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Abstract

We present two numerical methods for the approximation of the general-
ized Zakharov system (ZS). The first one is the time-splitting spectral (TSSP)
method, which is explicit, time reversible and time transverse invariant if the
generalized ZS is, keeps the same decay rate of the wave energy as that in
the generalized ZS, gives exact results for the plane-wave solution, and is of
spectral-order accuracy in space and second-order accuracy in time. The sec-
ond one is to use a local spectral method, the discrete singular convolution
(DSC) for spatial derivatives and the fourth-order Runge-Kutta (RK4) for
time integration, which is of high (the same as spectral) order accuracy in
space and can be applied to deal with general boundary conditions. In order
to test accuracy and stability, we compare these two methods with other ex-
isting methods: Fourier pseudospectral method (FPS) and wavelet-Galerkin
method (WG) for spatial derivatives combining with the RK4 for time in-
tegration, as well as the standard finite difference method (FD) for solving
the ZS with a solitary-wave solution. Furthermore, extensive numerical tests
are presented for plane waves, solitary-wave collisions in 1d, as well as a 2d
problem of the generalized ZS. Numerical results show that TSSP and DSC
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are spectral-order accuracy in space and much more accurate than FD, and
for stability, TSSP requires ¥ = O(h), DSC-RK4 requires k = O(h?) for fixed

acoustic speed, where k is the time step and h is the spatial mesh size.

1 Introduction

The specific problem we study numerically is the generalized Zakharov system (ZS)
describing the propagation of Langmuir waves in plasma with a plasma envelope.

i B+ AE—~aNE+MEPE+iyE=0, xR, t>0,
2Ny — AN —v|E]*) =0, x€eRY t>0, :
E(x,0) = E°(x), N(x,0) = N°(x), Ni(x,0) = NV (x), xeR¢  (1.3)

where the complex unknown function F(x,t) is the slowly varying envelope of the
highly oscillatory electric field, the real unknown function N(x,t) is the deviation
of the ion density from its equilibrium value, ¢ is a parameter inversely proportional
to the acoustic speed, v > 0 is a damping parameter, and o, A, v are all real
parameters. The generalized ZS is time reversible and time transverse invariant if

v=0in (1.1).
The general form of (1.1), (1.2) covers many generalized Zakharov systems aris-
ing in various physical applications. For example, when ¢ = 1, v = —1, A = 0,

v = 0 and o = 1, the system of Egs. (1.1) and (1.2) reduces to the well-known
Zakharov system (ZS), which has been first derived by Zakharov [47] to describe the
interaction between Langmuir (dispersive) and ion acoustic (approximately nondis-
persive) waves in a plasma. Later, it has become commonly accepted that the ZS
is a general model to govern interaction of dispersive and nondispersive waves. Nei-
ther the standard ZS is integrable [33], nor the generalized ZS (1.1), (1.2). When
e =1, v=—1and X # 0, a cubic nonlinearity is added to the first equation (1.1).
When 7 > 0, a linear damping term is added to the ZS. When & — 0 (corresponding
to infinite acoustic speed or ‘subsonic limit’) in (1.2), one gets N = v|E|?, which
together with (1.1), leads to the well-known nonlinear Schrédinger equation (NLS)
without (v = 0) or with (7 > 0) a linear damping term:

i B+ AE+(A—-av)[EPE+iyE=0, xeRY t>0.

The global existence of weak solutions of the Zakharov equations in 1d is provided
in [36], and existence and uniqueness of smooth solutions for the equations are
obtained provided that smooth initial data are prescribed. The wellposedness of
the ZS has recently improved in [11] for d = 1,2, 3, and extended for the case with
generalized nonlinearity [15].

Numerical methods for the standard Zakharov system, i.e. ¢ = 1, v = —1,
A=0,7y=0in (1.1) and (1.2), were studied in the last two decades. Payne et al.
[28] proposed a Fourier spectral method for the 1d Zakharov system. They used
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only two-thirds of the Fourier components for a particular mesh in the fast Fourier
transform in order to suppress the aliasing errors in their algorithm [28]. Of course,
this is not an optimal way to use the spectral method. In [18, 19], Glassey presented
an energy-preserving implicit finite difference scheme for the system and proved
its convergence. Later, Chang et al. [13] considered an implicit or semiexplicit
conservative finite difference scheme for the ZS, proved its convergence, and extended
their method for the generalized Zakharov system [14]. One can find more numerical
study of soliton-soliton collisions in a (generalized) Zakharov system in [27, 23, 24].

The goal of this paper is to design new and efficient numerical methods for the
generalized ZS (1.1), (1.2) with spectral spatial accuracy and persevering the phys-
ical property of the generalized ZS at the discretized level. To this end, we propose
a time-splitting spectral (TSSP) approximation and a discrete singular convolution
(DSC) algorithm for the generalized Zakharov system. TSSP is explicit, time re-
versible and time transverse invariant if the generalized ZS (1.1), (1.2) is, easy to
extend to high dimensions, and gives exact results for plane-wave solutions of the
ZS. For stability, TSSP requires £ = O(h). In fact, the spectral method has showed
greatly success in solving problems arising from many areas [20, 12] and the split-step
procedure was presented for differential equations [35] and applied for Schrédinger
equation [26, 38, 17] and KDV equation [39]. Recently, the time-splitting spectral
approximation was used and studied for NLS equation in the semiclassical regimes
in [7, 8] and applied to the numerical study of the dynamics of Bose-Einstein conden-
sation [6, 5] as well as for NLS under nonzero far-field conditions [4]. Very promising
numerical results were obtained due to its exponentially high order accuracy in space
and persevering the physical property of NLS at the discretized level. The approach
for the ZS is based on a time splitting for (1.1) which keeps the same decay rate in
time of the wave energy [ra|E(z,t)|? dz as that in (1.1) and (1.2). In [9], the first
two authors extend the TSSP for discretizing the vector Zakharov system (VZS) for
multi-component plasma and studying numerically the convergence of generalized
7S to NLS in the ‘subsonic limit’ and simulating a 3d vector ZS.

