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Abstract In this paper, we compute ground states of Bose–Einstein condensates (BECs),
which can be formulated as an energy minimization problem with a spherical constraint.
The energy functional and constraint are discretized by either the finite difference, or sine
or Fourier pseudospectral discretization schemes and thus the original infinite dimensional
nonconvex minimization problem is approximated by a finite dimensional constrained non-
convex minimization problem. Then we present a feasible gradient type method to solve this
minimization problem, which is an explicit scheme and maintains the spherical constraint
automatically. To accelerate the convergence of the gradient type method, we approximate
the energy functional by its second-order Taylor expansion with a regularized term at each
Newton iteration and adopt a cascadic multigrid technique for selecting initial data. It leads
to a standard trust-region subproblem and we solve it again by the feasible gradient type
method. The convergence of the regularized Newton method is established by adjusting the
regularization parameter as the standard trust-region strategy. Extensive numerical experi-
ments on challenging examples, including a BEC in three dimensions with an optical lattice
potential and rotating BECs in two dimensions with rapid rotation and strongly repulsive
interaction, show that our method is efficient, accurate and robust.
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1 Introduction

Since the first experimental realization in dilute bosonic atomic gases [5,22,31], Bose–
Einstein condensation (BEC) has attracted great interest in the atomic, molecule and optical
(AMO) physics community and condense matter community [34,38,41,46]. The proper-
ties of the condensate at zero or very low temperature are well described by the nonlinear
Schrödinger equation (NLSE) for the macroscopic wave function ψ = ψ(x, t), which is also
known as the Gross–Pitaevskii equation (GPE) in three dimensions (3D) [6,29,36,43–45]
as

i h̄
∂ψ(x, t)

∂t
=

(
− h̄2

2m
∇2 + V (x) + NU0 |ψ(x, t)|2 − ΩLz

)
ψ(x, t), (1.1)

where t is time, x = (x, y, z)� ∈ R
3 is the spatial coordinate vector, m is the atomic mass, h̄

is the Planck constant, N is the number of atoms in the condensate, Ω is an angular velocity,

V (x) is an external trapping potential. The term U0 = 4π h̄2as
m describes the interaction

between atoms in the condensate with the s-wave scattering length as (positive for repulsive
interaction and negative for attractive interaction) and

Lz = xpy − ypx = −i h̄(x∂y − y∂x )

is the z-component of the angular momentum L = x × P with the momentum operator
P = −i h̄∇ = (px , py, pz)�. It is also necessary to normalize the wave function properly,
i.e.,

‖ψ(·, t)‖2 :=
∫
R3

|ψ(x, t)|2 dx = 1. (1.2)

By using a proper nondimensionalization and dimension reduction in some limiting trapping
frequency regimes [19,34], we can obtain the dimensionless GPE in d-dimensions (d =
1, 2, 3 when Ω = 0 for a non-rotating BEC and d = 2, 3 when Ω �= 0 for a rotating BEC)
[10,43,45]:

i
∂ψ(x, t)

∂t
=

(
−1

2
∇2 + V (x) + β |ψ(x, t)|2 − ΩLz

)
ψ(x, t), x ∈ R

d , (1.3)

with the normalization condition

‖ψ(·, t)‖2 :=
∫
Rd

|ψ(x, t)|2 dx = 1, (1.4)

where β ∈ R is the dimensionless interaction coefficient, Lz = −i(x∂y − y∂x ) and V (x)

is a dimensionless real-valued external trapping potential. In most applications of BEC, the
harmonic potential is used [16,17]

V (x) = 1

2

⎧⎨
⎩

γ 2
x x

2, d = 1,

γ 2
x x

2 + γ 2
y y

2, d = 2,

γ 2
x x

2 + γ 2
y y

2 + γ 2
z z

2, d = 3,

(1.5)

where γx , γy and γz are three given positive constants.
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Define the energy functional

E(φ) =
∫
Rd

[
1

2
|∇φ(x)|2 + V (x) |φ(x)|2 + β

2
|φ(x)|4 − Ωφ̄(x)Lzφ(x)

]
dx, (1.6)

where f̄ denotes the complex conjugate of f , then the ground state of a BEC is usually defined
as the minimizer of the following nonconvex minimization problem [3,10,40,43,45]:

φg = arg minφ∈S E(φ), (1.7)

where the spherical constraint S is defined as

S =
{
φ
∣∣ E(φ) < ∞,

∫
Rd

|φ(x)|2 dx = 1

}
. (1.8)

It can be verified that the first-order optimality condition (or Euler-Lagrange equation) of
(1.7) is the nonlinear eigenvalue problem, i.e., find (μ ∈ R, φ(x)) such that

μφ(x) = −1

2
∇2φ(x) + V (x)φ(x) + β |φ(x)|2 φ(x) − ΩLzφ(x), x ∈ R

d , (1.9)

with the spherical constraint

‖φ‖2 :=
∫
Rd

|φ(x)|2 dx = 1. (1.10)

Any eigenvalue μ (or chemical potential in the physics literature) of (1.9)–(1.10) can be
computed from its corresponding eigenfunction φ(x) by [10,43,45]

μ = μ(φ) = E(φ) +
∫
Rd

β

2
|φ(x)|4 dx.

In fact, (1.9) can also be obtained from the GPE (1.3) by taking the anstaz ψ(x, t) =
e−iμt φ(x), and thus it is also called as time-independent GPE [10,43,45].

One of the two major problems in the theoretical study of BEC is to analyze and efficiently
compute the ground state φg in (1.7), which plays an important role in understanding the the-
ory of BEC as well as predicting and guiding experiments. For the existence and uniqueness
as well as non-existence of the ground state under different parameter regimes, we refer to
[10,39,40] and references therein.

Different numerical methods have been proposed in the literatures for computing the
ground state of BEC and they can be classified into two classes through different formulations
and numerical techniques. The first class of numerical methods has been designed via the
formulation of the nonlinear eigenvalue problem (1.9)—time-independent partial differential
equation (PDE)—under the constraint (1.10) with different numerical techniques, such as
the Runge–Kutta type method [2,33] for a BEC in 1D and 2D/3D with radially/spherically
symmetric external trap, the simple analytical type method [32], the direct inversion in the
iterated subspace method [48], the Newton’s method for solving the nonlinear system [17],
the continuation method [25] and the Gauss–Seidel-type method [26]. The second class of
numerical methods has been constructed via the formulation of the constrained minimization
problem (1.7) with different gradient techniques for dealing with the minimization and/or
projection techniques for handling the spherical constraint, such as the explicit imaginary-
time algorithm used in the physics literature [3,4,24,26,27,47], the Sobolev gradient method
[35], the normalized gradient flow method [7–9,11,14,16,19] which has been extended to
compute ground states of spin-1 BEC [15,18], dipolar BEC [13] and spin–orbit coupled
BEC [12], and the new Sobolev gradient method [30]. In these numerical methods, the
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time-independent infinitely dimensional constrained minimization problem (1.7) is first re-
formulated to a time-dependent gradient-type PDE and the ground state is obtained as the
steady state of the gradient-type PDE with a proper choice of initial data.

In each numerical method, proper spatial and/or temporal discretization need to be chosen
in practical computations, and different spatial/temporal discretization schemes have been
proposed in the literature. For the numerical methods in the first class, only spatial dis-
cretization is needed, e.g. the time-independent nonlinear eigenvalue problem (1.9) and the
constraint (1.10) can be discretized in space via different numerical methods, such as finite
difference, spectral and finite element methods [2,17,26,32,33]. For the numerical methods
in the second class, both spatial and temporal discretizations are needed, e.g. the normalized
gradient flow is discretized in time by the backward Euler method and in space by the finite
difference (BEFD) or Fourier (or sine) pseudospectral (BEFP) methods [7–9,14,16,19].

