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Summary

Gross-Pitaevskii equation (GPE), first derived in early 1960s, is a widely used model in
different subjects, such as quantum mechanics, condensed matter physics, nonlinear optics
etc. Since 1995, GPE has regained considerable research interests due to the experimental
success of Bose-Einstein condensates (BEC), which can be well described by GPE at
ultra-cold temperature.

The purpose of this thesis is to carry out mathematical and numerical studies for GPE.
We focus on the ground states and the dynamics of GPE. The ground state is defined as
the minimizer of the energy functional associated with the corresponding GPE, under the
constraint of total mass (L? norm) being normalized to 1. For the dynamics, the task is
to solve the Cauchy problem for GPE.

This thesis mainly contains three parts. The first part is to investigate the dipolar GPE
modeling degenerate dipolar quantum gas. For ground states, we prove the existence and
uniqueness as well as non-existence. For dynamics, we discuss the well-posedness, possible
finite time blow-up and dimension reduction. Convergence for this dimension reduction
has been established in certain regimes. Efficient and accurate numerical methods are
proposed to compute the ground states and the dynamics. Numerical results show the
efficiency and accuracy of the numerical methods.

The second part is devoted to the coupled GPEs modeling a two component BEC. We
show the existence and uniqueness as well as non-existence and limiting behavior of the

ground states in different parameter regimes. Efficient and accurate numerical methods

viil



Summary viii

are designed to compute the ground states. Examples are shown to confirm the analytical
analysis.

The third part is to understand the convergence of the finite difference discretizations
for GPE. We prove the optimal convergence rates for the conservative Crank-Nicolson finite
difference discretizations (CNFD) and the semi-implicit finite difference discretizations
(SIFD) for rotational GPE, in two and three dimensions. We also consider the nonlinear
Schrodinger equation perturbed by the wave operator, where the small perturbation causes
high oscillation of the solution in time. This high oscillation brings significant difficulties in
proving uniform convergence rates for CNFD and SIFD, independent of the perturbation.
We overcome the difficulties and obtain uniform error bounds for both CNFD and SIFD,

in one, two and three dimensions. Numerical results confirm our theoretical analysis.



Notations

L,= _i(xay - ya:v)

lullp = llull o re)

F(&) = Jpa F(x)e™C dx

time

imaginary unit

spatial variable

d dimensional Euclidean space
complex wave-function

Planck constant

gradient

Laplace operator
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Chapter

Introduction

The Gross-Pitaevskii equation (GPE), also known as the cubic nonlinear Schrédinger
equation (NLSE), has various physics applications, such as quantum mechanics, conden-
sate matter physics, nonlinear optics, water waves, etc. The equation was first developed
to describe identical bosons by Eugene P. Gross [72] and Lev Petrovich Pitaevskii [116]
in 1961, independently. Later, GPE has been found various applications in other areas,
known as the cubic NLSE. Since 1995, the Gross-Pitaevskii theory of boson particles has
regained great interest due to the successful experimental treatment of the dilute boson gas,
which resulted in the remarkable discovery of Bose-Einstein condensate (BEC) [7,36,52].
Now, BEC has become one of the hottest research topics in physics, and motivates nu-

merous mathematical and numerical studies on GPE.

1.1 The Gross-Pitaevskii equation

Many different physical applications lead to the Gross-Pitaevskii equation (GPE). For
example, in BEC experiments, near absolute zero temperature, a large portion of the dilute
atomic gas confined in an external trapping potential occupies the same lowest energy state
and forms condensate. At temperature 7" much lower than the critical temperature T,
using mean field approximation for this dilute many-body system, BEC can be described
by a macroscopic wave function 9 (x,t), governed by GPE in the dimensionless form [16,

18,117]

i0p(x,t) = —%v%p(x,t) + Vay(x)h(x,t) + Bal(x, ) Po(x,t), xeRY d=1,2,3, (1.1



1.1 The Gross-Pitaevskii equation

where t is time, Vy(x) represents the confining trap and [; represents the interaction
between the particles in BEC (positive for repulsive interaction and negative for attractive
interaction). The equation (1.1) can be generalized to arbitrary d dimensions, but we
restrict our interests to d = 1,2, 3 cases, which are the typical dimensions for the physical
problems.

In nonlinear optics, GPE (1.1) describes the propagation of light in a Kerr medium
(cubic nonlinearity) [89,141]. The equation (1.1) also describes deep water wave motion
[139]. Generally speaking, a wide range of nonlinear physical phenomenon can be modeled
by NLSE when dissipation effects can be neglected and dispersion effects become dominant.
As the cubic nonlinearity is one of the most common nonlinear effects in nature, GPE
(cubic NLSE) has shown its great importance.

For GPE (1.1), there are two important conserved quantities for (1.1), i.e. the mass

N(0) = [ [ dx= N(.0), 20, (12

and the energy

E(t) = / [§|w<x,t>|2+vd<x>|w<x,t>|2+§|¢<x,t>|4 dx=B(0), t>0. (13)
Rd

In view of the mass conservation, we assume that the wave function i (x,t) is always
normalized such that N(¢(-,t)) = 1, when GPE is applied to BEC system. In this case,
the normalization means that the total number of particles in BEC is unchanged during
evolution.

In the study of GPE (1.1), it is important to choose proper function space. In this

thesis, we will consider the equation (1.1) in the energy spaces defined as
== {ue mEY | Julz, = ol + [9ul3 + [ ViR ix<oof, (1)

and the potential Vy(x) (d = 1,2, 3) is assumed to be nonnegative without loss of generality.
Noticing the L? normalization condition, it is convenient to introduce the unit sphere of
=4 to be

Sa=Z4( {u € L2(RY)| |[uly = 1} . (1.5)



1.2 Ground state and dynamics

1.2 Ground state and dynamics

Concerning GPE (1.1), there are two basic issues, the ground state and the dynamics.
Mathematically speaking, the dynamics include the time dependent behavior of GPE, such
as the well-posedness of the Cauchy problem, finite time blow-up, stability of traveling
waves, etc. The ground state is usually defined as the solution of the following minimization

problem:

Find (¢4 € Sq), such that

Ey = E(¢g) = min E(¢), (1.6)

where S is a nonconvex set defined as (1.5), or equivalently as

Sum {¢ | [ loboax =1, B(0) < oo}. (L7)

It is easy to show that the ground state ¢, satisfies the following Euler-Lagrange
equation,

b = |59+ at) + Blof | o (18)

under the constraint
/ |p(x)* dx = 1, (1.9)
Rd

with the eigenvalue i being the Lagrange multiplier or chemical potential corresponding

to the constraint (1.9), which can be computed as

wim (o) = [ [31V08 + Vi) o + 810l | ix = B0+ [ toboltax. (110

In fact, the above Euler-Lagrange equation can be obtained from GPE (1.1) by substituting

the ansatz
Y(x,t) = e_i“tgi)(x). (1.11)

Hence, equation (1.8) is also called as the time-independent Gross-Pitaevskii equation.
The eigenfunctions of the nonlinear eigenvalue problem (1.8) under the normalization

(1.9) are usually called as stationary states of GPE (1.1). Among them, the eigenfunction

with minimum energy is the ground state and those whose energy are larger than that of

the ground state are usually called as excited states.



1.3 Existing results

In nonlinear optics, unlike BEC, there is no confining potential in this case, i.e. Vy(x) =

0 or limsup |V4(x)| is bounded, and the eigenfunctions of the nonlinear eigenvalue problem
|x|—o0

(1.8) without constraint (1.9) are usually called as bound states. Ground states in this

case are defined in a different way [100]. In this study, we stick to the above definition in

presence of the confining potential.

1.3 Existing results

Research on GPE has been greatly stimulated by the experimental success of BEC since
1995. For physical interest, there are two basic concerns. One is to justify when the system
can be described by GPE accurately with mathematical proof. The other is to study the
equation itself both analytically and numerically. In both cases, exploring the properties
of the ground states and dynamics have been the most important tasks. Considerable
theoretical analysis and numerical studies have been carried out in literature.

As stated before, in the derivation of GPE from BEC phenomenon, it is taken as
the mean field limit of the quantum many-body system (BEC), which is a result of the
quantum many-body theory. The quantum many-body theory was invented over fifty years
ago to describe the many-body system and BEC becomes the first testing ground for it.
Because of the coherent behavior, quantum behavior in BEC could be observed. Hence, it
is possible to examine the quantum many-body theory in experiments. From the studies
in literature, GPE has been found good agreement with experiments. Consequently, there
have been some rigorous justifications of the equation from the many-body system BEC, in
the mean field regime. For ground state, Lieb et al. [98] proved that the energy functional
(1.3) correctly describes the energy of the many-body system (BEC). For dynamics, Erdds
et al. [64] showed that GPE (1.1) can describe the dynamical behavior of BEC quite well
for a large class of initial data. Near the critical temperature 7., GPE approximation
of the many-body BEC system becomes inaccurate. Other mean field models have been
proposed [53,111].

On the GPE itself, there have been extensive studies in recent years. For dynamics,
along the theoretical front, well-posedness, blow-up and solitons of GPE have been dis-

cussed, see [43,139] and references therein for an overview. Along the numerical front, a
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lot of numerical methods have been applied to GPE. Succi proposed a lattice Boltzmann
method in [137,138] and a particle-like scheme in [45]. Both schemes originated from
the kinetic theory for the gas and the fluid. Different finite difference methods (FDM)
have been adopted in numerical experiments, such as the explicit FDM [60], the leap-frog
FDM [44], and the Crank-Nicolson FDM (CNFD) [3]. In addition, a symplectic spectral
method was given in [146]. Explicit FDM is conditionally stable and has a restrict in its
step size. However, it needs less computational time than Crank-Nicolson FDM scheme,
while CNFD can conserve the mass and energy in the discretized level. Later, Adhikari et
al. [107] proposed a Runge-Kutta spectral method with spectral discretization in space and
Runge-Kutta type integration in time. Then Bao et al. proposed time-splitting spectral
methods [16,18-20]. Each numerical method has its own advantages and disadvantages.
The most advantage of spectral method is the high accuracy with very limited grid points.
For numerical comparisons between different numerical methods for GPE, or in a more
general case, for the nonlinear Schrédinger equation (NLSE), we refer to [25,47,105,144]
and references therein.

For ground states, along the theoretical front, Lieb et al. [98] proved the existence
and uniqueness of the positive ground state in three dimensions. Along the numerical
front, various numerical methods have been proposed to compute the ground state. In
[59], based on the Euler-Lagrange equation (1.8), a Runge-Kutta method was used. The
technique involved a dimension reduction process from 3D to 2D by assuming the radial
symmetry. Dodd [56] gave an analytical expansion of the energy F(¢) using the Hermite
polynomial when the trap V; is harmonic. By minimizing the energy in terms of the
expansion, approximate ground state results were reported in [56]. In [50], Succi et al. used
an imaginary time method to compute the ground states with centered finite-difference
discretization in space and explicit forward discretization in time. Lin et al. designed an
iterative method in [48]. After discretization in space, they transformed the problem to a
minimization problem on finite dimensional vectors. Gauss-Seidel iteration methods were
proposed to solve the corresponding problem. Bao and Tang proposed a finite element
method to compute the ground state by directly minimizing the energy functional in [24].
In [9,12,15], Bao et al. developed a gradient flow with discrete normalization (GFDN)

method to find the ground state, which contained a gradient flow and a projection at
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each step. Different discretizations have been discussed, including the finite difference
discretization or spectral discretization in space, explicit (forward Euler) discretization
or implicit (backward Euler) discretization in time. Among all the existing numerical
methods and algorithms, Runge-Kutta method [59] is the simplest but only valid in 1D or
3D with radial symmetry. The analytical expansion approach [56] is valid for all dimensions
(1D, 2D and 3D) but the approach relies on the spectrum of harmonic potential, which
makes it impossible to extend to the general trapping potential cases. Moreover, the
energy is modified and only an approximate problem is considered in this method. Gauss-
Seidel iteration methods [48] are based on the optimization approach and do not use the
properties of the GPE. The imaginary time method [50] is the same as the GFDN method,
while the imaginary time is preferable in the physics community. The most popular method
for computing the ground state for GPE is the GFDN method. Various numerical results

have demonstrated the efficiency and accuracy of GFDN method.