The discrete singular convolution (DSC) has recently been proposed by Wei [41]
as a local spectral method for the numerical discretization of spatial derivatives.
The main merit of DSC is that it is of spectral accuracy for approximating deriva-
tives and can be applied to deal with complex geometries and general boundary
conditions. The method was successfully applied to solve many science and engi-
neering problems, including eigenvalue problems [43] of both quantum and classical
origins, analysis of stochastic process [41, 42], simulation of fluid flows in simple and
complex geometries [40], vibration analysis of solid structures [44], electromagnetic
wave propagation [34], and nanoscale pattern formation in a circular domain [22].
The mathematical foundation of this algorithm is the theory of distributions [32].
Numerical analysis indicates that the DSC method has spectral convergence for ap-
proximating appropriate functions [3]. We compare the accuracy, stability of TSSP
and DSC with other existing methods like finite difference methods. Numerical re-
sults demonstrate the high accuracy and efficiency of the two proposed methods for



the ZS.

The paper is organized as follows. In section 2 we present the time-splitting
spectral discretization and DSC algorithm of the generalized Zakharov system. In
section 3 we compare the accuracy and stability of different methods for the ZS
with a solitary wave solution, as well as present numerical results for plane waves,
soliton-soliton collisions in 1d and a 2d problem of the generalized ZS. In section 4
we draw some conclusions.

2 Numerical methods

In this section we present time-splitting spectral discretizations and DSC algorithm
for the generalized ZS (1.1), (1.2), and (1.3) with periodic boundary conditions. For
simplicity of notation we shall introduce the method in one space dimension (d = 1).
Generalizations to d > 1 are straightforward for tensor product grids and the results
remain valid without modifications. For d = 1, the problem becomes

i By +Ep—aN E+MNE|P? E+iy E =0, a<z<b t>0, (2.1)
&Ny — (N — v |E|?) 4 = 0, a<z<b t>0, (2.2)
E(x,0) = E°(z), N(z,0) = N°(z), Ny(z,0)=NY(z), a<z<b, (2.3)
E(a,t) = E(b,t),  E,(a,t) = E,(b,t), t>0, (2.4)
N(a,t) = N(b,t),  Ny(a,t) = Ny(b,t), t>0. (2.5)

Moreover, we supplement (2.1)-(2.5) by imposing the compatibility condition
E%a) = E°(b), N°a)=N°0), NW(a)=ND(b), / " NO (z) dz = 0. (2.6)
As is well known, the generalized ZS has the following property
D(t) = /ab B, 1) do = e /ab @) ds = D), t>0;  (27)
where D is called as the wave energy of the generalized ZS. When v = 0, D(t) =
D(0), i.e., it is an invariant of the ZS [13]. Furthermore, the ZS also has the following

properties

b b b
/ Ni(z,t) dx =0, / N(z,t) dx = / N°(z) dr = const., t>0. (2.8)

In some cases, the boundary conditions (2.4) and (2.5) may be replaced by

E(a,t) = E(b,t) =0,  N(a,t)=N(b,t)=0, t>0. (2.9)



We choose the spatial mesh size h = Az > 0 with A = (b — a)/M for M being
an even positive integer, the time step being £ = At > 0 and let the grid points and
the time step be

zj:=a+]h, tm :=mk, j=0,1,---, M, m=0,1,2,---.

Let Ef" and N;* be the approximations of E(xj,tm) and N(zj,tn), respectively.
Furthermore, let E™ and N™ be the solution vector at time ¢t = t,, = mk with
components E7* and N;", respectively.

2.1 Time-splitting spectral discretizations (TSSP)

From time ¢t = t,, to t = t,,41, the second equation (2.2) in the generalized ZS is
discretized by Fourier spectral method in space and second-order central difference
scheme in time, and the first equation (2.1) is solved in two splitting steps. One
solves first

i By + Eyy =0, (2.10)
for the time step of length k, followed by solving
i E;=aN E - \E|”E —iy E, (2.11)

for the same time step. Equation (2.10) will be discretized in space by the Fourier
spectral method and integrated in time ezactly. For t € [y, tm1], multiplying (2.11)
by E, the conjugate of E, we get

i B, E = aN|E|* = M\E|* —iy|E%. (2.12)
Then calculating the conjugate of the ODE (2.11) and multiplying it by E, one finds

—i B, E=aN|E]*> = \|E|* + iv|E*. (2.13)
Subtracting (2.13) from (2.12) and then multiplying both sides by —i, one gets

%(|E(x,t)|2) = Ey(z,t)E(x,t) + Ey(2,t)E(x,t) = —2v|E(z,t)? (2.14)
and therefore
E(z,t)? = e 2 )| Bz, t0) %, tm <t < tmit (2.15)
Substituting (2.15) into (2.11), we obtain
i By(x,t) = aN(z,t) E(z,t) — e 2| Bz, t,,) 2 E(x,t) — iy E(z,t). (2.16)

Integrating (2.16) from t,, to t,,41, and then approximating the integral of N on
[tm, tm+1] via the trapezoidal rule, one obtains

E(@, tms1) = efi‘f;:th[aN(:c,'r)f)\e*%(T*tm)|E(x,tm)\27i'y] dr E(, )
N efik[a(N(xatm)+N(w)tm+1))/27)‘|E(xatm)|2} E(l‘, tm)’ ’Y = 0’
M et N @ N @ 1) 2B ) e 0/ B g £ 0.
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From time t = ¢, to t = t,,11, we combine the splitting steps via the standard
Strang splitting:

+1 -1
G N — 2N + N;*

o f m f m|2 —
€ 2 (waN VD:c:c‘E ‘ ) T=t; =0, (2.17)
M/2-1
Bi= Y e WI(ER), o)
I=—M/2
—ikla(NJ*+N" 1) [2=AE; ] o =0
Ej** = ‘ k—i J nj m+1 ’ *2j ’—‘Mk ! ’
o~ VE—ilka(NJ' N 24X B (e 275 1) /21] E;}, v # 0,
Mj2-1
E;”+1 _ Z e‘“"“l /Q(E**)l ez,ul(acj—a)’o < ] <M — 1’ m = O’ 1, - (2.18)
I=—M/2

where ((A])l, the Fourier coefficients of a vector U = (Uy, Uy, Us, - - -, Upr)* with Uy =
Uy, are defined as

2ml ~ 1M , M M
= = e t(@i—a) l=——, ., ——1, (21
iy b—a’ (U)l M jz_%Uje ; 9 ; ’ 2 ’ ( 9)
and D/ . a spectral differential operator approximation of 0,, is defined as
M/2-1 o
DLU| == 3 WOy eneo. (2.20)
. I=— M2

The initial conditions (2.3) are discretized as

0 0 0 0 le — Nj_l (1) :
E} = E°(z;), szN(xj),T:Nj , 7=0,1,2,--- M—1, (2.21)
where
o N (z;), 0<j<M-2
N’ = M-—2 2.22
! - Y NO(z,), j=M—1. (2.22)
1=0

This type of discretization for the initial condition (2.3) is equivalent to the use of the
trapezoidal rule for the periodic function N®). The discretization error converges
to 0 exponentially fast as the mesh size h goes to 0.