Among those existing numerical methods for computing the ground state of BEC, most
of them converge only linearly in the iteration and/or require to solve a large-scale linear
system per iteration. Thus the computational cost is quite expensive especially for the large
scale problems, such as the ground state of a BEC in 3D with an optical lattice potential
or a rotating BEC with fast rotation and/or strong interaction. On the other hand, over the
last two decades, some advanced optimization methods have been developed for computing
the minimizers of finite dimensional nonconvex minimization problems, such as the Newton
method via trust-region strategy [28,42,49] which converges quadratically or super-linearly.

The main aim of this paper is to propose an efficient and accurate regularized Newton
method for computing the ground states of BEC by integrating proper PDE discretization
techniques and advanced modern optimization methods. By discretizing the energy func-
tional (1.6) and the spherical constraint (1.10) with either the finite difference, or sine or
Fourier pseudospectral discretization schemes, we approximate the original infinite dimen-
sional constrained minimization problem (1.7) by a finite dimensional minimization problem
with a spherical constraint. Then we present an explicit feasible gradient type optimization
method to construct an initial solution, which generates new trial points along the gradient
on the unit ball so that the constraint is preserved automatically. The gradient type method
is an explicit iterative scheme and the main costs arise from the assembling of the energy
functional and its projected gradient on the manifold. Although this method often works
well on well-posed problems, the convergence of the gradient type method is often slowed
down when some parameters in the energy functional become large, e.g. β 	 1 and Ω

is near the fast rotation regime in (1.7). To accelerate the convergence of the iteration, we
propose a regularized Newton type method by approximating the energy functional via its
second-order Taylor expansion with a regularized term at each Newton iteration with the
regularization parameter adjusted via the standard trust-region strategy [28,42,49]. The cor-
responding regularized Newton subproblem is a standard trust-region subproblem which can
be solved efficiently by the gradient type method since it is not necessary to solve the sub-
problem to a high accuracy, especially, at the early stage of the algorithm when a good starting
guess is not available. Furthermore, the numerical performance of the gradient method can
be improved by the state-of-the-art acceleration techniques such as Barzilai–Borwein steps
and nonmonotone line search which guarantees global convergence [28,42,49]. In addition,
we adopt a cascadic multigrid technique [21] to select a good starting guess at the finest mesh
in the computation, which significantly reduces the computational cost. Extensive numeri-
cal experiments demonstrate that our approach can quickly reach the vicinity of an optimal
solution and produce a moderately accurate approximation, even for the very challenging
and difficult cases, such as computing the ground state of a BEC in 3D with an optical lattice
potential or a rotating BEC with fast rotation and/or strong interaction.
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The rest of this paper is organized as follows. Different discretizations of the energy func-
tional and the spherical constraint via the finite difference, sine and Fourier pseudospectral
schemes are introduced in Sect. 2. In Sect. 3, we present the gradient type method for solving
the discretized minimization problem with a spherical constraint. In Sect. 4, we propose the
regularized Newton algorithm to accelerate the convergence. Numerical results are reported
in Sect. 5 to illustrate the efficiency and accuracy of our algorithms. Finally, some concluding
remarks are given in Sect. 6. Throughout this paper, we adopt the standard linear algebra
notations. In addition, given x ∈ C

m , the operators x̄ , x∗, �(x) and �(x) denote the complex
conjugate, the complex conjugate transpose, the real and imaginary parts of x , respectively.

2 Discretization of the Energy Functional and Constraint

In this section, we introduce different discretizations of the energy functional (1.6) and
constraint (1.10) in the constrained minimization problem (1.7) and reduce it to a finite
dimensional minimization problem with a spherical constraint. Due to the external trapping
potential, the ground state of (1.7) decays exponentially as |x| → ∞ [10,39,40]. Thus we
can truncate the energy functional and constraint from the whole space R

d to a bounded
computational domain U which is chosen large enough such that the truncation error is
negligible with either homogeneous Dirichlet or periodic boundary conditions. We remark
here that, from the analytical results [10,39,40], when Ω = 0, i.e., a non-rotating BEC,
the ground state φg can be taken as a real non-negative function; and when Ω �= 0, i.e.,
a rotating BEC, it is in general a complex-valued function, which will be adopted in our
numerical computations.

2.1 Finite Difference Discretization

Here we present discretizations of (1.6) and (1.10) truncated on a bounded computational
domain U with homogeneous Dirichlet boundary condition by approximating spatial deriva-
tives via the second-order finite difference (FD) method and the definite integrals via the
composite trapezoidal quadrature. For simplicity of notation, we only introduce the FD dis-
cretization in 1D. Extensions to 2D and 3D without/with rotation are straightforward and the
details are omitted here for brevity.

For d = 1, we take U = (a, b) as an interval in 1D. Let h = (b − a)/N be the spatial
mesh size with N a positive even integer and denote x j = a + jh for j = 0, 1, . . . , N , and
thus a = x0 < x1 < · · · < xN−1 < xN = b be the equidistant partition of U . Let φ j be
the numerical approximation of φ(x j ) for j = 0, 1, . . . , N satisfying φ0 = φ(x0) = φN =
φ(xN ) = 0 and denote Φ = (φ1, . . . , φN−1)

�. The energy functional (1.6) with d = 1 and
Ω = 0 can be truncated and discretized as

E(φ) ≈
∫ b

a

[
1

2
(φ′(x))2 + V (x)φ(x)2 + β

2
φ(x)4

]
dx

=
N−1∑
j=0

∫ x j+1

x j

[
−1

2
φ(x)φ′′(x) + V (x)φ(x)2 + β

2
φ(x)4

]
dx

≈ h
N−1∑
j=1

[
−1

2
φ j

φ j+1 − 2φ j + φ j−1

h2 + V (x j )φ
2
j + β

2
φ4
j

]
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= h
N−1∑
j=0

1

2

(
φ j+1 − φ j

h

)2

+ h
N−1∑
j=1

[
V (x j )φ

2
j + β

2
φ4
j

]

= h

⎡
⎣Φ�AΦ + β

2

N−1∑
j=1

φ4
j

⎤
⎦ := Eh(Φ), (2.1)

where A = (a jk) ∈ R
(N−1)×(N−1) is a symmetric tri-diagonal matrix with entries

a jk =

⎧⎪⎨
⎪⎩

1
h2 + V (x j ), j = k,

− 1
2h2 , | j − k| = 1,

0, otherwise.

Similarly, the constraint (1.10) with d = 1 can be truncated and discretized as

‖φ‖2 ≈
∫ b

a
φ(x)2dx =

N−1∑
j=0

∫ x j+1

x j
φ(x)2dx ≈ h

N−1∑
j=1

φ2
j := ‖Φ‖2

h = 1, (2.2)

which immediately implies that the set S can be discretized as

Sh =
{
Φ ∈ R

N−1
∣∣ Eh(Φ) < ∞, ‖Φ‖2

h = 1
}

. (2.3)

Hence, the original problem (1.7) with d = 1 can be approximated by the discretized mini-
mization problem via the FD discretization:

Φg = arg minΦ∈Sh Eh(Φ). (2.4)

Denote Gh = ∇Eh(Φ) be the gradient of Eh(Φ), notice (2.1), we have

Gh := ∇Eh(Φ) = 2h
(
AΦ + βΦ3) , (2.5)

where Φ3 ∈ R
N−1 is defined component-wisely as (Φ3) j = φ3

j for j = 1, . . . , N − 1.
We remark here that, when the FD discretization is applied, the matrix A is a symmetric
positive definite sparse matrix. In addition, for the analysis of convergence and second order
convergence rate of the above FD discretization, we refer the reader to [23,52].

2.2 Sine Pseudospectral Discretization

For a non-rotating BEC, i.e. Ω = 0, when high precision is required such as BEC with
an optical lattice potential, we can replace the FD discretization by the sine pseudospec-
tral (SP) method when homogeneous Dirichlet boundary conditions are applied. Again, we
only present the discretization in 1D, and extensions to 2D and 3D without rotation are
straightforward and the details are omitted here for brevity.