1.4 The problems

In this thesis, we focus on the following three kinds of problems.

1. Dipolar Gross-Pitaevskii equation. Since 1995, BEC of ultracold atomic and
molecular gases has attracted considerable interests. These trapped quantum gases are
very dilute and most of their properties are governed by the interactions between particles
in the condensate [117]. In the last several years, there has been a quest for realizing a
novel kind of quantum gases with the dipolar interaction, acting between particles having
a permanent magnetic or electric dipole moment. A major breakthrough has been very
recently performed at Stuttgart University, where a BEC of 2Cr atoms has been realized
in experiment and it allows the experimental investigations of the unique properties of
dipolar quantum gases [71]. In addition, recent experimental developments on cooling
and trapping of molecules [63], on photoassociation [152], and on Feshbach resonances
of binary mixtures open much more exciting perspectives towards a degenerate quantum
gas of polar molecules [123]. These success of experiments have spurred great excitement
in the atomic physics community and renewed interests in studying the ground states

69,70,85,122,125,162] and dynamics [93,115,118,164] of dipolar BECs.
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Using the mean field approximation, when BEC system is in a rotational frame, the
dipolar BEC is well described by the dipolar Gross-Pitaevskii equation given in the di-

mensionless form (see Chapter 2 and 3 for details) as

1
i) (x,t) = —§v2 +V(x) = QL. + BlY* + A (Ugip * [¥]*) | ¥, x € R3¢t >0, (1.12)

where x = (z,y,2)7 € R3, Q represents the rotational speed of the laser beam, \ is a
parameter representing the dipole-dipole interaction strength and other parameters are

the same as in (1.1). L, is the z-component of angular momentum defined as
L, = —i(x0y — y0y), (1.13)

and Ugip(x) is given as

3 1-3(x-n)?/|x[> 3 1—3cos?(h)
 4rm |x|?  4rm |x|? ’

Udip(x) x € R3, (1.14)

with the dipolar axis n = (n1,n2,n3)" € R? satisfying |n| = /n? +n3+n3 = 1 and ¢
being the angle between n and x. We will investigate the properties of dipolar GPE (1.12)
both analytically and numerically.

2. Coupled Gross-Pitaevskii equations. Early experiments of BEC [7,36,52] have
been using the magnetic field to trap the quantum gas and the spin degrees of freedom of
the particles were frozen. Later, optical traps were used to replace the magnetic trap and
the spin degree of freedom is then activated. This leads to the multiple component BEC.
BEC with multiple species have been realized in experiments [74, 75, 100, 101, 108, 126,
133] and some interesting phenomenon absent in single-component BEC were observed in
experiments and studied in theory [9,21,26,38,57,83,99]. The simplest multi-component
BEC is the binary mixture, which can be used as a model for producing coherent atomic
beams (also called as atomic laser) [127,128]. The first experiment of two-component
BEC was performed in JILA with |F = 2,m; = 2) and |1, —1) spin states of 5"Rb [108].
Since then, extensive experimental and theoretical studies of two-component BEC have
been carried out in the last several years [10, 40,80, 102,151,167]|. In the thesis, we will

consider the coupled GPEs modeling a two-component BEC in optical resonators, given
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in the dimensionless form [75,83,117,153,167]
Bptn = =5V 4 VG0 +6 4+ (Bulial + Pralval)| 1 + (-4 2P(0)
Bptr = [ <5V 4 VO + (Buliaf + lol)| 2+ (ot aPO)n, (119
i P(t) = /Rd Vo (x,t)1h1(x,t) dx + vP(t),  x€R™

Here, U(x,t) := (¢1(x,t),%2(x,t))T is the complex-valued macroscopic wave function
vector, |P(t)|? corresponds to the total number of photons in the cavity at time ¢, V(x)
is the real-valued external trapping potential, v and  describe the effective detuning
strength and the coupling strength of the ring cavity respectively, A is the effective Rabi
frequency to realize the internal atomic Josephson junction (JJ) by a Raman transition,
0 is the Raman transition constant, and 8; = fj; = %0&” (,1 = 1,2) are interaction
constants with NV being the total number of particle in the two-component BEC, a¢ being
the dimensionless spatial unit and aj; = aj; (4,1 = 1,2) being the s-wave scattering lengths
between the j-th and [-th component (positive for repulsive interaction and negative for
attractive interaction).

Other multiple BEC such as spin-F' BEC (F integer) can be modeled similarly using

the mean field approximation. Generally speaking, a spin-F' BEC has 2F + 1 spin states
and thus can be described by 2F + 1 coupled GPEs. Here, we focus on the simplest two
coupled GPEs.
3. Nonlinear Schrédinger equation with wave operator. GPE is a special NLSE
with cubic nonlinearity and NLSE appears in a wide range of physical applications. For
example, NLSE can be taken as the singular limit of the Klein-Gordon equation or the
Zakharov system. Before taking the limits, there is a nonlinear Schrédinger equation
with wave operator (NLSW) in some applications, such as the nonrelativistic limit of the
Klein-Gordon equation [104,129,150], the Langmuir wave envelope approximation [31,51]
in plasma, and the modulated planar pulse approximation of the sine-Gordon equation for
light bullets [14,159]. The NLSW in the dimensionless form reads as

i0us (x,t) — e20pus(x,t) + V2uf (x, 1) + f([u]*)uf(x,t) =0, x€R? t>0, (1.16)

WE(x,0) = up(x),  Oe(x,0) = us(x), x € RY,

where u® := u®(x,1) is a complex-valued function, 0 < £ < 1 is a dimensionless parameter,
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f :]0,400) — R is a real-valued function. Formally, when ¢ — 07, NLSW will converge
to the standard NLSE [31,129]. We will investigate the impact of the parameter € in the

convergence rates for the finite difference discretizations of NLSW (1.16).

1.5 Purpose of study and structure of thesis

This work is devoted to the mathematical analysis and numerical investigation for GPE.
We focus on the ground states and the dynamics.

The thesis is organized as follows. In Chapter 2, 3 and 4, we consider the dipolar
GPE (1.12) for modeling degenerate dipolar quantum gas, which involves a nonlocal term
with a highly singular kernel. This highly singular kernel brings significant difficulties in
analysis and simulation of the dipolar GPE. We reformulate the dipolar GPE into a Gross-
Pitaevskii-Poisson system. Based on this new formulation, analytical results on ground
states and dynamics are presented. Accurate and efficient numerical methods are proposed
to compute the ground states and the dynamics. Then, we derive the lower dimensional
equations (one and two dimensions) for the three dimensional GPE (1.12) with anisotropic
trapping potential. Consequently, ground states and dynamics for the lower dimensional
equations are analyzed and numerical methods are proposed to compute the ground states.
On the other hand, rigorous convergence rates between the three dimensional GPE and
lower dimensional equations are established in certain parameter regimes. Lastly, GPE
(1.12) with a rotational term is considered.

In Chapter 5, we consider a system of two coupled GPEs modeling a two-component
BEC. We prove the existence and uniqueness, as well as limiting behavior of the ground
states in different parameter regimes. Furthermore, efficient and accurate numerical meth-
ods are designed for finding the ground states.

Chapter 6 is devoted to the numerical analysis for the finite difference discretizations
applied to the rotational GPE ((1.12) with A = 0), in two and three dimensions. The
optimal convergence rates are obtained for conservative Crank-Nicolson finite difference
(CNFD) method and semi-implicit finite difference (SIFD) method for discretizing GPE
(1.12) without the nonlocal term, at the order O(h? + 72) with time step 7 and mesh size

h, in both discrete [? norm and discrete semi-H' norm. Moreover, we make numerical
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10

comparison between CNFD and SIFD and conclude that SIFD is preferable in practical
computation.

In Chapter 7, we investigate the uniform convergence rates (resp. to ¢) for finite
difference methods applied to NLSW (1.16). The solution of NLSW (1.16) oscillates in time
with O(e?)-wavelength at O(g?) and O(e*) amplitudes for ill-prepared and well-prepared
initial data, respectively. This high oscillation in time brings significant difficulties in
establishing error estimates uniformly in e of the standard finite difference methods for
NLSW, such as CNFD and SIFD. Using new technical tools, we obtain error bounds
uniformly in €, at the order of O(h? 4+ 7%/3) and O(h? + 1) with time step 7 and mesh size
h for ill-prepared and well-prepared initial data, respectively, for both CNFD and SIFD
in the {>norm and discrete semi-H' norm. In addition, our error bounds are valid for
general nonlinearity f(-) (1.16) in one, two and three dimensions.

In Chapter 8, we draw some conclusion and discuss some future work.



Chapter

Gross-Pitaevskii equation for degenerate

dipolar quantum gas

In this chapter, we consider GPE modeling degenerate dipolar quantum gas. Ground
states and dynamics are analyzed rigorously. An efficient and accurate backward Euler
sine pseudospectral method is designed to compute the ground states and a time-splitting

sine pseudospectral method is proposed for dynamics.

2.1 Introduction

At temperature 7" much smaller than the critical temperature 7., a dipolar BEC is well
described by the macroscopic wave function ¢ = 1(x,t) whose evolution is governed by

the three-dimensional (3D) Gross-Pitaevskii equation (GPE) [125,162]
, _ | h_2 2 2 . 2 3
RO (6, 8) = | 5=V + V) + Ul + (Vi [P | 9, x € RS, £>0,  (2)

where x = (z,y, 2)7 € R3 is the Cartesian coordinates, m is the mass of a dipolar particle
and V(x) is an external trapping potential. When a harmonic trap potential is considered,

V(x) =

m
E(WQ‘TQ + w§y2 + w?2?) (2.2)

xT

with w;, w, and w, being the trap frequencies in z-, y- and z-directions, respectively.
Up = %%'S describes local (or short-range) interaction between dipoles in the condensate

with as the s-wave scattering length (positive for repulsive interaction and negative for

11
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attractive interaction). The long-range dipolar interaction potential between two dipoles

is given by

Holtgip 1 —3(x-n)2/|x[2  HolGp, 1 — 3cos?(6)

= eR? 2.3
A |x|? A |x|3 ’ x ’ (23)

lep ( )

where g is the vacaum magnetic permeability, juq;p is permanent magnetic dipole moment
(e.g. paip = 6y, for 52C, with u,, being the Bohr magneton), n = (n1,na,n3)T € R? is the
dipole axis (or dipole moment) which is a given unit vector, i.e. [n| = \/n} +n3 +nj = 1,
and 0 is the angle between the dipole axis n and the vector x. The wave function is

normalized according to
ol = [ | b O dx = . (2.4)

where N is the total number of dipolar particles in the dipolar BEC.
By introducing the dimensionless variables, ¢t — w—to with wg = min{w,,wy,w: }, x —
apx with ag = mwO P — 3 /2 , we obtain the dimensionless GPE in 3D from (2.1)

s [18,117,162,163):

i@¢@¢%=L_V2+V (%) + Bl + A (Uaip * [WP) &, x€R’, >0, (25)

mN pop? i . . .
where 5 = hﬁé{;@, = 47rggN, A= gt Vix) = %(’yﬁxQ—i—fyng—i—fyzzQ) is the dimensionless

harmonic trapping potential with v, = ‘:}—3, Yy = i—g and v, = :’—g, and the dimensionless

long-range dipolar interaction potential Ugip(x) is given as

3 1-3(x-n)?/|x[? 3 1-—3cos?(0)
4 |x|3 T 4r |x|3

Udip(x) = , x € R?, (2.6)

In fact, the above nondimensionlization is obtained by adopting a unit system where the
units for length, time and energy are given by ag, 1/wg and hwy, respectively. As stated
in section 1.1, there are two important invariants of (2.5), the mass (or normalization) of

the wave function

N0 = 060 = [ W tP dx= [ w0 de=1, 120, (27

and the energy per particle

BC0) = [ [GIT0R 4 VOOl + FIult+ 5 Wan x 0P 10| ax
= B@(,0), t>0. (2.8)
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Analogous to the case of GPE (1.1), to find the stationary states including ground and

excited states of a dipolar BEC, we take the ansatz
D(x,t) = e HMe(x), x €R3 t>0, (2.9)

where u € R is the chemical potential and ¢ := ¢(x) is a time-independent function.
Plugging (2.9) into (2.5), we get the time-independent GPE (or a nonlinear eigenvalue
problem)

Ho0) = [ <524 VG0 + SIOP + Uiy < I0P) | 60, xR (210

under the constraint
ol = [ lot)? dx =1 (2.11)

The ground state of a dipolar BEC is usually defined as the minimizer of the following
nonconvex minimization problem for energy E(-) in (2.8) :
Find ¢4 € S3 and p9 € R such that
Eg = E(¢g) = Hlil’l E(¢)a :U’g = H(¢g)a (212)
$ES3

where the nonconvex set S3 is defined in (1.5) and the chemical potential (or eigenvalue

of (2.10)) is defined as

o) = [ 51V + VEI6l + plol! + A (Ui +107) o i

1

= B0)+5 [ 19161+ A Uan * [9F) [6F] dx. (213)

In fact, the nonlinear eigenvalue problem (2.10) under the constraint (2.11) can be viewed
as the Euler-Lagrangian equation of the nonconvex minimization problem (2.12). Any
eigenfunction of the nonlinear eigenvalue problem (2.10) under the constraint (2.11) whose
energy is larger than that of the ground state is usually called as an excited state in the
physics literatures.