Note that the spatial discretization error of the method is of spectral-order ac-
curacy in h and time discretization error is of second-order accuracy in &, which will
be demonstrated in section 3 from our numerical results.

If the initial data in (2.3) is chosen as

E(z) = ¢ ei?mla/(b=a), N°(z) =d, NO(z) =0, a<z<b, (2.23)



where [ is an integer and ¢, d are constants, then the generalized Zakharov system
admits the plane wave solution [27]

N(z,t) = d, a<z<b t>0, (2.24)
c ei(%f‘“t), w = ad+ é’ral — A, v=0,

E(z,t) = i(M—wt—AL(e_z'Yt 3 (2.25)
ce e\t 2 , w=od+; 4“ l v # 0.

It is easy to see that in this case our numerical method TSSP (2.17), (2.18) gives
exact results provided that M > 2(|I| + 1).

Note that a main advantage of the time-splitting spectral method is that if a
constant 7 is added to the initial data N°(z) in (2.3) when v = 0 in (2.1), then the
discrete functions NJ"*' obtained from (2.17) get added by r and EJ**' obtained
from (2.18) get multiplied by the phase factor e (m+Y¥ wwhich leaves the discrete
function |EJ**"|? unchanged. This property also holds for the exact solution of the
ZS, but does not hold for the finite difference schemes proposed in [18, 13] and the
spectral method proposed in [28].

Remark 2.1 If the periodic boundary conditions (2.4) and (2.5) are replaced by
(2.9), then the Fourier basis used in the above algorithm can be replaced by the sine
basis. In fact, the generalized Zakharov system (2.1) and (2.2) with the homogeneous

periodic boundary condition (2.9) and initial condition (2.8) can be discretized by

N —2Nm 4+ Nt

2 J ] m ] m|2
€ — (D, N™ —vD? |E =0, 2.26
" (D2, =B ), (2.26)
M-l
E; = Y e ™i2(Em), sin(n(z; — a)),
=1
B o (NN /2 NEP) v =0,
i —yk—ilka(N+ N ) /240 B} [2(e=270—1)/29] s
e s : L A,
Em+1 Z e~ ik /2(E**)l sin(m(z; —a)),1<j<M—-1,m=0,1,---,(2.27)

=1

where (ﬁ)l, the sine-transform coefficients of a vector U = (Uy, Uy, Us, -+, Upy)"
with Uy = Uy = 0, are defined as

- U, = 2]&1U sin(m(z; — a)) 1=1,2,---,M —1, (2.28)
=" M (m(z ; =144 ; .
and D3, a spectral differential operator approximating O, based on sine-basis, is

defined as
M-1
D3 Ul,_y, == > ni(U) sin(m(z; — a)). (2:29)

=1



Let U = (Up,Uy,-+-,Uy)t with Uy = Uy, f(z) a periodic function on the

interval [a,b], and let || - ||;> be the usual discrete />-norm on the interval (a, b), i.e.,
b—aM! b—a !
Ul = U7, A flle = |f (;)[?. (2.30)
SXw =3 v,

Then we have

Theorem 2.1 The time-splitting spectral discretization TSSP (2.17), (2.18) of the
generalized 7S possesses the following properties (in fact, they are the discretized
version of (2.7) and (2.8)):

|E™||% = e 2" || E°||% m=0,1,2,---, (2.31)
— +1 m
b—aM lem _Nj

>

=0, m=0,1,2,-- (2.32)

j=0 k
and
b_alel . b_aMfl b_aMfl
B 2% N" = T N} = i 2% N°(z;), m=0,1,2,--- . (2.33)
J= J= J=

Proof: See Appendix.

2.2 Discrete singular convolution (DSC-RK4)

In order to solve the generalized ZS by using DSC for spatial derivatives and the
fourth-order Runge-Kutta (RK4) for time integration, we rewrite (2.1), (2.2) into
the following form:

E; =iE,, —iaNE +i)\E|’E — yE, (2.34)

N, =F, (2.35)
1

F, = 8—2(Nm —V(|E|?) ). (2.36)

Discrete singular convolution (DSC) methods, proposed in [41], provide a gen-
eral approach for numerical realization of singular integrations. It has been applied
to signal processing and numerical solutions to differential equations. By appropri-
ate approximation of a singular kernel, the discrete singular convolution can be an
extremely efficient, accurate and reliable algorithm for practical applications. For
more detail of the method, please refer to [41]. The DSC algorithm can be realized
by using many approximation kernels. Here, we review how to discretize the second



order spatial derivative of a function u(z) by using the regularized Shannon’s kernel
[41, 45]

Uz (T) R ; 5,(122,@ — zj)u(z;), (2.37)

where 2W + 1 is the computational bandwidth, or effective kernel support, which is
usually smaller than the whole computational domain, z; is grid point, and

Oneo(x) = % exp[—z° /207 (2.38)

is the regularized Shannon’s kernel, 5,&22, is a symbol for the second order derivative

of 6y, »(z) with respect to x. The detailed expression for 5,52()7(56) can be easily given
as:

( —(n/h)sin(mz/h) exp(=2®/20°) 2COS(7T.Z‘/h) exp(—1?/20?)
cos(mn/h) exo(—a2/20?) _sin(mz/h) exp(-22/20%)
2 42
52 (2) = + o’ R (2.39)
ho W) sin(rz/h) exp(—z?/20%)  xsin(mz/h)exp(—x?/20?%) 0 '
* , 27r0§x/h * wot/h ’ v #0,
\ —%, z = 0.

In our computations, we choose W=50 and o = 5h.

Therefore, the second-order derivative of a function u(x) at the grid point z = z;
is approximated by

w
Unelpey, = D Opp(IR)Uj4, (2.40)
=W

and thus we obtain an ordinary differential system for (2.1) and (2.2), then the
classical fourth-order Runge-Kutta method (RK4)[30] is used to evaluate E and N
at each time step for the time integration.

