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Abstract. The dynamic laws of quantized vortex interactions in the Ginzburg–Landau–Schrödinger
equation (GLSE) are analytically and numerically studied. A review of the reduced dynamic laws
governing the motion of vortex centers in the GLSE is provided. The reduced dynamic laws are
solved analytically for some special initial data. By directly simulating the GLSE with an efficient
and accurate numerical method proposed recently in [Y. Zhang, W. Bao, and Q. Du, Numerical sim-
ulation of vortex dynamics in Ginzburg–Landau–Schrödinger equation, European J. Appl. Math.,
to appear], we can qualitatively and quantitatively compare quantized vortex interaction patterns of
the GLSE with those from the reduced dynamic laws. Some conclusive findings are obtained, and
discussions on numerical and theoretical results are made to provide further understanding of vortex
interactions in the GLSE. Finally, the vortex motion under an inhomogeneous potential in the GLSE
is also studied.
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1. Introduction. One of the most well-studied equations in nonlinear science is
the Ginzburg–Landau–Schrödinger equation (GLSE) of the form [36]

(α− iβ)∂tψ(x, t) = ∇2ψ +
1

ε2

(
V (x) − |ψ|2

)
ψ, x ∈ R

2, t > 0,(1.1)

ψ(x, 0) = ψ0(x), x ∈ R
2.(1.2)

Here, t is time, x = (x, y)T ∈ R
2 is the Cartesian coordinate vector, (r, θ) is the

polar coordinate system, ψ = ψ(x, t) is a complex-valued wave function (or order
parameter), V (x) is a real-valued external potential satisfying lim|x|→∞ V (x) = 1,
ε > 0 is a constant, and α and β are two nonnegative constants satisfying α+ β > 0.
A vortex-like solution satisfies a nonzero far-field condition as follows: For a given
integer m ∈ Z,

(1.3) |ψ(x, t)| → 1 (e.g., ψ → eimθ), t ≥ 0, when r = |x| =
√
x2 + y2 → ∞.

The GLSE (1.1) describes a large variety of nonlinear phenomena, including non-
linear waves, phase transitions, superconductivity, superfluidity, liquid crystals, and
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strings in the field theory. For example, when α = 1 and β = 0, it collapses into the
nonlinear heat equation (NLHE) or the Ginzburg–Landau equation (GLE) [27, 28].
The GLE with a complex order parameter is well known for modeling superconduc-
tivity [10, 11, 14, 12, 19], while that with a real order parameter corresponds to the
Allen–Cahn equation in phase transition [13]. When α = 0 and β = 1, the GLSE
reduces to the nonlinear Schrödinger equation (NLSE) [27, 31, 22] for modeling, for
example, superfluidity or Bose–Eistein condensation (BEC). While α > 0 and β > 0,
it is the complex Ginzburg–Landau equation (CGLE), or NLSE with a damping
term [3], which also arises in the study of the hydrodynamic instability [1].

It is known that there are stationary vortex solutions with a single winding number
or index m ∈ Z of the GLSE (1.1) with ε = 1 and V (x) ≡ 1 [27, 14, 36], which take
the form

(1.4) φm(x) = fm(r) eimθ, x = (r cos θ, r sin θ)T ∈ R
2,

where the modulus fm(r) is a real-valued function satisfying

1

r

d

dr

(
r
dfm(r)

dr

)
− m2

r2
fm(r) +

(
1 − f2

m(r)
)
fm(r) = 0, 0 < r < ∞,(1.5)

fm(0) = 0, fm(r) = 1 when r → ∞.(1.6)

The modulus as well as the core sizes of such vortex states have been calculated in
the literature [27, 36] by numerically solving the boundary value problem (1.5)–(1.6).
Numerical and analytical results suggest that the vortex states with winding number
m = ±1 are dynamically stable, and, respectively, |m| > 1 dynamically unstable
[27, 34, 25, 26, 22, 2, 36] (note that the stability and interaction laws of a quantized
vortex in the Gross–Pitaevskii equation for BEC [3, 4, 5] may be very different from
that studied here due to the different far-field boundary conditions).

In this paper, we study the GLSE (1.1) with initial conditions containing several,
say N , vortices. A precise definition of vortex solutions can be found in [22, 19]. We
are mainly concerned with the following initial condition:

(1.7) ψ0(x) =

N∏
j=1

φmj

(
x − x0

j

)
=

N∏
j=1

φmj

(
x− x0

j , y − y0
j

)
, x ∈ R

2,

where N is the total number of vortices and φmj is the vortex state as defined in
(1.4) with winding number mj = ±1 (see [36] for their numerical solutions). We may
then consider the interaction of N vortices with their initial centers shifted from the
origin (0, 0) to x0

j =
(
x0
j , y

0
j

)T
(1 ≤ j ≤ N). Taking m =

∑N
j=1 mj in (1.3), we refer

to vortices with the same winding numbers as like vortices and those with different
winding numbers as opposite vortices.

When ε = 1 and V (x) ≡ 1 in (1.1), it is known that for N well-separated vortices
of winding numbers mj = ±1 and locations xj (1 ≤ j ≤ N), the leading asymptotic
expansion of the energy is

(1.8) E ∼
N∑
j=1

Ej − π
∑
j �=l

mj ml ln |xl − xj | ,

where Ej is the self-energy of the vortex at xj , and the second term corresponds
to the well-known Kirchoff–Onsager Hamiltonian. From (1.8), we can obtain the
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vortex dynamic laws of the induced motion in the leading order, i.e., the adiabatic
approximation [27]. For the GLE, i.e., α = 1 and β = 0 in (1.1), the vortex dynamics
satisfies [27, 14, 15, 19]

κvj(t) := κ
dxj(t)

dt
= 2mj

N∑
l=1, l �=j

ml
xj(t) − xl(t)

|xj(t) − xl(t)|2
, t ≥ 0,(1.9)

xj(0) = x0
j , 1 ≤ j ≤ N,(1.10)

where κ is a constant determined from the initial setup (1.7). On the other hand, for
the NLSE, i.e., α = 0 and β = 1 in (1.1), it satisfies [27, 14, 8, 19]

vj(t) :=
dxj(t)

dt
= 2

N∑
l=1, l �=j

ml
J (xj(t) − xl(t))

|xj(t) − xl(t)|2
, t ≥ 0,(1.11)

xj(0) = x0
j , 1 ≤ j ≤ N,(1.12)

where J is a symplectic matrix defined as

(1.13) J =

(
0 −1
1 0

)
.

For asymptotic study of the vortex motions in the GLE and the NLSE, we refer to
[7, 8, 9, 6, 20, 18, 29, 31, 32, 33, 35] and references therein.

The aim of this paper is to provide a more detailed and accurate account of the
vortex dynamics governed by the GLSE, in particular, to address some open questions
concerning the range of validity of the reduced dynamic laws. Our approach is to first
solve analytically the ordinary differential equations (ODEs) (1.9) and (1.11) for any
N under a few types of initial data, and then compare these solutions with those
from direct simulation results of the GLSE (1.1) by using the efficient and accurate
numerical method proposed recently in [36]. The key features of the numerical method
include (i) the application of a time-splitting technique for decoupling the nonlinearity
in the GLSE; (ii) the adoption of polar coordinates to effectively match and resolve
the nonzero far-field conditions (1.3) in phase space; and (iii) the utilization of Fourier
pseudospectral discretization in the transverse direction and a second order (or fourth
order) finite difference or (finite element) discretization in the radial direction [36].

There are naturally many interesting issues concerning the vortex dynamics in
various limiting cases, such as the interaction of well-separated vortices with smaller
and smaller vortex cores (ε → 0), and when the distances between the vortices become
comparable with the core sizes (initially, both ε and the distances are of O(1)). Our
approach and numerical methods are applicable to both of these situations, but due
to page limitation, our main focus here is on the latter and we leave the discussion on
the former to future studies. The main findings in this paper provide justification of
the asymptotic vortex dynamic laws in some situations while unveiling limitations in
other cases; they also reveal interesting phenomena on the sound wave propagation
and the radiation effect associated with the vortex interaction.

