
EFFICIENT AND STABLE NUMERICAL METHODS FOR THE
GENERALIZED AND VECTOR ZAKHAROV SYSTEM∗

WEIZHU BAO† AND FANGFANG SUN†

SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 1057–1088

Abstract. We present efficient and stable numerical methods for approximations of the gen-
eralized Zakharov system (GZS) and vector Zakharov system for multicomponent plasma (VZSM)
with/without a linear damping term. The key points in the methods are based on (i) a time-splitting
discretization of a Schrödinger-type equation in GZS or VZSM, (ii) discretizing a nonlinear wave-type
equation by a pseudospectral method for spatial derivatives, and (iii) solving the ordinary differen-
tial equations (ODEs) in phase space analytically under appropriate chosen transmission conditions
between different time intervals or applying Crank–Nicolson/leap-frog for linear/nonlinear terms for
time derivatives. The methods are explicit, unconditionally stable, and of spectral-order accuracy
in space and second-order accuracy in time. Moreover, they are time reversible and time transverse
invariant when there is no damping term in GZS or VZSM, conserve (or keep the same decay rate of)
the wave energy as that in GZS or VZSM without a (or with a linear) damping term, and give exact
results for the plane-wave solution. Extensive numerical tests are presented for plane waves and
solitary-wave collisions in one-dimensional GZS, and we also give the dynamics of three-dimensional
VZSM to demonstrate our new efficient and accurate numerical methods. Furthermore, the methods
are applied to study the convergence and quadratic convergence rates of VZSM to GZS and of GZS
to the nonlinear Schrödinger (NLS) equation in the “subsonic limit” regime (0 < ε � 1), where the
parameter ε is inversely proportional to the acoustic speed. Our tests also suggest that the following
meshing strategy (or ε-resolution) is admissible in this regime: spatial mesh size h = O(ε) and time
step k = O(ε).

Key words. generalized Zakharov system, subsonic limit, meshing strategy, time reversible,
time transverse invariant, unconditionally stable, nonlinear Schrödinger equation

AMS subject classifications. 35Q55, 65T40, 65N12, 65N35, 81-08

DOI. 10.1137/030600941

1. Introduction. In this paper, we present new numerical methods for the gen-
eralized Zakharov system (GZS) describing the propagation of Langmuir waves in
plasma:

i ∂tE + ∆ E − αN E + λ|E|2 E + iγ E = 0, x ∈ Rd, t > 0,(1.1)

ε2∂ttN − ∆(N − ν|E|2) = 0, x ∈ Rd, t > 0,(1.2)

E(x, 0) = E(0)(x), N(x, 0) = N (0)(x), ∂tN(x, 0) = N (1)(x), x ∈ Rd,(1.3)

where the complex unknown function E(x, t) is the slowly varying envelope of the
highly oscillatory electric field, the real unknown function N(x, t) is the deviation of
the ion density from its equilibrium value, ε is a parameter inversely proportional to
the acoustic speed, γ ≥ 0 is a damping parameter, and α, λ, ν are all real parameters.
The GZS is time reversible and time transverse invariant if γ = 0 in (1.1). In fact, the
standard Zakharov system (ZS), i.e., ε = 1, ν = −1, λ = 0, γ = 0 in (1.1) and (1.2),
was derived by Zakharov [30] for governing the coupled dynamics of the electric-field
amplitude and the low-frequency density fluctuations of ions. It has subsequently
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become commonly accepted that ZS is a general model for governing interaction of a
dispersive wave and a nondispersive (acoustic) wave. It has important applications in
plasma physics (interactions between Langmuir and ion acoustic waves [30, 25]), in the
theory of molecular chains (the interaction of the intramolecular vibrations forming
Davydov solitons with the acoustic disturbances in the chain [12]), in hydrodynam-
ics (interactions between short-wave and long-wave gravitational disturbances in the
atmosphere [26, 13]), and so on. In three spatial dimensions, ZS was also derived
to model the collapse of caverns [30]. Later, the standard ZS was extended to GZS
[18, 19], the vector Zakharov system (VZS) [28], and the vector Zakharov system for
multicomponents (VZSM) [18, 19].

The global existence of weak solutions of ZS in one dimension is proven in [27,
7, 28], and the existence and uniqueness of smooth solutions for the equations are
obtained on the grounds that smooth initial data are prescribed. The well-posedness
of ZS was recently improved in [7, 8] for one, two, and three dimensions, and extended
for the case with generalized nonlinearity in [11, 14].

Numerical methods for the standard ZS have been studied in the last two decades.
Payne, Nicholson, and Downie [24] proposed a Fourier spectral method, in which only
two-thirds of the Fourier components were used on a particular mesh in the fast Fourier
transform (in fact, this is equivalent to using a numerical filter) in order to suppress
the aliasing errors in their algorithm [24]. Of course, this is not an “optimal” way to
use the spectral method. In [15, 16], Glassey presented an energy-preserving implicit
finite difference scheme for the system and proved its convergence. Later, Chang and
Jiang [9] considered an implicit or semiexplicit conservative finite difference scheme for
the ZS and proved its convergence; Chang, Guo, and Jiang extended their method for
GZS [10]. One can find more numerical study of soliton-soliton collisions using GZS in
[22, 18, 19]. For the finite difference methods of ZS with the best combination of time
and space discretizations, one needs the following constraints in order to guarantee
good numerical approximations in the “subsonic limit” regime, i.e., 0 < ε � 1:

mesh size h = o(ε), time step k = o(hε).

Failure to satisfy these conditions leads to wrong numerical solutions [6]. Recently,
Bao, Sun, and Wei [6] and Sun [29] presented an explicit numerical method for GZS [6]
and VZSM [29]. Their method is time reversible and time transverse invariant when
there is no damping term in GZS, keeps the same decay rate of the wave energy as that
in the GZS, and gives exact results for the plane-wave solution [6, 29]. They showed
the following meshing strategy, which guarantees good numerical approximations for
ε small [6] because the method is of spectral-order accuracy in space and its stability
constraint:

h = O(ε), k = O(hε) = O(ε2).

The aim of this paper is to present new numerical methods for GZS and VZSM,
which are explicit, unconditionally stable, and of spectral-order accuracy in space and
second-order accuracy in time. Moreover, they are time reversible and time transverse
invariant when there is no damping term in GZS or VZSM, conserve (or keep the same
decay rate of) the wave energy as that in GZS or VZSM without (or with) a linear
damping term, and give exact results for the plane-wave solution. More importantly,
compared to that of the method in [6, 29] when ε is small, the new methods have an
improved meshing strategy for initial data with O(ε) wavelength:

h = O(ε), k = O(ε).
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In fact, the key points in designing the new numerical methods are based on (i) solving
a nonlinear wave-type equation in GZS or VZSM in phase space analytically under
appropriate chosen transmission conditions between different time intervals, where
this kind of discretization for time derivatives is different from the method for GZS
used in [6], and (ii) a time-splitting discretization of a Schrödinger-type equation
[1, 2, 3, 4] in GZS or VZSM.

The paper is organized as follows. In section 2 we present the VZSM; simplify
it to get the generalized vector Zakharov system (GVZS), standard VZS, GZS, and
standard ZS; reduce it to the vector nonlinear Schrödinger (VNLS) equation and NLS
equation; and generalize it with a linear damping term to arrest blowup. In section
3 we present new numerical methods for GZS. In section 4 we extend these methods
to VZSM. In section 5 numerical tests are reported for GZS and VZSM. In section 6
some conclusions are drawn.

2. The vector Zakharov system (VZS). In this section, we present VZSM,
reduction from VZSM to GVZS, from GVZS to GZS, from GVZS to the VNLS equa-
tion, from GZS to the NLS equation, and generalization of GZS or GVZS with a linear
damping term to arrest blowup.

2.1. The VZS for multicomponent plasma (VZSM). The standard VZS
can be derived [28] from the two-fluid model governing a plasma as two interpenetrat-
ing fluids combining an electron fluid and an ion fluid by multiple-scale modulation
analysis:

i ∂tE + a ∆E + (1 − a) ∇(∇ · E) −N E = 0,(2.1)

ε2 ∂ttN − ∆N = ∆|E|2, x ∈ Rd, t > 0,(2.2)

where d = 1, 2, or 3; x = (x1, . . . , xd)
T is the Cartesian coordinate; the complex

unknown vector function E(x, t) = (E1(x, t), . . . , Ed(x, t))
T is the slowly varying en-

velope of the highly oscillatory electric field; N = N(x, t) is the deviation of the ion
density from its equilibrium value; and a > 0 is a positive constant. The VZS (2.1),
(2.2) is commonly used to govern the coupled dynamics of the complex envelope of
the electric field oscillations near the electron plasma frequency and the low-frequency
density fluctuations of the ions. When d = 3, (2.1) is also written as (see [28])

i ∂tE − a∇× (∇× E) + ∇(∇ · E) −N E = 0.(2.3)

The VZS (2.1), (2.2) can be easily generalized to a physical situation when the
dispersive waves interact with M different acoustic modes, e.g., in a multicomponent
plasma, which may be described by the following VZSM [28, 18, 19]:

i ∂tE + a ∆E + (1 − a) ∇(∇ · E) − E

M∑
J=1

NJ = 0, x ∈ Rd, t > 0,(2.4)

ε2
J ∂ttNJ − ∆NJ + νJ ∆|E|2 = 0, J = 1, . . . ,M,(2.5)

where the real unknown function NJ is the Jth-component deviation of the ion density
from its equilibrium value, εJ > 0 is a parameter inversely proportional to the acoustic
speed of the Jth-component, and νJ are real constants.