2.3 Other methods

In order to compare the accuracy and stability, we consider the Fourier pseudospec-
tral (FPS) method proposed in [31] and wavelet-Galerkin (WG) method proposed
in [29] and [2] for spatial derivatives, both of which use RK4 for time discretization,
as well as the finite difference (FD) method proposed in [13] for Zakharov system.



2.3.1 Fourier pseudospectral method (FPS-RK4)

We consider the numerical approximation of Egs. (2.34)-(2.36). As reviewed in [20],
if u(x) is a sufficiently smooth function of its variables, its spatial derivatives can be
evaluated as

d"u M/2—-1 '
Pl TS @y e, 1)
T=T; I=—M/2

where (@), is defined as (2.19). This expression constitutes the basis of the Fourier
pseudospectral (FPS) method. For the time integration, the classical fourth-order
Runge-Kutta method (RK4) is used to evaluate E and N at each time step. Some
detail of FPS-RK4 can also be found in [46].

2.3.2 Wavelet-Galerkin method (WG-RK4)

We also try to use the wavelet-Galerkin method to evaluate the spatial derivatives
Ugg. Using the idea of [29] and [2], the wavelet-Galerkin method entails representing
the function u and u,, as expansions of scaling functions at a particular scale J:

u(z) =3 &276(27z — k), (2.42)

Uge (T) = ngQ%(ﬁ(QJx — k); (2.43)

where ¢, and g, are the wavelet coefficients of v and u,,, respectively, i.e., they
define the function in the wavelet space, and the scaling function ¢ is defined by a
dilation equation of the form

P(z) = axd(2z — k). (2.44)

Compactly supported scaling functions, such as those belonging to the Daubechies
family of wavelets [16], have a finite number of nonzero filter coefficients ax. We
denote the number of nonzero filter coefficients by L.

We make variable transformation

y=2"z,
then we get
Uy) = u(z) = ; wdly — k),  cp =275, (2.45)
F(y) = ug(z) = ;gkaﬁ(y —k),  g=2%0 (2.46)
Refer to [2], we can get
Fe(U) = Fi(F)/ Fr(Kq). (2.47)



The notation Fj is used for the coefficients in the Fourier space, the convolution
kernel Ko = 22J '(Qo, Ql, ceey, QL_Q, 0, ceey, 0, QQ_L, teey, Q_l), where

= [ W)ely—1) dy

are the connection coefficients. The method for computing these coefficients was
presented in [10]. Conversely, one gets

Fi(F) = Fi(U) - Fr(Kaq)- (2.48)

Therefore, in Eqs. (2.34)-(2.36), the spatial derivatives can be evaluated by
(2.48) with h = 57. For the time integration, we again use the classical fourth-order
Runge-Kutta method (RK4). In our computations, we use DAUB12 wavelet basis
(10, 16], i.e., L=12.

2.3.3 Finite difference method (FD)

For convenience of the reader, here we also review the finite difference method
proposed for the standard ZS [13], i.e., in (2.1)-(2.2) withe = 1, v = -1, a = 1,
A=0and v=0:

+1 m+1 m+1 m+1

k 2 h? h?
1
- Z( "+ NY(EPT + B, (2.49)
m+1 m m—1 m m m
N ONP NPT N = NP N
k? h?
g (AL 2N 4 N N N — 2N 4 NP
h? h?
B2 — 9| EP | 4 | BT |2
— ‘ ]+1‘ |hj2 ‘ | jfl‘ ' (250)
In computations, E?, N? and N; are obtained from initial data
E] = E%;), N} =Na), (2.51)
k> (N9, —2N?+ N?_
Nj = Nj+kN'(z)) + = ( e
E9 |2 —2|E9? + |EY_,|?
+ | ]—|—1| |h_27| | j 1| ) ) (252)

In our computations, we choose either # = 0.5 or 6 = 0.
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3 Numerical examples

In this section, we present numerical results of the ZS with a solitary wave solution in
1d to compare the accuracy, stability and e-resolution of different methods described
in section 2. We also present numerical examples including plane waves, soliton-
soliton collisions in 1d, as well as a 2d problem of the ZS to demonstrate the efficiency
and spectral accuracy of the time-splitting spectral method (TSSP) and discrete
singular convolution method (DSC-RK4) for the generalized Zakharov system.

In the examples 1, 3 and 4, the initial conditions for (1.3) are always chosen such
that | E°|, N° and N decay to zero sufficiently fast as |x| — co. We always compute
on a domain, which is large enough such that the periodic boundary conditions do
not introduce a significant aliasing error relative to the problem in the whole space.

3.1 Comparisons of different methods

Example 1 The standard ZS with a solitary-wave solution, i.e., we choose d = 1,
a=1,A=0,7v=0and v = —1in (1.1)-(1.3). The well-known solitary-wave
solution of the ZS (1.1)-(1.3) in this case is given in [27, 24]

E(x,t) = /2B2(1 — £2C?) sech(B(z — Ct)) ¢/ (©/27- B - (31)
N(z,t) = —2B? sech®(B(z — Ct)), —oo<z <00, t>0, (3.2)

where B, C are constants. The initial condition is taken as

E%z) = E(z,0), N°z) = N(z,0), NO(z,0) = Ny(z,0), —00 <z < 00,
(3.3)
where E(z,0), N(x,0) and N;(z,0) are obtained from (3.1), (3.2) by setting ¢ = 0.
We present, computations for two different regimes of the acoustic speed, i.e. 1/e:

Case 1. O(1)-acoustic speed, i.e. we choose ¢ = 1, B =1, C = 0.5 in (3.1),
(3.2). Here we test the spatial and temporal discretization errors, conservation of
the conserved quantities as well as the stability constraint of different numerical
methods. We solve the problem on the interval [-32, 32|, i.e., a = —32 and b = 32
with periodic boundary conditions. Let Ejj and Nj j be the numerical solution of
(1.1), (1.2) in 1d with the initial condition (3.3) by using a numerical method with
mesh size h and time step k. To quantify the numerical methods, we define the error
functions as

er = [|E(5t) = Enp(lle, 2 =[IN(:2) = Nag(®)]|e2,

_NECH) = Bue@lle | INCHD = Nog@lle . en e
IEC, Dl ING )l IEC Ol [ING D)l
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and evaluate the conserved quantities by using the numerical solution (i.e., replacing
E and N by their numerical counterparts Ejj and Nk, respectively) as

D= /°° |E(z,)[? da,

p=[" [%(E(x, DB (@0 — E@ 0 Eal(z, ) + Nz, )V (z, t)] da,

o 1, 1
H= [ [|Ew(x,t)|2 + NBP + SN2 + 2V (a, 1)

dx,

where V' is the flux and its value is determined from the continuity equation

First, we test the discretization error in space. In order to do this, we choose a
very small time step, e.g., £ = 0.00001 such that the error from time discretization
is negligible comparing to the spatial discretization error, and solve the ZS with
different methods under different mesh sizes h. Table 1 lists the numerical errors of
e; and e, at ¢t = 2.0 with different mesh sizes h for different numerical methods.