The theoretical study of dipolar BECs including ground states and dynamics as well
as quantized vortices has been carried out in recent years based on the GPE (2.1). For the
study in physics, we refer to [1,58,66,68,92,92,109,112,119,157,158,163,168] and references
therein. For the mathematical studies, existence and uniqueness as well as the possible

blow-up of solutions were studied in [42], and existence of solitary waves was proved
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in [8]. In most of the numerical methods used in the literatures for theoretically and/or
numerically studying the ground states and dynamics of dipolar BECs, the way to deal with
the convolution in (2.5) is usually to use the Fourier transform [33,69,93,122,147,160,165].
However, due to the high singularity in the dipolar interaction potential (2.6), there are
two drawbacks in these numerical methods: (i) the Fourier transforms of the dipolar
interaction potential (2.6) and the density function [1|? are usually carried out in the
continuous level on the whole space R? (see (2.18) for details) and in the discrete level
on a bounded computational domain U, respectively, and due to this mismatch, there
is a locking phenomena in practical computation as observed in [122]; (ii) the second
term in the Fourier transform of the dipolar interaction potential is %—type for 0-mode, i.e
when £ = 0 (see (2.18) for details), and it is artificially omitted when & = 0 in practical
computation [33,70,113,122,160, 163,164] thus this may cause some numerical problems
too. The main aim of this chapter is to propose new numerical methods for computing
ground states and dynamics of dipolar BECs which can avoid the above two drawbacks
and thus they are more accurate than those currently used in the literatures. The key
step is to decouple the dipolar interaction potential into a short-range and a long-range
interaction (see (2.17) for details) and thus we can reformulate the GPE (2.5) into a Gross-
Pitaevskii-Poisson type system. In addition, based on the new mathematical formulation,
we can prove existence and uniqueness as well as nonexistence of the ground states and
discuss mathematically the dynamical properties of dipolar BECs in different parameter

regimes.

2.2 Analytical results for ground states and dynamics

Let r = |x| = v/22 + y% + 22 and denote
On =10 -V =n10; + nedy + n30., Onn = On(On)- (2.14)

Using the equality (see [115] and a mathematical proof in Appendix A)

with 0(x) being the Dirac distribution function and introducing a new function

— L * . 2 1 ; / 2 / 3
oct) = (g ) #0COP = = [ b dx, xeR 20, (210

T Ar 3|x—x
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we obtain
Udip * [#(-, )]* = =[0(x,1)]* = 30nn (0(x,1)),  x€R? t>0. (2.17)

In fact, the above equality decouples the dipolar interaction potential into a short-range
and a long-range interaction which correspond to the first and second terms in the right
hand side of (2.17), respectively. In fact, from (2.14)-(2.17), it is straightforward to get

the Fourier transform of Ugip(x) as

Uaip) (€) = —1+3(T5—|'5)2,

Plugging (2.17) into (2.5) and noticing (2.16), we can reformulate the GPE (2.5) into a

¢ eR3. (2.18)

Gross-Pitaevskii-Poisson type system (GPPS)

iatw(xv t) = —%V2 + V(X) + (5 - )‘)‘w(xv t)’2 - 3)\61111(,0()(7 t) w(xv t)v (2'19)

Vip(x,t) = —[Y(x,1))?, lim o(x,t) =0 x€R* t>0. (2.20)

x| —o0

Note that the far-field condition in (2.20) makes the Poisson equation uniquely solvable.
Using (2.20) and integration by parts, we can reformulate the energy functional E(-) in

(2.8) as
A
Bw) = [ [3I90R +VeowE+ 50— vl + Doyl ax, 2

where ¢ is defined through (2.20). This immediately shows that the decoupled short-
range and long-range interactions of the dipolar interaction potential are attractive and
repulsive, respectively, when A > 0; and are repulsive and attractive, respectively, when

A < 0. Similarly, the nonlinear eigenvalue problem (2.10) can be reformulated as

PO = |5 V2 + V) + (5= ) |6~ 3N0me()| 600, (2:22)
Vip(x) = —|o(x)|?, xeR3, |xl‘iinOO e(x) =0. (2.23)

2.2.1 Existence and uniqueness for ground states

Under the new formulation for the energy functional E(-) in (2.21), we have

Lemma 2.1 For the energy E(-) in (2.21), we have
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(i) For any ¢ € S3, denote p(x) = |p(x)|? for x € R3, then we have

E(¢) > E(l¢]) = E(Vp), Vo€ Ss, (2.24)

so the minimizer ¢, of (2.12) is of the form €% |¢y| for some constant 0y € R.
(ii) When 3> 0 and —%ﬂ < A< B, the energy E(\/p) is strictly convex in p.
Proof: For any ¢ € S3, denote p = |¢|?> and consider the Poisson equation
Vip(x) = —|¢(x)[* == —p(x), x€R’ Jim o(x) =0. (2:25)
Noticing (2.14) with |n| = 1, we have the estimate
102V ell2 < ID*0ll2 = [[V20ll2 = llpll2 = I¢ll},  with D*=VV. (2.26)
(i) Write ¢(x) = €™ |p(x)|, noticing (2.21) with ¥ = ¢ and (2.25), we get
1 2, 1 9 2 2 1 4, 3A 2
B6) = [ |51VI61P + SI6PIVOGR + VIoP + (8~ ol + o |ouVel | dx
[1

A
1+ VOl + 35 - Niol* + 20uTef] ax

—E(/p), VéeSs, (2.27)

E(|9]

and the equality holds iff Vf(x) = 0 for x € R3, which means 6(x) = 6 is a constant.
(ii) From (2.21) with ¢ = ¢ and noticing (2.25), we can split the energy E (,/p) into

two parts, i.e.

E(/B) = Er(VP) + Ex(VP), (225)
where
BvvA) = [ [519VER + Vo] ax (2.29)
B = [ [508-N + 0.V ax. (2:30)

As shown in [97], Ey (y/p) is convex (strictly) in p. Thus we only need to prove Ej (,/p)
is convex too. In order to do so, consider ,/p; € S3, \/p2 € S3, and let 1 and @9 be the

solutions of the Poisson equation (2.25) with p = p; and p = pa, respectively. For any

a € [0,1], we have \/ap; + (1 — a)p2 € S3, and

By (yp1) + (1 - a)Ba(yp2) — B (Vaps + (1 - a)ps)

= alt=a) [ 506N+ FloaVlen - | ix, 231)



2.2 Analytical results for ground states and dynamics

17

which immediately implies that Es(,/p) is convex if 5> 0and 0 < A < 3. If § > 0 and
—1B < X <0, noticing that aepy + (1 — a)ip2 is the solution of the Poisson equation (2.25)
with p = api + (1 —a)pz, combining (2.26) with ¢ = 1 — @2 and (2.31), we obtain E>(,/p)

is convex again. Combining all the results above together, the conclusion follows. 0

Now, we are able to prove the existence and uniqueness as well as nonexistence results

for the ground state of a dipolar BEC in different parameter regimes.

Theorem 2.1 Assume V(x) >0 for x € R® and lim V(x) = oo (i.e., confining poten-
tial), then we have: .

(i) If 3 > 0 and —%5 < X < B, there exists a ground state ¢4 € S3, and the positive
ground state |¢g| is unique. Moreover, ¢pg = ei90|¢g| for some constant 6y € R.

(i) If 6 < 0, or B3>0 and X < =18 or X\ > (3, there exists no ground state, i.e.,

2
inf E(¢) = —o0.
nf (¢) = —o0

Proof: (i) Assume 3 > 0 and —%ﬁ < A < 3, we first show E(¢) is nonnegative in Ss, i.e.
1 1 3\
B0) = [ [5IV6F + Velor + 56 - Wiolt + Tionvel | ax 0. voe 50 232)

In fact, when 5 > 0 and 0 < A < (3, noticing (2.21) with ¢ = ¢, it is obvious that (2.32)
is valid. When 3 > 0 and —13 < A < 0, combining (2.21) with ¢ = ¢, (2.25) and (2.26),

we obtain (2.32) again as

E(¢)

v

A
[, 5199 + veaiet + 56 - vt + S ot ax

- / [%’W PV + 5 (5 +2)) M dx > 0. (2.33)

Now, let {¢"}22, C S3 be a minimizing sequence of the minimization problem (2.12).

Then there exists a constant C such that
IVorl<C. ferli=c [ Ve Pax<c, nzo. (230
]RS

Therefore ¢" belongs to a weakly compact set in L*, H' = {¢ | ||¢|l2 + [|[V¢|2 < oo},
and L} = {¢ | [ps V(x)|¢(x)|* dx < oo} with a weighted L*-norm given by |[¢[ly =
[fgs |p(x)|>V (x)dx]'/2. Thus, there exists a ¢> € H' L% (N L* and a subsequence (which

we denote as the original sequence for simplicity), such that

o — o>, in L*NL*N LY, V¢" — V¢™, in L2 (2.35)
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Also, we can suppose that ¢" is nonnegative, since we can replace them with |¢"| , which
also minimize the functional E. Similar as in [97], we can obtain |[¢*°||2 = 1 due to
the confining property of the potential V(x). So, ¢ € S3. Moreover, the L?-norm
convergence of ¢" and weak convergence in (2.35) would imply the strong convergence

¢ — ¢> € L?. Thus, employing Hélder inequality and Sobolev inequality, we obtain

1(6™)2 = (6™)2|l2 < Culle™ — 6132 (1™ 18> + 16°°116%)
< (Vg™ 13 + IIVe=Iy ) 16" — ¢™lla = 0, n — oo, (2.36)

which shows p" = (¢")* — p> = (¢*>°)? € L2 Since E»(y/p) in (2.30) is convex and
lower semi-continuous in p, thus Ea(¢™) < nh_)n;o Es(¢™). For Ej in (2.29), Eq(¢>°) <
nlLrgo E1(¢") because of the lower semi-continuity of the H'- and L?-norm. Combining
the results together, we know E(¢>) < nhﬂrgo E(¢™), which proves that ¢> is indeed a
minimizer of the minimization problem (2.12). The uniqueness follows from the strict
convexity of E(,/p) as shown in Lemma 2.1.