The VZSM (2.4), (2.5) is time reversible and time transverse invariant, and pre-
serves the following three conserved quantities. They are the wave energy

DV ZSM =

∫
Rd

|E(x, t)|2 dx,(2.6)
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the momentum

PV ZSM =

∫
Rd

⎡⎣ i
2

d∑
j=1

(
Ej ∇Ej − Ej ∇Ej

)
−

M∑
J=1

ε2
J

νJ
NJVJ

⎤⎦ dx,(2.7)

and the Hamiltonian

HV ZSM =

∫
Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 +

M∑
J=1

NJ |E|2

− 1

2

M∑
J=1

(
ε2
J

νJ
|VJ |2 +

1

νJ
N2

J

)]
dx,(2.8)

where here and in the following f̄ denotes the conjugate of any function f , and the
flux vector VJ = ((vJ)1, . . . , (vJ)d)

T for the Jth component is introduced through
the equations

∂tNJ = −∇ · VJ , ∂tVJ = − 1

ε2
J

∇(NJ − νJ |E|2), J = 1, . . . ,M.(2.9)

2.2. Reduction from VZSM to GVZS. In the VZSM (2.4)–(2.5), if we choose
M = 2 and assume that 1/ε2

2 � 1/ε2
1, i.e., that the acoustic speed of the second

component is much faster than that of the first component, then formally the fast
nondispersive component N2 can be excluded by means of the relation

N2 = ν2 |E|2 + ε2
2 ∆−1∂ttN2 ≈ ν2 |E|2 + O(ε2

2) when ε2 → 0.(2.10)

Plugging (2.10) into (2.4), the VZSM (2.4), (2.5) is reduced to GVZS with N = N1,
ν = ν1, ε = ε1, λ = −ν2, and α = 1:

i ∂tE + a ∆E + (1 − a) ∇(∇ · E) − α N E + λ |E|2E = 0,(2.11)

ε2∂ttN − ∆N + ν∆|E|2 = 0, x ∈ Rd, t > 0.(2.12)

The GVZS (2.11), (2.12) is time reversible, time transverse invariant, and pre-
serves the following three conserved quantities, i.e., the wave energy, momentum, and
Hamiltonian:

DGV ZS =

∫
Rd

|E(x, t)|2 dx,(2.13)

PGV ZS =

∫
Rd

⎡⎣ i
2

d∑
j=1

(
Ej ∇Ej − Ej ∇Ej

)
− αε2

ν
NV

⎤⎦ dx,(2.14)

HGV ZS =

∫
Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 + αN |E|2 − λ

2
|E|4

− α

2ν
N2 − αε2

2ν
|V|2
]
dx,(2.15)

where the flux vector V = (v1, . . . , vd)
T is introduced through the equations

∂tN = −∇ · V, ∂tV = − 1

ε2
∇(N − ν|E|2).(2.16)
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In the case of M = 2, ν = ν1; ε = ε1, N = N1, and V = V1 in (2.7) and (2.8);
and λ = −ν2, α = 1 in (2.14), (2.15), letting ε2 → 0 and noting (2.10), we get a
formally quadratic convergence rate of the momentum and Hamiltonian from VZSM
to GVZS in the “subsonic limit” regime of the second component, i.e., 0 < ε2 � 1:

PV ZSM =

∫
Rd

⎡⎣ i
2

d∑
j=1

(
Ej ∇Ej − Ej ∇Ej

)
− ε2

1

ν1
N1V

⎤⎦ dx − ε2
2

ν2

∫
Rd

N2V2 dx

≈ PGV ZS + O(ε2
2),(2.17)

HV ZSM =

∫
Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 + N1|E|2 − 1

2ν1
N2

1 − ε2
1

2ν1
|V1|2

]
dx

+

∫
Rd

[
N2|E|2 − 1

2ν2
N2

2 − ε2
2

2ν2
|V2|2

]
dx

≈ HGV ZS + O(ε2
2).(2.18)

Our numerical results in section 5 confirm these results.

Choosing a = 1, α = 1, ν = −1, and λ = 0, the GVZS (2.11)–(2.12) collapses to
the standard VZS (see [28]):

i ∂tE + ∆E −NE = 0, x ∈ Rd, t > 0,(2.19)

ε2 ∂ttN − ∆N − ∆|E|2 = 0.(2.20)

2.3. Reduction from GVZS to GZS. In the case when E2 = · · · = Ed = 0
and a = 1, the GVZS (2.11)–(2.12) reduces to the scalar GZS [28, 6], i.e., (1.1), (1.2)
with γ = 0:

i ∂tE + ∆E − α N E + λ |E|2E = 0, x ∈ Rd, t > 0,(2.21)

ε2 ∂ttN − ∆N + ν ∆|E|2 = 0.(2.22)

The GZS (2.21), (2.22) is time reversible, time transverse invariant, and conserves
the following wave energy, momentum, and Hamiltonian:

DGZS =

∫
Rd

|E(x, t)|2 dx,(2.23)

PGZS =

∫
Rd

[
i

2

(
E∇E − E∇E

)
− ε2α

ν
NV

]
dx,(2.24)

HGZS =

∫
Rd

[
|∇E|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
|V|2
]
dx,(2.25)

where the flux vector V = (v1, . . . , vd)
T is introduced through the equations

Nt = −∇ · V, Vt = − 1

ε2
∇(N − ν|E|2).(2.26)

Choosing α = 1, ν = −1, ε = 1, and λ = 0, the GZS (2.21)–(2.22) collapses to the
standard ZS [28, 6, 30]. When λ 	= 0, a cubic nonlinear term is added to the standard
ZS.
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2.4. Reduction from GVZS to VNLS. In the “subsonic limit,” i.e., ε → 0,
which corresponds to the assumption that density fluctuations follow adiabatically
the modulation of the Langmuir wave, the GVZS (2.11)–(2.12) collapses to the VNLS
equation. In fact, letting ε → 0 in (2.12), we get formally

N = ν |E|2 + ε2 ∆−1∂ttN = ν |E|2 + O(ε2) when ε → 0.(2.27)

Plugging (2.27) into (2.11), we obtain formally the VNLS

i ∂tE + a ∆E + (1 − a) ∇(∇ · E) + (λ− αν)|E|2E = 0, x ∈ Rd, t > 0.(2.28)

The VNLS (2.28) is time reversible, time transverse invariant, and preserves the fol-
lowing wave energy, momentum, and Hamiltonian:

DV NLS =

∫
Rd

|E(x, t)|2 dx,(2.29)

PV NLS =

∫
Rd

i

2

d∑
j=1

(
Ej ∇Ej − Ej ∇Ej

)
dx,(2.30)

HV NLS =

∫
Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 +
αν − λ

2
|E|4
]
dx.(2.31)

Letting ε → 0 in (2.14), (2.15) and noting (2.27), we get formally the quadratic
convergence rate of the momentum and Hamiltonian from GVZS to VNLS in the
“subsonic limit” regime, i.e., 0 < ε � 1:

PGV ZS =

∫
Rd

i

2

d∑
j=1

(
Ej ∇Ej − Ej ∇Ej

)
dx − αε2

ν

∫
Rd

NV dx

≈ PV NLS + O(ε2),

HGV ZS =

∫
Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 +
αν − λ

2
|E|4
]
dx − αε2

2ν

∫
Rd

|V|2 dx

≈ HV NLS + O(ε2).

2.5. Reduction from GZS to NLS. Similarly, in the “subsonic limit,” i.e.,
ε → 0, the GZS (2.21)–(2.22) collapses to the well-known NLS equation with a cubic
nonlinearity. In fact, letting ε → 0 in (2.22), we get formally

N = ν |E|2 + ε2 ∆−1∂ttN = ν |E|2 + O(ε2) when ε → 0.(2.32)

Plugging (2.32) into (2.21), we obtain formally the NLS equation

i Et + ∆ E + (λ− αν)|E|2 E = 0, x ∈ Rd, t > 0.(2.33)

The NLS equation (2.33) is time reversible, time transverse invariant, and preserves
the following wave energy, momentum, and Hamiltonian:

DNLS =

∫
Rd

|E(x, t)|2 dx,(2.34)

PNLS =

∫
Rd

[
i

2

(
E∇E − E∇E

)]
dx,(2.35)

HNLS =

∫
Rd

[
|∇E|2 +

αν − λ

2
|E|4
]
dx.(2.36)
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Similarly, letting ε → 0 in (2.24), (2.25) and noting (2.32), we get formally the
quadratic convergence rate of the momentum and Hamiltonian from GZS to NLS in
the “subsonic limit” regime, i.e., 0 < ε � 1:

PGZS =

∫
Rd

i

2

(
E∇E − E∇E

)
dx − ε2α

ν

∫
Rd

NV dx

≈ PNLS + O(ε2),(2.37)

HGZS =

∫
Rd

[
|∇E|2 +

αν − λ

2
|E|4
]
dx − αε2

2ν

∫
Rd

|V|2 dx

≈ HNLS + O(ε2).(2.38)

Our numerical results in section 5 confirm these results.

2.6. Add a linear damping term to arrest blowup. When d ≥ 2 and the
initial Hamiltonian HGZS < 0, mathematically, the GZS (2.21)–(2.22) will blow up
in finite time [28, 21]. However, the physical quantities modeled by E and N do
not become infinite, which implies that the validity of (2.21), (2.22) breaks down
near singularity. Additional physical mechanisms, which were initially small, become
important near the singular point and prevent the formation of singularity. In order
to arrest blowup, in the physical literature, a small linear damping (absorption) term
is introduced into the GZS [17], i.e., (1.1), (1.2):

i ∂tE + ∆E − α N E + λ |E|2E + i γ E = 0,(2.39)

ε2 ∂ttN − ∆N + ν ∆|E|2 = 0, x ∈ Rd, t > 0,(2.40)

where γ > 0 is a damping parameter. The decay rate of the wave energy DGZS of
the damped GZS (2.39), (2.40) is

DGZS(t) =

∫
Rd

|E(x, t)|2 dx = e−2γt

∫
Rd

|E(x, 0)|2 dx

= e−2γtDGZS(0), t ≥ 0.(2.41)

Similarly, when d ≥ 2 and the initial Hamiltonian HGV ZS < 0 (or HV ZSM < 0),
mathematically, the GVZS (2.11)–(2.12) (or the VZSM (2.4)–(2.5)) will blow up in
finite time too. In order to arrest blowup, in the physical literature, a small linear
damping (absorption) term is introduced into the GVZS (or VZSM):

i ∂tE + a ∆E + (1 − a) ∇(∇ · E) − α N E + λ |E|2E + i γ E = 0,(2.42)

ε2∂ttN − ∆N + ν∆|E|2 = 0, x ∈ Rd, t > 0,(2.43)

where γ > 0 is a damping parameter. The decay rate of the wave energy DGV ZS of
the damped GVZS (2.42), (2.43) is

DGV ZS(t) =

∫
Rd

|E(x, t)|2 dx = e−2γt

∫
Rd

|E(x, 0)|2 dx

= e−2γtDGV ZS(0), t ≥ 0.(2.44)

3. Numerical methods for GZS. In this section we present new numerical
methods for the GZS (1.1), (1.2), and (1.3). For simplicity of notation, we shall
introduce the method in one space dimension (d = 1) of the GZS with periodic
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boundary conditions. Generalizations to d > 1 are straightforward for tensor product
grids, and the results remain valid without modifications. For d = 1, the problem
becomes

i ∂tE + ∂xxE − αN E + λ|E|2 E + iγ E = 0, a < x < b, t > 0,(3.1)