Mesh  h=1.0 h=1 h=1
e 9.810E-2  1.500E-4  2.286E-9
TSSP

e 0.143  1168E-3  2.201E-8

e 0.151  1955E-4  3.452E-9
DSC-RK4

e 0.243  2.347E-3  4.692E-8

e 0.697  1.866E-2  1.403E-5
WG-RK4

e 0.968  3.651E-2  5.677E-5

e 0.491 0.120  2.818E-2

FD
e 0.889 0.200  4.726E-2

Table 1: Spatial discretization error analysis: e, e; at time t=2 under £ = 0.00001.

Secondly, we test the discretization error in time. Table 2 shows the numerical
errors of e; and e; at t = 2.0 under different time steps £ and mesh sizes h for different
numerical methods. For the FD method, due to its second-order convergence rate
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h Error k=001 k=0.0025 Fk=0.000625 Fk = 0.00015625
TSSP 1 e  4631E-5 2894E-6  1.809E-7 1.148E-8
e;  1.029E-4 6.429E-6  4.024E-7 3.338E-8
s e 4631E-5 2.894E-6 1.809E-7 1.129E-8
e;  1.029E-4 6.429E-6  4.018E-7 2.513E-8
DSC-RK4 1 ¢  2822E-9 3.442E-9  3.452E-9 3.452E-9
e;  4.693E-8 4.692E-8  4.692E-8 4.692E-8
: e — 4.338E-12  3.756E-13 3.765E-13
e — 3.789E-12  6.194E-14 6.276E-14
FPS-Rk4 1 e 2.078E-9 2185E-9  2.192E-9 2.192E-9
e;  5.990E-8 5.989E-8  5.989E-8 5.989E-8
s e — 4.342B-12  7.369E-14 7.218E-14
e — 3.762E-12  1.467E-14 4.899E-15
WG-RK4 1 e 1.399E-5 1.403E-5  1.403E-5 1.403E-5
e;  5.677TE-5 5.677E-5  5.677E-5 5.67TE-5
§ e 8172E-9 8.506E-9  8.508E-9 8.508E-9
e;  4.239E-8 4.221E-8  4.221E-8 4.221E-8
h Error k=0.8 k=0.2 k =0.05 k =0.0125
FD I e 0.802  3.480E-2  2.855E-2 2.820E-2
e 0.674  9.012E-2  5.005E-2 4.743E-2
i e 0.809  1.753E-2  7.363E-3 6.961E-3
e 0.656  5.491E-2  1.427E-2 1.167E-2

Table 2: Time discretization error analysis: e, e; at time t=2.
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in space, we list errors for larger time steps £ in order to view the convergence rate
in time.

Thirdly, we test the conservation of conserved quantities. Table 3 presents the
quantities and numerical errors at different times with mesh size h = % and time

8
step k£ = 0.001 for different numerical methods.

Fourthly, we compare the stability constraint for different numerical methods
and list the results in Table 4. There the error e is computed at time ¢ = 5.0.

Time e D P H
TSSP 1.0 5.323E-7 3.0000000000 3.397277646 0.519446033
2.0 7.127E-7  3.0000000000 3.397277653 0.519446032

DSC-RK4 1.0 1.966E-13 3.0000000000 3.397343618 0.519445999
2.0 2.813E-13 3.0000000000 3.397343618 0.519445999

FPS-RK4 1.0 9.631E-14 3.0000000000 3.397343618 0.519445999
2.0 1.184E-13 3.0000000000 3.397343618 0.519445999

WG-RK4 1.0  3.064E-8 3.0000000000 3.397343618 0.51944599
2.0  2.319E-8 3.0000000000 3.397343618 0.51944599

FD 1.0 4.745E-3  3.0000000000 3.394829741 0.510115589
2.0  8.983E-3 3.0000000000 3.394791238 0.510076710

Table 3: Conserved quantities analysis: £ = 0.001 and h = %.

Case II: ‘Subsonic limit’ regime, i.e. we choose ¢ < 1, B =1 and C = 1/2¢
in (3.1), (3.2). Here we test the e-resolution of different numerical methods. We
solve the problem on the interval [-8, 120], i.e., a = —8 and b = 120 with periodic
boundary conditions. Figure 1 shows the numerical results of TSSP at ¢ = 1 when
we choose the meshing strategy: ¢ = %, h = %, k = %; € = 3%, h = %, k= ﬁ;
€ = 335 h = 35, k = 1355 corresponding to h = O(g) and k = O(eh) = O(e”).
FPS-RK4 gives similar results at the same meshing strategy.

From Tables 1-4 and Figure 1, we can draw the following observations:
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h DSC-RK4 TSSP  FPS-RK4 WG-RK4 FD (f=1) FD(f=0)
: b % i 16 5 ; 2

e 1.125E-3  0.101  1645E-3 4.388E-2  0.702 0.207
S 5 o 3 i i

e 2458E-8 1466E-2 3.526E-8 4.815E-5  0.167 4.194E-2
1 1 1 1 1 1 1
8 256 16 256 128 8 8

e 2465E-11 3.163E-3 4.936E-11 2.552E-8  3.937E-2  1.009E-2
Lk _1 1 _1 1 1 1
16 1024 32 1024 512 16 16

e 2.869E-13 7.812E-4 2.659E-13 9.147E-12  9.758E-3 2.499E-3

Table 4: Stability analysis: e is computed at time ¢ = 5.0.

(1) For TSSP, the spatial discretization error is of spectral order accuracy and
the time discretization error is of second-order accuracy. TSSP conserves D exactly
and P, H very well (up to 8 digits). The stability constraint of TSSP is weaker, it
requires kK = O(h) for ¢ = O(1). Furthermore, it is explicit, easy to program, less
memory requirement, easy to extend to 2d and 3d cases and keeps more properties
of the generalized ZS in the discretized level.