For d = 1, using similar notations as the FD scheme, similarly to (2.1), the energy
functional (1.6) with d = 1 and Ω = 0 truncated on U can be discretized by the SP method
as

E(φ) ≈ h
N−1∑
j=1

[
−1

2
φ j ∂sxxφ

∣∣
x=x j

+ V (x j )φ
2
j + β

2
φ4
j

]
, (2.6)
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where ∂sxx is the sine pseudospectral differential operator approximating the operator ∂xx ,
defined as

∂sxxφ
∣∣
x=x j

= −
N−1∑
l=1

λ2
l φ̃l sin

(
jlπ

N

)
, j = 1, 2, . . . , N − 1, (2.7)

with {φ̃l}N−1
l=1 the coefficients of the discrete sine transform (DST) of Φ ∈ R

N−1, given as

φ̃l = 2

N

N−1∑
j=1

φ j sin

(
jlπ

N

)
, λl = πl

b − a
, l = 1, 2, . . . , N − 1. (2.8)

Introduce V = diag(V (x1), . . . , V (xN−1)), Λ = diag(λ2
1, . . . , λ

2
N−1) and C = (c jk) ∈

R
(N−1)×(N−1) with entries c jk = sin

(
jkπ
N

)
for j, k = 1, . . . , N − 1 and denote Φ̃ =(

φ̃1, . . . , φ̃N−1

)� = 2
N CΦ. Plugging (2.7) and (2.8) into (2.6), we get

E(φ) ≈ h

⎡
⎣Φ�BΦ + β

2

N−1∑
j=1

φ4
j

⎤
⎦ := Eh(Φ), (2.9)

where B ∈ R
(N−1)×(N−1) is a symmetric positive definite matrix defined as

B = 1

N
CΛC + V. (2.10)

In fact, the first term in (2.9) can be computed efficiently at cost O(N ln N ) through DST as

Φ�BΦ = N

4
Φ̃�ΛΦ̃ + Φ�VΦ = N

4

N−1∑
l=1

λ2
l φ̃

2
l +

N−1∑
j=1

V (x j )φ
2
j . (2.11)

Again, the original problem (1.7) with d = 1 can be approximated by the discretized mini-
mization problem via the SP discretization:

Φg = arg minΦ∈Sh Eh(Φ). (2.12)

Noticing (2.9), we have

Gh := ∇Eh(Φ) = 2h
(
BΦ + βΦ3) = 2h

(
1

N
CΛCΦ + VΦ + βΦ3

)
. (2.13)

2.3 Fourier Pseudospectral Discretization

For a rotating BEC, i.e. Ω �= 0, due to the appearance of the angular momentum rotation,
we usually truncate the energy functional (1.6) and constraint (1.10) on a bounded computa-
tional domain U with periodic boundary conditions and approximate spatial derivatives via
the Fourier pseudospectral (FP) method and the definite integrals via the composite trape-
zoidal quadrature. For simplicity of notation, we only introduce the FP discretization in 2D.
Extensions to 3D are straightforward and the details are omitted here for brevity.

For d = 2, we take U = [a1, b1] × [a2, b2] as a rectangle in 2D. Let h1 = b1−a1
N1

and

h2 = b2−a2
N2

be the spatial mesh sizes with N1 and N2 two positive integers and denote x j =
a1+ jh1 for j = 0, 1, . . . , N1, yk = a2+kh2 for k = 0, 1, . . . , N2. Denote h = max{h1, h2}
and Ujk = (x j , x j+1) × (yk, yk+1). Let φ jk be the numerical approximation of φ(x j , yk)
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for j = 0, 1, . . . , N1 and k = 0, 1, . . . , N2 satisfying φ j N2 = φ j0 for j = 0, 1, . . . , N1 and
φN1k = φ0k for k = 0, 1, . . . , N2 and denote Φ = (φ jk) ∈ C

N1×N2 . The energy functional
(1.6) with d = 2 can be truncated and discretized as

E(φ) ≈
∫ b1

a1

∫ b2

a2

[
−1

2
φ̄Δφ + V (x, y) |φ|2 + β

2
|φ|4 + iΩφ̄

(
x∂y − y∂x

)
φ

]
dxdy

=
N1−1∑
j=0

N2−1∑
k=0

∫
Ujk

[
−1

2
φ̄Δφ + V (x, y) |φ|2 + β

2
|φ|4 + iΩφ̄(x∂y − y∂x )φ

]
dxdy

≈ h1h2

N1∑
j=0

N2∑
k=0

[
−φ̄ jk

(
1

2
∂
f
xxφ

∣∣∣
jk

+ 1

2
∂
f
yyφ

∣∣∣
jk

+ iΩyk ∂
f
x φ

∣∣∣
jk

− iΩx j ∂
f
y φ

∣∣∣
jk

)

+ V (x j , yk)
∣∣φ jk

∣∣2 + β

2

∣∣φ jk
∣∣4]α jk := Eh(Φ), (2.14)

where

α jk =
⎧⎨
⎩

1 1 ≤ j ≤ N1 − 1, 1 ≤ k ≤ N2 − 1,

1/4 j = 0 & k = 0, N2 or j = N1 and k = 0, N2,

1/2 otherwise,

and the Fourier pseudospectral differential operators are given as

∂
f
x φ

∣∣∣
jk

=
N1/2−1∑
p=−N1/2

iλpφ̃
(1)
pk e

i 2π j p
N1 , ∂

f
xxφ

∣∣∣
jk

= −
N1/2−1∑
p=−N1/2

λ2
pφ̃

(1)
pk e

i 2π j p
N1 ,

∂
f
y φ

∣∣∣
jk

=
N2/2−1∑
q=−N2/2

iηq φ̃
(2)
jq e

i 2πkq
N2 , ∂

f
yyφ

∣∣∣
jk

= −
N2/2−1∑
q=−N2/2

η2
q φ̃

(2)
jq e

i 2πkq
N2 ,

(2.15)

with

φ̃
(1)
pk = 1

N1

N1−1∑
j=0

φ jke
−i 2π j p

N1 , λp = 2πp

b1 − a1
, p = −N1

2
, . . . ,

N1

2
− 1,

φ̃
(2)
jq = 1

N2

N2−1∑
k=0

φ jke
−i 2πkq

N2 , ηq = 2πq

b2 − a2
, q = −N2

2
, . . . ,

N2

2
− 1.

(2.16)

Plugging (2.15) and (2.16) into (2.14), the discretized energy functional Eh(Φ) can be com-
puted efficiently via the fast Fourier transform (FFT) as

Eh(Φ) = h1h2

⎡
⎣ N2∑
k=0

α1k N1

N1/2−1∑
p=−N1/2

(
λ2
p

2
+ ykλpΩ

) ∣∣∣φ̃(1)
pk

∣∣∣2

+
N1∑
j=0

α j1N2

N2/2−1∑
q=−N2/2

(
η2
q

2
− x jηqΩ

) ∣∣∣φ̃(2)
jq

∣∣∣2
⎤
⎦

+ h1h2

N1∑
j=0

N2∑
k=0

α jk

[
V (x j , yk)

∣∣φ jk
∣∣2 + β

2

∣∣φ jk
∣∣4] . (2.17)
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Similarly, the constraint (1.10) with d = 2 can be truncated and discretized as

‖φ‖2 ≈
∫ b1

a1

∫ b2

a2

|φ(x, y)|2 dxdy ≈ h1h2

N1−1∑
j=0

N2−1∑
k=0

∣∣φ jk
∣∣2 := ‖Φ‖2

h = 1, (2.18)

which immediately implies that the set S can be discretized as

Sh =
{
Φ ∈ C

N1×N2
∣∣ Eh(Φ) < ∞, ‖Φ‖2

h = 1
}

. (2.19)

Hence, the original problem (1.7) with d = 2 can be approximated by the discretized mini-
mization problem via the FP discretization:

Φg = arg minΦ∈Sh Eh(Φ). (2.20)

Noticing (2.17), similarly to (2.13), Gh = ∇Eh(Φ) can be computed efficiently via FFT in
a similar manner with the details omitted here for brevity.