The results of the paper are organized as follows. In section 2, based on the
nonlinear ODEs of the reduced dynamic laws, we prove the conservation of the mass
center and signed mass center of the N vortex centers, respectively, and solve ana-
lytically the reduced dynamic laws with a few types of initial data. In section 3, the
dynamics and interaction of quantized vortices in the GLE are directly simulated by
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solving (1.1) and compared with those from the reduced dynamic laws. Similar results
for the NLSE are reported in section 4. The vortex motions in the CGLE, and in the
GLSE under an inhomogeneous external potential, are reported in section 5. Finally,
some conclusions are drawn in section 6.

2. The reduced dynamic laws. In this section, we first prove the conserva-
tion of the mass center and signed mass center of the N vortex centers in the reduced
dynamic laws (1.9) and (1.11) for the GLE and the NLSE, respectively. These con-
servation properties can be used to solve the dynamic laws in special cases and to
compare with the direct numerical simulation results of the GLE and the NLSE. We
then solve the nonlinear ODEs analytically for several special types of initial data;
such analytical solutions can again be compared with the numerical solutions of the
GLE and the NLSE.

2.1. Conservation laws. Define, respectively, the mass center x and the signed
mass center x̃ of the N vortices as

(2.1) x(t) :=
1

N

N∑
j=1

xj(t) and x̃(t) :=
1

N

N∑
j=1

mj xj(t).

Let

Zj =

N∑
l=1, l �=j

ml
xj(t) − xl(t)

|xj(t) − xl(t)|2
.

It is easy to see that

(2.2)

N∑
j=1

mjZj =

N−1∑
j=1

N∑
j<1≤N

mj ml

[
xj(t) − xl(t)

|xj(t) − xl(t)|2
+

xl(t) − xj(t)

|xl(t) − xj(t)|2

]
= 0.

Then we have the following.
Lemma 2.1. The mass center of the N vortices in the reduced dynamic laws (1.9)

for the GLE is conserved, i.e.,

(2.3) x(t) :=
1

N

N∑
j=1

xj(t) ≡ x(0) :=
1

N

N∑
j=1

xj(0) =
1

N

N∑
j=1

x0
j , t ≥ 0.

Proof. Summing (1.9) for 1 ≤ j ≤ N and noting (2.1) and (2.2), we get for t ≥ 0,

dx(t)

dt
=

1

N

N∑
j=1

dxj(t)

dt
=

2

κN

N∑
j=1

mjZj = 0.

Thus the conservation law (2.3) is a combination of the above and (1.7).
Similarly, we have the following.
Lemma 2.2. The signed mass center of the N vortices in the reduced dynamic

laws (1.11) for the NLSE is conserved, i.e.,

(2.4) x̃(t) :=
1

N

N∑
j=1

mj xj(t) ≡ x̃(0) :=
1

N

N∑
j=1

mj xj(0) =
1

N

N∑
j=1

mj x0
j , t ≥ 0.
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Proof. Multiplying (1.11) by mjNJ−1, summing (1.11) for 1 ≤ j ≤ N , and noting
(2.1) and (2.2), we have for t ≥ 0,

NJ−1 dx̃(t)

dt
=

N∑
j=1

mjJ
−1 dxj(t)

dt
= 2

N∑
j=1

mjZj = 0.

Thus the conservation law (2.4) is a combination of the above and (1.7).

2.2. Initial conditions used for the study of vortex dynamics. Due to
the special structures of the nonlinear ODEs (1.9) and (1.11), we can solve them
analytically when the N vortices are initially located symmetrically on a circle or at
its center. By the conservation of the mass center and signed mass center in (1.9) and
(1.11), we assume without loss of generality that the circle is centered at the origin
with radius r0 = a > 0.

For simplicity, we denote θ0 as a given constant, denote m0 = +1 or −1, and
consider the following five patterns for the initial conditions in (1.7).

Pattern I. N (N ≥ 2) like vortices uniformly located on a circle, i.e.,

(2.5) x0
j = a

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, and mj = m0 for 1 ≤ j ≤ N.

Pattern II. N (N ≥ 3) like vortices located on a circle and its center, i.e.,

(2.6) x0
N = (0, 0)

T
, m

N
= m0,

and for 1 ≤ j ≤ N − 1,

(2.7) x0
j = a

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

with mj = m0.

Pattern III. The same as Pattern II, except m
N

= −m0 for the center vortex.
Pattern IV. Two opposite vortices, i.e., for j = 1, 2,

(2.8) x0
j = a (cos (jπ + θ0) , sin (jπ + θ0))

T
with m1 = −m2 = m0.

Pattern V. Three vortices (N = 3) with nonsymmetric initial setups.
Here we consider the following three different cases (with m1 = m3 = +1):
Case 1. x0

1 = (−a,−b/2)T , x0
2 = (0, b)T , x0

3 = (a,−b/2)T , m2 = +1.
Case 2. x0

1 = (−
√

3a/2,−a/2)T , x0
2 = (0, a)T , x0

3 = (
√

3a/2,−a/2)T ,m2 =−1.
Case 3. x0

1 = (−a,−b/2)T , x0
2 = (0, b)T , x0

3 = (a,−b/2)T , m2 = −1.
Notice that for all five types of patterns, we have x(t) = x(0) = (0, 0)T for

t ≥ 0. Moreover, for the first three patterns and the first case of Pattern V, we have
x̃(t) = x̃(0) = 0.

2.3. Analytical solutions of the reduced dynamics for the GLE. Noting
(2.3), we can solve the nonlinear ODEs (1.9) analytically when the initial conditions
in (1.10) are given by Patterns I–IV.

Lemma 2.3. If the initial data in (1.10) satisfy (2.5), i.e., Pattern I, then the
solutions of (1.9)–(1.10) can be given, for 1 ≤ j ≤ N with N ≥ 2, by

(2.9) xj(t) =

√
a2 +

2 (N − 1)

κ
t

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, t ≥ 0.
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Proof. For any N ≥ 2, based on the structures of the ODEs (1.9) and the initial
data (2.5), we take the ansatz for the solution as

(2.10) xj(t) = c
N

(t)x0
j , t ≥ 0, 1 ≤ j ≤ N,

where c
N

(t) is a function of time t and c
N

(0) = 1. Substituting (2.10) into (1.9),
applying a dot-product on both sides by x0

j , and noting (2.5), we get

c′
N

(t) =
2

κa2c
N

(t)

N∑
l=1, l �=j

mjml

(x0
j − x0

l ) · x0
j

|x0
j − x0

l |2

=
2

κa2c
N

(t)

N∑
l=1, l �=j

a2 − x0
l · x0

j

2a2 − 2x0
l · x0

j

=
N − 1

κa2c
N

(t)
, t ≥ 0.

Solving the above ODE and noting that c
N

(0) = 1, we obtain

(2.11) c
N

(t) =

√
1 +

2(N − 1)

a2κ
t, t ≥ 0.

Thus the solution (2.9) is a combination of (2.10), (2.11), and (2.5).
From the results in Lemma 2.3 we can see that, when the N vortices are uniformly

located on a circle initially, i.e., as in Pattern I, by the reduced dynamic law each
vortex moves outside along the line passing through its initial location and the origin,
and these N vortices are located on a circle at any time t with its radius increasing
by time c

N
(t) as in (2.11).

Lemma 2.4. If the initial data in (1.10) satisfy (2.6)–(2.7), i.e., Pattern II, then
the solutions of (1.9)–(1.10) are

(2.12) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.13) xj(t) =

√
a2 +

2N

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

, t ≥ 0.