(2) DSC-RKA4 can also obtain the exponentially high order accuracy in space.
Table 3 shows that DSC-RK4 can conserve D, P and H very well. The stability
constraint of DSC-RK4 is £ = O(h?) for ¢ = O(1). Furthermore, DSC-RK4 is ex-
plicit and can be applied to deal with complex geometry and more general boundary
conditions.

(3) FD, FPS-RK4 and WG-RK4 give good approximations of the standard ZS
with the solitary-wave solution. FPS-RK4 and WG-RK4 are explicit and of spec-
tral order accuracy and high order accuracy in space, respectively. The stability
constraint of these two methods is k = O(h?) for ¢ = O(1). FD is implicit, time
reversible and of second order accuracy in both space and time. The stability con-
straint of FD is k = O(h) for ¢ = O(1).

(4) In the ‘subsonic limit’ regime, i.e. 0 < & < 1, the e-resolution is: For
TSSP, h = O(e) and k = O(eh); for DSC-RK4, h = o(¢) and k = O(eh) when the
bandwidth w in (2.37) is fixed and h = O(e) and k = O(eh) when w = O(1/¢); for
FPS-RK4, h = O(¢) and k = O(eh); for WG-RK4 and FD: & = o(¢) and k = O(ch).

In general, the numerical study on the standard ZS with periodic boundary

condition suggests that TSSP, DSC-RK4 and FPS-RK4 have much better spatial
resolution than FD and WG-RK4. It is obvious that TSSP is easy to program and
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less memory requirement, keeps more properties of the generalized ZS in discretized
level and its stability constraint is weaker, where DSC-RK4 algorithm can be applied
for complex geometry and general boundary conditions. For more comprehensive
comparisons between the DSC-RK4 and FPS-RK4 for PDEs, we refer to [46]. In
summary, for generalized ZS with periodic boundary conditions or in the whole
space with initial data decaying to zero sufficiently fast as |x| — oo which can be
approximated in a bounded domain with periodic boundary conditions, we recom-
mend to use TSSP; for generalized ZS in a complex geometry or with non-periodic
boundary conditions, we recommend to use DSC-RKA4.

3.2 Applications

Example 2 The standard ZS with a plane-wave solution, i.e., we choose d = 1,
e=1,a=1,A=0,y=0and v = —1 in (1.1)-(1.3) and consider the problem on
the interval [a,b] with ¢ = 0 and b = 27. The initial condition is taken as

E(z,0) = E%(z) = €™, N(z,0) = N°(z) =1, Ny(z,0) = NV (z) =0, 0 <z < 27.

(3.5)
It is easy to see that the ZS (2.1), (2.2) with the periodic boundary conditions (2.4),
(2.5), and initial condition (3.5) admits the plane wave solution [27]

E(z,t) = 72—, with w =741 = 50, (3.6)
N(z,t) =1, a<z<b, t>0. (3.7)

We solve this problem by using the time-splitting spectral method (T'SSP) on the

interval [0, 2] with mesh size h = ¢ (i.e., 17 grid points in the interval [0, 27]) and

time step k = 0.01. Figure 2 shows the numerical results at ¢ = 2 and t = 4.

From Figure 2, we can see that the time-splitting spectral method really provides
the exact plane-wave solution of the Zakharov system.

Example 3 Periodic soliton-soliton collisions in 1d of the standard ZS, i.e., we
choosed=1,e=1,a=1,A=0,7y=0and v = —1 in (1.1)-(1.3). The analytic
solution of the Zakharov system (2.1)-(2.2), which was derived in [25] and used to
test different numerical methods for the ZS in [28, 18, 13]. Here we use this solution
to test our method TSSP and DSC-RK4 too. The solution can be written as

E(z,t;v, Emax) = F(x — vt) explid(x — ut)],
Ny(z,t;v, Frax) = G(z — vt),
where

|F(x — vt)|?

N
’U2—1 + 0,

F(z —vt) = Fmax - dn(w,q), G(x —vt) =
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Emax \/ (Ethax — EZ i)
w= T (s —vf), q= ,
(2(1 —v?) Emax
v v 2N, E  +E2,
= 2 —L =2 =1.2.3--- — _ _ “max min
¢ /U/ ? 2 7Tm7 m e ? u 2 + v ’[}(1—’[}2) Y
2¢/2(1 — 22 2./2(1 — v2 B
L= #K(q) = ]é ) (E"““),

with dn(w, ¢) a Jacobian elliptic function [21, 1], L the period of the Jacobian elliptic

functions or the period of the soliton, K and K’ the complete elliptic integrals of

the first kind [21, 1] satisfying K(q) = K’ (\/1 - q2), and N, chosen such that
L

(Ng)y = %/ Ns(z,t) dr = 0. The values of the various parameters used in our
0

computations are given in Table 5.

Parameter set L FEoax Eoin v U Ny
A 160 1.0 1.0535x10731 0.628319 2.24323 0.0227232
B 160 0.5 1.0535x107'® 0.628319 -0.27094 0.0227232
C 160 1.0 1.0535x107%% 0.314159 -3.22992 0.0227232

Table 5: Parameter values for analytic solutions of the periodic Zakharov system.

In the following we will study soliton-soliton collisions using the time-splitting
spectral method. The initial data is chosen as

E(z,0) = Ey(x +p,0,v1, EL. )+ Es(z —p,0,v9, E2),

max max

N(z,0) = Ny(z +p,0,v1, EL..) + Ny(z — p,0,v, E2.),

max max

8Ns(x+p,0,v1,E1 )+8Ns(x_paoav27Er2nax)

max

ot ot ’

where x = Fp are initial locations of the two solitons. We present computations for
three cases:

Ni(z,0) =

1. Collision of two solutions with equal amplitudes and opposite velocities.

El =F? = Fp.=1.0, vy = —vy = v = 0.628319, (parameter set A).

max max
11. Collision of two solutions with different amplitudes and opposite velocities.

El. . =05 v =0.628319, (parameter values set B),
E%.. =10, v, =—0.628319, (parameter values set A).
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1I1. Collision of two solutions with equal amplitudes and opposite velocities but dif-
ferent speeds.

El =10, v =0.314159, (parameter value set C),

max

E2 =10, wv,=—0.628319, (parameter value set A).

max

We solve the problem in the interval [—80, 80], i.e., @ = —80 and b = 80 with
mesh size h = 15—6 and time step £ = 0.01. We take p = 10. Figure 3 shows the
values of |E(z,t)| and N(x,t) at various times for case I, Figure 4 for case II and

Figure 5 for case III.