(ii) Assume 5 < 0, or > 0 and A\ < —%5 or A > 3. Without loss of generality, we

assume n = (0,0,1)7 and choose the function

1 1 2 492 22 3
= . — - R 2.37
Gey 60 (x) (27T€1)1/2 (27r€2)1/4 exp ( 21 exp 2€2> ) X € ) ( )

with €1 and &5 two small positive parameters (in fact, for general n € R3 satisfies |n| = 1,

we can always choose 0 # n; € R3 and 0 # ny € R? such that {nj, ny, n} forms an
orthonormal basis of R? and do the change of variables x = (x,%,2)" toy = (x-n, x -
ny, x-n)’ on the right hand side of (2.21), the following computation is still valid). Taking

the standard Fourier transform at both sides of the Poisson equation

_v2¢61,€2 (X) - ’¢61,62 (X)‘Q = Per,e2 (X)v X € RB? ‘x1|iinoo Pei,e2 (X) =0, (2'38)
we get
€1%Per 0 (6) = Per (), EER (2.39)

Using the Plancherel formula and changing of variables, we obtain

2 1 —_— 2 1 @ — 2
||8nv30€1,€2”2 - (27T)3H(n'£)9051,52(5)”2 - (27T)3 /]R3 ’5‘2 p51,€2(§)| dé-
1 & [Pra())”

- d¢, e1,62 > 0. 2.40
(2m)3e1y/E2 Jrs (|€1|2+|§2|2)'%+|53|2 £ 1,€2 ( )
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By the dominated convergence theorem, we get

0) 52/61 — +OO’
2 —_—
10V er a3 e{ OP e 1 ol a0, A
R3 (277)351 /9 = llPere2ll2 = e1,e2ll4y  €2/€1 .

When fixed e1,/€2, the last integral in (2.40) is continuous in e3/e1 > 0. Thus, for any
€ (0,1), by adjusting ez/e1 = Cy > 0, we could have |[0nVpe o3 = allde, oI5
Substituting (2.37) into (2.29) and (2.30) with \/p = ¢., ., under fixed 3/¢1 > 0, we get

¢, C
Bildee) = [ [90aal +VElaal] ax= 2+ Z+00), @42
1 4. B=A+3ar Cs
Edeie) = 5 [ (8= At 300)lon oftdx = T2 R0 B

with some constants C7, Cy, C'3 > 0 independent of €1 and 5. Thus, if 8 < 0, choose

a=1/3;if >0 and A < —%ﬂ, choosel/?)—% <a<l;and if 8> 0and XA > G,

choose 0 < a < % (1 - g), as 1, e2 — 07, we can get inf F(¢) = lm Fi(deye,) +
$ES3 £1,62—071

E5(¢e,e,) = —00, which implies that there exists no ground state of the minimization

problem (2.12). 0

By splitting the total energy E(-) in (2.21) into kinetic, potential, interaction and

dipolar energies, i.e.

E(¢) = Ekin(¢) + Epot(¢) + Eint(¢) + Edip(¢)a (244)
where
Pin(@) = 5 [ IVoGPax, Bs(0) = [ VEIoGPdx, Bus() = 5 [ lo)1'ex,
Pan(@) = 5 [ Wan #10P) [600Pdx = 3 [ 10607 [~10(x)1 = 30mmg] dx (249
= 5 [, 1660l + 3(7%0)@nme)] dx = 5 [ [~1o601 +310a7 1] ax,

with ¢ defined in (2.23), we have the following Viral identity:

Proposition 2.1 Suppose ¢. is a stationary state of a dipolar BEC, i.e. an eigenfunction

of the nonlinear eigenvalue problem (2.10) under the constraint (2.11), then we have

2Ekin(¢e) - 2Epot(¢e) + 3Eint(¢e) + 3Edip(¢e) = 0. (2'46)
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Proof: Follow the analogous proof for a BEC without dipolar interaction [117] and we

omit the details here for brevity. 0

2.2.2 Analytical results for dynamics

The well-posedness of the Cauchy problem of (2.1) was discussed in [42] by analyzing the
convolution kernel Ugip(x) with detailed Fourier transform. Under the new formulation
(2.19)-(2.20), here we present a simpler proof for the well-posedness and show finite time
blow-up for the Cauchy problem of a dipolar BEC in different parameter regimes. We

consider the energy space =3 defined in (1.4).

Theorem 2.2 (Well-posedness) Suppose the real-valued trap potential V(x) € C*(R?)
such that V(x) > 0 for x € R3 and DV (x) € L*®(R3) for all « € N3 with |a| > 2. For
any initial data P(x,t = 0) = YPo(x) € Z3, there exists Tmax € (0,+00] such that the
problem (2.19)-(2.20) has a unique maximal solution ¥ € C ([0, Tmaz),Z3). It is mazimal
in the sense that if Tmax < 00, then || (-, t)||z, — 0o whent — Tax. Moreover, the mass
N@(-,t)) and energy E(¢(-,t)) defined in (2.7) and (2.8), respectively, are conserved for
t € [0, Tmax). Specifically, if 3 > 0 and —38 < X\ < 3, the solution to (2.19)-(2.20) is

global in time, i.e., Tmay = 0.

Proof: For any ¢ € =3, let ¢ be the solution of the Poisson equation (2.25), denote
p = |¢? and define

5G(¢, ¢
G(6.8) = Gl = 3 [ 1609Pompax, 9(6) = CLD g (247
R3 ¢
Noticing (2.26), it is easy to show that G(¢) € C1(Z3,R), g(¢) € C(Z3, LP) for some

p € (6/5,2], and
lg(u) = g(v)l[Lr < C(lJullzs + [[vllzs)llu = vllzr, for some r € [2,6), Vu,v € Z3. (2.48)

Applying the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [43,139] for the well-posedness

of the nonlinear Schrodinger equation, we can obtain the results immediately. 0
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Theorem 2.3 (Finite time blow-up) If 3 < 0, or f > 0 and A\ < —%5 or A > [3,
and assume V(x) satisfies 3V (x) + x - VV(x) > 0 for x € R3. For any initial data
P(x,t = 0) = o(x) € E3 to the problem (2.19)-(2.20), there exists finite time blow-up,
i.e., Tmax < 00, if one of the following holds:

(1) E(tho) < 0;

(i) E(¢o) = 0 and Tm ( fps 1ho(x) (x - Vipo(x)) dx) < 0;

(i) E(o) > 0 and T (s Go(x) (x- Vaho(x)) dx) < —/3E o) [xvoll 2

Proof: Define the variance

oy (t) = ov(¥(, / [x* [ (x,1)* dx = 0,(t) + 8, () +0:(t), >0, (249
where

7olt) = aald(0) = [ e OPdx o=y (2.50)

For a« = x, or y or z, differentiating (2.50) with respect to ¢, noticing (2.19) and (2.20),

integrating by parts, we get

%Ja(t) = —i/ [anp(x,£)0atb(x,t) — b (x, )0t (x,1)] dx, t>0. (2.51)
R3
Similarly, we have
d2
dt?

Noticing (2.20) and

aa(t):/ [2|00]* + (B = N)|Y|* + 6A[Y 200 0nnp — 20?0,V (x)] dx.  (2.52)

— | V%p(x- V) d / 10aVo|? dx,

R3

summing (2.52) for a = x, y and z, using (2.49) and (2.8), we get

2
gaov) = 2 [ (190 505 - il + SN0V - uPx V) dx
_ —/ \Vzp(x,t)]2—2/ b(x, )% (3V (%) + x - VV(x)) dx
R3 R3
< 6E()=6E(Wy), >0 (2.53)
Thus,

ov(t) < 3E(o)t® + o1 (0)t + oy (0), >0,

and the conclusion follows in the same manner as those in [43,139] for the standard non-

linear Schrodinger equation. 0
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Figure 2.1: Surface plots of |¢4(z, 0, 2)|* (left column) and isosurface plots of |¢g4(z,y, 2)| =
0.01 (right column) for the ground state of a dipolar BEC with 5 = 401.432 and A = 0.1603
for harmonic potential (top row), double-well potential (middle row) and optical lattice
potential (bottom row).
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Figure 2.2: Isosurface plots of the ground state |¢4(x)| = 0.08 of a dipolar BEC with the
harmonic potential V(x) = § (22 4+ y? + 2?) and 8 = 207.16 for different values of %: (a)
5=-05; (b) 3 =0; (c) 5 =025 (d) 3=0.5; () 3=0.75 (f) 5 =1

Based on the new mathematical formulation for the energy in (2.21), we will present

an efficient and accurate backward Euler sine pseudospectral method for computing the
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Figure 2.3: Time evolution of different quantities and isosurface plots of the density func-

tion p(x,t) = |[(x,t)]? = 0.01 at different times for a dipolar BEC when the dipolar
direction is suddenly changed from n = (0,0,1)7 to (1,0,0)7 at time ¢ = 0.

ground states of a dipolar BEC.
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Figure 2.4: Time evolution of different quantities and isosurface plots of the density func-
tion p(x,t) := |¢(x,t)[? = 0.01 at different times for a dipolar BEC when the trap potential
is suddenly changed from from §(z? +y? + 2522) to 3 (2% + y? + 222?) at time ¢ = 0.

In practice, the whole space problem is usually truncated into a bounded computa-

tional domain U = [a,b] X [c,d] x [e, f] with homogeneous Dirichlet boundary condition.
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Various numerical methods have been proposed in the literatures for computing the ground

states of BEC (see [10,15, 18,39, 48,50, 126] and references therein). One of the popular

and efficient techniques for dealing with the constraint (2.11) is through the following

construction [10,12,15]: Choose a time step At > 0 and set ¢, = n At for n = 0,1,...

Applying the steepest decent method to the energy functional E(¢) in (2.21) without the

constraint (2.11), and then projecting the solution back to the unit sphere S3 at the end

of each time interval [t,,t,+1] in order to satisfy the constraint (2.11). This procedure

leads to the fact that function ¢(x,t) is the solution of the following gradient flow with

discrete normalization:

0u6(x,) = | 597 = V) — (8= Mg I + 3Adancoloc, 1) | 90,1,
V3p(x,t) = —|d(x,1)[%, x €U, t,<t<ty,
P(x,t,41)

¢(X7 tn-l—l) = ¢(X7 t;—t ) = T, = X € U7 n Z 07
g )2

¢(X’t)|x68U = SO(X’t)|x68U = Oa t 2 0;

$(x,0) = ¢o(x), with  [[¢oll2 = 1;

where ¢(x, ) = limi d(x,1).
t—

Let M, K and L be even positive integers and define the index sets

Turr={G, k0 | j=1,2...,.M =1, k=1,2,...,K—1,1=1,2,... L —

Tk =16,k |i=0,1,...,M, k=0,1,...,K, 1=0,1,...,L}.

Choose the spatial mesh sizes as h, = 1’77“, hy = % and h, = fze and define
zj=a+jhy, yr = c+k hy, z=e+1h,, G, k,1) € T rer-

Denote the space
Yurr = span{®;u(x), (4, k1) € Tukr}

with

Y

(2.54)
(2.55)
(2.56)
(2.57)

(2.58)

1},

®jr1(x) = sin (Mf(x — a)) sin (uk(y — c)) sin (uj(z —e)), xeU, (4, k, 1) € Tarkr,

] wk wl

W=yt Mg M=y kD ETux




2.3 A numerical method for computing ground states

and Pyir Y ={p € C(U) | ¢(x)|xeou = 0} — Yy k1 be the standard project operator

[131], i
M—-1K-1L
(PMKLU = Z Z Upgs pqs(x), x e U, Yv €Y,
p=1 q=1 s=
with

e = o dfc) — /U (%) Boos(x) dx,  (,a,8) € Taricr. (2.59)

Then a backward Euler sine spectral discretization for (2.54)-(2.58) reads:
Find ¢n+1(X) € Yvukr (i.e. ¢+(X) € YMKL) and gOn(X) € Yk, such that

) 00 _ L2t ()~ Puase [V ) + (8~ N6 G — 3 ()] 6° ()}

_PT(x)

Vi) = ~Purcr (18700, 6" = i

xelU, n>0;

where ¢°(x) = Pykr (¢0(x)) is given.