ε2∂ttN − ∂xx(N − ν |E|2) = 0, a < x < b, t > 0,(3.2)

E(x, 0) = E(0)(x), N(x, 0) = N (0)(x), ∂tN(x, 0) = N (1)(x), a ≤ x ≤ b,(3.3)

E(a, t) = E(b, t), ∂xE(a, t) = ∂xE(b, t), t ≥ 0,(3.4)

N(a, t) = N(b, t), ∂xN(a, t) = ∂xN(b, t), t ≥ 0.(3.5)

Moreover, we supplement (3.1)–(3.5) by imposing the compatibility condition

E(0)(a) = E(0)(b), N (0)(a) = N (0)(b), N (1)(a) = N (1)(b),

∫ b

a

N (1)(x) dx = 0.(3.6)

As is well known, the GZS has the following property:

DGZS(t) =

∫ b

a

|E(x, t)|2 dx = e−2γt

∫ b

a

|E(0)(x)|2 dx

= e−2γtDGZS(0), t ≥ 0.(3.7)

When γ = 0, DGZS(t) ≡ DGZS(0), i.e., it is an invariant of the GZS [9]. When γ > 0,
the wave energy DGZS(t) decays to 0 exponentially. Furthermore, the GZS also has
the following properties:∫ b

a

∂tN(x, t) dx = 0,

∫ b

a

N(x, t) dx =

∫ b

a

N (0)(x) dx = const., t ≥ 0.(3.8)

In some cases, the boundary conditions (3.4) and (3.5) may be replaced by

E(a, t) = E(b, t) = 0, N(a, t) = N(b, t) = 0, t ≥ 0.(3.9)

We choose the spatial mesh size h = ∆x > 0 with h = (b− a)/M for M an even
positive integer, the time step k = ∆t > 0, and let the grid points and the time step
be

xj := a + j h, j = 0, 1, . . . ,M, tm := m k, m = 0, 1, 2, . . . .

Let Em
j and Nm

j be the approximations of E(xj , tm) and N(xj , tm), respectively.
Furthermore, let Em and Nm be the solution vectors at time t = tm = mk with
components Em

j and Nm
j , respectively.

From time t = tm to t = tm+1, the first NLS-type equation (3.1) is solved in two
splitting steps. One solves first

i ∂tE + ∂xxE = 0(3.10)

for the time step of length k, followed by solving

i ∂tE = αN E − λ|E|2 E − iγ E(3.11)

for the same time step. Equation (3.10) will be discretized in space by the Fourier
spectral method and integrated in time exactly. For t ∈ [tm, tm+1], multiplying (3.11)
by E, we get

i ∂tE E = αN |E|2 − λ|E|4 − iγ|E|2.(3.12)
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Then calculating the conjugate of the ODE (3.11) and multiplying it by E, one finds

−i ∂tE E = αN |E|2 − λ|E|4 + iγ|E|2.(3.13)

Subtracting (3.13) from (3.12) and then multiplying both sides by −i, one gets

∂t(|E(x, t)|2) = ∂tE(x, t)E(x, t) + ∂tE(x, t)E(x, t) = −2γ|E(x, t)|2(3.14)

and therefore

|E(x, t)|2 = e−2γ(t−tm)|E(x, tm)|2, tm ≤ t ≤ tm+1.(3.15)

Substituting (3.15) into (3.11), we obtain

i∂tE(x, t) = αN(x, t)E(x, t) − λe−2γ(t−tm)|E(x, tm)|2E(x, t) − iγE(x, t).(3.16)

Integrating (3.16) from tm to tm+1, and then approximating the integral of N on
[tm, tm+1] via the trapezoidal rule, one obtains

E(x,tm+1) = e
−i
∫ tm+1

tm
[αN(x,τ)−λe−2γ(τ−tm)|E(x,tm)|2−iγ] dτ

E(x, tm)

≈
{

e−ik[α(N(x,tm)+N(x,tm+1))/2−λ|E(x,tm)|2] E(x, tm), γ = 0,

e−γk−i[kα(N(x,tm)+N(x,tm+1))/2+λ|E(x,tm)|2(e−2γk−1)/2γ] E(x, tm), γ 	= 0.

3.1. Crank–Nicolson leap-frog time-splitting spectral discretizations
(CN-LF-TSSP). The second wave-type equation (3.2) in the GZS is discretized by
a pseudospectral method for spatial derivatives, followed by application of a Crank–
Nicolson/leap-frog method for linear/nonlinear terms for time derivatives:

ε2
Nm+1

j − 2Nm
j + Nm−1

j

k2
−Df

xx

[(
βNm+1 + (1 − 2β)Nm + βNm−1

)
− ν|Em|2

]
x=xj

= 0, j = 0, . . . ,M, m = 1, 2, . . . ,(3.17)

where 0 ≤ β ≤ 1/2 is a constant; Df
xx, a spectral differential operator approximation

of ∂xx, is defined as

Df
xxU
∣∣
x=xj

= −
M/2−1∑
l=−M/2

µ2
l Ũl e

iµl(xj−a);(3.18)

and Ũl, the Fourier coefficients of a vector U = (U0, U1, U2, . . . , UM )T with U0 = UM ,
are defined as

µl =
2πl

b− a
, Ũl =

1

M

M−1∑
j=0

Uj e
−iµl(xj−a), l = −M

2
, . . . ,

M

2
− 1.(3.19)

When β = 0 in (3.17), the discretization (3.17) to the wave-type equation (3.2) is
explicit and was used in [6, 29]. When 0 < β ≤ 1/2, the discretization is implicit, but
can be solved explicitly. In fact, suppose

Nm
j =

M/2−1∑
l=−M/2

(Ñm)l e
iµl(xj−a), j = 0, . . . ,M, m = 0, 1, . . . .(3.20)
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Plugging (3.20) into (3.17) and using the orthogonality of the Fourier basis, we obtain

ε2
˜(Nm+1)l − 2(̃Nm)l + ˜(Nm−1)l

k2

+µ2
l

[
β ˜(Nm+1)l + (1 − 2β)(̃Nm)l + β ˜(Nm−1)l − ν ˜(|Em|2)l

]
= 0,

l = −M

2
, . . . ,

M

2
− 1, m = 1, 2, . . . .(3.21)

Solving the above equation, we get

˜(Nm+1)l =

(
2 − k2µ2

l

ε2 + βk2µ2
l

)
(̃Nm)l − (Ñm−1)l +

νk2µ2
l

ε2 + βk2µ2
l

˜(|Em|2)l,

l = −M

2
, . . . ,

M

2
− 1, m = 1, 2, . . . .(3.22)

From time t = tm to t = tm+1, we combine the splitting steps via the standard Strang
splitting:

Nm+1
j =

M/2−1∑
l=−M/2

˜(Nm+1)l e
iµl(xj−a),(3.23)

E∗
j =

M/2−1∑
l=−M/2

e−ikµ2
l /2(Ẽm)l e

iµl(xj−a),

E∗∗
j =

⎧⎨⎩ e−ik[α(Nm
j +Nm+1

j
)/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j
)/2+λ|E∗

j |
2(e−2γk−1)/2γ] E∗

j , γ 	= 0,

Em+1
j =

M/2−1∑
l=−M/2

e−ikµ2
l /2(Ẽ∗∗)l e

iµl(xj−a), 0 ≤ j ≤ M − 1, m ≥ 0,(3.24)

where ˜(Nm+1)l is given in (3.22) for m > 0 and (3.27) for m = 0. The initial
conditions (3.3) are discretized as

E0
j = E(0)(xj), N0

j = N (0)(xj),
N1

j −N−1
j

2k
= N

(1)
j , 0 ≤ j ≤ M − 1,(3.25)

where

N
(1)
j =

⎧⎪⎪⎨⎪⎪⎩
N (1)(xj), 0 ≤ j ≤ M − 2,

−
M−2∑
l=0

N (1)(xl), j = M − 1.
(3.26)

This implies that

(̃N1)l =

(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)
(̃N (0))l + k (̃N (1))l +

νk2µ2
l

2(ε2 + βk2µ2
l )

˜(|E(0)|2)l,

l = −M

2
, . . . ,

M

2
− 1.(3.27)
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This type of discretization for the initial condition (3.3) is equivalent to using the
trapezoidal rule for the periodic function N (1) and is such that the discretized version
of (3.8) is satisfied. The discretization error converges to 0 exponentially fast as the
mesh size h goes to 0.

Note that the spatial discretization error of the method is of spectral-order accu-
racy in h and the time discretization error is demonstrated to be second-order accurate
in k in section 5 from our numerical results.

3.2. Phase space analytical solver + time-splitting spectral discretiza-
tions (PSAS-TSSP). Another way to discretize the second wave-type equation
(3.2) in GZS is by using a pseudospectral method for spatial derivatives and then
solving the ODEs in phase space analytically under appropriate chosen transmission
conditions between different time intervals. From time t = tm to t = tm+1, assume

N(x, t) =

M/2−1∑
l=−M/2

Ñm
l (t) eiµl(x−a), a ≤ x ≤ b, tm ≤ t ≤ tm+1.(3.28)

Plugging (3.28) into (3.2) and noticing the orthogonality of the Fourier series, we get
the following ODEs:

ε2 d2Ñm
l (t)

d t2
+ µ2

l

[
Ñm

l (t) − ν ˜(|E(tm)|2)l
]

= 0, tm ≤ t ≤ tm+1, m ≥ 0,(3.29)

Ñm
l (tm) =

{
(̃N (0))l, m = 0,

Ñm−1
l (tm), m > 0,

l = −M

2
, . . . ,

M

2
− 1.(3.30)

For each fixed l (−M/2 ≤ l ≤ M/2 − 1), equation (3.29) is a second-order ODE. It
needs two initial conditions such that the solution is unique. When m = 0 in (3.29),
(3.30), we have the initial condition (3.30) and we can pose the other initial condition
for (3.29) due to the initial condition (3.3) for the GZS (3.1)–(3.5):

d

dt
Ñ0

l (t0) =
d

dt
Ñ0

l (0) = (̃N (1))l, l = −M

2
, . . . ,

M

2
− 1.(3.31)

Then the solution of (3.29), (3.30) with m = 0 and (3.31) is

Ñ0
l (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(̃N (0))0 + t (̃N (1))0, l = 0,

[
(̃N (0))l − ν ˜(|E(0)|2)l

]
cos

(
µl t

ε

)
+ ν ˜(|E(0)|2)l

+
ε

µl
(̃N (1))l sin

(
µl t

ε

)
, l 	= 0,

(3.32)

0 ≤ t ≤ t1, l = −M

2
, . . . ,

M

2
− 1.