Case I which was already used in [28, 13, 18] to test their numerical methods cor-
responds to collision of two solutions with equal amplitudes and opposite velocities.
In this case, the time ¢ = 15.9 corresponds to the time when the two solutions are
at the same position and the time ¢ = 31.8 corresponds to a time when the collision
is nearing completion (cf. Figure 3). From the figure we can see that during the
collision waves are emitted, and that after the collision the two solutions have a re-
duced value of Fy,,,. Comparison of our graphical results (under mesh size h = %)
with those (under mesh size h = ) of [28, 18, 13] shows excellent qualitative agree-
ment. This also demonstrates that the time-splitting spectral method TSSP has
a better resolution than the finite difference method proposed in [18, 13]. Case II
corresponds to the collision of a right-going soliton with a smaller peak value of EL
and a left-going soliton with a larger value of EZ, . They have equal speeds. In
this case, during the collision waves are emitted and exchanged, and that after the
collision the peak value of the left-going soliton becomes bigger than its value be-
fore collision and the peak of the other becomes much smaller (cf. Figure 4). This
means that the soliton with larger peak value will absorb part of the other wave
during their collision. Case III corresponds to a collision of a right-going soliton
with a smaller speed |v;| and a left-going soliton with a larger speed |vs|. They have
equal amplitudes. Again, waves are emitted and exchanged during collision. After
the collision, the peak value of the left-going soliton becomes larger than its value
before collision and the peak of the other becomes much smaller (cf. Figure 5). This
means that the soliton with larger speed will absorb part of the other wave during
their collision.

The same results can also be obtained by the DSC-RK4 with mesh size h = %

and time step k£ = 0.01.

Example 4 A 2d problem of the standard ZS, i.e., we choose d = 2, ¢ = 1,
a=1,A=0,y=0and v =—1 in (1.1)-(1.3). The initial condition is taken as

2 15 2 2
- /cosh(4/4x2+y?)
E(z,y,0) = T o ) ¢i3/cosh(y/ 42 +y?)

N(x’ Y, 0) = 6_(m2+y2), Nt(xa Y, 0) =0.

We solve the problem on the rectangle [—64,64]> with mesh size h = i and time
step k = 0.01. Figure 6 shows the surface plots of |E|?> and N at time ¢t = 2.0, as
well as the contour plots of |E|?> and N at different times.
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From Figure 6, we can see that the time-splitting spectral method can really be
applied to solve 2d Zakharov system.

Example 5 Soliton-soliton collisions in 1d of the generalized ZS, i.e., we choose
d=1,e=1, a=-2and v =0in (1.1)-(1.3). We use the family of one-soliton
solutions in [23] to test our methods TSSP and DSC-RK4. The solution can be
written as

A -1/2
E,(z,t;n,V) = [5 + 612(1/52 - VQ)—ll Us, (3.10)
U, = 2in sech[2n(X — V)] exp [iVX/Q +i(4n? — V2/4)t + z'cbo] , (3.11)
N(@,tim, V) = 5 (1/e2 = V3B P, (3.12)

where 1 and V' being the soliton’s amplitude and velocity, and ®, being a trivial
phase constant. The initial data is chosen as

E(ﬂf, 0) = ES('T +pa05771a ‘/1) + Es(x —p,0,772, ‘/2)1
N(Qj, 0) = Ns(x +p, 05771) Vi) + NS(.Q? _p50)772a ‘/2)5
aNs(x+p707771:‘/1) aNs(x_paoan%Vé)

Ny, 0) = ot ot ’

where £ = Fp are initial locations of the two solitons.

In all the numerical simulations reported in this example, we set A = 2, and
®, = 0. We only simulated the symmetric collisions, i.e., the collisions of solitons
with equal amplitudes n; = 1y = 1 and opposite velocities V; = —V, = V. Here, we
present computations for four cases:

L Collision between solitons moving with the subsonic velocities, V < 1/e = 1.

Case 1: v=0.2, n=0.3, V =0.5
Case 2: v=2, n=0.3, V =0.045;
Case 3: v=2, n=0.3, V =045.

II. Collision between solitons in the transonic regime, V> 1/e = 1.
Case 4: v=2.0, n=0.3, V=3.0.

We solve the problem on the interval [-128,128], i.e., a = -128 and b = 128 with
mesh size h = % and time step £ = 0.005. We take p = 10. Figure 7 shows the
evolution of the dispersive wave field |E|? for case 1, Figure 8 shows the evolutions
of the dispersive wave field |E|? and the acoustic (nondispersive) field N for case 2,
Figure 9 for case 3 and Figure 10 for case 4.
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Case 1 corresponds to a soliton-soliton collision when the ratio v/ is small, i.e.,
the generalized ZS (2.1), (2.2) is close to the NLS equation. As is seen, the collision
seems quite elastic (cf. Figure 7). Case 2 and case 3 correspond to the fusion of
the colliding subsonic solitons into the new soliton in the system (2.1), (2.2) at the
different velocities. At very small values of V, the collision results in the direct
fusion of the colliding solitons into a new solitonlike state, its amplitude and width
are almost constant in time (cf. Figure 8). With the growth of V| the appearing
soliton demonstrates irregular oscillations in its amplitude and size; the oscillations
are accompanied by a conspicuous emission of the acoustic waves (cf. Figure 9).
Case 4 corresponds to the collision of two transonic solitons. Note that the emission
of the sound waves is inconspicuous at this value of V (cf. Figure 10).

From Figures 6-9, we can see that the time-splitting spectral method can re-
ally be applied to solve soliton-soliton collisions of generalized Zakharov system.
Furthermore, the DSC-RK4 can also achieve similar results.

4 Conclusions

The time-splitting spectral method (TSSP) and discrete singular convolution method
(DSC-RK4) for numerical discretization of the generalized Zakharov system (ZS)
are presented. The method of TSSP is explicit, easy to extend to high dimensions,
easy to program, less memory requirement, weaker stability constraint, and time
reversible and time transverse invariant if the generalized ZS is so. Furthermore
it keeps the same decay rate of the wave energy in the generalized ZS, and gives
exact results for plane-wave solutions of ZS. Numerical results for a solitary wave
solution demonstrate that the method is of spectral-order accuracy in space and
second-order accuracy in time as well as ‘good’ e-resolution in the ‘subsonic limit’
regime, i.e. 0 < ¢ < 1. The method is applied successfully to simulate soliton-
soliton collisions of the (generalized) ZS as well as a 2d problem. Numerical results
demonstrate the efficiency and high accuracy of TSSP for these problems.