Proof. Due to the symmetry of the ODEs (1.9), the initial data (2.5), and the
conservation of mass center (2.3), we can immediately obtain the solution (2.12). As
in the proof of Lemma 2.3, we assume

xj(t) = dN (t)x0
j , t ≥ 0, 1 ≤ j ≤ N − 1,

where dN (t) is a function of time t and dN (0) = 1. Substituting the above into (1.9),
applying a dot-product on both sides by x0

j , and noting (2.7) and (2.12), we get

d′N (t) =
2

κa2dN (t)

[
mjmN

(x0
j − x0

N ) · x0
j

|x0
j − x0

N |2 +

N−1∑
l=1, l �=j

mjml

(x0
j − x0

l ) · x0
j

|x0
j − x0

l |2

]

=
2

κa2dN (t)

[
m2

0 +

N−1∑
l=1, l �=j

m2
0

a2 − x0
l · x0

j

2a2 − 2x0
l · x0

j

]
=

N

κa2dN (t)
, t ≥ 0.
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Solving the above ODE and noting that dN (0) = 1, we obtain

(2.14) dN (t) =

√
1 +

2N

a2κ
t, t ≥ 0.

Thus the solution (2.13) is a combination of the above and (2.7).
From the results in Lemma 2.4 we can see that, for the dynamics of (1.9)–(1.10) in

Pattern II, by the reduced dynamic law the vortex initially at the center of the circle
does not move for any time t ≥ 0, each of the other N−1 vortices moves outside along
the line passing through its initial location and the origin, and these N − 1 vortices
are located on a circle at any time t with its radius increasing by time dN (t) as in
(2.14).

Lemma 2.5. If the initial data in (1.10) are as in Pattern III, then the solutions
of (1.9)–(1.10) are

(2.15) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.16) xj(t) =

√
a2 +

2(N − 4)

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

.

The proof follows from the analogous results in Lemma 2.4. From the results in
Lemma 2.5 we can see that, for the dynamics of (1.9)–(1.10) in Pattern III, by the
reduced dynamic law (i) the vortex initially at the origin does not move during the
interaction, each of the other N − 1 vortices moves along the line passing through its
initial location and the origin, and these N − 1 vortices are located on a circle at any
time t; (ii) when N = 3, the two vortices with the same index move towards each
other and collide with the vortex having the opposite index at the origin and at time
t = tc = κa2/2; (iii) when N = 4, all four vortices do not move but remain at their
initial locations for any t ≥ 0; and (iv) when N ≥ 5, the N − 1 vortices with the
same index move outside and never collide with the vortex with the opposite index
no matter how small the initial radius of the circle is.

Lemma 2.6. If the initial data in (1.10) satisfy (2.8), i.e., Pattern IV, then the
solutions of (1.9)–(1.10) can be given by

(2.17) xj(t) =

√
a2 − 2

κ
t (cos (jπ + θ0) , sin (jπ + θ0))

T
, 0 ≤ t ≤ tc, j = 1, 2,

with tc = κa2/2.
The proof is similar to that of Lemma 2.3. From the results in Lemma 2.6 we

can see that, for the dynamics of (1.9)–(1.10) in Pattern IV, when 0 ≤ t < tc = a2κ/2
the two vortices move towards each other along a line passing through their initial
locations and collide at the origin at time t = tc = O(a2) according to the reduced
dynamic law.

2.4. Analytical solutions of the reduced dynamics for the NLSE. Simi-
larly, noting (2.4) we can also solve the nonlinear ODEs (1.11) analytically when the
initial conditions in (1.12) are given by Patterns I–IV.

Lemma 2.7. If the initial data in (1.12) satisfy (2.5), i.e., Pattern I, then the
solutions of (1.11)–(1.12) can be given, for 1 ≤ j ≤ N with N ≥ 2, by
(2.18)

xj(t) = a

(
cos

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

)
, sin

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

))T

.
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Proof. For any N ≥ 2, based on the structures of the ODEs (1.11) and the initial
data (2.5), we take the ansatz for the solution with 1 ≤ j ≤ N as

(2.19) xj(t) = a

(
cos

(
2jπ

N
+ θ0 + αN (t)

)
, sin

(
2jπ

N
+ θ0 + αN (t)

))T

, t ≥ 0,

where αN (t) is a function of time and αN (0) = 0.

Now, let x⊥
j (t) = a

(
− sin

(
2jπ
N +θ0 +αN (t)

)
, cos

(
2jπ
N +θ0 +αN (t)

))T
. By (1.13),

we have the elementary identity

N∑
l=1, l �=j

m0

x⊥
j · (Jxj) − x⊥

j · (Jxl)

|xj |2 + |xl|2 − 2xj · xl

=

N∑
l=1, l �=j

m0

1 − cos
(

2(j−l)π
N

)
2 − 2 cos

(
2(j−l)π

N

) =
m0(N − 1)

2
.(2.20)

Inserting (2.19) into (1.11) and applying a dot-product on both sides with x⊥
j (t),

we get

α′
N (t) =

2

a2

N∑
l=1, l �=j

ml

x⊥
j · [J(xj − xl)]

|xj − xl|2
=

m0(N − 1)

a2
, t ≥ 0.

Solving the above ODE and noting that αN (0) = 0, we obtain αN (t) = m0(N − 1)t/a2

for t ≥ 0. Thus a combination of the above leads to the solution (2.18).
From the results in Lemma 2.7 we can see that, when the N like vortices are uni-

formly located on a circle initially, i.e., for the dynamics of (1.11)–(1.12) in Pattern I,
they rotate along the circle (counterclockwise if m0 = +1 and clockwise if m0 = −1)
with angular frequency ω = (N − 1)/a2 (cf. Figure 13(a),(d)).

Lemma 2.8. If the initial data in (1.12) satisfy (2.6)–(2.7), i.e., Pattern II, then
the solutions of (1.11)–(1.12) are

(2.21) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.22) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

)
, sin

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

))T

.

Proof. Due to the symmetry of the ODEs (1.11), the initial data (2.6)–(2.7), and
the conservation of signed mass center (2.4), we can immediately get the solution
(2.21). As in the proof of Lemma 2.7, we assume for 1 ≤ j ≤ N − 1 that

(2.23) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 + βN (t)

)
, sin

(
2jπ

N − 1
+ θ0 + βN (t)

))T

,

where βN (t) is a function of time and βN (0) = 0. Inserting (2.23) into (1.11), applying
a dot-product on both sides with

x⊥
j (t) = a

(
− sin

(
2jπ

N − 1
+ θ0 + βN (t)

)
, cos

(
2jπ

N − 1
+ θ0 + βN (t)

))T

,
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and noting (1.13), (2.21), and (2.20) (with N replaced by N − 1), we get

β′
N (t) =

2

a2

[
m

N

x⊥
j · [J(xj − xN )]

|xj − xN |2 +

N−1∑
l=1, l �=j

ml

x⊥
j · [J(xj − xl)]

|xj − xl|2

]

=
2

a2

[
m0

x⊥
j · (Jxj)

|xj |2
+

N−1∑
l=1, l �=j

m0

x⊥
j · (Jxj) − x⊥

j · (Jxl)

|xj |2 + |xl|2 − 2xj · xl

]
=

m0N

a2

for t ≥ 0. Solving the above ODE and noting that βN (0) = 0, we obtain βN (t) =
m0Nt/a2 for t ≥ 0. Thus a combination of the above leads to the solution (2.22).

From the results in Lemma 2.8 we can see that, for the dynamics of (1.11)–(1.12)
in Pattern II, the vortex initially at the center of the circle does not move for any
time t ≥ 0, and the other N − 1 vortices rotate along the circle (counterclockwise if
m0 = +1 and clockwise if m0 = −1) with angular frequency ω = N/a2 (cf. Figure
14(a),(d)).