The above discretization can be solved in phase space and it is not suitable in prac-
tice due to the difficulty of computing the integrals in (2.59). We now present an effi-
cient implementation by choosing ¢°(x) as the interpolation of ¢o(x) on the grid points
{(@j,y6,21), (3. k,1) € Ty} e °(xj,ym 21) = do(xj, yn, z1) for (j,k,1) € Tyyxy, and
approximating the integrals in (2.59) by a quadrature rule on the grid points. Let qﬁ?kl
and ¢, be the approximations of &(xj, Yk, 21, tn) and o(xj, Y, 21, tn), respectively, which

are the solution of (2.54)-(2.58); denote plfy, = |gb]kl|2 and choose qb]k.l ¢o(xj, Yk, z1) for

4 k1) €TV .. For n=0,1,..., a backward Euler sine pseudospectral discretization for
MKL
(2.54)-(2.58) reads:
(b;rkl _ }Lkl — 1 V2pt V4 )\ A (D5 " +
At D) (Ve )‘jkl _{ (@, Yk, 21) + (B — “Z)]kl‘ =3\ (Opn¥ )|jkl:| Gjps (2.60)
o
- (ngn)bkl = |¢;'L,k‘,l|2 = p;lk‘lﬂ Qb;L/:?l = H(biH ? (]) k,l) € TIV[KL? (26]‘)
81:?1 = %11 = ‘f’?oJEl = ‘f’;z;gzl = ‘l%jol = éf’?/:rLl =0, (J, k,1) € TISIKLa (2.62)
Yokt = Pkt = Pjor = Pix1 = Piko = Pk = 0, (G, k1) € Tyygers (2.63)

where V2 and 9, are sine pseudospectral approximations of V2 and Onn, respectively,
defined as

(Vie") ‘jkl - %1 Ki:l Lil (6" + )” + (13)°] (&T)pqs s <%> s (lm?ﬂ) " <Z%T> 7

Oan®") | : (2.64)

(x5,9k,21)
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for (j,k,1) € Tarxr, with (/&L/)pqs ((p,q,s) € Tark 1) the discrete sine transform coefficients

of the vector ¢" as

M-1K—-1L-1 kqr lsm
(¢' s = MKL Z Z Z Tl sm( ) sin (7) sin (T) . (py¢,8) € Turr, (2.65)

j=1 k=1 I=1

and the discrete A-norm is defined as

M—-1N-1L-1

[ H% = hghyh [ k;l|2
J
1 1=1

2

i

Jj=1

Similar as those in [19], the linear system (2.60)-(2.63) can be iteratively solved in phase

space very efficiently via discrete sine transform and we omitted the details here for brevity.

2.4 A time-splitting pseudospectral method for dynamics

Similarly, based on the new Gross-Pitaevskii-Poisson type system (2.19)-(2.20), we will
present an efficient and accurate time-splitting sine pseudospectral (TSSP) method for
computing the dynamics of a dipolar BEC.

Again, in practice, the whole space problem is truncated into a bounded computational
domain U = [a,b] X [¢,d] X [e, f] with homogeneous Dirichlet boundary condition. From
time ¢ = t, to time ¢t = t,11, the Gross-Pitaevskii-Poisson type system (2.19)-(2.20) is

solved in two steps. One solves first
1
10 (x,t) = —§V2w(x,t), x €U, V(%) | xeor =0, th <t <tni1, (2.66)

for the time step of length At, followed by solving

i0p)(x,t) = [V(X) + (8- )\)]w(x,t)\Q — 3)\8nn<p(x,t)] P(x,1), (2.67)
V23p(x,t) = —|[U(x,1) %, xeU, ty <t < tnir; (2.68)
(P(X7t)’X€8U =0, w(xvt)’xeaU =0, tn <t < tny1; (269)

for the same time step. Equation (2.66) will be discretized in space by sine pseudospectral
method and integrated in time exactly [23]. For t € [t,,t,+1], the equations (2.67)-(2.69)
leave [¢| and ¢ invariant in ¢ [18,23] and therefore they collapse to

i0p(x,t) = [V(x) + (B8 = N)|(x, tn) > = 3Aanp (X, ta)| ¥(x,t), X EU, ty <t <tpyr, (2.70)
V2p(x,tn) = —|b(x,t2)]2, x€U. (2.71)



2.5 Numerical results

29

Again, equation (2.71) will be discretized in space by sine pseudospectral method [23,131]
and the linear ODE (2.70) can be integrated in time exactly [18,23].

Let ¢7}, and ¢7, be the approximations of (x5, Yk, 215 tn) and ©(xj, Yk, 21, tn), re-
spectively, which are the solutions of (2.19)-(2.20); and choose w?kl = Yo(zj, Yk, z1) for
(4,k,1) € T gp- For n =0,1,..., a second-order TSSP method for solving (2.19)-(2.20)
via the standard Strang splitting is [18,23, 135]

M—-1K-1L-1

1 _ i+ )2+ (1)) 4 T e (IPTN o (kqm o (lsT

Wi = pz:; qz:; Sz:; o O () () >+ (u)?]/ (¢n)pqs sin (W) sin (7) sin (T ,
—i Y.z )M 2 s (1) )

) T OB O] 0 ket @7
M—-1K-1L—-1 o

, i SN2 N2 ()2 . (gpm\ . [(kqm\ . [lsmw
i = 3 5 S e i (7 i () i ()
p=1 g=1 s=1

—~—

where (), and (¥3))((p, ¢, s) € Tax 1) are the discrete sine transform coefficients of
the vectors ¢™ and ¢, respectively (defined similar as those in (2.65)); and (8fm<p(1)) |jkl
can be computed as in (2.64) with p7,, = pﬁ)l = |¢](?l|2 for (j,k,1) € T 1 -

The above method is explicit, unconditionally stable, the memory cost is O(MKL)
and the computational cost per time step is O (MK LIn(MKL)). In fact, for the stability,

we have

Lemma 2.2 The TSSP method (2.72) is normalization conservation, i.e.

M—-1K-1L-1 M—-1K-1L-1
[0 7 = hohghe 337 S 0 = habyhe 30 ST ST 02 = 11901, n > 0.
=1 k=1 I=1 =1 k=1 I=1

Proof: Follow the analogous proof in [18,23] and we omit the details here for brevity.

2.5 Numerical results

In this section, we first compare our new methods and the standard method used in the
literatures [33, 147,160, 163] to evaluate numerically the dipolar energy and then report

ground states and dynamics of dipolar BECs by using our new numerical methods.

2.5.1 Comparison for evaluating the dipolar energy

Let
¢ = B(x) = 77—3/47;/27;/46—5(vz(x2+y2)+vzz2)’ x € R3. (2.73)
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Then the dipolar energy Egip(¢) in (2.45) can be evaluated analytically as [148]

14212 3n2arctan(\/ I€271)
1—k2 (1-x2)Vk2-1

AVar/Vz

_ 0 =1

AT/ 27 ’ , , w ’
14+2k2% 1.5k 1+v1—k2

T (17n2)\/17n21n (17\/17#) , k<1,

Eqip(¢) = (2.74)

with k = , /;Y—;. This provides a perfect example to test the efficiency of different numerical
methods to deal with the dipolar potential. Based on our new formulation (2.45), the
dipolar energy can be evaluated via discrete sine transform (DST) as

M-1K-1L-1

Ahghyh,
Eqip(¢) » —5"— DD sy )P [-I@f)(xj’yk,Zl)lQ -3 (5ﬁn@”)|jkz] ;

j=1 k=1 I=1
where (Opn¢")|;y, is computed as in (2.64) with plfy, = (2, yx, z)|? for (j, k,1) € Ty gy
In the literatures [33,147,160,163], this dipolar energy is usually calculated via discrete
Fourier transform (DFT) as

M-1K-1L-1

Faip(0) ~ 220l NNSSNS e ) [Fd (Tg) 2122018, 202) - Foaa(162))]
2

j=0 k=0 (=0

where F and F~! are the discrete Fourier and inverse Fourier transforms over the grid

points {(x;, vk, 21), (J,k,1) € T i1} respectively [160]. We take A = 247, the bounded

computational domain U = [-16,16]*, M = K = L and thus h = hy, = hy = h, = %
Tab. 2.1 lists the errors e := |Eqip(¢) — Eé‘ip with Eé‘ip computed numerically via either

(2.75) or (2.75) with mesh size h for three cases:

e Case I. 7, = 0.25 and v, = 1 which implies x = 2.0 and Eqip(¢) = 0.0386708614;
e Case II. 7, = 7, = 1 which implies x = 1.0 and Egip(¢) = 0;

e Case III. 7, = 2 and v, = 1 which implies £ = v/0.5 and Eqip(¢) = —0.1386449741.

From Tab. 2.1 and our extensive numerical results not shown here for brevity, we can
conclude that our new method via discrete sine transform based on a new formulation is
much more accurate than that of the standard method via discrete Fourier transform in

the literatures for evaluating the dipolar energy.
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Case I Case I1I Case II1

DST DFT DST DFT DST DFT

M =32&h =1 2.756E-2  2.756E-2 | 3.555E-18 1.279E-4 | 0.1018 0.1020
M =64&h =0.5 | 1.629E-3 1.614E-3 | 9.154E-18 1.278E-4 | 9.788E-5 2.269E-4
M = 128&h = 0.25 | 1.243E-7 1.588E-5 | 7.454E-17 1.278E-4 | 6.406E-7 1.284E-4

Table 2.1: Comparison for evaluating dipolar energy under different mesh sizes h.

2.5.2 Ground states of dipolar BECs

By using our new numerical method (2.60)-(2.63), here we report the ground states of
a dipolar BEC (e.g., 52Cr [115]) with different parameters and trapping potentials. In
our computation and results, we always use the dimensionless quantities. We take M =

K = L = 128, time step At = 0.01, dipolar direction n = (0,0,1)” and the bounded

computational domain U = [-8,8]? for all cases except U = [—16,16]% for the cases
s =1, 5, 10 and U = [-20,20}® for the cases 5i; = 50, 100 in Tab. 2.2. The
ground state ¢, is reached numerically when ||¢" 1 —¢"||o = max |¢;L,:; -

0<j<M, 0<k<K, 0<I<L
¢§Lk;l’ < e:=10"% in (2.60)-(2.63). Tab. 2.2 shows the energy EY := E(¢,), chemical
potential p9 := p(¢,), kinetic energy EYf. := Eiin(dy), potential energy Egot = Epot(g),
interaction energy EY

09 == 0(dg) and of = 0,(¢,) in (2.50) and central density p,(0) := |¢,4(0,0,0)|* with
harmonic potential V (z,y, z) = % (ac2 +y?+ 0.2522) for different § = 0.20716/N and \ =

= Eint(¢g), dipolar energy Eé’ip = FEgip(¢dg), condensate widths

0.033146 N with N the total number of particles in the condensate; and Tab. 2.3 lists
similar results with 8 = 207.16 for different values of —0.5 < % < 1. In addition, Fig. 2.1
depicts the ground state ¢,(x), e.g. surface plots of |¢,4(x,0,2)|* and isosurface plots of
|¢g(x)| = 0.01, of a dipolar BEC with § = 401.432 and A = 0.16 for harmonic potential
V(x) = % (224 y*+ 2?), double-well potential V(x) = 1 (22 +y? +2%) + 4e~*/2 and
optical lattice potential V(x) = % (x2 +y? + z2) +100 [sin2 (gx) + sin? (%y) + sin? (%z)L
and Fig. 2.2 depicts the ground state ¢4(x), e.g. isosurface plots of [¢4(x)| = 0.08, of
a dipolar BEC with the harmonic potential V(x) = 3 (2% 4+ y* + 2?) and 3 = 207.16 for
different values of —0.5 < % <1.

From Tabs. 2.2&2.3 and Figs. 2.1&2.2, we can draw the following conclusions: (i)
For fixed trapping potential V(x) and dipolar direction n = (0,0,1)7, when 3 and X

increase with the ratio % fixed, the energy EY, chemical potential u9, potential energy
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% E9 Mg Elgin Egot Eﬁlt Egip O—g Ug pg(o)
0.1 1.567 1.813 0477 0.844 0.262 -0.015 0.796 1.299 0.06139
0.5 2225 2.837 0.349 1.264 0.659 -0.047 0.940 1.745 0.02675
1 2.728 3.583 0.296 1.577 0925 -0.070 1.035 2.009 0.01779
4.745 6.488 0.195 2.806 1.894 -0.151 1.354 2.790 0.00673
10  6.147 8479 0.161 3.654 2.536 -0.204 1.538 3.212 0.00442
50 11.47 1598 0.101 6.853 4.909 -0.398 2.095 4.441 0.00168

100 15.07 21.04 0.082 9.017 6.498 -0.526 2.400 5.103 0.00111

Table 2.2: Different quantities of the ground states of a dipolar BEC for § = 0.20716 N
and A = 0.033146/N with different number of particles N.