3 A Feasible Gradient Type Method

By using the finite difference (FD), or sine/Fourier pseudospectral discretization (SP/FP),
the infinite dimensional nonconvex minimization problem (1.7) can be approximated by a
finite dimensional constrained nonconvex minimization problem in a unified way via a proper
rescaling as

ug := arg minu∈SMF(u) := 1

2
u∗Au + α

M∑
j=1

∣∣u j
∣∣4 , (3.1)

where M is a positive integer, α is a given real constant, A ∈ C
M×M is a Hermitian matrix

and the spherical constraint is given as

SM =
⎧⎨
⎩u = (u1, u2, . . . , uM )� ∈ C

M
∣∣ ‖u‖2

2 :=
M∑
j=1

∣∣u j
∣∣2 = 1

⎫⎬
⎭ .

3.1 Optimality Conditions

In this subsection, we first derive the optimality conditions of the problem (3.1). The gradient
and Hessian of F(u) can be written explicitly.

Lemma 1 The first and second-order directional derivatives of F(u) along a direction d ∈
C

M are:

∇F(u)[d] = �(d∗Au) + 4α

M∑
j=1

(
ū j u j

)� (
ū j d j

)
, (3.2)

∇2F(u)[d, d] = d∗Ad + 4α

M∑
j=1

[
(ū j u j )

(
d̄ j d j

) + 2� (
ū j d j

)2
]
. (3.3)

Define the Lagrangian function of (3.1) as

L(u, θ) = F(u) − θ

2

(‖u‖2
2 − 1

)
, (3.4)
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then the first-order optimality conditions of (3.1) are

g − θu = 0, (3.5)

‖u‖2 = 1, (3.6)

where g = ∇F(u) is the gradient of F(u). Multiplying both sides of (3.5) by u∗ and using
(3.6), we have θ = u∗g. Therefore, (3.5) becomes

(I − uu∗)g = A(u)u = 0, with A(u) = gu∗ − ug∗. (3.7)

By definition, A(u) is skew-symmetric at every u.
By differentiating both sides ofu∗u = 1, we obtain the tangent vector set of the constraints:

Tu :=
{
z ∈ C

M : u∗z = 0
}

. (3.8)

The second-order optimality conditions is described as follows.

Lemma 2 (1) (Second-order necessary conditions, Theorem 12.5 in [42]) Suppose that
u ∈ C

M is a local minimizer of the problem (3.1). Then u satisfies

∇2F(u)[d, d] − θd∗d ≥ 0, ∀d ∈ Tu, where θ = ∇F(u)∗u. (3.9)

(2) (Second-order sufficient conditions, Theorem 12.6 in [42]) Suppose that for u ∈ C
M,

there exists a Lagrange multiplier θ such that the first-order conditions are satisfied. Suppose
also that

∇2F(u) [d, d] − θd∗d > 0, (3.10)

for any vector d ∈ Tu. Then u is a strict local minimizer for (3.1).

3.2 The Feasible Gradient Type Method

In this subsection, we consider to solve the problem (3.1) by following the feasible gradient
method proposed in [51]. The description of the algorithm is included to keep the exposition
as self-contained as possible. Observe that A(u)u is the gradient of F(u) at u projected to the
tangent space of the constraints. The steepest descent path is ŷ(τ ) := u − τA(u)u, where τ

is a positive constant representing the step size. However, this ŷ(τ ) does not generally have
a unit norm.

An alternative implicit updating path is

y(τ ) := u − τA(u)(u + y(τ )) ⇐⇒ y(τ ) = (I + τA(u))−1 (I − τA(u)) u. (3.11)

Then the fact that (I + τA(u))−1 (I − τA(u)) is orthogonal for any τ ≥ 0 gives ‖y(τ )‖2 =
‖u‖2 = 1, i.e., the constraints are preserved at every τ . The closed-form solution of y(τ ) can
be computed explicitly as a linear combination of u and g, in which the linear coefficients
are determined by τ , ‖u‖2, ‖g‖2 and u∗g.

Theorem 1 For every τ ≥ 0, y(τ ) of (3.11) satisfies ‖y(τ )‖2 = ‖u‖2. In addition, y(τ ) is
given in the closed-form as

y(τ ) = α(τ)u + β(τ)g, (3.12)

where

α(τ) = (1 + τu∗g)2 − τ 2 ‖u‖2
2 ‖g‖2

2

1 − τ 2(u∗g)2 + τ 2 ‖u‖2
2 ‖g‖2

2

, β(τ ) = −2τ ‖u‖2
2

1 − τ 2(u∗g)2 + τ 2 ‖u‖2
2 ‖g‖2

2

.
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We refer to [51] for the details of the proof of this theorem.
A suitable step size τ can be chosen by using a nonmonotone curvilinear (as our search

path is on the manifold rather than a straight line) search with an initial step size determined
by the Barzilai–Borwein (BB) formula [20]. They were developed originally for the vector
case in [20]. At iteration k, the step size is computed as

τ k,1 =
(
s(k−1)

)∗
s(k−1)∣∣(s(k−1)

)∗
w(k−1)

∣∣ or τ k,2 =
∣∣∣(s(k−1)

)∗
w(k−1)

∣∣∣(
w(k−1)

)∗
w(k−1)

, (3.13)

where s(k−1) = u(k) − u(k−1) and w(k−1) = A(u(k))u(k) − A(u(k−1))u(k−1). When τ k,1 or
τ k,2 is not bounded, they are reset to a finite number.

In order to guarantee convergence, the final value for τ (k) is a fraction of τ k,1 or τ k,2

determined by a nonmonotone search condition. Let y(τ ) be defined by (3.11), C (0) =
F(u(0)), Q(k+1) = ηQ(k) + 1 with 0 < η < 1 a constant and Q(0) = 1. The new points are
generated iteratively in the form u(k+1) := y(k)(τ (k)) with τ (k) = 1

2 τ k,1δm or τ (k) = 1
2 τ k,2δm

and 0 < δ < 1 a constant. Here m is the smallest nonnegative integer satisfying

F(y(k)(τ (k))) ≤ C (k) − ρ1τ
(k)

∥∥∥A(u(k))u(k)
∥∥∥2

2
, (3.14)

where each reference value C (k+1) is taken to be the convex combination of C (k) and
F(u(k+1)) as C (k+1) = (ηQ(k)C (k) +F(u(k+1)))/Q(k+1). In Algorithm 1 below, we specify
our method for solving the constrained minimization problem (3.1) obtained from the dis-
cretization of the ground state of BEC. Although several backtracking steps may be needed
to update the u(k+1), we observe that the BB step size τ k,1 or τ k,2 is often sufficient for (3.14)
to hold in most of our numerical experiments.

Algorithm 1: A feasible gradient method

1 Given u(0), set ρ1, δ, η ∈ (0, 1), k = 0.
2 while stopping conditions are not met do
3 Compute τ (k) ← 1

2 τ k,1δm or τ (k) ← 1
2 τ k,2δm , where m is the smallest nonnegative integer

satisfying the condition (3.14).
4 Set u(k+1) ← y(τ ).

5 Q(k+1) ← ηQ(k) + 1 and C(k+1) ← (ηQ(k)C(k) + F(u(k+1)))/Q(k+1).
6 k ← k + 1.

We can establish the convergence of Algorithm 1 as follows.

Theorem 2 Let {u(k) : k ≥ 0} be an infinite sequence generated by the Algorithm 1. Then
either ‖A(u(k))u(k)‖2 = 0 for some finite k or

lim inf
k→∞

∥∥∥A(u(k))u(k)
∥∥∥

2
= 0.