Lemma 2.9. If the initial data in (1.12) are as in Pattern III, then the solutions
of (1.11)–(1.12) are

(2.24) xN (t) ≡ (0, 0)T , t ≥ 0,

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

(2.25) xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 + m0ωN t

)
, sin

(
2jπ

N − 1
+ θ0 + m0ωN t

))T

,

where ωN = (N − 4)/a2.
The proof is similar to that of Lemma 2.8. From the results in Lemma 2.9, we

can see for the dynamics of (1.11)–(1.12) in Pattern III that (i) the vortex initially
at the origin does not move during the interaction; (ii) when N = 3, the two vortices
initially located on a circle rotate along the same circle (clockwise if m0 = +1 and
counterclockwise if m0 = −1) with frequency ω(a) = 1/a2 (cf. Figure 15(a)); (iii) the
case of N = 4 is rather special, and the reduced dynamics implies that all four vortices
do not move and stay at their initial locations for any t ≥ 0 (cf. Figure 15(d)); and
(iv) when N ≥ 5, the N − 1 vortices initially located on a circle rotate along the
same circle (counterclockwise if m0 = +1 and clockwise if m0 = −1) with angular
frequency ωN = (N − 4)/a2 (cf. Figure 15(g)).

Lemma 2.10. If the initial data in (1.12) satisfy (2.8), i.e., Pattern IV, then the
solutions of (1.11)–(1.12) can be given by

(2.26) xj(t) = x0
j +

m0

a
t (− sin θ0, cos θ0)

T
, t ≥ 0, j = 1, 2.

Proof. From the conservation of the signed mass center (2.4), we have

(2.27) x̃(t) =
x1(t) − x2(t)

2
≡ x1(0) − x2(0)

2
= a (cos θ0, sin θ0)

T
, t ≥ 0.

On the other hand, from the ODEs (1.11), we obtain

dx1(t)

dt
= −2m0

J (x1(t) − x2(t))

|x1(t) − x2(t)|2
,

dx2(t)

dt
= 2m0

J (x2(t) − x1(t))

|x2(t) − x1(t)|2
.
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Summing up the above equations and combining with (2.27), we get

(2.28)
dx1(t)

dt
= −m0

a
J (cos θ0, sin θ0)

T , t ≥ 0, with x1(0) = x0
1.

Solving (2.28) and noting (2.27), we obtain (2.26) immediately.
From the results in Lemma 2.10 we can see that, for the dynamics of (1.11)–(1.12)

in Pattern IV, the two opposite vortices move along two parallel lines which are
perpendicular to the line passing through their initial locations with constant velocity
(cf. Figures 16(b) and 20(a))

(2.29) v(t) =
dx1(t)

dt
=

dx2(t)

dt
≡ m0

a
(− sin θ0, cos θ0)

T
, t ≥ 0.

3. Numerical results for vortex dynamics in the GLE. In this section,
we report the numerical results of the vortex dynamics and interaction by directly
simulating the GLE; i.e., we take α = 1, β = 0, ε = 1, and V (x) ≡ 1 in (1.1), with
the efficient and accurate time-splitting method introduced in [36]. For the choice of
mesh size and time step, as well as the size of the bounded computational domain,
we refer to [36]. For comparison, we also exhibit the motion of the vortex centers
solved from the reduced dynamics (1.9) in each case. In the figures, the symbols used
include + (center of a vortex with index m = +1), − (center of a vortex with index
m = −1), and o (collision position of two or more opposite vortices).

3.1. Interactions of N (N ≥ 2) like vortices, Patterns I and II. Figure 1
displays the surface plots of −|ψ| at different times when the initial data in (1.7) are
chosen as (2.5) with N = 2, m0 = +1, and a = 2, and Figure 2 shows the time
evolution of the vortex centers for different number of vortices N ≥ 2, i.e., Pattern I.
In addition, Figure 3 shows the time evolution of the vortex centers when the initial
data in (1.7) is chosen as (2.6)–(2.7) with m0 = +1 and a = 3 for different number of
vortices N ≥ 3, i.e., Pattern II.

Fig. 1. Surface plots of −|ψ| at different times for the GLE when the initial condition is chosen
as Pattern I with N = 2, m0 = +1, and a = 2 in (2.5).

From Figures 1–3, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N like vortices in the GLE when
the initial data are chosen as either Pattern I or II:

(i) The mass center of the vortex centers is conserved for any time t ≥ 0 (cf. Fig-
ures 2 and 3), which confirms the conservation law in (2.3).

(ii) Vortices with the same index undergo a repulsive interaction and they never
collide (cf. Figures 1, 2, and 3). Their speeds depend on their distances to the origin,
i.e., the larger the distance, the slower the motion (cf. Figures 2 and 3). In addition,
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Fig. 2. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern I with a = 2 and m0 = +1 for different N . (a) N = 2; (b) N = 3.
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Fig. 3. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern II with a = 3 and m0 = +1 for different N . (a) N = 3; (b) N = 4.

in Pattern II the vortex initially at the origin does not move during the dynamics
(cf. Figure 3), which confirms the analytical solution (2.12).

(iii) Due to the symmetry of the initial data, the vortices of those initially located
on a circle move along lines passing through their initial locations and the origin, and
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at any time t ≥ 0, these vortex centers are always on a circle (cf. Figures 2 and 3),
which confirms the analytical solutions (2.9) and (2.13).

(iv) In Patterns I and II, the solutions of the reduced dynamic laws agree qual-
itatively with our numerical results of the GLE, and quantitatively if a proper κ in
(1.9) is chosen, which depends on the initial setup in (1.7). For example, in Pattern I
with N = 2, we numerically find that the two solutions are the same when we choose
κ ≈ 2.1279, 2.1690, 2.2589, and 2.3116 for a = 4, 5, 10, and 20, respectively, which
suggests that 1

κ ≈ 0.424 + 0.1897
a when a ≥ 4.

3.2. Interactions of N (N ≥ 3) opposite vortices, Pattern III. Figure 4
shows time evolution of the vortex centers when the initial data in (1.7) are chosen
as Pattern III with m0 = +1 and a = 3 for different N ≥ 3.
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Fig. 4. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern III with a = 3 and m0 = +1 for different N . (a) N = 3; (b) N = 4;
(c) N = 5.

From Figure 4, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N opposite vortices in the GLE
when the initial data are chosen as Pattern III:

(i) The mass center of the vortex centers is conserved for any time t ≥ 0 (cf. Fig-
ure 4), which confirms the conservation law in (2.3).
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(ii) The vortex initially at the origin does not move for any time t ≥ 0 (cf. Fig-
ure 4), which confirms the analytical solution (2.15). The vortices of those initially
located on a circle move to the origin when N = 3 or 4 and, respectively, move away
when N ≥ 5, along lines passing through their initial location and the origin, and
at any time t ≥ 0, these vortex centers are always on a circle (cf. Figure 4), which
confirms the analytical solutions (2.16). Their speeds depend on their distances to
the origin, i.e., the larger the distance, the slower the motion.

(iii) When N = 3 or 4, collisions between the vortex centers are observed at a
critical time tc (cf. Figure 4(a),(b)). The collision time is quadratically proportional to
the initial distance a. Before collision, the interaction is attractive. When N = 3, they
collide at the origin, and after the collision, there is one vortex with index m = m0

left, and it stays at the origin forever (cf. Figure 4(a)). On the other hand, when
N = 4, one of the three vortices initially located on the circle collides with the one
initially at the origin. After the collision, two like vortices remain and they undergo
a repulsive interaction (cf. Figure 4(b)).

(iv) When N ≥ 5, the vortices undergo repulsive interactions and never collide
(cf. Figure 4(c)).

(v) In Pattern III, when N = 3 or N ≥ 5, the solutions of the reduced dynamic
laws qualitatively agree with our numerical results of the GLE. On the contrary,
they are completely different for N = 4. One may argue that a possible cause is
the fact that this case corresponds to a degenerate case of the reduced dynamics
(1.9)–(1.10) for which the vortices remain stationary, and thus the next order effect
becomes important in the underlying vortex motion of the original GLE. In fact, the
collision time needed for N = 4 (tc ≈ 28; cf. Figure 4(b)) is much longer than that for
N = 3 (tc ≈ 1.8; cf. Figure 4(a)) with the same initial radius of the circle at a = 3.