But when m > 0, we only have one initial condition (3.30). One can’t simply pose

the continuity between d
dtÑ

m
l (t) and d

dtÑ
m−1
l (t) across the time t = tm, because the

last term in (3.29) is usually different in two adjacent time intervals [tm−1, tm] and

[tm, tm+1]; i.e., ˜(|E(tm−1)|2)l 	= ˜(|E(tm)|2)l. Since our goal is to develop an explicit
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scheme and we need to linearize the nonlinear term in (3.2) in our discretization (3.29),
in general,

d

dt
Ñm−1

l (t−m) = lim
t→t−m

d

dt
Ñm−1

l (t) 	= lim
t→t+m

d

dt
Ñm

l (t) =
d

dt
Ñm

l (t+m),(3.33)

m ≥ 1, l = −M

2
, . . . ,

M

2
− 1.

Unfortunately, we don’t know the jump d
dtÑ

m
l (t+m) − d

dtÑ
m−1
l (t−m) across the time

t = tm. In order to get a unique solution of (3.29), (3.30) for m > 0, we pose here an
additional condition:

Ñm
l (tm−1) = Ñm−1

l (tm−1), l = −M

2
, . . . ,

M

2
− 1.(3.34)

The condition (3.34) is equivalent to posing that the solution Ñm
l (t) on the time

interval [tm, tm+1] of (3.29), (3.30) is also a continuity at the time t = tm−1. After a
simple computation, we get the solution of (3.29), (3.30) and (3.34) for m > 0:

Ñm
l (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ñm−1
0 (tm) +

t− tm
k

[
Ñm−1

0 (tm) − Ñm−1
0 (tm−1)

]
, l = 0,

[
Ñm−1

l (tm) − ν ˜(|Em|2)l
]
cos

(
µl(t− tm)

ε

)
+ ν ˜(|Em|2)l +

sin(µl(t− tm)/ε)

sin(kµl/ε)

[
Ñm−1

l (tm) cos

(
kµl

ε

)
− Ñm−1

l (tm−1) +ν

[
1 − cos

(
kµl

ε

)]
˜(|Em|2)l

]
, l 	= 0,

(3.35)

tm ≤ t ≤ tm+1, l = −M

2
, . . . ,

M

2
− 1.

From time t = tm to t = tm+1, we combine the splitting steps via the standard Strang
splitting:

Nm+1
j =

M/2−1∑
l=−M/2

Ñm
l (tm+1) e

iµl(xj−a),(3.36)

E∗
j =

M/2−1∑
l=−M/2

e−ikµ2
l /2(Ẽm)l e

iµl(xj−a),

E∗∗
j =

⎧⎨⎩ e−ik[α(Nm
j +Nm+1

j
)/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j
)/2+λ|E∗

j |
2(e−2γk−1)/2γ] E∗

j , γ 	= 0,

Em+1
j =

M/2−1∑
l=−M/2

e−ikµ2
l /2(Ẽ∗∗)l e

iµl(xj−a), 0 ≤ j ≤ M − 1, m ≥ 0,(3.37)
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where

Ñm
l (tm+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(̃N (0))0 + k (̃N (1))0, l = 0, m = 0,

(̃N (0))l cos

(
kµl

ε

)
+

ε

µl
(̃N (1))l sin

(
kµl

ε

)
+ ν

[
1 − cos

(
kµl

ε

)]
˜(|E(0)|2)l, l 	= 0, m = 0,

2Ñm−1
l (tm) cos

(
kµl

ε

)
− Ñm−1

l (tm−1)

+ 2ν

[
1 − cos

(
kµl

ε

)]
˜(|Em|2)l, m ≥ 1.

(3.38)

The initial conditions (3.3) are discretized as

E0
j = E(0)(xj), N0

j = N (0)(xj), (∂tN)0j = N
(1)
j , 0 ≤ j ≤ M − 1.(3.39)

Note that the spatial discretization error of the above method is again of spectral-
order accuracy in h, and the time discretization error is demonstrated to be of second-
order accuracy in k in section 5 from our numerical results.

3.3. Properties of the numerical methods.
(i) Plane wave solution. If the initial data in (3.3) is chosen as

E(0)(x) = c ei2πlx/(b−a), N (0)(x) = d, N (1)(x) = 0, a ≤ x ≤ b,(3.40)

where l is an integer and c, d are constants, then the GZS (3.1)–(3.5) admits the plane
wave solution (see [22])

N(x, t) = d, a < x < b, t ≥ 0,(3.41)

E(x, t) =

⎧⎪⎪⎨⎪⎪⎩
c ei(

2πlx
b−a −ωt), ω = αd +

4π2l2

(b− a)2
− λc2, γ = 0,

c e−γte
i
(

2πlx
b−a −ωt−λc2

2γ (e−2γt−1)
)
, ω = αd +

4π2l2

(b− a)2
, γ 	= 0.

(3.42)

It is easy to see that in this case our numerical methods CN-LF-TSSP (3.23), (3.24)
and PAAS-TSSP (3.36), (3.37) give exact results, provided that M ≥ 2(|l| + 1).

(ii) Time transverse invariant. A main advantage of CN-LF-TSSP and PAAS-
TSSP is that if a constant r is added to the initial data N0(x) in (3.3) when γ = 0 in
(3.1), i.e., N0(x) → N0(x)+r, then the discrete functions Nm+1

j obtained from (3.23)

or (3.36) get added by r, i.e., Nm+1
j → Nm+1

j + r, and Em+1
j obtained from (3.24) or

(3.37) get multiplied by the phase factor e−ir(m+1)k, which leaves the discrete function
|Em+1

j |2 unchanged. This property also holds for the exact solution of GZS but does
not hold for the finite difference schemes proposed in [15, 9] and the spectral method
proposed in [24].

(iii) Conservation. Let U = (U0, U1, . . . , UM )T with U0 = UM , f(x) be a periodic
function on the interval [a, b], and ‖ · ‖l2 be the usual discrete l2-norm on the interval
(a, b), i.e.,

‖U‖l2 =

√√√√b− a

M

M−1∑
j=0

|Uj |2, ‖f‖l2 =

√√√√b− a

M

M−1∑
j=0

|f(xj)|2.(3.43)
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Then we have the following result.
Theorem 3.1. The CN-LF-TSSP (3.23), (3.24) and PSAS-TSSP (3.36), (3.37)

for GZS possess the following properties (in fact, they are the discretized version of
(3.7) and (3.8)):

‖Em‖2
l2 = e−2γtm‖E0‖2

l2 = e−2γtm‖E(0)‖2
l2 , m = 0, 1, 2, . . . ,(3.44)

b− a

M

M−1∑
j=0

Nm+1
j −Nm

j

k
= 0, m = 0, 1, 2, . . . ,(3.45)

and

b− a

M

M−1∑
j=0

Nm
j =

b− a

M

M−1∑
j=0

N0
j =

b− a

M

M−1∑
j=0

N (0)(xj), m ≥ 0.(3.46)

Proof. From (3.43), (3.37), and (3.19), using the orthogonality of the discrete
Fourier series and noticing the Pasavel equality, we have

M

b− a
‖Em+1‖2

l2 =

M−1∑
j=0

|Em+1
j |2 = M

M/2−1∑
l=−M/2

∣∣∣e−ikµ2
l /2(Ẽ∗∗)l

∣∣∣2

= M

M/2−1∑
l=−M/2

|(Ẽ∗∗)l|2 =

M−1∑
j=0

|E∗∗
j |2

= e−2γk
M−1∑
j=0

|E∗
j |2 = e−2γk

M−1∑
j=0

|Em
j |2

= e−2γk M

b− a
‖Em‖2

l2 , m ≥ 0.(3.47)

Thus (3.44) is obtained from (3.47) by induction. The equalities (3.45) and (3.46) can
be obtained in a similar way.

(iv) Unconditional stability. By the standard von Neumann analysis for (3.23) and
(3.36), noting (3.44), we get that PSAS-TSSP and CN-LF-TSSP with 1/4 ≤ β ≤ 1/2
are unconditionally stable, and CN-LF-TSSP with 0 ≤ β < 1/4 is conditionally
stable with stability constraint k ≤ 2hε

π
√

d(1−4β)
in d dimensions (d = 1, 2, 3). In

fact, for PSAS-TSSP (3.36), (3.37), setting ˜(|Em|2)l = 0 and plugging Ñm
l (tm+1) =

µÑm−1
l (tm) = µ2Ñm−1

l (tm−1) into (3.38) with |µ| the amplification factor, we obtain
the characteristic equation

µ2 − 2 cos

(
kµl

ε

)
µ + 1 = 0.(3.48)

This implies

µ = cos

(
kµl

ε

)
± i sin

(
kµl

ε

)
.(3.49)

Thus the amplification factor

Gl = |µ| =

√
cos2
(
kµl

ε

)
+ sin2

(
kµl

ε

)
= 1, l = −M

2
, . . . ,

M

2
− 1.

This, together with (3.44), implies that PSAS-TSSP is unconditionally stable. Similarly
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for CN-LF-TSSP (3.23), (3.24), noting (3.22), we have the characteristic equation

µ2 −
(

2 − k2µ2
l

ε2 + βk2µ2
l

)
µ + 1 = 0.(3.50)

This implies

µ = 1 − k2µ2
l

2(ε2 + βk2µ2
l )

±

√(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)2

− 1.(3.51)

When 1/4 ≤ β ≤ 1/2, we have∣∣∣∣1 − k2µ2
l

2(ε2 + βk2µ2
l )

∣∣∣∣ ≤ 1, k > 0, l = −M

2
, . . . ,

M

2
− 1.

Thus

µ = 1 − k2µ2
l

2(ε2 + βk2µ2
l )

± i

√
1 −
(

1 − k2µ2
l

2(ε2 + βk2µ2
l )

)2

.(3.52)

This implies the amplification factor

Gl = |µ| =

√(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)2

+ 1 −
(

1 − k2µ2
l

2(ε2 + βk2µ2
l )

)2

= 1, l = −M

2
, . . . ,

M

2
− 1.