Proof Since the energy function F(u) is differentiable and its gradient ∇F(u) is Lipschitiz
continuous, the results can be obtained using the proofs of [37] in a similar fashion. ��
Remark 1 The convergence of the full sequence {u(k)} can be ensured if a monotone line
search is used. Given α̂ > 0, ρ1, δ ∈ (0, 1), the Armijo point at u(k) is defined as y(k)(τ (k)),
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where y(τ ) is the curve (3.11), τ (k) = α̂δm and m is the smallest nonnegative integer
satisfying

F
(
y(k)(τ (k))

)
≤ F

(
u(k)

)
− ρ1τ

(k)
∥∥∥A (

u(k)
)
u(k)

∥∥∥2

2
. (3.15)

Using the proofs of Theorem 4.3.1 and Corollary 4.3.2 [1] in a similar fashion, we can prove
that limk→∞ ‖A(u(k))u(k)‖2 = 0.

4 A Regularized Newton Method

In general, the Algorithm 1 works well in the case of weak interaction and slow rotation, i.e.,
|β| and |Ω| are small in the energy functional (1.6). However, its convergence is often slowed
down in the case of strong interaction and/or fast rotation, i.e., when one of the parameters
becomes larger, and thus it can take a lot of iterations to obtain a highly accurate solution.
Usually, fast local convergence cannot be expected if only the gradient information is used,
in particular, for difficult non-quadratic problems. Observe that the most nonlinear term in
(3.1) is the quartic function |u j |4 when α �= 0. A Newton method is to replace F(u) by its
second-order Taylor expansion. In order to ensure the global convergence of the Newton’s
method, we adopt the trust region method [28,42,49] by adding a proximal term ‖u− u(k)‖2

2
in the surrogate function as:

W̃ (k)(u) := ∇F(u(k))
[
u − u(k)

]
+ 1

2
∇2F(u(k))

[
u − u(k), u − u(k)

]
+ δ(k)

2

∥∥∥u − u(k)
∥∥∥2

2
,

where δ(k) > 0 is a regularization parameter. Using Lemma 1, we obtain that

W̃ (k)(u) = W (k)(u) + constant,

where

W (k)(u) = 1

2
u∗Au + 4α

M∑
j=1

(
ū(k)
j u(k)

j

)
�
(
ū(k)
j

(
u j − u(k)

j

))

+ 2α

M∑
j=1

[(
ū(k)
j u(k)

j + 1

4α
δ(k)

)
|u j − u(k)

j |2 + 2�
(
ū(k)
j

(
u j − u(k)

j

))2
]

.

The gradient of W (k)(u) is(
∇W (k)(u)

)
j
=(Au) j +4α

(
ū(k)
j u(k)

j

)
u j +8α�

(
ū(k)
j (u j − u(k)

j )
)
u(k)
j +δ(k)

(
u j − u(k)

j

)
.

We next present the regularized Newton framework starting from a feasible initial point
u(0) and the regularization parameter δ(0). At the k-th iteration, our regularized Newton
subproblem is defined as

min‖u‖2=1
W (k)(u). (4.1)

The subproblem (4.1) is the so-called trust-region subproblem. Since the dimension M in
(3.1) is usually very large so that the discretization error of (1.7) can be small, the standard
algorithms for solving the trust-region subproblem [28,42,49] usually cannot be applied
to (4.1) directly. Hence, we still use a gradient-type method similar to the one described
in subsection 3.2 to solve (4.1). The method is ideal for solving these regularized Newton
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Algorithm 2: A regularized Newton method

1 Given a feasible initial solution u(0) with ‖u(0)‖2 = 1 and initial regularization parameter τ (0) > 0.
Choose 0 < η1 ≤ η2 < 1, 1 < γ1 ≤ γ2.

2 Call Algorithm 1 to minimize problem (3.1) to a certain low accuracy for a feasible solution u(1). Set
iteration k := 1.

3 while stopping conditions are not met do
4 Solve (4.1) to obtain a new trial point Z (k) .

5 Compute the ratio ρ(k) via (4.2).

6 Update u(k+1) from the trial point Z (k) based on (4.3).

7 Update δ(k) according to (4.4).
8 k ← k + 1.

subproblems since it is not necessary to solve these subproblems to a high accuracy, especially,
at the early stage of the algorithm when a good starting guess is not available.

Let z(k) be an optimal solution of (4.1). Generally speaking, an algorithm cannot be
guaranteed to converge globally if u(k+1) is set directly to the trial point z(k) obtained from
a model with a fixed δ(k). In order to decide whether the trial point z(k) should be accepted
and whether the regularization parameter should be updated or not, we calculate the ratio
between the actual reduction of the objective function F(u) and predicted reduction:

ρ(k) = F(z(k)) − F(u(k))

W (k)(z(k)) − W (k)(u(k))
. (4.2)

If ρ(k) ≥ η1 > 0, then the iteration is successful and we set u(k+1) = z(k); otherwise, the
iteration is not successful and we set u(k+1) = u(k), that is,

u(k+1) =
{
z(k), if ρ(k) ≥ η1,

u(k), otherwise.
(4.3)

Then the regularization parameter δ(k+1) is updated as

δ(k+1) ∈

⎧⎪⎨
⎪⎩

(
0, δ(k)

]
, if ρ(k) > η2,[

δ(k), γ1δ
(k)

]
, if η1 ≤ ρ(k) ≤ η2,[

γ1δ
(k), γ2δ

(k)
]
, otherwise.

(4.4)

where 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2 are chosen constants. These parameters determine
how aggressively the regularization parameter is decreased when an iteration is successful or it
is increased when an iteration is unsuccessful. In practice, the performance of the regularized
Newton algorithm is not very sensitive to the values of the parameters.

The complete regularized Newton algorithm to solve (3.1) is summarized in the Algo-
rithm 2.

The convergence of the Algorithm 2 can also be established as follows.

Theorem 3 Let {u(k) : k ≥ 0} be an infinite sequence generated by the Algorithm 2. Then
either ‖A(u(k))u(k)‖2 = 0 for some finite k or

lim
k→∞

∥∥∥A(u(k))u(k)
∥∥∥

2
= 0.

Proof Since the energy function F(u) is differentiable and its gradient ∇F(u) is Lipschitiz
continuous, the results can be obtained using the proofs of [50] in a similar fashion. ��

123



316 J Sci Comput (2017) 73:303–329

The discretization of (1.7) on a fine mesh usually leads to a problem of huge size (M 	 1)
whose computation cost is very expensive, especially for high dimensional case. In addition,
for the Algorithm 2, it usually requests a good quality of initial data so that it converges
superlinearly. A useful technique is to adopt the cascadic multigrid method [21], i.e. solve
the minimization problem (1.7) on the coarsest mesh, and then use the obtained solution as
the initial guess of the problem on a fine mesh, and repeat until we obtain the solution on the
finest mesh. We present the mesh refinement technique via the cascadic multigrid method in
the Algorithm 2′, where the discretized problems are solved from the coarsest mesh to the
finest mesh. In practice, we always recommend to use this technique to prepare the initial
data on the finest mesh for the regularized Newton method. Of course, this technique can also
be adopted to prepare good quality initial data on the finest mesh for other existing numerical
methods, e.g. BEFD or BESP or Algorithm 1, for computing ground state of BEC.

Algorithm 2′: A cascadic multigrid method for mesh refinement

1 Given an initial mesh T 0 and u(0), set k = 0.
2 while convergence is not met do
3 Use u(k) as an initial guess on the kth mesh T k to calculate the optimal solution u(k+1) of the

minimization problem (3.1) using the Algorithm 2.
4 Refine the mesh T k uniformly to obtain T k+1.
5 k ← k + 1.