3.3. Interactions of two opposite vortices, Pattern IV. Figure 5 displays
the surface plots of −|ψ| at different times and Figure 6 shows time evolution of the
vortex centers when the initial data in (1.7) are chosen as (2.8) with m0 = +1 and
a = 1.5, i.e., Pattern IV.
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Fig. 5. Surface plots of −|ψ| at different times for the GLE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 1.5.

From Figures 5–6, we can draw the following conclusions for the interaction of
two opposite vortices in the GLE when the initial condition is chosen as Pattern IV:

(i) The mass center of the two vortex centers is conserved for any time t ≥ 0
(cf. Figure 6), which again confirms the conservation law in (2.3).

(ii) Two vortices with opposite winding numbers undergo an attractive inter-
action (cf. Figure 5), and their centers move along a straight line passing through
their locations at t = 0 (cf. Figure 6). The speed of the motion for the two vortex



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS AND INTERACTION OF VORTICES IN GLSE 1753

−2 −1 0 1 2
−0.1

−0.05

0

0.05

0.1

x

y

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

t

x 1(t)
 o

r y
1(t)

0 0.2 0.4 0.6
−1

0

1

t

x
1
+x

2
y

1
+y

2

Fig. 6. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Pattern IV with a = 1.5 and m0 = +1.

centers depends on their distance. The smaller the distance, the faster the motion
(cf. Figure 6).

(iii) There exists a critical time tc > 0, and the two opposite vortices collide with
each other at the origin (cf. Figure 5). From our numerical results, we find numerically
that the collision time depends on the distance of the two vortex centers at t = 0 as

(3.1) tc ≈
1

14.8710
d2.0715
0 with d0 = 2a, a > 0.

This immediately implies that tc = O
(
a2
)
, which confirms the analytical result of the

collision time in Lemma 2.6.
(iv) Again, in Pattern IV the solutions of the reduced dynamic laws agree qual-

itatively with our numerical results of the GLE, and quantitatively if a proper κ in
(1.9) is chosen, which depends on the initial distance between the two vortex centers.

3.4. Interactions of vortices with nonsymmetric setups. Figures 7–9 show
the time evolution of the vortex centers when the initial data in (1.7) are chosen as
the three cases in Pattern V, respectively.

Based on Figures 7–9 and our additional numerical experiments, we can draw the
following conclusions for three vortices with nonsymmetric initial setups:

(i) When they have the same index, they never collide (cf. Figure 7). On the
contrary, when they have opposite indices, they collide at a finite time (cf. Figures 8
and 9), and after collision, only one vortex is left.

(ii) The mass centers of the vortex centers are not conserved (cf. Figures 7–9)
during the dynamics within the time frame we computed the solutions, which sug-
gests that there is a considerable discrepancy between the reduced dynamics law
(1.9)–(1.10) and the original dynamics in some regimes. One may argue that a pos-
sible cause is the fact that the reduced dynamic law is the adiabatic approximation
in the leading order when the N vortices are well separated, and thus the next order
effect becomes important in the underlying vortex motion of the original GLE when
the N vortices are not well separated. In fact, in our numerical results, the larger the
distance between the vortex centers, the better the conservation of the mass center
(cf. Figures 7–9). This suggests that the reduced dynamics law (1.9)–(1.10) is still a
reasonable approximation to the vortex motion of the original GLE in a nonsymmetric
initial setup when the N vortices are well separated.

4. Numerical results for vortex dynamics in the NLSE. Similarly, in this
section we report the numerical results of the vortex dynamics and interaction by
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Fig. 7. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 1 in Pattern V with different a and b. (a) a = 1, b = 4; (b) a = 3, b = 6.

(a)
−2 −1 0 1 2

−1.5

−0.5

0.5

1.5

2.5

x

y

0 0.5 1 1.5
0

2

4

t

dis
tan

ce

d
12

 = d
23

d
13

0 0.5 1 1.5

−0.1

0.1

0.3

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

(b)
−5 0 5

−4

−2

0

2

4

6

x

y 0 5 10 15 20
0

5

10

t

dis
tan

ce

d
12

 = d
23

d
13

0 5 10 15 20

0

0.5

1

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

Fig. 8. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 2 in Pattern V with different a. (a) a = 2; (b) a = 5.

directly simulating the nonlinear Schrödinger equation; i.e., we take α = 0, β = 1,
ε = 1, and V (x) ≡ 1 in (1.1), with the numerical method introduced in [36]. All the
computational setups are the same as in the previous section.
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Fig. 9. Time evolution of vortex centers by directly simulating the GLE when the initial data
are chosen as Case 3 in Pattern V with different a and b. (a) a = 2, b = 4; (b) a = 8, b = 4.

Fig. 10. Surface plots of −|ψ| at different times for the NLSE when the initial condition is
chosen as Pattern I (2.5) with N = 2, m0 = +1, and a = 2.

4.1. Interactions of N (N ≥ 2) like vortices, Patterns I and II. Figures
10–12 give the surface plots of −|ψ| at different times, the slice plots of |ψ(x, 0, t)| at
different times, and some dynamical laws when the initial data in (1.7) are chosen
as (2.5) with N = 2 and m0 = +1, i.e., interaction of two like vortices. In addition,
Figure 13 shows time evolution of the vortex centers when the initial condition is
chosen as Pattern I (2.5) for different N ≥ 2, and Figure 14 depicts similar results for
Pattern II (2.6)–(2.7).

From Figures 10–14, and additional numerical experiments not shown here, we
can draw the following conclusions for the interaction of N like vortices in the NLSE
when the initial condition is chosen as either Pattern I or II:

(i) The signed mass center of the vortex centers is conserved for any time t ≥ 0
(cf. Figures 13(b),(c),(e),(f); 14(b),(c),(e),(f)), which confirms the conservation law in
(2.4).

(ii) Vortices with the same index behave like point vortices in an ideal fluid and
never collide (cf. Figures 10, 13, and 14). In fact, there exists a critical time t0 > 0,
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Fig. 11. Plots of |ψ(x, 0, t)| (x ≥ 4) at different times for the NLSE when the initial condition
is chosen as Pattern I (2.5) with N = 2, m0 = +1, and a = 2, showing the sound wave propagation.
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Fig. 12. Dynamical laws of interaction between two like vortices, i.e., Pattern I with N = 2, in
the NLSE. (a) Frequency ω of the rotation (solid line is from (2.18) and asterisks are our numerical
results); (b) diameter d1 = |x1(t0) − x2(t0)| when the two vortices start to rotate on a circle;
(c) α(d0) in (4.1) (the asterisks are our numerical results and the solid line is from the theoretical
predication α = 26 · 3π [30]); (d) errors of the vortex centers between the solution (2.18) of the
reduced dynamic laws (denoted xrd(t)) and our directly simulating results of the NLSE (denoted
x(t)) for different initial distance d0 = 2a.

depending on the initial distance to the origin, i.e., a, such that before time t0, i.e.,
when 0 ≤ t ≤ t0, the vortices initially located on a circle move from their initial
locations to another circle, and the change in distance between each vortex to the
origin is rapid (cf. Figures 13(b), 14(b)); after time t0, i.e., for t ≥ t0, the vortices
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Fig. 13. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Pattern I with different N . (a) and (d) are from the reduced dynamic laws (2.18); (b) and (e) and
(c) and (f) show direct simulation results of the NLSE with a = O(r01) and a � r01, respectively.
Case 1: N = 2 with (b) a = 0.5 and (c) a = 6.

rotate uniformly along a circle (counterclockwise when winding number m0 = +1 and
clockwise when m0 = −1) with angular frequency ω depending on a and the radius
of the circle increasing very slowly. The sound wave propagation is clearly observed
during the interaction (cf. Figure 11). In addition, in Pattern II, the vortex initially
at the origin does not move during the dynamics (cf. Figure 14(b),(c),(e),(f)), which
confirms the analytical solution (2.21).