This, together with (3.44), implies that CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 is un-
conditionally stable. On the other hand, when 0 ≤ β < 1/4, we need the stability
condition∣∣∣∣1 − k2µ2

l

2(ε2 + βk2µ2
l )

∣∣∣∣ ≤ 1 =⇒ k ≤ min
−M/2≤l≤M/2−1

2ε√
(1 − 4β)µ2

l

=
2hε

π
√

1 − 4β
.

This, together with (3.44), implies that CN-LF-TSSP with 0 ≤ β < 1/4 is condition-
ally stable in one dimension with stability condition

k ≤ 2hε

π
√

1 − 4β
.(3.53)

All above stability results are confirmed by our numerical experiments in section 5.
(v) ε-resolution in the “subsonic limit” regime (0 < ε � 1). As our numerical

results in section 5 suggest, the meshing strategy (or ε-resolution) which guarantees
good numerical approximations of our new numerical methods PSAS-TSSP and CN-
LF-TSSP with 1/4 ≤ β ≤ 1/2 in the “subsonic limit” regime, i.e., 0 < ε � 1, for
initial data in (3.3) with O(ε) wavelength, is

h = O(ε), k = O(ε),

where the meshing strategy for CN-LF-TSSP with 0 ≤ β < 1/4 is

h = O(ε), k = O(hε) = O(ε2).

Remark 3.1. If the periodic boundary conditions (3.4) and (3.5) are replaced by
the homogeneous Dirichlet boundary condition (3.9), then the Fourier basis used in
the above algorithm can be replaced by the sine basis [6] or the algorithm in section
4 for VZSM. Similarly, if homogeneous Neumann conditions are used, then a cosine
series can be applied in designing the algorithm.
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4. Extension to VZS. The idea for constructing the numerical methods CN-
LF-TSSP and PSAS-TSSP for GZS (3.1)–(3.5) can be easily extended to the VZSM
[29] in three dimensions for M different acoustic modes in a box Ω = [a1, b1]×[a2, b2]×
[a3, b3] with homogeneous Dirichlet boundary conditions:

i∂tE + a ∆E + (1 − a) ∇(∇ · E) − αE

M∑
J=1

NJ + λ|E|2E + iγE = 0,(4.1)

ε2
J∂ttNJ − ∆NJ + νJ∆|E|2 = 0, J = 1, . . . ,M, x ∈ Ω, t > 0,(4.2)

E(x, 0) = E(0)(x), NJ(x, 0) = N
(0)
J (x), ∂tNJ(x, 0) = N

(1)
J (x), x ∈ Ω,(4.3)

E(x, t) = 0, NJ(x, t) = 0 (J = 1, . . . ,M), x ∈ ∂Ω,(4.4)

where x = (x, y, z)T and E(x, t) = (E1(x, t), E2(x, t), E3(x, t))
T . Moreover, we sup-

plement (4.1)–(4.4) by imposing the compatibility condition

E(0)(x) = 0, N
(0)
J (x) = N

(1)
J (x) = 0, x ∈ ∂Ω, J = 1, . . . ,M.(4.5)

In some cases, the homogeneous Dirichlet boundary condition (4.4) may be re-
placed by periodic boundary conditions:

with periodic boundary conditions for E, NJ(J = 1, . . . ,M) on ∂Ω.(4.6)

We choose the spatial mesh sizes h1 = b1−a1

M1
, h2 = b2−a2

M2
, and h3 = b3−a3

M3
in the

x-, y-, and z-directions, respectively, with M1, M2, and M3 given positive integers;
the time step k = ∆t > 0. Denote grid points and time steps as

xj := a1 + jh1, j = 0, 1, . . . ,M1; yp := a2 + ph2, p = 0, 1, . . . ,M2;

zs := a3 + sh3, s = 0, 1, . . . ,M3; tm := mk, m = 0, 1, 2, . . . .

Let Em
j,p,s and (NJ)mj,p,s be the approximations of E(xj , yp, zs, tm) and NJ(xj , yp, zs,

tm), respectively.
For simplicity, here we only extend PSAS-TSSP from GZS (3.1)–(3.5) to VZSM

(4.1)–(4.4) with homogeneous Dirichlet conditions. For periodic boundary conditions
(4.6), extension of CN-LF-TSSP can be done in a similar way. Following the idea
of constructing PSAS-TSSP for GZS and the TSSP for VZSM in [29], here we only
present the numerical algorithm. From time t = tm to t = tm+1, the PSAS-TSSP
method for VZSM (4.1)–(4.4) reads

(NJ)m+1
j,p,s =

∑
(l,g,r)∈N

(̃NJ)
m

l,g,r(tm+1) sin

(
ljπ

M1

)
sin

(
pgπ

M2

)
sin

(
srπ

M3

)
,(4.7)

E∗
j,p,s =

∑
(l,g,r)∈N

Bl,g,r(k/2) (Ẽm)l,g,r sin

(
ljπ

M1

)
sin

(
pgπ

M2

)
sin

(
srπ

M3

)
,

E∗∗
j,p,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E∗
j,p,s exp

[
ikλ|E∗

j,p,s|2

− ikα

M∑
J=1

((NJ)mj,p,s + (NJ)m+1
j,p,s )

2

]
, γ = 0,

E∗
j,p,s exp

[
−γk −

iλ|E∗
j,p,s|2(e−2γk − 1)

2γ

− ikα

M∑
J=1

((NJ)mj,p,s + (NJ)m+1
j,p,s )

2

]
, γ 	= 0,



NUMERICAL METHODS FOR THE ZAKHAROV SYSTEM 1073

Em+1
j,p,s =

∑
(l,g,r)∈N

Bl,g,r

(
k

2

)
(Ẽ∗∗)l,g,r sin

(
ljπ

M1

)
sin

(
pgπ

M2

)
sin

(
srπ

M3

)
,(4.8)

where

N = {(l, g, r) | 1 ≤ l ≤ M1 − 1, 1 ≤ g ≤ M2 − 1, 1 ≤ r ≤ M3 − 1},

(̃NJ)
m

l,g,r(tm+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜
(N

(0)
J )0,0,0 + k

˜
(N

(1)
J )0,0,0, Rl,g,r = 0,m = 0,

˜
(N

(0)
J )l,g,r cos

(
kRl,g,r

εJ

)
+

εJ
Rl,g,r

˜
(N

(1)
J )l,g,r sin

(
kRl,g,r

εJ

)
+ νJ

[
1 − cos

(
kRl,g,r

εJ

)]
˜(|E(0)|2)l,g,r, Rl,g,r 	= 0,m = 0,

2(̃NJ)
m−1

l,g,r (tm) cos

(
kRl,g,r

εJ

)
+ 2νJ

[
1 − cos

(
kRl,g,r

εJ

)]
˜(|Em|2)l,g,r

− (̃NJ)
m−1

l,g,r (tm−1), m ≥ 1,

and

Bl,g,r(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I3, l = g = r = 0,

e−iaτR2
l,g,r

[
I3 +

e−i(1−a)τR2
l,g,r − 1

R2
l,g,r

Al,g,r

]
, otherwise,

with

R2
l,g,r = κ2

l + ζ2
g + η2

r , Al,g,r =

⎛⎝ κ2
l κlζg κlηr

κlζg ζ2
g ζgηr

κlηr ζgηr η2
r

⎞⎠ =

⎛⎝ κl

ζg
ηr

⎞⎠( κl ζg ηr
)
,

where I3 is the 3 × 3 identity matrix and Ũl,g,r, the sine-transform coefficients, are
defined as

Ũl,g,r =
8

M1M2M3

∑
(l,g,r)∈N

Uj,p,s sin

(
ljπ

M1

)
sin

(
pgπ

M2

)
sin

(
srπ

M3

)
,(4.9)

with

κl =
πl

b1 − a1
, l = 1, . . . ,M1 − 1, ζg =

πg

b2 − a2
, g = 1, . . . ,M2 − 1,

ηr =
πr

b3 − a3
, r = 1, . . . ,M3 − 1.

The initial conditions (4.3) are discretized as

E0
j,p,s = E(0)(xj , yp, zs),

(NJ)0j,p,s = N
(0)
J (xj , yp, zs), j = 0, . . . ,M1, p = 0, . . . ,M2, s = 0, . . . ,M3,

(∂tNJ)0j,p,s = N
(1)
J (xj , yp, zs), J = 1, . . . ,M.
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The properties of the numerical method for GZS in section 3 are still valid here.

5. Numerical examples. In this section, we present numerical results of GZS
with a solitary wave solution in one dimension to compare the accuracy, stability, and
ε-resolution of the different methods described in section 3. We also present numerical
examples including plane waves and solitary-wave collisions in one-dimensional GZS,
as well as the dynamics of three-dimensional VZSM, to demonstrate the efficiency and
spectral accuracy of the explicit unconditionally stable numerical method PSAS-TSSP
for GZS and VZSM.

In all examples except Example 2, the initial conditions for (1.3) are always chosen
such that |E0|, N0, and N (1) decay to zero sufficiently fast as |x| → ∞. We always
compute on a domain that is large enough that the periodic boundary conditions do
not introduce a significant aliasing error relative to the problem in the whole space.

5.1. Comparisons of different methods.
Example 1. The standard ZS with a solitary-wave solution; i.e., we choose d = 1,

α = 1, λ = 0, γ = 0, and ν = −1 in (1.1)–(1.3). The well-known solitary-wave
solution of the ZS (1.1)–(1.3) in this case is given in [22, 19]:

E(x, t) =
√

2B2(1 − ε2C2) sech(B(x− Ct)) ei[(C/2)x−((C/2)2−B2)t],(5.1)

N(x, t) = −2B2 sech2(B(x− Ct)), −∞ < x < ∞, t ≥ 0,(5.2)

where B, C are constants. The initial condition is taken as

E(0)(x) = E(x, 0), N (0)(x) = N(x, 0), N (1)(x, 0) = ∂tN(x, 0), x ∈ R,(5.3)

where E(x, 0), N(x, 0), and ∂tN(x, 0) are obtained from (5.1), (5.2) by setting t = 0.
We present computations for two different regimes of the acoustic speed, i.e., 1/ε.
Case I. O(1)-acoustic speed, i.e., we choose ε = 1, B = 1, C = 0.5 in (5.1),

(5.2). Here we test the spatial and temporal discretization errors, conservation of the
conserved quantities as well as the stability constraint of different numerical methods.
We solve the problem on the interval [−32, 32]; i.e., a = −32 and b = 32 with periodic
boundary conditions. Let Eh,k and Nh,k be the numerical solution of (1.1), (1.2)
in one dimension with the initial condition (5.3) by using a numerical method with
mesh size h and time step k. To quantify the numerical methods, we define the error
functions as

e1 = ‖E(·, t) − Eh,k(t)‖l2 , e2 = ‖N(·, t) −Nh,k(t)‖l2 ,

e =
‖E(·, t) − Eh,k(t)‖l2

‖E(·, t)‖l2
+

‖N(·, t) −Nh,k(t)‖l2
‖N(·, t)‖l2

=
e1

‖E(·, t)‖l2
+

e2

‖N(·, t)‖l2

and evaluate the conserved quantities DGZS , PGZS , and HGZS by using the numerical
solution, i.e., replacing E and N by their numerical counterparts Eh,k and Nh,k,
respectively, in (2.23)–(2.25).

