Mech., 167 (1986), pp. 65–93.

[25] L. Laudau and F. Lifschitz, Quantum Mechanics: Non-relativistic Theory, Pergamon Press,
New York, 1977.

[26] C.K. Lin and H. Li, Semiclassical Limit and Well-Posedness of Schödinger-Poisson and Quan-
tum Hydrodynamics, preprint.

[27] P.A. Markowich, N.J. Mauser, and F. Poupaud, A Wigner function approach to semiclas-
sical limits: Electrons in a periodic potential, J. Math. Phys., 35 (1994), pp. 1066–1094.

[28] P.A. Markowich, P. Pietra, and C. Pohl, Numerical approximation of quadratic observables



64 WEIZHU BAO, SHI JIN, AND PETER A. MARKOWICH

of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81 (1999), pp. 595–
630.

[29] P.A. Markowich, P. Pietra, C. Pohl, and H.P. Stimming, A Wigner-measure analysis
of the Dufort–Frankel scheme for the Schrödinger equation, SIAM J. Numer. Anal., 40
(2002), pp. 1281–1310.

[30] P.D. Miller and S. Kamvissis, On the semiclassical limit of the focusing nonlinear
Schrödinger equation, Phys. Lett. A, 247 (1998), pp. 75–86.
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