(iii) For Pattern I with N = 2, we also present the comparison quantitatively
(cf. Figure 12). In this case, denote d0 = |x0

1 −x0
2| = 2a and d1 = |x1(t0)−x2(t0)| for

the initial distance and the diameter of the circle at time t = t0 of the two vortices,
respectively. The angular frequency predicted by the reduced dynamics is confirmed
by our numerical simulations (cf. Figure 12(a)) when d0 = 2a is large, and it is invalid
when d0 is small; i.e., the reduced dynamics is invalid when the vortex pair initially
has overlapping support. Furthermore, even when the two vortices are well separated,
the reduced dynamics fails to take into account the effect of the excessive energy and
the radiation, which play important roles in the NLSE vortex dynamics. For example,
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Fig. 13 (cont.). Case 2: N = 3 with (e) a = 1 and (f) a = 6.

by analyzing the next-order approximation for the interaction of two well-separated
vortices in the NLSE, it was derived in [30] that the diameter of the circle increases
on the order of O(t1/6), i.e., asymptotically,

(4.1) d(t) = |x1(t) − x2(t)| =
(
|x0

1 − x0
2|6 + 26 · 3πt

)1/6
=

(
d6
0 + 26 · 3πt

)1/6
.

This departs from the constant distance prediction made from the reduced dynamic
laws (1.11). Numerically, we fit the distance between the two vortex centers d(t) =
|x1(t) − x2(t)| for t ≥ t0 by

(4.2) d(t) = |x1(t) − x2(t)| =
(
d(t0)

6 + α(d0)(t− t0)
)1/6

, t ≥ t0,

with α(d0) being a constant depending on d0. The results show that (4.1) is a very
good prediction (cf. Figure 12(c)). Of course, much more detailed information on the
vortex dynamics in the NLSE can be found through our numerical simulations. For
example, our simulations suggest that when the initial distance between the two vortex
centers increases, the time t0 increases, the diameter d1 = d(t0) of the circle at t = t0
increases (cf. Figure 12(b)), and α(d0) in (4.2) increases (cf. Figure 12(c)). From Fig-
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Fig. 14. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Pattern II with different N . (a) and (d) are from the reduced dynamic laws (2.21)–(2.22); (b) and (e)
and (c) and (f) show direct simulation results of the NLSE with a = O(r01) and a � r01, respectively.
Case 1: N = 3 with (b) a = 0.5 and (c) a = 10.

ure 12(b), we have the numerical dynamical laws for the diameter d1 for different d0:

d1 := d(t0) ≈
{

d0 + d0.9053
0 /2.9189, d0 < r0

1,

d0 + 1.4453/d0.7996
0 , d0 > 2r0

1,

where r0
1 ≈ 1.75 [36] is the core size for the vortex state φm in (1.4) of the GLSE with

winding number m = ±1.
(iv) In Patterns I and II, the solutions of the reduced dynamic laws agree qual-

itatively with our numerical results of the NLSE, and quantitatively when time t is
small and they are well separated, i.e., a � r0

1 = 1.75 [36]. In general, for a fixed
initial distance, i.e., a, the error increases when time increases; for a given time, the
error decreases when the initial distance increases (cf. Figure 12(d)). This again sug-
gests that the reduced dynamics for governing time evolution of the vortex centers
in the NLSE is valid only when time t is small and the initial distance is very large.
Corrections must be added, e.g., such as (4.1), when either the time t is large or the
initial distance is not very large.
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Fig. 14 (cont.). Case 2: N = 4 with (e) a = 1 and (f) a = 6.

(v) The results in Figure 12, as well as in Figure 21, also confirm Kirchoff’s laws
rigorously derived in [23, 24] for the interaction of two vortices in the NLSE, i.e.,
α = 0, β = 1, V (x) ≡ 1 in (1.1), when ε → 0 with the initial distance between the two
vortex centers fixed. In fact, the vortex interactions of (1.1) with V (x) ≡ 1, ε = 1,
and increased initial distances between the vortex centers are equivalent to those of
(1.1) with V (x) ≡ 1, ε → 0, and fixed initial distances between the vortex centers by
applying a rescaling.

4.2. Interactions of N (N ≥ 3) opposite vortices, Pattern III. Figure 15
shows the time evolution of the vortex centers for different N ≥ 3 when the initial
data in (1.7) are chosen as in Pattern III with m0 = +1 for different N and a.

From Figure 15, and additional numerical experiments not shown here, we can
draw the following conclusions for the interaction of N opposite vortices in the NLSE
when the initial data are chosen as Pattern III:

(i) The signed mass center of the vortex centers is conserved for any time t ≥ 0
(cf. Figure 15(b),(c),(e),(f),(h),(i)), which confirms the conservation law in (2.4).

(ii) The vortex initially at the origin does not move for any time t ≥ 0 (cf. Figure
15(b),(c),(e),(f),(h),(i)), which confirms the analytical solution (2.24). After a critical
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Fig. 15. Time evolution of vortex centers for the NLSE when the initial condition is chosen
as Pattern III with different N and a. (a), (d), and (g) are from the reduced dynamic laws (2.25);
(b), (e), and (h) and (c), (f), and (i) show direct simulation results of the NLSE with a = O(r01)
and a � r01, respectively. Case 1: N = 3 with (b) a = 3 and (c) a = 6.

time tc depending on the initial radius a, the vortices initially located on a circle
rotate clockwise when N = 3 and a > acr ≈ 2r0

1 or N = 4, and, respectively,
counterclockwise when N ≥ 5, along a circle, and at any time t ≥ 0, these vortex
centers are always on a circle (cf. Figure 15(b),(c),(e),(f),(h),(i)), which confirms the
analytical solutions (2.25). Their angular frequencies depend on their distances to the
origin, i.e., the larger the distance, the slower the motion.

(iii) For the case of N = 3, when the initial radius a < 2r0
1, the three vortices

undergo attractive interactions, and the two vortices initially on a circle move sym-
metrically towards the center before a critical time tc. When t = tc, they collide at
the origin (cf. Figure 15(b)), and after it, only one vortex with a winding number m0

is left and stays at the point (0, 0) for any time t > tc. On the other hand, when
a > 2r0

1, the two vortices rotate (clockwise for m0 = +1, and, respectively, counter-
clockwise for m0 = −1) on a circle whose radius increases very slowly with time t
(cf. Figure 15(c)).

(iv) When N = 4, the three vortices initially on a circle move to another circle
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Fig. 15 (cont.). Case 2: N = 4 with (e) a = 1.6 and (f) a = 6.

with radius a1 < a; then they rotate (clockwise for m0 = +1, and, respectively,
counterclockwise for m0 = −1) on a circle whose radius increases very slowly with
time t (cf. Figure 15(e),(f)). The four vortices never collide no matter how small a is.

(v) When N ≥ 5, the N − 1 vortices initially on a circle move to another circle
with radius a1 > 0; then they rotate (counterclockwise for m0 = +1, and, respectively,
clockwise for m0 = −1) on a circle whose radius increases very slowly with time t
(cf. Figure 15(h),(i)).

(vi) In Pattern III, when N = 3 and a > 2r0
1 or N ≥ 5, the solutions of the

reduced dynamic laws agree qualitatively with our numerical results of the NLSE.
On the contrary, when N = 4 or N = 3 with a < 2r0

1, they are completely different!
This may be attributed to the lack of well separation between the vortex cores and/or
the next-order effect in the underlying vortex motion of the original NLSE. In fact,
the angular frequency for N = 4 is much larger than that for N = 3 with the same
initial radius of the circle (cf. Figure 15(c),(f)).