First, we test the discretization error in space. In order to do this, we choose a
very small time step, e.g., k = 0.0001, such that the error from time discretization is
negligible compared to the spatial discretization error, and solve the ZS with different
methods under different mesh sizes h. Table 5.1 lists the numerical errors of e1 and
e2 at t = 2.0 with different mesh sizes h for different numerical methods.

Second, we test the discretization error in time. Table 5.2 shows the numerical
errors of e1 and e2 at t = 2.0 under different time steps k and mesh sizes h for different
numerical methods.
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Table 5.1

Spatial discretization error analysis: e1, e2 at time t = 2 under k = 0.0001.

Mesh h = 1.0 h = 1
2

h = 1
4

PSAS-TSSP
e1
e2

9.810E-2
0.143

1.500E-4
1.168E-3

8.958E-9
6.500E-8

CN-LF-TSSP(β = 0)
e1
e2

9.810E-2
0.143

1.500E-4
1.168E-3

7.409E-9
3.904E-8

CN-LF-TSSP(β = 1/4)
e1
e2

9.810E-2
0.143

1.500E-4
1.168E-3

8.628E-9
6.521E-8

CN-LF-TSSP(β = 1/2)
e1
e2

9.810E-2
0.143

1.500E-4
1.168E-3

1.098E-8
6.326E-8

Table 5.2

Time discretization error analysis: e1, e2 at time t = 2.

h Error k = 1
100

k = 1
400

k = 1
1600

k = 1
6400

PSAS-TSSP 1
4

e1 4.968E-5 3.109E-6 1.944E-7 1.226E-8
e2 1.225E-4 7.664E-6 4.797E-7 3.871E-8

1
8

e1 4.968E-5 3.109E-6 1.944E-7 1.172E-8
e2 1.225E-4 7.664E-6 4.797E-7 3.157E-8

CN-LF-TSSP(β = 0) 1
4

e1 4.829E-5 3.022E-6 1.888E-7 1.156E-8
e2 1.032E-4 6.456E-6 4.041E-7 3.673E-8

1
8

e1 4.829E-5 3.022E-6 1.888E-7 1.100E-8
e2 1.032E-4 6.456E-6 4.043E-7 2.946E-8

CN-LF-TSSP(β = 1/4) 1
4

e1 5.679E-5 3.556E-6 2.224E-7 1.425E-8
e2 1.623E-4 1.015E-5 6.351E-7 4.970E-8

1
8

e1 5.679E-5 3.556E-6 2.224E-7 1.377E-8
e2 1.623E-4 1.015E-5 6.351E-7 4.356E-8

CN-LF-TSSP(β = 1/2) 1
4

e1 7.468E-5 4.678E-6 2.924E-7 1.868E-8
e2 2.232E-4 1.396E-5 8.732E-7 6.360E-8

1
8

e1 7.468E-5 4.678E-6 2.924E-7 1.841E-8
e2 2.232E-4 1.396E-5 8.732E-7 5.942E-8

Table 5.3

Conserved quantities analysis: k = 0.0001 and h = 1
8
.

Time e DGZS PGZS HGZS

PSAS-TSSP 1.0 8.943E-9 3.0000000000 3.41181556 0.510202736
2.0 2.360E-8 3.0000000000 3.41181562 0.510202765

β = 0 1.0 7.281E-9 3.0000000000 3.41181557 0.510202736
2.0 1.684E-8 3.0000000000 3.41181562 0.510202766

β = 1/4 1.0 1.053E-8 3.0000000000 3.41181556 0.510202740
2.0 3.028E-8 3.0000000000 3.41181564 0.510202779

β = 1/2 1.0 1.206E-8 3.0000000000 3.41181556 0.510202737
2.0 3.131E-8 3.0000000000 3.41181562 0.510202768

Third, we test the conservation of conserved quantities. Table 5.3 presents the
quantities and numerical errors at different times with mesh size h = 1

8 and time step
k = 0.0001 for different numerical methods.

Case II. “Subsonic limit” regime, i.e., 0 < ε � 1, we choose B = 1 and C = 1/2ε
in (5.1), (5.2). Under this choice, the wavelength of the initial data (5.1) is O(ε).
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Fig. 1. Numerical solutions of the electric field |E(x, t)|2 at t = 1 for Example 1 in the
subsonic limit regime by PSAS-TSSP. —: exact solution; + + +: numerical solution. The left
column corresponds to h = O(ε) and k = O(ε): (a) T0 = (ε0, h0, k0) = (0.125, 0.5, 0.04), (c)
T0/4, (e) T0/16. The right column corresponds to h = O(ε) and k = 0.04—independent of ε: (b)
T0 = (ε0, h0) = (0.125, 0.5), (d) T0/4, (f) T0/16.

Here we test the ε-resolution of different numerical methods. We solve the problem
on the interval [−8, 120], i.e., a = −8 and b = 120 with periodic boundary conditions.
Figure 1 shows the numerical results of PSAS-TSSP at t = 1 when we choose the
meshing strategy h = O(ε) and k = O(ε): T0 = (ε0, h0, k0) = (0.125, 0.5, 0.04), T0/4,
T0/16; and h = O(ε) and k = 0.04-independent of ε: T0 = (ε0, h0) = (0.125, 0.5),
T0/4, T0/16. CN-LF-TSSP with β = 1/4 or β = 1/2 gives similar numerical results at
the same meshing strategies, where CN-LF-TSSP with β = 0 gives correct numerical
results at meshing strategy h = O(ε) and k = O(ε2), and incorrect results at h = O(ε)
and k = O(ε) [6]. Furthermore, our additional numerical experiments confirm that
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PSAS-TSSP and CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 are unconditionally stable, and
CN-LF-TSSP with β = 0 is stable under the stability constraint (3.53).

From Tables 5.1–5.3 and Figure 1, we can draw the following observations.
In the O(1)-acoustic speed regime, our new methods PSAS-TSSP and CN-LF-

TSSP with β = 1/2 or 1/4 give similar results as the old method, i.e., CN-LF-TSSP
with β = 0, proposed in [6]: they are of spectral-order accuracy in space discretization
and second-order accuracy in time, they conserve DGZS exactly and PGZS , HGZS

very well (up to 8 digits). However, they are improved in two aspects: (i) They are
unconditionally stable, where the old method is conditionally stable under the stability
condition k ≤ 2hε

π
√

d(1−4β)
in d dimensions (d = 1, 2 or 3); (ii) in the “subsonic limit”

regime, i.e., 0 < ε � 1, the ε-resolution of our new methods is improved to h = O(ε)
and k = O(ε), where the old method required h = O(ε) and k = O(εh) = O(ε2).
Thus in the following, we present only numerical results by PSAS-TSSP. In fact, CN-
LF-TSSP with 1/4 ≤ β ≤ 1/2 gives similar numerical results at the same mesh size
and time step for all the following numerical examples.

Example 2. The standard ZS with a plane-wave solution; i.e., we choose d = 1,
ε = 1, α = 1, λ = 0, γ = 0, and ν = −1 in (1.1)–(1.3) and consider the problem on
the interval [a, b] with a = 0 and b = 2π. The initial condition is taken as

E(x, 0) = ei7x, N(x, 0) = 1, ∂tN(x, 0) = 0, 0 ≤ x ≤ 2π.(5.4)

It is easy to see that the ZS (3.1), (3.2) with the periodic boundary conditions (3.4),
(3.5) and initial condition (5.4) admits the plane-wave solution (see [22])

E(x, t) = ei(7x−ωt), with ω = 72 + 1 = 50,(5.5)

N(x, t) = 1, a ≤ x ≤ b, t ≥ 0.(5.6)

We solve this problem by using PSAS-TSSP on the interval [0, 2π] with mesh size
h = π

8 (i.e., 17 grid points in the interval [0, 2π]) and time step k = 0.01. Figure 2
shows the numerical results at t = 2 and t = 4.

From Figure 2, we can see that the time-splitting spectral method really provides
the exact plane-wave solution of ZS.

5.2. Convergence in the subsonic limit regime (0 < ε � 1).
Example 3. Reduction from GZS to NLS and quadratic convergence rate in the

subsonic limit regime; i.e., we choose d = 1, α = 1, λ = 0, ν = −1 in (2.21), (2.22),
and (2.33). Let

E0(x) = sech(x + p)e−2i(x+p) + sech(x− p)e−2i(x−p),

N0(x) = −|sech(x + p)|2 − |sech(x− p)|2, −∞ < x < ∞.

We solve the GZS (2.21), (2.22) in one dimension with the initial conditions

EGZS(x, 0) = E0(x), NGZS(x, 0) = N0(x), ∂tN
GZS(x, 0) = 0, −∞ < x < ∞,

and the NLS (2.33) in one dimension with the initial condition

ENLS(x, 0) = E0(x), −∞ < x < ∞,

in the interval [−64, 64] with mesh size h = 1
8 and time step k = 0.0005. We take

p = 10. Let EGZS and NGZS be the numerical solutions of the GZS (2.21), (2.22),
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Fig. 2. Numerical solutions at t = 2 (left column) and t = 4 (right column) in Example 2. —:
exact solution given in (5.5)–(5.6); + + +: numerical solution. (a) Re(E(x, t)): real part of E, (b)
Im(E(x, t)): imaginary part of E, (c) N .

and ENLS of the NLS equation (2.33) by using PSAS-TSSP and TSSP [1, 3, 4],
respectively. Table 5.4 shows the errors between the solutions of the GZS and its
reduction NLS at time t = 4.0 under different ε.

From Table 5.4, we can see that the electron field EGZS , ion density fluctuation
NGZS , electron density |EGZS |2, and the Hamiltonian HGZS of the GZS (2.21), (2.22)
converge to ENLS in l2-norm, ν|ENLS |2 in l2-norm, |ENLS |2 in l1-norm, and HNLS of
the NLS (2.33) quadratically in the subsonic limit regime, i.e., 0 < ε � 1, respectively,
which confirms the formal analysis in (2.32), (2.38). In contrast, when ε = O(1), the
solutions of the GZS are far away from the solution of the NLS.