% E9 /’Lg Elgm EgOt Ezgnt Egzp O—g Ug Pg (O)
-0.5 2957 3.927 0.265 1.721 0.839 0.131 1.153 1.770 0.01575
-0.25 2.883 3.817 0.274 1.675 0.853 0.081 1.111 1.879 0.01605
0 2.794 3.684 0.286 1.618 0.890 0.000 1.066 1.962 0.01693
0.25 2.689 3.525 0.303 1.550 0.950 -0.114 1.017 2.030 0.01842
0.5 2563 3.332 0.327 1.468 1.047 -0.278 0.960 2.089 0.02087
0.75 2.406 3.084 0.364 1.363 1.212 -0.534 0.889 2.141 0.02536

1.0 2193 2.726 0.443 1.217 1.575 -1.041 0.786 2.189 0.03630

Table 2.3: Different quantities of the ground states of a dipolar BEC with different values
of g with 8 = 207.16.

E? ., interaction energy EY |

ot condensate widths of and of of the ground states increase;

and resp., the kinetic energy Eﬁ’ dipolar energy Ef{ip and central density p,(0) decrease

in?
(cf. Tab. 2.2). (ii) For fixed trapping potential V' (x), dipolar direction n = (0,0,1)7 and

[, when the ratio % increases from —0.5 to 1, the kinetic energy EY. , interaction energy

E!]

int?

n’

condensate widths o7 and central density py(0) of the ground states increase; and

dipolar energy EY

resp., the energy EY, chemical potential p9, potential energy E? dip

pot>
and condensate widths of decrease (cf. Tab. 2.3). (iii) Our new numerical method can

compute the ground states accurately and efficiently (cf. Figs. 2.1&2.2).

2.5.3 Dynamics of dipolar BECs

Similarly, by using our new numerical method (2.72), here we report the dynamics of a
dipolar BEC (e.g., ®2Cr [115]) under different setups. Again, in our computation and

results, we always use the dimensionless quantities. We take the bounded computational



2.5 Numerical results

33

domain U = [-8,8]2 x [-4,4], M = K = L = 128, i.e. h = hy = hy = 1/8,h, = 1/16,
time step At = 0.001. The initial data 1(x,0) = 1p(x) is chosen as the ground state
of a dipolar BEC computed numerically by our numerical method with n = (0,0,1)7,
V(x) = 5(22 +y? + 252%), B = 103.58 and A = 0.873 = 82.864.

The first case to study numerically is the dynamics of suddenly changing the dipolar
direction from n = (0,0,1)” to n = (1,0,0)7 at + = 0 and keeping all other quan-
tities unchanged. Fig. 2.3 depicts time evolution of the energy E(t) := E(y(:,t)),
chemical potential p(t) = wp(¥(-,t), kinetic energy Fiin(t) := Exn(¥(-,t)), potential

energy Epnot(t) = Epot(¢(-,t)), interaction energy Ein(t) = Eint(¥(:,t)), dipolar en-
ergy Eqip(t) := Egip(¥(-,t)), condensate widths o,(t) := 0, (¢(-,1)), 05(t) == o.((-, 1)),
and central density p(t) := [1(0,t)|?, as well as the isosurface of the density function

p(x,t) := |[(x,t)|> = 0.01 for different times. In addition, Fig. 2.4 show similar results
for the case of suddenly changing the trapping potential from V' (x) = %(mQ +y?+2522) to
V(x) = %(mQ—i—yQ—i—%zz) at t = 0, i.e. decreasing the trapping frequency in z-direction from
5 to %, and keeping all other quantities unchanged; Fig. 2.5 show the results for the case
of suddenly changing the dipolar interaction from A = 0.8 = 82.864 to A = 43 = 414.32
at t = 0 while keeping all other quantities unchanged, i.e. collapse of a dipolar BEC; and
Fig. 2.6 show the results for the case of suddenly changing the interaction constant /3
from B = 103.58 to 8 = —569.69 at ¢ = 0 while keeping all other quantities unchanged,
i.e. another collapse of a dipolar BEC.

From Figs. 2.3, 2.4, 2.5 and 2.6, we can conclude that the dynamics of dipolar BEC can
be very interesting and complicated. In fact, global existence of the solution is observed
in the first two cases (cf. Figs. 2.3&2.4) and finite time blow-up is observed in the
last two cases (cf. Figs. 2.5&2.6). The total energy is numerically conserved very well
in our computation when there is no blow-up (cf. Figs. 2.3&2.4) and before blow-up
happens (cf. Figs. 2.5&2.6). Of course, it is not conserved numerically near or after
blow-up happens because the mesh size and time step are fixed which cannot resolve the
solution. In addition, our new numerical method can compute the dynamics of dipolar

BEC accurately and efficiently.
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Figure 2.5: Time evolution of different quantities and isosurface plots of the density func-
tion p(x,t) = |(x,t)|> = 0.01 at different times for a dipolar BEC when the dipolar
interaction constant is suddenly changed from A = 0.83 = 82.864 to A = 40 = 414.32 at

time t = 0.
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Chapter

Dipolar Gross-Pitaevskii equation with

anisotropic confinement

In this chapter, we continue the study of 3D dipolar GPE (2.5). With strongly anisotropic
confining potential, spatial degrees of freedom of BEC can be frozen in one or two direc-
tions. Then the corresponding 3D dipolar GPE (2.5) can be reduced to lower dimensional
equations. We derive the effective equations in lower dimensions for these cases. The corre-
sponding properties of ground states and dynamics are analyzed and the convergence rate
of such dimension reduction is proved in certain parameter regimes. Numerical methods

are proposed to compute the ground states for reduced equations.

3.1 Lower dimensional models for dipolar GPE

For the 3D dipolar GPE (2.5) which is reformulated into GPPS (2.19)-(2.20), we consider
the following two cases where V (x) (x = (z,y,2)? € R3) is anisotropic:
Case I, potential is highly confined in vertical z direction, where
2

V(x) = Va(a,y) + 5 (3.1)

Case II, potential is highly confined in horizon x — y plane, where

%+ y2
2et

V(x) = Vi(2) + (3.2)

In both cases, € > 0 is a small parameter describing the strength of confinement.

36
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In Case I, when ¢ — 0T, evolution of the solution 1(x,t) of GPPS (2.19)-(2.20)

would essentially occur in the ground state mode of —%822 + 21—24, which is spanned by

/2, ~1/4,~

we(z) =€~ e 2. By taking ansatz

P(x,t) = e VT2 (x,y, we(2),  (z,y,2) €R®, >0, (3.3)

the three dimensional (3D) GPPS (2.19)-(2.20) will be formally reduced to a quasi-2D
equation I (shown in Appendix B):

1 B — A+ 3xn2 3\
06— |—=—A B A 62— 220y n, —n2A)2P R? t > 4
10:0 5 +Vo+ —Vor |#] 5 (On,n, —n3A)p~" |p, xR t>0, (3.4)

where x = (2,9)7, n; = (n1,n9)7, On, =01 -V, 0n,n, =0, (0n,), A= 0y + 0y, and
1 6732/2

2D 2D 2 772D
X, t) =U ES s U X) =
% 1) e x ol U7 (x) 2v2m3/2 Jr /22 + 42 + €252

ds,x eR%,t>0. (3.5)

In addition, as ¢ — 0%, ©?P can be approximated by

1
omy/22 + 2

which can be re-written as a fractional Poisson equation

P (x,t) = Ugh * ¢, with Uzl (x) = x€R? t>0, (3.6)

() 2P (x,1) = o(x, )], x€R?  lim ¢*P(x,t)=0, t>0. (3.7)

|x|—o0

Thus an alternative quasi-2D equation II can be obtained as :

o, [ 1 B—A+3 3 o 3\ 5 12042
0 = —§A+VQ+WI¢I = 5 Onin, =n3R)(=A)"(9) | ¢ (3.8)

Similarly, in Case II, evolution of the solution ¥ (x,t) of GPPS (2.19)-(2.20) in z-,

y-directions would essentially occur in the ground state mode of —3(8yy + Oyy) + IQQ;E’Q,

which is spanned by we(z,y) = e 'n~1/2e”

“2:27 . Again, by taking the ansatz
Y(x,t) = e*it/Eng(z,t)wa(x,y), x = (z,y,2) € R3, ¢>0, (3.9)

the 3D GPPS (2.19)-(2.20) will be formally reduced to a quasi-1D equation :

: 1 28+ A(1—3n3), o 3A(Bn%-1) D

O = |—=0.. + Vi — 0., , R, ¢ > 0(3.10
10y 50:2 + Vi + 52 9| SV 7o, z€ > 0,3.10)
where

2 2% /2¢ 0o
P! P(2,t) = U * |92, UMP(2) = %/H e 2% s, 2 eR, t>0. (3.11)
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The above effective lower dimensional models in 2D and 1D are very useful in the study
of dipolar BEC since the reduced equations retain the full structure information while they
are much easier and cheaper to be simulated in practical computation. In fact, for the GPE
without the dipolar term, i.e. A = 0, there have been extensive studies on this subject.
For formal analysis and numerical simulation, the convergence rate of such dimension
reduction was investigated numerically in [17,22] and a nonlinear Schrédinger equation
with polynomial nonlinearity in reduced dimensions was proposed in [124]. For rigorous
analysis, convergence of the dimension reduction under anisotropic confinement has been
proven in the weak interaction regime [29,30], i.e. 3 = O(e) in 2D and 3 = O(£?) in 1D.
However, with the dipolar term, i.e. X\ # 0, there were few works towards the mathematical
analysis for this dimension reduction except some preliminary results in [42].

The main aim of this chapter is to establish existence and uniqueness of the ground
states and well-posedness of the Cauchy problems associated to the quasi-2D equations I
and IT and the quasi-1D equation, and to analyze the convergence and convergence rate
of the dimension reduction from 3D to 2D and 1D. Another goal is to propose numerical
methods for computing the ground states of the quasi-2D equation I and the quasi-1D
equation.

We will investigate the quasi-2D equations I, IT and the quasi-1D equation in the energy
space Z4 (d = 1,2) defined in (1.4).

3.2 Results for the quasi-2D equation 1

In this section, we discuss the existence, uniqueness as well as nonexistence of ground states
for the quasi-2D equation I and local (global) existence for Cauchy problem. When con-
sidering the ground state in 2D case, the following best constant Cj [155] in the following

inequality is crucial,

4 1 2 ix . 2 ix 1122
[reartaxs o [ e [ (Pe pert®). @)

For simplification of notation, in this and the next section, we also denote x = (1, x2)7 €

R2.
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3.2.1 Existence and uniqueness of ground state

Associated to the quasi-2D equation I (3.4)-(3.5), the energy is

1 — A+ 303\ 3\ 2 30
Ban(6) = [, [IV0P + 2020l + P22t - Do . (3.13)

for ¢ € 25, where

&P = (Buin, —13A) 20, P = U2 ¢ g2 (3.14)
The ground state ¢, € Sy of (3.4) is then the solution of the minimization problem:
Find ¢4 € S, such that Eyp(¢g) = gég; E>p(9). (3.15)
We have the following results on the ground state.

Theorem 3.1 (Ezistence and uniqueness of the ground state) Assume 0 < Va(x) €
L2 (R?) satisfying ‘xlligloo‘/g(x) = 00.
(i) There exists a ground state ¢pg € Sa of the system (3.4)-(3.5) if one of the following
conditions holds,

(A1) X >0, f— X > —eV271Cy;

(A2) X <0, B+ (3 +3n2 — L)X > —v/21Cy,.
(it) The positive ground state |¢q| is unique under one of the following conditions:

(A7) X>0,3—\>0;

(A2) X <0, B+ (5 +3[n3 — )X >0.
160

Moreover, ¢g = €' |¢g4| for some constant 6y € R.

(113) If B + %)\(1 —3n3) < —eV2mCy, there exists no ground state of the equation (3.4).

In order to prove this theorem, we first study the property of the nonlocal term.

Lemma 3.1 (Kernel U2P in (3.5)) For any real function f(x) in the Schwartz space
S(R?), we have

f&) [ e

| EET Zds,  fe€ S(R?). (3.16)

U2D % f(¢) = f(¢) U2D(¢) =

Moreover, define the operator
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then we have

2
ksl < sl WToefll < 951 317

hence Ty can be extended to a bounded linear operator from L*(R?) to L?(R?).