4.3. Interactions of two opposite vortices, Pattern IV. Figure 16 displays
the surface plots of −|ψ| at different times when the initial data in (1.7) are chosen
as (2.8), i.e., Pattern IV, with m0 = +1 and a = 1.5 or a = 5. Figures 17 and 18–19
plot |ψ(x, y(t), t)| and |ψ(0, y, t)|, respectively, to show the sound wave propagation
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Fig. 15 (cont.). Case 3: N = 5 with (h) a = 1 and (i) a = 6.
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Fig. 16. Surface plots of −|ψ| at different times for the NLSE when the initial condition is
chosen as Pattern IV (2.8) with m0 = +1. I. a = 1.5 = O(r01).

during the dynamics. Figure 20 shows the time evolution of the two vortex centers
with different d0 = 2a. In addition, Figure 21 shows some dynamical laws for the
interaction.

From Figures 16–21, we can draw the following conclusions for the interaction of
two opposite vortices in the NLSE when the initial condition is chosen as Pattern IV:

(i) The signed mass center of the two vortex centers is not conserved, at least
when either the initial distance between the two vortices is not large or time t is small
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Fig. 16 (cont.). II. a = 5 � r01.
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Fig. 17. Plots of |ψ(x, y(t), t)| at different times for the NLSE when the initial condition
is chosen as Pattern IV (2.8) with m0 = +1 and a = 1.5, showing sound wave propagation and
radiation with the values of y(t) given in the labels. Here y = y(t) is the line passing through the
two vortex centers at time t before they merge with each other around tc ≈ 3.0.
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Fig. 18. Plots of |ψ(0, y, t)| at different times for the NLSE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 1.5, showing solitary-like wave propagation.

(cf. Figure 20(b),(c),(d)), which suggests that the conservation law in (2.4) is invalid
when the initial distance between the two vortex centers at time t = 0 is not large.

(ii) There is a critical distance dcr satisfying that, for d0 = |x0
1 − x0

2| < dcr, the
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Fig. 19. Plots of |ψ(0, y, t)| at different times for the NLSE when the initial condition is chosen
as Pattern IV (2.8) with m0 = +1 and a = 5 � r01 for solitary wave propagation.

two vortices approach each other while drifting sideways and then collide and are
annihilated at time t = tc (cf. Figures 16, 20(b)), and for d0 = |x0

1 − x0
2| > dcr, they

move almost in a parallel course, perpendicular to the line joining them (cf. Figures
19, 20(c),(d)). Our numerical simulations suggest that dcr ≈ 2r0

1 = 2 × 1.75 = 3.5,
i.e., double the size of the core size r0

1, which is almost triple the size of the theoretical
prediction dcr ≈

√
2 derived in [30].

(iii) When d0 < dcr = 2r0
1, before collision, our numerical simulation reveals

that two sound waves moving towards each other are generated along the line joining
the centers of the two vortices (cf. Figure 17), which cause the collision, while no
radiation is observed; after the collision, some outgoing radiation is observed along
with a solitary-like sound wave also being observed in the y-axis (cf. Figure 18). In
addition, a discontinuity or shock wave in the hydrodynamic velocity is observed just
after the collision. Furthermore, for the initial setup in Pattern IV, the two vortices
collide at the point (0,−d2) with d2 > 0 when t = tc. When the initial distance d0

increases, both tc and d2 increase, and our numerical results suggest the following
relation between them:

tc ≈
1

7.0790
d2.0954
0 , d1 ≈ 1

1.9300
d1.0365
0 , with d1 =

√
d2
0 + d2

2.

(iv) When d0 � dcr = 2r0
1, the two vortices drift almost on two parallel lines,

perpendicular to the line joining them with a constant speed. Our numerical results
confirm the speed (2.29) when d0 = 2a is large (cf. Figure 21(a)). In addition, a
solitary wave is observed during the dynamics (cf. Figure 19).

(v) Again, in Pattern IV the solutions of the reduced dynamic laws agree qualita-
tively with our numerical results of the NLSE when a � r0

1 and they are completely
invalid when a is small (cf. Figure 20). When a > r0

1, in general, for a fixed initial
distance, the error increases when time increases; for a given time, the error decreases
when the initial distance increases (cf. Figure 21(b)).

4.4. Interactions of vortices with nonsymmetric setups. Figures 22–24
show time evolution of the vortex centers when the initial data in (1.7) are chosen as
the three cases in Pattern V, respectively.
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Fig. 20. Time evolution of vortex centers for the NLSE when the initial condition is chosen
as Pattern IV. (a) is from the reduced dynamic laws (2.26), and (b), (c), and (d) show direct
simulation results of the NLSE with m0 = +1 and a = 1.5 < r01, a = 2 > r01, and a = 5 � r01,
respectively.

Based on Figures 22–24 and our additional numerical experiments, we can draw
the following conclusions for three vortices with nonsymmetric initial setups:

(i) When they have the same index, they rotate and never collide (cf. Figure 22).
On the contrary, when they have opposite indices, there exists a critical distance dcr,
when their initial distances are less than dcr, they collide at finite time (cf. Figures
23(a), 24(a)), and after collision, only one vortex is left; on the other hand, when their
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Fig. 21. Dynamic laws for two opposite vortices, i.e., Pattern IV with N = 2, in the NLSE.
(a) Speed v of the parallel motion. (b) Errors of the vortex centers between the solution (2.26) of the
reduced dynamic laws (denoted as xrd(t)) and our directly simulating results of the NLSE (denoted
as x(t)) for different initial distance d0 = 2a.
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Fig. 22. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 1 in Pattern V with different a and b. (a) a = 1, b = 4. (b) a = 3, b = 6.

initial distances are larger than dcr, two of them move in a parallel course and never
collide (cf. Figures 23(b), 24(b)).

(ii) The signed mass centers of the vortex centers are not conserved (cf. Fig-
ures 22–24) during the dynamics, and these suggest that the reduced dynamics law
(1.11)–(1.12) has considerable discrepancy in some regimes. Again, one may argue
that a possible cause is the fact that the reduced dynamic law is the adiabatic ap-
proximation in the leading order when the N vortices are well separated, and thus the
next-order effect becomes important in the underlying vortex motion of the original
NLSE when the N vortices are not well separated. Also in our numerical results,
the larger the distance between the vortex centers, the better the conservation of the
signed mass center (cf. Figures 22–24). This again suggests that the reduced dynam-
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Fig. 23. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 2 in Pattern V with different a. (a) a = 2. (b) a = 5.
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Fig. 24. Time evolution of vortex centers for the NLSE when the initial condition is chosen as
Case 3 in Pattern V with different a and b. (a) a = 2, b = 4. (b) a = 8, b = 4.

ics law (1.11)–(1.12) is still a reasonable approximation to the vortex motion of the
original NLSE in a nonsymmetric initial setup when the N vortices are well separated.

5. Vortex dynamics in the CGLE or in the GLSE with an external
potential. In many applications of the GLSE, the physical situation is often more
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Fig. 25. Time evolution of vortex centers for the CGLE when the initial condition is chosen
as Patterns I–IV with different a. (a) Pattern I with N = 2 and a = 2. (b) Pattern I with N = 3
and a = 1.5. (c) Pattern II with N = 3 and a = 2. (d) Pattern IV with a = 3.

complicated than the GLE and NLSE cases considered in the earlier sections. As an
illustration, in this section we report numerical results of vortex interaction in the
CGLE and vortex motion in the GLSE with an inhomogeneous external potential.

5.1. Numerical results for vortex dynamics in the CGLE. We take α =
β = 1, ε = 1, and V (x) ≡ 1 in (1.1). Figure 25 shows the various time evolutions of
the vortex centers when the initial data in (1.7) are chosen as Patterns I, II, and IV.
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Based on Figure 25 and our additional numerical experiments, we can draw the
following conclusions for vortex dynamics in the CGLE:

(i) Vortices with the same index undergo repulsive interactions and never collide.
The trajectories are combinations of those from the GLE and the NLSE (cf. Figure
25(a), (b), and (c)).