5 Numerical Results

In this section, we report several numerical examples to illustrate the efficiency and accuracy
of our method. All experiments were performed on a PC with a 2.3GHz CPU (i7 Core) and
the algorithms were implemented in MATLAB (Release 8.1.0). The Algorithm 1 is stopped
either when a maximal number of K iterations is reached or when∥∥u(k+1) − u(k)

∥∥∞
τ (k)

≤ ε0. (5.1)

The default values of ε0 and K are set to be 10−6 and 2000, respectively. In order to test the
spectral accuracy of the SP discretization, a tighter stopping criterion is taken. A normalization
step is executed if |u∗u − 1| > 10−14 to enforce the feasibility. For non-rotating BEC with
strong interaction, i.e., β 	 1, the initial solution is usually chosen as the Thomas–Fermi
(TF) approximation [10,16,45]

φ0(x) =
{√

μTF−V (x)
β

, if V (x) ≤ μTF,

0, otherwise,
(5.2)

where μTF = 1
2

(
3β
2

)2/3
,
(

βγy
π

)1/2
and 1

2

(
15βγyγz

4π

)2/5
for d = 1, 2 and 3, respectively.

Since the Algorithm 1 may converge slowly for computing the ground state of rotating BEC,
i.e., Ω �= 0, we choose the regularized Newton method (i.e., Algorithm 2) together with the
cascadic multigrid method for mesh refinement (i.e., Algorithm 2′) and it is terminated when∥∥∥u(k+1) − u(k)

∥∥∥∞ ≤ δ0, (5.3)
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where the default value of δ0 is set to 10−8. In our experiments using Algorithm 2, we
first call the gradient type method, i.e., Algorithm 1, with a maximum number of iterations
Kinit = 100 to obtain a good initial guess u(1). Then the regularized Newton subproblem
is solved by the Algorithm 1 up to a maximum number of iterations Ksub = 200 or when
(5.1) is met. Since it is not necessary to solve the subproblems to a high accuracy and the
Algorithm 1 converges fast in the first few steps, the computation is not sensitive to the choice
of Kinit and Ksub.

Let φg be the “exact” ground state obtained numerically with a very fine mesh and we
denote its energy and chemical potential as Eg = E(φg) and μg = μ(φg), respectively. To
quantify the ground state, one important quantity is the root mean square which is defined
as

αrms = ∥∥αφg
∥∥
L2(U )

=
√∫

U
α2

∣∣φg(x)
∣∣2 dx, α = x, y or z, (5.4)

where U is the bounded computational domain.

5.1 Accuracy Test and Results in 2D

We take d = 2 and Ω = 0 in (1.7) and (1.6) and consider a harmonic potential with a stirrer
corresponding to a far-blue detuned Gaussian laser beam [16] as

V (x, y) = 1

2
(x2 + y2) + ω0e

−δ
(
(x−x0)2+y2

)
, (5.5)

with ω0 = 4, δ = 1, x0 = 1 and β = 200.
The ground state is first computed by the Algorithm 1 on a bounded computational domain

U = (−8, 8)2 which is partitioned uniformly with the same mesh size h in each direction.
The initial data is chosen as the TF approximation (5.2). In order to compare the accuracy of
the FD and SP discretizations, we set ε0 = 10−12 in (5.1). Let φFD

g,h and φSP
g,h be the numerical

ground states obtained with the mesh size h by using FD and SP discretization, respectively.
Table 1 depicts the numerical errors.

From Table 1, it is observed that the SP discretization is spectrally accurate, while the FD
discretization has only second order accuracy for computing the ground state of BEC in 2D.
Hence, when a high accuracy is required, the SP discretization is preferred since it needs
much fewer grid points, and thus it saves significantly memory cost and computational cost.

Table 1 Accuracy of the FD and SP discretizations for the 2D BEC in Sect. 5.1

Mesh size h = 2 h = 1 h = 1/2 h = 1/4

max
∣∣∣φg − φFD

g,h

∣∣∣ 8.77E−3 3.73E−3 7.51E−4 2.13E−4∣∣∣Eg − E
(
φFD
g,h

)∣∣∣ 4.55E−2 9.58E−3 1.98E−3 4.70E−4∣∣∣μg − μ
(
φFD
g,h

)∣∣∣ 1.50E−1 5.47E−3 8.47E−4 2.05E−4

max
∣∣∣φg − φSP

g,h

∣∣∣ 4.33E−3 9.12E−4 6.73E−6 3.93E−10∣∣∣Eg − E
(
φSP
g,h

)∣∣∣ 1.99E−2 1.42E−3 1.34E−7 1.14E−13∣∣∣μg − μ
(
φSP
g,h

)∣∣∣ 1.49E−1 5.40E−3 5.20E−6 9.49E−13
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Table 2 Comparison of numerical results computed by the BESP method (rows 2), the Algorithm 1 (row 3)
and the Algorithm 2 (row 4) for the 2D BEC in Sect. 5.1

max |φg |2 E(φg) μg xrms yrms iter iters cpu (s)

0.0387 5.8506 8.3150 1.6992 1.7183 272 – 19.64

0.0387 5.8506 8.3150 1.6992 1.7183 225 – 2.52

0.0387 5.8506 8.3150 1.6992 1.7183 3 85 1.43

0 5 10 15 20
10−6

10−4

10−2

100

102

computational time (s)

no
rm

 o
f p

ro
je

ct
ed

 g
ra

di
en

t

BESP
Algorithm 1
Algorithm 2

0 0.5 1
10−2

100

102

Zoom in

0 5 10 15 20
10−12

10−9

10−6

10−3

100

computational time (s)

en
er

gy
 e

rro
r

BESP
Algorithm 1
Algorithm 2

Fig. 1 Norms of the projected gradient ‖A(u(k))u(k)‖2 and the energy errors against the computational time
for the BESP method, the Algorithm 1 and the Algorithm 2 for the 2D BEC in Sect. 5.1

To compare with existing numerical methods in the literature [7,10,14,16,17], we choose
the SP discretization with h = 1/16 and apply the Algorithm 1 and the Algorithm 2 to
compute the ground state of BEC in this example with the default stopping criteria. Then it
is also computed by using the normalized gradient flow method via the backward Euler sine
pseudospectral (BESP) method with time step Δt = 10−2 and the same stopping criterion as
in the Algorithm 1. Since there is an implicit system to be solved at each step for the BESP
method, a preconditioner for the Laplace operator has been employed in the computation.
Table 2 depicts the maximum value of the wave function max |φg|2, the energy E(φg), the
chemical potential μg and the root mean squares xrms and yrms computed by the BESP
method, the Algorithm 1 and the Algorithm 2, respectively. It also shows the number of
iterations (iter), the computational time (cpu) for all the algorithms, as well as the sum of
the number of the inner iterations (iters) for the Algorithm 2. In addition, the norms of the
projected gradient ‖A(u(k))u(k)‖2 of F(u(k)) and the energy errors |F(u(k)) −Fmin| against
the computational time are plotted in Fig. 1 for the three different methods, where Fmin

denotes the minimum energy obtained with rather tight tolerance.
From Table 2 and Fig. 1, we can see that our algorithms converge to the ground state much

faster than the BESP method due to the explicit iterative scheme in each step.

5.2 Accuracy Test and Results in 3D

We take d = 3 and Ω = 0 in (1.7) and (1.6) and consider a combined harmonic and optical
lattice potential [14] as

V (x, y, z) = 1

2

(
x2 + y2 + z2) + 50

[
sin2

(πx

4

)
+ sin2

(πy

4

)
+ sin2

(π z

4

)]
, (5.6)

together with different interaction constants β = 100, 800 and 6400.
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Table 3 Accuracy of the FD and SP discretizations for a BEC in 3D with a combined harmonic and optical
lattice potential (5.6) and β = 100 in Sect. 5.2

Mesh size h = 1 h = 1/2 h = 1/4 h = 1/8

max
∣∣∣φg − φFD

g,h

∣∣∣ 9.52E−2 9.98E−1 3.64E−2 8.91E−3∣∣∣Eg − E
(
φFD
g,h

)∣∣∣ 7.19 4.98E−1 1.17E−1 2.31E−2∣∣∣μg − μ
(
φFD
g,h

)∣∣∣ 6.66 6.83E−1 1.54E−1 3.10E−2

max
∣∣∣φg − φSP

g,h

∣∣∣ 1.75E−1 3.86E−2 6.32E−5 1.51E−8∣∣∣Eg − E
(
φSP
g,h

)∣∣∣ 5.63 3.25E−2 1.60E−5 2.24E−11∣∣∣μg − μ
(
φSP
g,h

)∣∣∣ 5.24 1.15E−1 8.40E−5 8.00E−10

The ground state is numerically computed on bounded computational domains U =
(−8, 8)3 for β = 100 and 800, and U = (−12, 12)3 for β = 6400, which are partitioned
uniformly with the same number of nodes Nx = Ny = Nz in each direction. The initial data
is chosen as

φ0(x) = 1

π3/4 e
−(

x2+y2+z2
)
/2.