Proof: From (3.5), we have

U2P (x)| =

x| # 0. (3.18)

1
ds| < ——
2\/57-‘-3/2 R ’X’2+€2S2 - 27T|X|

es°/2 ' 1

This immediately implies that U2P xg is well-defined for any g € L'(R?) () L?(IR?) since the
right hand side in the above inequality is the singular kernel of Riesz potential. Re-write

U2P(x) as

L Ny G, 1151 1 G
2m Jr2 X+ (z — 2)2

%/ 2 using the Plancherel formula, we get

with wp(z) = 7r11/4 e

o7 w2 w2 —£252/2
U2P(£1,62) = %A%dfg = %/RIZIQﬁdS’ ¢ = (61,6)7 € R,

which immediately implies (3.16). For T}, we have

ds

F) [ e=" g8,
=

() 2
|€]2 + s2 <‘ T ‘/Re_ES/QdSZ 2

N>

Thus we can get the first inequality in (3.17) and know that T}, : L? — L? is bounded.

Tt (©)| =

f©)|, cer:

Moreover, from

Tt (©)] =

f©) [ e,
= e

. | . A
o < ‘f(f)!f]fk‘/R|£|2+82d3§]5\ 1£©)], (3.19)

we can obtain the second inequality in (3.17) and know that Tj; : H' — L? is bounded

too. 0O

Remark 3.1 In fact, T}, is bounded from LP — LP, i.e., there exists C), > 0 independent

of €, such that

C
1Tk ()l L r2y < ?prHLP(RQ)a p € (1,00). (3.20)

This can be obtained using LP estimate for Poisson equation and Minkowski inequality.
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Lemma 3.2 For the energy Eap(-) in (3.13), we have
(i) For any ¢ € S, denote p(x) = |¢(x)|?, then we have

Esp(¢) > Eap(|¢]) = E2p (V) » Vo € S, (3.21)

s0 the ground state ¢4 of (3.13) is of the form ei90|¢g| for some constant 0y € R.
(it) Under the condition (A1) or (A2) in Theorem 3.1, Eop(\/p) is bounded below.
(iii) Under the condition (A1) or (A2') in Theorem 3.1, Eap(\/p) is strictly convex.

Proof: (i) For ¢(x) € Sy, |¢(x)| € Sa. A simple calculation shows
1 o 1 2
E2p(6(x)) = E2p(l¢(x)]) = 5[IVellz — 5IVI#lllz = 0, (3.22)
where the equality holds iff [97]
Vo(x)| = V]p(x)], ae. xeR? (3.23)

which is equivalent to

d(x) = e|p(x)|, for some 0 € R. (3.24)

Then the conclusion follows.

(ii) For /p = ¢ € Sa, we separate the energy Eop into two parts:

Eaop(¢) = E1(¢) + E2(¢) = E1(v/p) + E2(V/p), (3.25)
where
1
=5 [ VAP + 2a(x)e] . (3.26)
A 2\ —
%/RQ [ﬁ —|—3n3 Ip|* — ;)\papﬂ) dx, (3.27)
with
ﬁ = (anLnL - ngAJ_) U52D * P (328)

Applying Plancherel formula and Lemma 3.1, there holds

1 p—

/ ADp(x)dx = [ D(e)p(E)de
R2 47T R2

-1 ((n1&1 + no&a)?* — n3l¢)?) e *s*/2 2
= 4—7_(_3 s ‘5’2—}—32 ‘ ‘ def (329)
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Recalling Cauchy inequality and n? 4+ n3 + n3 = 1, we have

—n3|¢P? < (ni&s +noka)?® — n3l¢f < (1 —2n3)[¢[>. (3.30)

Let Cy = max{|n3|,|1 — 2n3|}, we can derive that

=7 C 2 C
[ oeonix| < 05 [ e prasie = L2 G

Hence, E3(,/p) could be bounded by ||p||3. In detail, under the condition (A1) A\ > 0,
B — X > —eV2r(Cy, we have

E > > —— . 3.32
2(Vp) = 2\/— H I3 - dev/m ollz = 5 o1l (3.32)
Under the condition (A2), if A < 0 and n3 > 1, then
E > —— ; .
2(vp) 2 2\/— lpllz = ==~ lpll2; (3.33)
if A < 0 and n} < 1, then
B—A+3n3) 3v2(1 - 2nd)A

C
Ex(Vp) 2 = ol + ST ol = ~ el (334

Recalling the choice of best constant Cj, under either condition (A1) or (A2), the energy

Exp(V5) = Bi(B) + Ba(V5) = 31Vl — Lol > 0. (3.35)

(iii) Again, we split the energy as (3.25). It is well known that E;(/p) is strictly
convex in p [97]. It remains to show that E>(,/p) is convex in ,/p. For any real function

u € LY(R?) N L2(R2?), let

1 B — A+ 3n2A 3
1w =5 [ [P = S O, 32 @2 )| x50

Then E»(\/p) = H(p). It suffices to show H(p) is convex in p. For this purpose, let
VP1L = ¢1 € Sz and /p2 = ¢ € S, for any 6 € [0, 1], consider py = Op1 + (1 — 0)p2 and
V/Po € S2, then we compute directly and get

0H (p1) + (1= 0)H (p2) — H(pg) = 0(1 — 0)H (p1 — p2). (3.37)

Similar as (3.29), looking at the Fourier domain, we could obtain the lower bounds for
H(p1 — p2) under the condition (A1") or (A2'), while replacing Cj with 0 in the above
proof of (ii), i.e.,

H(p1 = p2) = 0. (3.38)
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This shows that H(p), i.e. Ea(,/p), is convex in p. Thus Eap(,/p) is strictly convex.

Proof of Theorem 3.1: (i) We first prove the existence results. Lemma 3.2 ensures
that there exists a minimizing sequence of positive function {¢"}5°, C Sa, such that
lim Esp(o™) = d)mg Esp(¢). Then, under condition (A1) or (A2), there exists a constant
n—00 €5,
C such that

IVe™[l2 + l¢"lla + /2 Vax)[¢"(x)Pdx <, n>0. (3-39)

R

Therefore ¢™ belongs to a weakly compact set in L*(R?), H'(R?), and L%/Q (R?) with
a weighted L?-norm given by Ly, = [fze |p(x)|2Va(x)dx]'/2. Thus, there exists a
¢ € H! ﬂL%,2 N L* and a subsequence of {¢"}>°, (which we denote as the original

sequence for simplicity), such that
" — 9>, in L*NL'N LY, V¢ = Vo™, in L2 (3.40)

The confining condition ‘ 1|im Va(x) = oo will give that ||¢>°||2 = 1 [10,96]. Hence ¢ € Sy
X|—00

and ¢" — ¢ in L2(R?) due to the L?-norm convergence and weak convergence of {¢" -

By the lower semi-continuity of the H'- and L%,Q—norm, for F; in (3.26), we know
n—oo

By Sobolev inequality, there exists C(p) > 0 depending on p > 2, such that ||¢"], <
Cp)([IVo"™ 2 + ||9"]]2) < C(p)(1 + C), uniformly for n > 0, applying Hélder’s inequality,
we have

1(67)2 = (6=)°13 < C1(lle" g + lle" 1) 16" — ¢>°]l2, (3.42)
which shows p" = (¢")? — p> = (¢>)? € L?(R?). Using the Fourier transform of U2" in

Lemma 3.1 and (3.31), it is easy to derive the convergence for Ey in (3.27)

Ep(¢™) = lim Ep(¢"). (3.43)
Hence,
Eop(07) = E1(¢%) + E2(¢%) < liminf Eyp(4"). (3.44)

Now, we see that ¢ is indeed a minimizer. For the uniqueness part, it is straightforward

by the strict convexity of Eop(y/p) in Lemma 3.2.
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(ii) Since the nonlinear term in the equation behaviors as a cubic nonlinearity, it is
natural to consider the following. Let ¢(x) € Sy be a real function that attains the best
constant Cj [155], then ¢(x) is radial symmetric. Choose ¢s5(x) = d 1p(671x), § > 0,
then @5 € Sz. Denote 05 = (On,n, — n3A L) (U2P « |¢5]%), by the same computation as

in Lemma 3.2, there holds

2 1 (n1&1 + noks)? — n3¢)? —e252/2,7 75 2
[ esostax = o [ LRSI L R )2 asag
1 (& +n9&)” = n3lE° 22 m 5 00
T 45273 /R3 €2 + 6252 e ||| (€)|” dsdé,

using the fact that ¢(x) is radial symmetric, W(f) is also radial symmetric. Thus, we

would obtain

n2 +n2—2n2) +o(1
/RQ sl ¢s|* dx = _(m i/ﬁe;) ( )Hqﬁuji, as § — 0%, (3.45)

Hence, let § — 07T,

1 —3n3)+o
Ban(és) = 30 (HWII% R (”>||¢ui> = [ Va(6lof (o

Recalling that |V¢||3 = Cpll¢[|F, we know 5h%1+ Eop(ps) = —oo if B+ 2A(1 —3nd) <

—v/27meCl, i.e. there is no ground state in this case. O

3.2.2 Well-posedness for dynamics

Here, we study the well-posedness of the Cauchy problem corresponding to the quasi-
2D equation I (3.4)-(3.5). Using the Fourier transform of kernel U2” in Lemma 3.1,
it is straightforward to see that the nonlinear term introduced by UZ2P behaviors like
cubic term. Thus, those methods for classic cubic nonlinear Schrédinger equation would
apply [43,139,155]. In particular, we have the following theorem concerning the Cauchy
problem of (3.4)-(3.5).

Theorem 3.2 (Well-posedness of the Cauchy problem) Suppose the real-valued trap po-

tential satisfies Vo(x) > 0 for x € R? and
Va(x) € C®(R?) and D*Va(x) € L™ (R?), for all o € N with || > 2, (3.46)

then we have
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(i) For any initial data ¢(x,t = 0) = ¢o(x) € Za, there exists a Tmax € (0, +00] such
that the problem (3.4)-(3.5) has a unique mazimal solution ¢ € C ([0, Tmax),Z2). It is
maximal in the sense that if Tmax < 00, then ||¢(-,t)||=, — oo when t — Tyax-

(ii) As long as the solution ¢(x,t) remains in the energy space Za, the L*-norm
lo(-,t)|l2 and energy Eap(¢(-,t)) in (3.13) are conserved for t € [0, Tiax)-

(iii) Under either condition (A1) or (A2) in Theorem 3.1, the solution of (3.4)-(3.5)

1s global in time, i.e., Timay = 0.

Proof: The proof is standard. We shall use the known results for semi-linear Schrodinger

equation [43]. For ¢ € Za, denote p = |¢|? and consider the following

- 1
G(#:9) = Glp) = 5 | 161 (Buin, —n3A) (U27 x |6f) dx,

5G(¢, b
o(6) = SELL g (00,0, — n32) W27 o).
Then the equations (3.4)-(3.5) read
00 = ~[50 + Va00lo + olol0 — Bg(9), x€RL 150,  (3.47)
_ B=A+3nd

where Gy = W’\ Using the LP boundedness of T}, (cf. Lemma 3.1 and Remark 3.1)

and Sobolev inequality, for |jul|z, + ||v]|z, < M, it is easy to prove the following

lg(u) = g(0)llays < C(M)llu — vlls. (3.48)

In view of the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [43] and [139] for the well-
posedness of the nonlinear Schrédinger equation, we can obtain the results (I), (II) im-
mediately. The global existence (IIT) comes from the uniform bound for ||¢(-,¢)||z, which

can be derived from energy and L? norm conservation. 0

When the initial data is small, there also exists global solutions [42,43]. Otherwise,

blow-up may happen in finite time, and we have the following results.