(ii) Two vortices with opposite indices collide after some time tc (cf. Figure 25(d))
and the collision position is (0,−d2). The collision time and position depend on the
initial distance between the two vortices d0 = 2a. Our numerical results suggest the
following relation between them:

tc ≈
1

8.9837
d2.0655
0 , d1 ≈ 1

4.7781
d1.0184
0 , with d1 =

√
d2
0 + d2

2.

In addition, based on the numerical results in Figure 25 it is reasonable to make
the following conjecture about the reduced dynamic laws for the interaction of N
well-separated vortices with winding number mj = +1 or −1:

vj(t) :=
dxj(t)

dt
= 2

N∑
l=1, l �=j

ml
Qj (xj(t) − xl(t))

|xj(t) − xl(t)|2
, t ≥ 0,(5.1)

xj(0) = x0
j , 1 ≤ j ≤ N,(5.2)

where Qj is given as

Qj =

(
mj κ1 −κ2

κ2 mj κ1

)
= mjκ1 I + κ2 J, j = 1, 2, . . . , N,

with κ1 and κ2 being constants determined from α, β in (1.1) and the initial setup
(1.7). Formal derivation of the above reduced dynamics laws (5.1) for the CGLE can
be followed from those in [27] for the GLE and NLSE. Again, the nonlinear ODEs
(5.1) can be solved analytically as those in section 2.3 for the GLE and section 2.4 for
the NLSE when the initial conditions in (5.2) are given by Patterns I–IV in section 2.2.
The details are omitted here. For comparison, Figure 26 shows numerical solutions
of (5.1) for different initial setups. This figure clearly confirms our conjecture (5.1)
about the reduced dynamic laws of the CGLE for the interaction of N well-separated
vortices with winding number mj = +1 or −1.

5.2. Vortex motion under an inhomogeneous external potential. The
particular external potential we take is of the form

(5.3) V (x) =
1
2 + γxx

2 + γyy
2

1 + γxx2 + γyy2
= 1 − 1

2 (1 + γxx2 + γyy2)
, x ∈ R

2,

where γx and γy are two positive constants. It is easy to see that V (x) attains its
minimum value 1/2 at the origin (0, 0). Here we study numerically the dynamics of a
vortex in the following two cases:

Case I. Isotropic external potential, e.g., γx = γy = 1 in (5.3).
Case II. Anisotropic external potential, e.g., γx = 1 and γy = 5 in (5.3).

For the GLE, i.e., α = 1 and β = 0 in (1.1), the velocity of the induced motion
due to the inhomogeneous impurities was obtained in [17]:

(5.4) v(t) :=
dx(t)

dt
= −∇ lnV (x(t)), t ≥ 0, with x(0) = x0.
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Fig. 26. Numerical solutions of the reduced dynamical laws (5.1) for the CGLE with κ1 = 3
and κ2 = 1 for different initial setups. (a) Pattern I with N = 2 and a = 2. (b) Pattern II with
N = 3 and a = 2. (c) Pattern IV with a = 3.

This implies that here, the vortex would move to the minimizer of the external po-
tential V (x). Furthermore, if the external potential is isotropic, the trajectory is a
segment connecting x0 and the minimization point of V (x), while for the NLSE and
CGLE, the dynamic laws with impurities remain to be established.

The initial condition in (1.2) is chosen as ψ(x, 0) = φ1

(
x−x0

)
for x ∈ R

2, where
φ1 = φ1(x) is the vortex state solution (1.4) with winding number m = +1 and x0 is
a given point. Figure 27 displays the time evolution of the vortex center in the GLE
with x0 = (1, 2)T for different ε, and Figures 28 and 29 show similar results for the
CGLE and NLSE, respectively.

From Figures 27–29, we can draw the following conclusions. First, for the GLE
and CGLE, the vortex center moves monotonically to the position where the external
potential V (x) attains its minimum value (cf. Figures 27 and 28). The speed of the
motion depends on the values of the parameter ε. The trajectory of the vortex center
depends on the external potential V (x), which agrees with the analytical results for
the GLE in [16, 17, 21]. After the vortex reaches the minimum point of the external
potential, it always stays at that point, which illustrates the pinning effect. Second,
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Fig. 27. Time evolution of the vortex center under an inhomogeneous external driving potential
in the GLE. (a), (b): Case I and II, respectively. Trajectory for different ε. (c), (d): Errors between
the numerical results of the GLE (denoted as x(t)) and the solution of the reduced dynamic laws
(5.4) (denoted as xrd(t)).

for the NLSE, the vortex center moves rotationally clockwise when m = +1 and
counterclockwise when m = −1, to the minimum position of the external potential
(cf. Figure 29). The smaller ε, the longer the vortex center stays on a circle. Additional
experiments were carried out for Case II. Similar motion patterns were observed, so
the results are omitted here.

Based on the numerical results in Figures 28–29, it is reasonable to make the
following conjectures about the vortex motion in the NLSE and CGLE: For the
NLSE under an inhomogeneous potential, the velocity of the induced motion satisfies
(cf. the right-hand side of Figure 29)

(5.5) v(t) :=
dx(t)

dt
= −mκJ∇ lnV (x(t)), t ≥ 0, with x(0) = x0,

where m is the winding number of the vortex, κ is a constant, and J is the symplectic
matrix given in (1.13), while for the CGLE, it can be given by (cf. Figure 28(c),(d))

(5.6) v(t) :=
dx(t)

dt
= −Q∇ lnV (x(t)), t ≥ 0, with x(0) = x0,

where the matrix Q = mκJ + I with κ a constant, and J and I are the symplec-
tic matrix in (1.13) and identity matrix, respectively. Their rigorous mathematical
justification is not yet available.

6. Conclusion. We have studied the dynamics and interaction of quantized vor-
tices in the Ginzburg–Landau–Schrödinger equation (GLSE) for modeling supercon-
ductivity and superfluidity both analytically and numerically. Along the analytical
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Fig. 28. Time evolution of the vortex center under an inhomogeneous external driving potential
in the CGLE. (a), (b): Case I and II, respectively. Trajectory for different ε. (c), (d): Errors
between the numerical results of the CGLE (denoted as x(t)) and the solution of the reduced dynamic
laws (5.6) with κ = 1 (denoted as xrd(t)).
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Fig. 29. Time evolution of the vortex center under an inhomogeneous external driving potential
in the NLSE with different ε for Case I. Left and middle: Trajectory for different ε. Right: Errors
between the numerical results of the NLSE (denoted as x(t)) and the solution of the reduced dynamic
laws (5.5) with κ = 3 (denoted as xrd(t)).
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front, we proved the conservation of the mass center and the signed mass center of
N vortex centers governed by the reduced dynamic laws for the Ginzburg–Landau
equation (GLE) and nonlinear Schrödinger equation (NLSE), respectively. We also
solved analytically the nonlinear ordinary differential equations (ODEs) governing the
reduced dynamic laws of the GLE and NLSE for some initial data with symmetrically
placed vortices. On the numerical side, by applying an efficient, accurate, and uncon-
ditionally stable numerical method for the GLSE with nonzero far-field conditions in
two dimensions, we numerically examined issues such as the interaction of vortices
and the motion of a vortex under an inhomogeneous external potential in the GLSE.
Comparisons between the solutions of the reduced dynamic laws and direct simulation
results of the GLSE were provided. Some conclusive findings were obtained, and dis-
cussions on numerical and theoretical results were provided for further understanding
of vortex interactions in the GLSE. In addition, the vortex motion under an inhomo-
geneous external potential in the GLSE was investigated numerically for the first time
and some conjectures for the motion were made based on our computational findings.
In the future, we will extend our efficient and accurate numerical method to the study
of the dynamics and the interaction of vortex line states in three dimensions and in
bounded domains for the GLSE.
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