To compare the accuracy of the FD and SP discretizations, we set ε0 = 10−12 in (5.1) and
apply the Algorithm 1 to solve this example for β = 100. Let φFD

g,h and φSP
g,h be the numerical

ground states obtained with the mesh size h = 16
Nx−1 by using FD and SP discretization,

respectively. Table 3 depicts the numerical errors.
Again, from Table 3, it is observed that the SP discretization is spectrally accurate, while

the FD discretization has only second order accuracy for computing the ground state of BEC
in 3D. Hence, when high accuracy is required and/or the solution has multiscale phenomena,
the SP discretization is preferred since it needs much fewer grid points, and thus it saves
significantly memory cost and computational cost.

Again, for comparison with existing numerical results in the literature [7,10,14,16,17],
we choose the SP discretization with Nx = Ny = Nz = 27 + 1 and apply the Algorithm 1,
the Algorithm 2 and the BESP method to compute the ground state of BEC in this example
with the same stopping criteria as for the previous 2D example. Table 4 depicts the numerical
results obtained by the three different algorithms. They converge to the same result with

E(φg) = 23.2356, μg = 27.4757, xrms = yrms = zrms = 1.8717 for β = 100,

E(φg) = 33.8023, μg = 40.4476, xrms = yrms = zrms = 2.6620 for β = 800,

E(φg) = 52.4955, μg = 63.7149, xrms = yrms = zrms = 3.3684 for β = 6400.

In the table, although Algorithm 2 uses less inner iterations in the case of β = 6400 than
β = 800, the corresponding computing time is longer. The reason is that the step size is
obtained by line search in the inner Algorithm 1. Usually, a good stepsize can be obtained
by only one step in line search, but it is also possible that several backtracking steps are
performed. Our numerical results show that a few more steps are used in line search for
β = 6400 than that forβ = 800. Consequently, a slightly longer computing time is consumed.
In addition, Fig. 2 plots the norms of the projected gradient ‖A(u(k))u(k)‖2 of F(u(k)) and
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Table 4 Comparison of
numerical results computed by
the BESP method, the Algorithm
1 and the Algorithm 2 for the 3D
BECs in Sect. 5.2

β BESP Algorithm 1 Algorithm 2

iter cpu (s) iter cpu (s) iter iters cpu (s)

100 177 850.94 112 76.18 3 59 53.33

800 475 2385.88 260 182.72 3 68 61.18

6400 728 3792.83 305 215.18 3 66 68.21
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Fig. 2 Norms of the projected gradient ‖A(u(k))u(k)‖2 and the energy errors against the computational time
for the BESP method, the Algorithm 1 and the Algorithm 2 for the 3D BECs in Sect. 5.2

the energy errors |F(u(k)) − Fmin| against the computational time for the three different
methods.

From Table 4 and Fig. 2, it is also observed that our algorithms converge to the ground
state much faster than the BESP method.

5.3 Results for Rotating BEC in 2D

We take d = 2 and the harmonic potential (1.5) with γx = γy = 1 in (1.7) and (1.6)
and consider different β and Ω . Since the convergence of the feasible gradient method (i.e.
Algorithm 1) is often slowed down for the rotating BEC especially for large β and Ω . In
this subsection, we choose the regularized Newton method (i.e. Algorithm 2) to compute the
ground state with the FP discretization on bounded computational domains U = (−10, 10)2

and U = (−12, 12)2 for β = 500 and β = 1000, respectively. We remark that for large
Ω such as 0.90 or 0.95, we enlarge the size of the computational domain by 4 or 8 in each
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direction. The domains are partitioned uniformly with the number of nodes Nx = Ny = 28+1
in each direction. In order to reduce the computational cost, the cascadic multigrid method
(i.e., Algorithm 2′) is applied for mesh refinement with the coarsest mesh T 0 chosen with
the number of nodes Nx = Ny = 24 + 1 in each direction.

For a rotating BEC, the ground state is a complex-valued function, and thus it is very
tricky to choose a proper initial data such that the numerical result is guaranteed to be the
ground state. Similarly to those in the literature [19], here we test our algorithms with the
following different initial data

(a) φa(x, y) = 1√
π
e−(

x2+y2)/2,

(b) φb(x, y) = x + iy√
π

e−(
x2+y2)/2, (b̄) φb̄(x, y) = φ̄b(x, y),

(c) φc(x, y) = [φa(x, y)) + φb(x, y)] /2

‖[φa(x, y)) + φb(x, y)] /2‖ , (c̄) φc̄(x, y) = φ̄c(x, y),

(d) φd(x, y) = (1 − Ω)φa(x, y)) + Ωφb(x, y)

‖(1 − Ω)φa(x, y)) + Ωφb(x, y)‖ , (d̄) φb̄(x, y) = φ̄d(x, y).

We remark here that, when β 	 1, it is better to replace φa and φb in the above choices by
φ0
a(x) = f0(r) and φ0

b(x) = f1(r)eiθ which are the ground state and central vortex state with
winding number m = +1 of the GPE (1.3) with Ω = 0, respectively [10,19]. Here (r, θ)

is the polar coordinates in 2D. For a fixed β 	 1, f0(r) and f1(r) can be easily obtained
numerically since they are in 1D [10,19].

Table 5 Energy obtained numerically with different initial data of rotating BECs for β = 500 and different
Ω in Sect. 5.3

Ω 0.00 0.25 0.50 0.60 0.70 0.80 0.90 0.95

(a) 8.5118 8.5118 8.0246 7.5890 6.9731 6.1016 4.7790 3.7415

(b) 8.5118 8.5106 8.0246 7.5845† 6.9731 6.1055 4.7778 3.7414†

(b̄) 8.5118 8.5118 8.0197† 7.5890 6.9731 6.1016 4.7778† 3.7415

(c) 8.5118 8.5106 8.0246 7.5890 6.9726 6.1016 4.7778 3.7426

(c̄) 8.5118 8.5118 8.0246 7.5890 6.9731 6.0997 4.7806 3.7415

(d) 8.5118† 8.5106† 8.0246 7.5890 6.9726† 6.0997† 4.7782 3.7420

(d̄) 8.5118 8.5118 8.0246 7.5845 6.9731 6.1016 4.7781 3.7417

Table 6 Ground state energy, the number of iterations for the regularized Newton method (iter), the sum of
the number of inner iterations for solving the subproblems (iters) on the finest mesh and the total computational
time (cpu) of rotating BECs for β = 500 and different Ω in Sect. 5.3

Ω 0.00 0.25 0.50 0.60 0.70 0.80 0.90 0.95

iter 3 3 3 3 49 18 30 153

iters 66 109 238 316 7845 2817 5483 29077

cpu (s) 1.14 18.71 41.57 54.43 147.03 130.87 315.76 556.15

Energy 8.5118 8.5106 8.0197 7.5845 6.9726 6.0997 4.7778 3.7414
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Fig. 3 Plots of the ground state density |φg(x, y)|2—corresponding to the energy listed in the Table 5 with
“†” sign—of rotating BECs for β = 500 and different Ω in Sect. 5.3