Example 4. Reduction from VZSM to GVZS and quadratic convergence rate in
the subsonic limit regime; i.e., we choose d = 1, M = 2, a = 1, α = −2, γ = 0,
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Table 5.4

Error analysis between GZS and its reduction NLS: Errors are computed at time t = 4 under
h = 1

8
and k = 0.0005.

ε = 1/80 ε = 1/40 ε = 1/20 ε = 1/10 ε = 1.0

‖EGZS − ENLS‖l2 9.18E-3 3.66E-2 1.57E-1 7.04E-1 2.53
‖NGZS − ν|ENLS |2‖l2 8.10E-3 1.18E-1 2.54E-1 6.83E-1 1.78
‖|EGZS |2 − |ENLS |2‖l1 7.81E-3 3.17E-2 1.34E-1 6.95E-1 2.77

|HGZS −HNLS | 1.66E-6 1.52E-5 6.95E-5 4.58E-4 4.23E-2

ε = ε1 = 1.0, ν = ν1 = 2.0, ν2 = 1.0 in (4.1), (4.2) (with λ = 0) and (2.11), (2.12)
(with λ = 2ν2). Denote the one-soliton solution of the GZS (2.21), (2.22) in one
dimension as [6, 18, 19]

Es(x, t; η, V, ε, ν) =

[
λ

2
+

ν

ε2

(
1

ε2
− V 2

)−1
]−1/2

Us(x, t),(5.7)

Us(x, t) ≡ 2iη sech[2η(x− V t)] exp

[
iV x

2
+ i

(
4η2 − V 2

4

)
t + iΦ0

]
,(5.8)

Ns(x, t; η, V, ε, ν) =
ν

ε2

(
1

ε2
− V 2

)−1

|Es|2,(5.9)

where η and V are the soliton’s amplitude and velocity and Φ0 is a trivial phase
constant. We solve the VZSM (2.4), (2.5) in one dimension for a two-component
plasma with the initial conditions

E(x, 0) =
∑
r=±1

Es(x + rp, 0, η1, V1, ε1, ν1),(5.10)

N1(x, 0) =
∑
r=±1

Ns(x + rp, 0, η1, V1, ε1, ν1),(5.11)

∂tN1(x, 0) =
∑
r=±1

∂tNs(x + rp, 0, η1, V1, ε1, ν1),(5.12)

N2(x, 0) = ν2

∑
r=±1

|Es(x + rp, 0, η1, V1, ε1, ν1)|2,(5.13)

∂tN2(x, 0) = ν2

∑
r=±1

∂t|Es(x + p, 0, η1, V1, ε1, ν1)|2,(5.14)

and the GZS (2.21), (2.22) in one dimension with the initial conditions

EGZS(x, 0) = Es(x + p, 0, η1, V1, ε, ν) + Es(x− p, 0, η2, V2, ε, ν),

NGZS(x, 0) = Ns(x + p, 0, η1, V1, ε, ν) + Ns(x− p, 0, η2, V2, ε, ν),

∂tN
GZS(x, 0) = ∂tNs(x + p, 0, η1, V1, ε, ν) + ∂tNs(x− p, 0, η2, V2, ε, ν)

in the interval [−64, 64] with mesh size h = 1
8 and time step k = 0.0005. Here x = ∓p

are the initial locations of the two solitons.
In our numerical simulations, we set p = 10, Φ0 = 0. We only simulated the

symmetric collisions, i.e., the collisions of two solitons with equal amplitudes η1 =
η2 = η = 0.3 and opposite velocities V1 = −V2 ≡ V = 3.0. Let EV ZSM , NV ZSM

1 , and
NV ZSM

2 be the numerical solutions of the VZSM (2.4), (2.5), and EGV ZS , NGV ZS

of the GVZS (2.21), (2.22) by using PSAS-TSSP. Table 5.5 shows the errors between
the solutions of the VZSM and its reduction GVZS at time t = 4.0 under different ε2.
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Table 5.5

Error analysis between VZSM and its reduction GVZS: Errors are computed at time t = 4
under h = 1

8
and k = 0.0005.

ε2 = 1/80 ε2 = 1/40 ε2 = 1/20 ε2 = 1

‖EV ZSM − EGV ZS‖l2 1.06E-2 4.23E-2 1.76E-1 3.08

‖|EV ZSM |2 − |EGV ZS |2‖l1 4.56E-3 1.85E-2 7.75E-2 2.41

‖NV ZSM
1 −NGV ZS‖l2 4.87E-3 2.00E-2 8.67E-2 1.84

‖NV ZSM
2 − ν2|EGV ZS |2‖l2 2.29E-3 8.55E-3 3.82E-2 2.86

From Table 5.5, we can see that the electron field EV ZSM , electron density
|EV ZSM |2, ion density fluctuations NV ZSM

1 and NV ZSM
2 , of the VZSM (2.4), (2.5),

converge to EGV ZS in l2-norm, |EGV ZS |2 in l1-norm, NGV ZS and ν2|EGV ZS |2 in
l2-norm, of the GVZS (2.21), (2.21), quadratically in the subsonic limit regime, i.e.,
0 < ε2 � 1, respectively, which confirms the formal analysis in (2.10), (2.18). In
contrast, when ε2 = O(1), the solutions of the VZSM are far away from the solution
of the GVZS.

5.3. Applications.
Example 5. Two-dimensional GZS with a linear damping term; i.e., we choose

d = 2 in (2.39), (2.40). Mathematically, when HGZS < 0 in (2.25), the GZS (2.21),
(2.22) will blow up at finite time. For fixed E(x, 0) and N(x, 0) = ν|E(x, 0)|2, there
are three typical cases such that HGZS < 0: (i) α = 1, ε = O(1), ν = −1, λ � 1; (ii)
λ = 0, ε = O(1), ν = −1, and α � 1; (iii) α = 1, λ = 0, ν � −1, and 0 < ε � 1.
For this reason, here we present computations of the GZS (2.39), (2.40) with a linear
damping term for three cases:

Case I. α = 1, λ = 20, ε = 1, ν = −1;

Case II. α = 20, λ = 0, ε = 1, ν = −1;

Case III. α = 1, λ = 0, ε = 0.1, ν = −20.

The initial conditions are taken as

E(x, y, 0) =
1√
π

e−
x2+y2

2 , N(x, y, 0) =
ν

π
e−(x2+y2), ∂tN(x, y, 0) = 0.

The above parameters and initial conditions are chosen such that the initial Hamil-
tonian HGZS < 0. Thus the GZS (2.21), (2.22) will blow up at finite time without
damping.

We solve the damped GZS (2.39), (2.40) on the rectangle [−4, 4]2 with mesh size
h = 1

32 and time step k = 0.001 for Cases I and II, and on [−10, 10]2 with h = 5
64 and

k = 0.0001 for Case III. In our computations, two different damping parameters are
chosen: (i) γ = 0.8 (arrest blowup), (ii) γ = 0.1 (can’t arrest blowup).

Figure 3 shows the surface plots of electron density |E|2 and ion density fluctu-
ation N at different times and time evolution of the wave energy D(t) := DGZS(t),
Hamiltonian H(t) := HGZS(t), central ion density fluctuation N(0, 0, t), and central
electron density |E(0, 0, t)|2 with γ = 0.8 and 0.1 for Case I. In the numerical compu-
tations, a blowup is detected either from the plot of the central density |E(0, 0, t)|2,
which at the blowup shows a very sharp spike with a peak value that increases when
the mesh size h decreases, or from the plot of the Hamiltonian H(t), which has a
very sharp spike with possible negative values at the blowup. In fact, the method
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Fig. 3. Surface-plot of the electron density |E(x, y, t)|2 and ion density fluctuation N(x, y, t)
in Example 3 for Case I (i) γ = 0.8 at times: (a) t = 0, (b) t = 0.5, (c) t = 1.0.

PSAS-TSSP (4.7), (4.8) aims to capture the solution of damped GZS or VZSM with-
out blowup, i.e., the physically relevant solution. If one wants to capture the blowup
rate of GZS or VZSM, we refer to [20, 23]. Similar graphics are obtained for Cases II
and III; we have omitted them here.

From Figure 3, we can draw the following observations. (i) The GZS will blow
up in certain parameter regimes, and the initial Hamiltonian HGZS < 0. (ii) A linear
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Fig. 3. (Cont’d.) (ii) γ = 0.1 at times: (d) before blowup (t = 0.2), (e) after blowup (t = 0.473),
and (f) time evolution of the wave energy D(t), Hamiltonian H(t), central ion density fluctuation
N(0, 0, t), and central electron density |E(0, 0, t)|2 for different damping parameters: γ = 0.8 (left
column: arrest blowup), γ = 0.1 (right column: blowup).

damping can arrest blowup of GZS when the damping parameter γ is bigger than a
threshold value γth > 0 (cf. Figure 3(c) and (e)). (iii) When the blowup is arrested
(cf. Figure 3(a), (b), and (c)), the pattern of the physically relevant solutions is the
following: Initially the cloud contracts and the contraction is accompanied by an
increase in the Hamiltonian (cf. Figure 3(f)). After the central electron density has
reached a maximum, the cloud starts to expand due to the kinetic energy gained by
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the electrons during the contraction. The loss rate of the electrons from the cloud is
independent of the shape of the density function, because the linear damping term
is used. (iv) The wave energy decays to zero exponentially (cf. Figure 3(f)). Similar
conclusions can be observed for Cases II and III.

Example 6. Soliton-soliton collisions in one-dimensional GZS; i.e., we choose
d = 1, ε = 1, α = −2, and γ = 0 in (1.1)–(1.3). We use the family of one-soliton
solutions (5.7)–(5.9) in [18] to test our new numerical method PSAS-TSSP. The initial
data is chosen as

E(x, 0) = Es(x + p, 0, η1, V1, ε, ν) + Es(x− p, 0, η2, V2, ε, ν),

N(x, 0) = Ns(x + p, 0, η1, V1, ε, ν) + Ns(x− p, 0, η2, V2, ε, ν),

∂tN(x, 0) = ∂tNs(x + p, 0, η1, V1, ε, ν) + ∂tNs(x− p, 0, η2, V2, ε, ν),

where x = ∓p are initial locations of the two solitons.
In all the numerical simulations reported in this example, we set λ = 2 and

Φ0 = 0. We simulated only the symmetric collisions, i.e., the collisions of solitons
with equal amplitudes η1 = η2 = η and opposite velocities V1 = −V2 ≡ V . Here, we
present computations for two cases:

Case I. collision between solitons moving with the subsonic velocities, V < 1/ε =
1; i.e., we take ν = 0.2, η = 0.3, and V = 0.5;

Case II. collision between solitons in the transonic regime, V > 1/ε = 1; i.e., we
take ν = 2.0, η = 0.3, and V = 3.0.