FPS-RK4 and DSC-RK4 are of spectral accuracy in space and explicit 4th order
accuracy in time. Both methods are found to perserve the first few conserved phys-
ical quantities to at least 10 digits. Numerical experiments indicate that these two
methods perform much better than the WG-RK4 and FD in terms of accuracy, but
have a stronger requirement for time integration stability. However, as a local spec-
tral method, the DSC based method can be applied to deal with complex geometry
and general (complicated) boundary conditions at spectral accuracy.

In summary, for generalized ZS with periodic boundary conditions or in the
whole space with initial data decaying to zero sufficiently fast as |x| — oo which
can be approximated in a bounded domain with periodic boundary conditions, we
recommend to use TSSP; for generalized ZS in a complex geometry or with non-
periodic boundary conditions, we recommend to use DSC-RK4.
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Appendix

Proof of Theorem 2.1: From (2.18) in the scheme TSSP, noting (2.30), (2.19),

one has
o M-1 M1M/2—1 L 2
; ||Em+1||122 _ Z ‘Em+1‘ — Z e_”““l/Q(E**)l et (zj—a)
—a =0 j= 0 I=—M/2
M/2—1 . M/2-1 )
= M Z ‘e—ZkH—l/Q E** ‘ =M Z ‘E**
I=—M/2 I=—M/2
1 M/2-1 M- 2 M 1
— M Z Z E** —ip(zj—a) |E**
I=—M/2 | j=0 §=0
M-1
) ‘e—ik[a(NJ?"—FNJmH)/Z—,\\E]’.‘\2} E} 2’ v =0,
_ j=0
- M-1 . m m+1 *|2(,—2vk 2
‘eka*z[ka(N,- +NTN) /24N ES P (e7 270 —1) /29] EX", v#0,
7=0
M-1|M/2-1 2
— 6—2719 Z ‘E* _ 6—2719 Z Z e—zkul /Q(Em)l ezul(zcj a)
§=0 |I=—M/2
M/2—1 M/2-1 )
— e—Q'ykM Z |—zkul/2 Em ‘ _6—27kM Z ‘ l‘
I=—M/2 I=—M/2
e—2vk M/2-1 [M—1 ' 2 M-1 9
= — Z Z E;_ne—zuz(mj—a) — 27k Z ‘Ejm‘
I=—M/2 | j=0 7=0
M€_27k Me 27tm+1
= S == B, m 1 (4)
Thus the equality (2.31) is proved. Here we use the identities
M-1
ei2mk=I/M 0 h—l#nl, n integer (4.2)
o M, k—1=nM,
and Mo
3 ei2m(k—i)/M _ 0, k _J_ 7 ni, n integer. (4.3)
iy M, k—j=nM,

From the equality (2.17), we have

m—+1 m m m—1
k k g2
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— X (pLNm—uDLIE")| _ 0<j<m
J

(4.4)



Summing the above equality for j from 0 to M — 1, noting (2.20), (2.19) and (4.2),
we obtain

M-1 ym+l _ nyym M-1 nym _ pm—l

VR B W B
2= 2~

j=0 j=0
If M-
=5 Z (Df,N™ —vD!,|E™?)
=0 i
g M=1 M/2-1
= Z > u (V)= By e
0 [=—M/2
p M=1 M/2-1
= - 2 D [Nm = v([EPy| et
=0 I=—M/2
kM2
— __2 Z [Nm l_V :| Z ez27rl]/M
I=—M/2
=0, m=12---. (4.5)

By induction, we get

M-1 Nm+1 —_ Nm M-1 N-l _ N()
ZQZZQ’ m=1,2---. (4.6)
= k o k

Applying (2.21) into (2.17) with m = 1, we have

N! — N? k
J J (1 f as0 102
=N +ﬁ(DN—VD .| E°%)
Summing (4.7) for j from 0 to M — 1, noting (2.22) and by proceeding analogously
o (4.5), we get

. j=0,1,2,---, M. (4.7)

M-1 Nl NO M-1
> =Y N+ Z oz (DLN® — DL EP)

j=0 7=0

=0+0=0. (4.8)

The equality (2.32) is a combination of (4.6) and (4.8). Combining (4.8) and (2.21),
we obtain

M—1
Z N} = Z N} =" N(z;). (4.9)
=0
Thus the equality (2.33) is proved from (2.32) by induction and noting (4.9).
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Figure 1: Numerical solutions of the electric field |E(z,t)|? at t = 1 for Example 1
) . ey 1 p 1 o 1.
in the ‘subsonic limit’ regime by TSSP (2.17), (2.18). a). e =5, h =5, k = g;; b).
e=g5, h=1, k=155 C). € =135, h = 55, k = 73555 corresponding to h = O(e)
and k = O(eh) = O(&?).
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Figure 2: Numerical solutions at ¢t = 2 (‘left’) and ¢t = 4 (‘right’) in Example 1. ‘'
exact solution given in (3.6)-(3.7), ‘+ + +’: numerical solution. a). Re(E(z,t)):
real part of E, b). Im(E(x,t)): imaginary part of E, c¢). N.
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Figure 3: Numerical solutions at different times in Example 3 for case I: Electric
field |FE(z,1)|.
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Figure 3 (cont’d): Ion density N(z,t).
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Figure 4: Numerical solutions at different times in Example 3 for case II: Electric
field |E(z,1t)|.
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Figure 4 (cont’d): Ion density N(z,t).
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Figure 5 (cont’d): Ion density N(z,t).
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Figure 6: Numerical solutions in Example 4. Surface-plot at time ¢ = 2.0: a).
Electric field |E(z,y,2.0)[%, b). Ton density N(z,y,2.0).
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Figure 6 (cont’d): Contour-plots at different times. Left: Electric field |E|?; Right:
ion density N.
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Figure 7: Evolution of the wave field |E|? in Example 5 for case 1.
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Figure 8: Numerical solutions in Example 5 for case 2. a). Evolution of the wave
field |E|% b). Evolution of the acoustic field N.
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Figure 9: Numerical solutions in Example 5 for case 3. a). Evolution of the wave
field |E|% b). Evolution of the acoustic field N.
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Figure 10: Numerical solutions in Example 5 for case 4. a). Evolution of the wave
field |E|% b). Evolution of the acoustic field N.
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