Table 5 displays the energy obtained numerically with different initial data selected in the
above with β = 500 for different Ω = 0.00, 0.25, 0.50, 0.60, 0.70, 0.80, 0.90 and 0.95 (in
the table, we use a “†” sign to indicate the one with the lowest energy among different initial
data for given β and Ω), and Table 6 summarizes the lowest energy among different initial
data and the corresponding number of iterations and computation time for β = 500 with
different Ω . Figure 3 plots the ground state density |φg(x, y)|2 for β = 500 with different
Ω . In addition, Tables 7 and 8 and Fig. 4 present similar numerical results for β = 1000.
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Table 7 Energy obtained numerically with different initial data of rotating BECs for β = 1000 and different
Ω in Sect. 5.3

Ω 0.00 0.25 0.50 0.60 0.70 0.80 0.90 0.95

(a) 11.9718 11.9718 11.0954† 10.4392 9.5335 8.2610 6.3603† 4.8832

(b) 11.9718 11.9266 11.1326 10.4392 9.5283 8.2610 6.3607 4.8824

(b̄) 11.9718 11.9266 11.1054 10.4392 9.5335 8.2631 6.3606 4.8831

(c) 11.9718 11.9165 11.1054 10.4392 9.5289 8.2610 6.3605 4.8824†

(c̄) 11.9718 11.9165 11.1326 10.4392 9.5283 8.2610 6.3605 4.8851

(d) 11.9718 11.9266 11.1054 10.4392 9.5289 8.2632 6.3608 4.8831

(d̄) 11.9718† 11.9165† 11.1326 10.4392† 9.5283† 8.2610† 6.3605 4.8831

Table 8 Ground state energy, the number of iterations for the regularized Newton method (iter), the sum of
the number of inner iterations for solving the subproblems (iters) on the finest mesh and the total computational
time (cpu) of rotating BECs for β = 1000 and different Ω in Sect. 5.3

Ω 0.00 0.25 0.50 0.60 0.70 0.80 0.90 0.95

iter 3 3 3 3 10 72 654 721

iters 68 780 248 324 1273 13115 124281 135751

cpu (s) 1.18 28.52 108.98 106.86 105.28 313.67 2083.46 2285.93

Energy 11.9718 11.9165 11.0954 10.4392 9.5283 8.2610 6.3603 4.8824

From Tables 5, 6, 7 and 8, among those different initial data, either (d) or (d̄) gives the lowest
energy in most cases. Thus, in practical computations, we recommend to choose either (d) or
(d̄) as the initial data. Also, it is observed that the regularized Newton algorithm converges
quickly to the stationary solution within very few iterations, even for strong interaction, i.e.,
β 	 1, and fast rotation i.e., Ω is near 1.

In addition, we also apply Algorithm 2 to solve another difficult problem with a quadratic-
plus quartic potential

V (x, y) = (1 − α)
x2 + y2

2
+ κ

(
x2 + y2

2

)2

(5.7)

for different Ω including Ω > 1, where α = 1.2 and κ = 0.3. The domains are partitioned
uniformly with the number of nodes Nx = Ny = 28 +1 for Ω < 5.0 and Nx = Ny = 29 +1
for Ω = 5.0. The initial data can be chosen as (a), (b), (a), (c), (b̄), (a) respectively for
different Ω listed in Table 9. The numerical results are reported in Table 9 and Fig. 5. They
show that our method works well for this challenging case too.

5.4 Application to Compute Asymmetric Excited States

When the trapping potential V (x) in (1.7) is symmetric and the BEC is non-rotating, similarly
to those numerical methods presented in the literature [10,14,16,17], our numerical methods
can also be applied to compute the asymmetric excited states provided that the initial data
is chosen as an asymmetric function. To demonstrate this, we take d = 2, Ω = 0 and
β = 500 in (1.7) and the trapping potential is chosen as a combined harmonic and optical
lattice potential
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Fig. 4 Plots of the ground state density |φg(x, y)|2—corresponding to the energy listed in Table 7 with “†”
sign—of rotating BECs for β = 1000 and different Ω in Sect. 5.3

Table 9 Ground state energy, the number of iterations for the regularized Newton method (iter), the sum of the
number of inner iterations for solving the subproblems (iters) on the finest mesh and the total computational time
(cpu) of rotating BECs with a quadratic-plus quartic potential (5.7) for β = 1000 and different Ω in Sect. 5.3

Ω 0.00 0.50 1.00 2.00 2.50 5.00

iter 2 7 10 40 75 125

iters 106 1280 1906 7285 12,494 11,754

cpu (s) 2.11 106.45 124.49 211.15 266.65 985.45

Energy 14.9351 14.6629 12.4820 −2.3431 −21.7760 −513.7272
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Fig. 5 Plots of the ground state density |φg(x, y)|2 of rotating BECs with a quadratic-plus quartic potential
(5.7) for β = 1000 and different Ω in Sect. 5.3

V (x, y) = 1

2

(
x2 + y2) + 50

[
sin2

(πx

4

)
+ sin2

(πy

4

)]
. (5.8)

The ground and asymmetric states are numerically computed by the Algorithm 1 via the
SP discretization on the bounded computational domain U = (−16, 16)2 which is parti-
tioned uniformly with the number of nodes Nx = Ny = 28 + 1 in each direction. The
initial data is chosen as the TF approximation (5.2) for computing the ground state φg ,

as φ0(x, y) =
√

2x
π1/2 e

−(x2+y2)/2 for the asymmetric excited state in the x-direction φ10, as
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Table 10 Different quantities of the ground and asymmetric excited states and the corresponding computa-
tional cost for a BEC in 2D with the potential (5.8) and β = 500 in Sect. 5.4

φ max |φ|2 E(φ) μ(φ) xrms yrms iter cpu (s)

φg 0.0820 32.2079 41.7854 2.9851 2.9851 365 3.99

φ10 0.0746 34.6053 43.8248 3.3029 2.8741 285 3.18

φ01 0.3749 34.6053 43.8248 2.8741 3.3029 272 3.03

φ11 0.0666 37.0864 46.1442 3.1434 3.1434 117 1.32

Fig. 6 Contour plots of the ground state φg (a), asymmetric excited state in the x-direction φ10 (b), asymmetric
excited state in the y-direction φ01 (c), and asymmetric excited state in both x- and y-directions φ11 (d) of a
BEC in 2D with the potential (5.8) and β = 500 in Sect. 5.4

φ0(x, y) =
√

2y
π1/2 e

−(x2+y2)/2 for the asymmetric excited state in the y-direction φ01, and as

φ0(x, y) = 2xy
π1/2 e

−(x2+y2)/2 for the asymmetric excited state in both x- and y-directions
φ11, respectively. The stopping criterion is set to the default value. Table 10 lists different
quantities of these states and computational cost by our algorithm. In addition, Fig. 6 shows
contour plots of these states.

From Table 10 and Fig. 6, we can see that our algorithm can be used to compute the
asymmetric excited states provided that the initial data is taken as asymmetric functions. The
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numerical results from our algorithm agree very well with those reported in the literature
[10,14,16,17] and the convergence speed of our algorithm is faster.

6 Concluding Remarks

Different spatial discretizations including the finite difference method, sine pesudospectral
and Fourier pseudospectral methods were adopted to discretize the energy functional and
constraint for computing the ground state of Bose–Einstein condensation (BEC). Then the
original infinitely dimensional constrained minimization problem was reduced to a finite
dimensional minimization problem with a spherical constraint. A regularized Newton method
was proposed by using a feasible gradient type method as an initial approximation and solving
a standard trust-region subproblem obtained from approximating the energy functional by
its second-order Taylor expansion with a regularized term at each Newton iteration. We
also adopt a cascadic multigrid technique for selecting initial data. The convergence of the
method was established by the standard optimization theory. Extensive numerical examples
of non-rotating BEC in 2D and 3D and rotating BEC in 2D with different trapping potentials
and parameter regimes demonstrated the efficiency and accuracy as well as robustness of
our method. Comparison to existing numerical methods in the literature showed that our
numerical method is significantly faster than those methods proposed in the literature for
computing ground states of BEC.
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