We solve the problem on the interval [−128, 128], i.e., a = −128 and b = 128
with mesh size h = 1

4 and time step k = 0.005. We take p = 10. Figure 4 shows the
evolution of the dispersive wave field |E|2 and the acoustic (nondispersive) field N .

Case I corresponds to a soliton-soliton collision when the ratio ν/λ is small, i.e.,
the GZS (3.1), (3.2) is close to the NLS equation. As is seen, the collision seems quite
elastic (cf. Figure 4(a)). This also validates the formal reduction from GZS to NLS in
section 2.5. Case II corresponds to the collision of two transonic solitons. Note that
the emission of the sound waves is inconspicuous at this value of V (cf. Figure 4(b)).

From Figure 4, we can see that the unconditionally stable numerical method
PSAS-TSSP can really be applied to solving solitary-wave collisions of GZS.

Example 7. Soliton-soliton collisions in one-dimensional VZSM for a two-component
plasma; i.e., we choose M = 2, d = 1, γ = 0 in (4.1), (4.2). We use the family of
one-soliton solutions (5.7)–(5.9) to test our method PSAS-TSSP. The initial data is
chosen as (5.10)–(5.14).

In the numerical simulations in this example, we take λ = 2ν2, p = 10, and Φ0 = 0
in (5.8). Here we have only simulated the symmetric collisions, i.e., the collisions of
two solitons with equal amplitudes η1 = η2 = η and opposite velocities V1 = −V2 ≡ V .
We present computations for four cases:

Case I. ε1 = 1, ν1 = 0.2, η = 0.3, V = 0.5; ε2 = 0.1, ν2 = 1, η = 0.3, V = 0.5;
Case II. ε1 = 1, ν1 = 0.2, η = 0.3, V = 0.5; ε2 = 1, ν2 = 1, η = 0.3, V = 0.5;
Case III. ε1 = 1, ν1 = 2, η = 0.3, V = 3; ε2 = 0.1, ν2 = 1, η = 0.3, V = 3;
Case IV. ε1 = 1, ν1 = 2, η = 0.3, V = 3; ε2 = 1, ν2 = 1, η = 0.3, V = 3.
In Cases I and II, the speed of the solitons V < 1, while in Cases III and IV,

V > 1. In Cases I and III, the ratio between the acoustic speeds of the two components
is much bigger than 1, while in Cases II and IV, it is at O(1).

We solve the problem (4.1), (4.2) on the interval [−128, 128] with mesh size h = 1
4

and time step k = 0.005 by using the PSAS-TSSP. Figure 5 shows the evolution of
the electron density |E|2 for Cases I–IV.
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Fig. 4. Evolution of the wave field |E|2 (left column) and acoustic field N (right column) in
Example 6 for (a) case I, (b) case II.

Case I corresponds to a collision between solitons moving with subsonic velocities,
i.e., V < 1/ε1 = 1 � 1/ε2, in a two-component plasma with two far different acoustic
modes; i.e., the VZSM (4.1), (4.1) is close to the GZS (1.1), (1.2). Here the ratio
ν1/λ � 1, i.e., the VZSM (4.1), (4.2) is also close to the NLS. As is seen, the collision
seems quite elastic (cf. Figure 5(a)). Case II is similar to Case I except that we
decrease the acoustic speed of the second component to the same order of the first
component (V < 1/ε1 = 1/ε2 = 1); i.e., the VZSM (4.1), (4.2) is not close to the
GZS (1.1), (1.2). We can see that the collision in this case is different from Case I
(cf. Figure 5(a) and (b)). Case III corresponds to a collision of transonic solitons,
i.e., 1/ε1 = 1 < V � 1/ε2; i.e., the VZSM (4.1), (4.2) is close to the GZS (1.1),
(1.2). The appearing solitons demonstrate irregular oscillations in their amplitude
and size; the oscillations are accompanied a conspicuous emission of acoustic waves
and inconspicuous emission of sound waves (cf. Figure 5(c)). Case IV is similar to
Case III except that we decrease the acoustic speed of the second component to the
same order of the first component (1/ε1 = 1/ε2 = 1 < V ); i.e., the VZSM (4.1),
(4.2) is not close to the GZS (1.1), (1.2). We can see that the collision in this case
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Fig. 5. Evolution of the electron density |E|2 and the ion density fluctuations N1 in Example 7
for different cases: (a) Case I, (b) Case II, (c) and (d) Case III, (e) and (f) Case IV.

is totally different from Case III (cf. Figure 5(c) and (d)). Comparing the results in
this example for VZSM with the soliton-soliton collisions of Example 5 in [6, 29] of
GZS for a single-component plasma, we can see that the collisions in Cases I and III
for VZSM are close to the collisions of GZS for a single-component plasma. This also
validates the formal reduction from VZSM to GVZS in section 2.2.
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Example 8. Dynamics of three dimensions VZS; i.e., we choose M = 1, d = 3,
a = 2, α = 1, λ = 0, γ = 0, ν1 = −1, and ε1 = 1 in (4.1), (4.2). The initial conditions
are taken as

Ej(x, y, z, 0) = e2i(λ1x−λ2y+2λ3z)(γ1jγ2jγ3j)
1
4
e−

1
2 (γ1jx

2+γ2jy
2+γ3jz

2)

√
3π3/4

, j = 1, 2, 3,

N(x, y, z, 0) = e−2(x2+y2+z2), ∂tN(x, y, z, 0) ≡ 0;

with

γ11 = 1, γ21 = 2, γ31 = 4; γ12 = 4, γ22 = 2, γ32 = 1; γ13 = 2, γ23 = 4, γ33 = 1.

We solve the VZS for two different initial parameters:
Case I. Zero initial phase data, i.e., λ1 = λ2 = λ3 = 0.
Case II. Nonzero initial phase data, i.e., λ1 = λ2 = λ3 = 1.

From (4.1), (4.2), after a simple analysis, we get

d

dt
‖Ej(t)‖2 =

d

dt

∫
Rd

|Ej(x, t)|2 dx

= 2(a− 1) Im

∫
Rd

∂Ej

∂xj
∇ · E dx, t ≥ 0, j = 1, . . . , d.(5.15)

Plugging the above initial data into (5.15) at t = 0, we obtain for Case I

d||E1(t)||2
dt

∣∣∣∣
t=0

=
d||E2(t)||2

dt

∣∣∣∣
t=0

=
d||E3(t)||2

dt

∣∣∣∣
t=0

= 0,(5.16)

and for Case II

d||E1(t)||2
dt

∣∣∣∣
t=0

> 0,
d||E2(t)||2

dt

∣∣∣∣
t=0

> 0,
d||E3(t)||2

dt

∣∣∣∣
t=0

< 0.(5.17)

In the two cases, the wave energy for each component of the electron field at time
t = 0 is set to be the same.

We solve the problem in the box [−16, 16]3 with mesh size h = 1
4 and the time

step k = 0.001. Figure 6 shows the time evolution of the total wave energy ||E(t)||2l2
and the wave energy of the three components of the electric field ||E1(t)||2l2 , ||E2(t)||2l2 ,
||E3(t)||2l2 for the two cases.

From Figure 6, we can see that the total wave energy ||E(t)||2l2 is conserved in
the two cases. In Case I, the conservation of the wave energy of the third component
of the electron field is due to the symmetry of the initial data. The result in (5.16)
is confirmed (cf. Figure 6(a)), and the wave energy of the first component increases
after a short period; on the other hand, the wave energy of the second component
decreases in order to conserve the total wave energy. In Case II, the result of (5.17)
is confirmed (cf. Figure 6(b)), and time evolution of the wave energy for the first two
components forms almost the same pattern (increasing-decreasing-increasing), where
the pattern for the third component is opposite due to conservation of the total wave
energy. The wave energy fluctuation is much larger in Case II than in Case I due to
the nonzero initial phase in the electron field. Furthermore, the wave energy for each
component almost does not change after some time. This implies that the electron
does not exchange from one component to another after some time.
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Fig. 6. Evolution of the total wave energy ||E(t)||2
l2

and the wave energy of the three components

of the electric field ||E1(t)||2
l2

, ||E2(t)||2
l2

, ||E3(t)||2
l2

in Example 8 for (a) Case I, (b) Case II.

6. Conclusions. New efficient and stable numerical methods PSAS-TSSP and
CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 are presented for the generalized Zakharov system
(GZS) and vector Zakharov system for multicomponent (VZSM). The methods are
explicit, unconditionally stable, easy to extend to high dimensions, easy to program,
less memory-demanding, and time reversible and time transverse invariant when there
is no damping term in GZS or VZSM. Furthermore, they keep the same decay rate
of the wave energy in GZS or VZSM, and give exact results for plane-wave solutions
of GZS. Numerical results for a solitary-wave solution demonstrate that the methods
are of spectral-order accuracy in space and second-order accuracy in time and also
possess “optimal” ε-resolution in the “subsonic limit” regime (i.e., 0 < ε � 1) with
the following meshing strategy: mesh size h = O(ε) and time step k = O(ε). The
methods are then applied successfully to simulate solitary-wave collisions of GZS as
well as a three-dimensional problem. From our numerical results, we observe (i) a
quadratic convergence rate of VZSM to GZS in the “subsonic limit” regime; (ii) a
quadratic convergence rate of GZS to NLS in the “subsonic limit” regime; (iii) that a
linear damping can arrest blowup in GZS or VZSM when the damping parameter γ
is bigger than a threshold value γth > 0; and (iv) that nonelastic collisions between
solitons may appear in GZS or VZSM. Moreover, when the initial data for GZS or
VZSM decays to zero sufficiently fast when |x| → ∞, which can be approximated by
homogeneous Dirichlet boundary conditions, in general, we recommend using PSAS-
TSSP with a sine-basis function for numerical discretization of GZS or VZSM.

In [5], the PSAS-TSSP is extended to the Maxwell–Dirac system for time-evolution
of fast (relativistic) electrons and positrons within self-consistent generated electro-
magnetic fields.
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