Theorem 3.3 (Finite time blow-up) If conditions (A1) and (A2) are not satisfied and
assume Va(x) satisfies 2Va(x)+x-VVa(x) > 0, for any initial data ¢p(x,t = 0) = ¢p(x) € Eq2
with [gs [x[*|¢0(x)|? dx < oo and solution ¢(x,t) to the problem (3.4), there exists finite
time blow-up, i.e., Tmaz < 00, if A\ =0, or A > 0 and n3 > %, and one of the following

holds:
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(i) E2p(¢o) < 0;
(it) Eap(¢o) =0 and Im ( fp2 ¢o(x) (x - Vo(x)) dx) < 0;
(iii) E2p(¢o) > 0 and Im ([go do(x) (x - Vo(x)) dx) < —\/2E2p(co) %02

Proof: Similar as (2.49), define the variance

ov(t) == oy (o(-, 1)) = /R2 x[2|p(x,t)|? dx = o,(t) + o, (t),  t>0, (3.49)

where
Galt) = a(6(1)) = / e Pdx a=y (3.50)
R
For a = z, or y, differentiating (3.50) with respect to ¢, integrating by parts, we get

d

%Ja(t) =—q /R2 [a&(x,t)@agb(x,t) — a¢(x,t)6a45(x,t)] dx, t>0. (3.51)

Similarly, we have
d? 2 4 2 2 2
waa(t) = /]R? [2‘6a¢‘ + Bolél” + 3M 7 a0 (9 n, — n3A)p — 2a[d| aan(X)] dx,
(3.52)

—A+An2 o ~
where by = FZEIS o = U2P |92, Writing p = [6]%, ¢ = (On,n, — n3A)p, ne =

(n1&1 +n262)? —n3|€)? and noticing that p is real function, by Plancherel formula, we have

_1 —
2 T - 5 ed
Lok ocveyax = o [ V- (€5) a
= 5 [ #O V- (eneTP7) de
47'('2 R2 e
1 _ — — _
- Al A 2D 2D ¢ A
— 7 [, 7 (F9ncU) + ncl20¢ - V5) e
1 ~12 = = 1 ~12
= 1z /[, (19PVenct2P) 4 nct2Pg - 59 ) a
1 — o
= 12 RQ(”£U3D+§§'V(%U3D))’P\ d§

1 n 826_6282/2|A|2
2~ ¢ P
= — d dsdg.
Jutoboics g5 [ o

Denote )
o B 1 n£$2675232 2‘m2
1) = 16(.1) = 5 /R e s (3.53)
using ng € [~n3l¢[2, (1 — 2n3)[¢[2], we obtain
—V2n3 4 V2(1 - 2n3) 4
e o)l < I(t) < T\Isb(t)\lz;- (3.54)
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If A\=0,or A\ >0 and ng > 3

3, noticing AI(t) < 0 in these cases, summing (3.52) for

a = z, y, and using energy conservation, we have

d2

vty = 2 [ [\v¢r2+ﬁo\¢r4+§A\¢12<x-v¢>—r¢\2x-vv2<x> ix

= 4Bup(0(~0) +3M(0) 2 [ |62V +x- TV (x) dx

< 4Ep(¢(-,1)) = 4Eap(¢o)-

Thus,
ov(t) < 2Eap(do)t* + 0, (0)t + o (0), >0,

and the conclusion follows in the same manner as those in [43,139] for the standard non-

linear Schrodinger equation. 0

3.3 Results for the quasi-2D equation I1

In this section, we investigate the existence, uniqueness as well as nonexistence of ground
state of the quasi-2D equation II (3.8) and the well-posedness of the corresponding Cauchy
problem.

3.3.1 Existence and uniqueness of ground state

Associated to the quasi-2D equation (3.8), the energy is

~ B 1 o B=A+3n2\ ., 3\ ., _
Ean(o) = [ [51V0P + vabolo + F2 Rt - Rz ax s ez
(3.55)
where
(%) = (Fn,n, —n3A) (=2)772[g]). (3.56)

The ground state ¢4 € S of the equation (3.8) is defined as the minimizer of the nonconvex

minimization problem:
Find ¢, € Sa, such that Fap(py) = ;nislrl Eap(¢). (3.57)
€Ss

For the above ground state, we have the following results.
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Theorem 3.4 (Existence and uniqueness of ground state) Assume 0 < Va(x) € LS (R?)

loc

and ‘ llim Va(x) = oo, then we have

(i) There exists a ground state ¢4 € Sa of the equation (3.8) if one of the following

conditions holds

(B1) A=0 and 8 > —21Cy¢;
(B2) A>0,n3=0and 8 — > —21Cy¢;
(B3) A< 0,n3 > 1 and B — (1 - 3n3)A > —21Ce.

(i1) The positive ground state |dq| is unique under one of the following conditions

(BI') A=0 and 8 > 0;
(B2Z)X>0,n3=0 and 3 > )\;
(BS)X <0, n} > 1 and 3 — (1 — 3n3)A > 0.

Moreover, any ground state ¢4 = ei‘%](ﬁg\ for some constant 6y € R.
(iii) There exists no ground state of the equation (3.8) if one of the following conditions
holds

(B1") A >0 and n3 # 0;
(B2') A< 0 and n3 < 3;
(B') A=0 and < —27Che.

Again, in order to prove this theorem, we first analyze the nonlocal part in the equation

(3.8). In fact, following the standard proof in [134], we can get

Lemma 3.3 (Property of fractional Poisson equation (3.6)) Assume f(x) is a real valued

function good enough, for the fractional Poisson equation

(—A)2p(x) = f(x), x€R? lim (x) =0,

x| —o0

x) = L"')x':< L ) x € R?
#(x) /Rmyx—xfyd o] ) e R

and the Hardy-Littlewood-Sobolev inequality implies

we have

el < Collfllpy P =5— pe(L2). (3.58)
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Moreover, the first order derivatives of @ are the Riesz transforms of f and satisfy
102, 0llg < Collfllg g€ (1,00), j=1,2 (3.59)
and the second order derivatives satisfy
10es202lla = 102, (—2)7200,8) llg < CollO fllas g€ (i), Gk =1,2. (360)
Remark 3.2 Similar results hold for Ty, defined in Lemma 3.1, i.e.
TS llp < CpllV fllp, — forp e (1,00). (3.61)

Since (—A)~1/2 is taken as an approximation of U2 (3.5), we consider the convergence

regarding with the derivatives.

Lemma 3.4 Let UP(x) (x = (w1,22)) be given in (3.5), suppose real-valued function

f € LP(R?), let
TS(f) = 00, (UZP 5 ), Rj(f) = 05,(—A)Y2f, j=1,2, (3.62)

we have T} is bounded from LP to LP (1 < p < oo) with the bounds independent of «.
Specially, for any fized f € LP(R?), (p € (1,00)),
Tim [T5(/) = Ri(Dllp =0, p € (1,00). (3.63)

Proof: We can write R; and TjE as

Ri(f)=K;*f, T;(f)=Kj*f, (3.64)

where R; is Riesz transform and

. 1 ,—82/2
Kj(x) = —1—, Ki(x)= / e ds, j=1,2. (3.65)
x0T 5B J (kP 4 2

K JE obviously satisfies the following condition
|K5(x)| < Blx|7%, [VE5(x)| < Blx[7%,  |x| >0,
/ Kj(x)dx =0, 0< Ry <Ry < oo,
R1<‘x|<R2
for some e-independent constant B. Then standard theorem on singular integrals [134]

implies that 77 is well defined for L? function and is bounded from L to L? with e-

independent bound.
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Thus, we only need to prove the convergence in L? , other cases can be derived by an
approximation argument and interpolation. For L? convergence, looking at the Fourier

domain, we find that
2

. L[ e |8 & [ e
175 () - RiDIE = 13 /R 1fP© [—J > /R s | dg

€] 7 Jr €2+ 82

I P R el
S L <5>[;/R | e

Notice that for fixed & # 0, dominated convergence theorem suggests that

_ »—c25%/2)
/ (1-e ’ﬂds
R €] + 52

o1
lim —
e—0t T

=0, (3.66)

hence, the conclusion in L? case is obvious by dominated convergence theorem again. Us-
ing approximation and noticing that L2 N L4 is dense in LP (q € (1,00)), combined with

uniform bound on 75 : LP — L (p € (1, o0)), we can complete the proof. 0

Lemma 3.5 For the energy Eop(-) in (3.55), the following properties hold
(i) For any ¢ € S, denote p(x) = |¢(x)|?, then we have

Eaxp(¢) > Eap(|é]) = Eap (vp), V¢ € Sy, (3.67)

so the ground state ¢, of (3.55) is of the form €'%|@,| for some constant 6y € R.

(ii) If condition (B1) or (B2) or (B3) in Theorem 3.4 holds, then Fsp is bounded
below.

(iii) If condition (BI') or (B2 ) or (B ) in Theorem 3.4 holds, then Eap(\/p) is strictly

CONVET.

Proof: (i) It is similar to the case of Lemma 3.2.
(ii) Similar as Lemma 3.2, for ¢ € Sy, denote p = |¢|?, we only need to consider the

following functional,

H(p) = -\ /R P (B n, —n3A) [(—A)712p] dx. (3.68)

Using Plancherel formula and Cauchy inequality, we have for A < 0 and n3 > %,

7 _ A (n1&1 4 nota)?
HO» = 3 fos g

A
> g [, (- 20)ella(e) de > 0. (3.69)

21612
3l o) 2 e
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For A > 0 and n3 = 0, it is easy to see H(p) > 0. Hence, assertion (ii) is proved.

(i) Similar as Lemma 3.2, it is sufficient to prove the convexity of H(p) (3.68) in p.
For \/p1 € S2, \/p2 € S2 and any 0 € [0, 1], denote py = 0p1 + (1 — 0)pa,

0H (p1) + (1 — 0)H (p2) — H(pg) = 0(1 — 0)H (p1 — p2), (3.70)

where the RHS is nonnegative with the given condition, i.e., H(p) is convex. 0

Proof of Theorem 3.4: (i) We only need to consider the existence since the uniqueness
is a consequence of convexity of E~2D(\/ﬁ) in Lemma 3.5. For existence, we may apply
the same arguments in Theorem 3.1, where instead, we have to show that for sequence
P = (9")?,

liminf H(p") > H(p>®), with p>™ = (¢>)2. (3.71)

n—oo

Denote
¢" = (On,n, —n34) [(=A)"Y2p"],n=0,1,..., or n = oo.
Using ¢" — ¢> in L?(R?) and ¢" — ¢> in H'(R?), then p" — p> in LP(R?) p > 1, and
Lemma 3.3 shows that ¢ — ¢ in W~ 1P(R?)( dual space of W', p/ = p/(p—1)). Thus
(3.71) is true and the existence of ground state follows.
(ii) To prove the nonexistence results, we try to find the case where Fyp doesn’t have

lower bound. For any ¢(x) € Sy and p(x) = |¢(x)[?, x = (71,22), let & € R such that

(cos@,sinf) = \/%(nl,ng) when n? +n3 # 0 and 0 = 0 if n; = ny = 0, for any
niTny

€1,€2 > 0, consider the following function
Gey oo (X1, 22) = 5{1/25;1/2¢(5f1(x1 cosf + x4 sinf), 82_1(—.%'1 sinf 4+ x5 cosf)), (3.72)
let pey ey = |e,.c,|?, then
Per o2 (&1,&2) = p(e1 (&1 cos 0 + E5in b)), ea(—E&1 sinb + & cos b)), (3.73)

and by Plancherel formula, after changing variables,
7 _ A (n1&1 + naa)? — n3l€?|

H(pELEQ) ) o |§| |@|2d§
A (nf +n3)nt — n3lnl*
) d
472 /RQ Il |p|“(e1m1, €2m2)dn
2
A (nd + n3)if —ni(nf + 23) )
 4e2eom? /Rg |1~ (1, m2)dn.
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Let k = i—f, then the dominated convergence theorem implies

2,2 2 1
) nitng ity [ [P Om, ma)dn, K — 07,

2
H(pey ey) = , e (3.74)
) - 1
N o IO o),k oo,
For fixed  and letting e; — 0%, we have [z, Vo(x)|¢2, c,|* dx = O(1) and
o 1 o 1 2 4 1 4
IVéer o2 = 5—%H3z1¢\|2 + 5—%H3z2¢\|2a I9ere2lla = Zlella- (3.75)

Thus under the condition (B1”), i.e ng # 0 and A > 0, choosing x large enough, we get

~ 4 Cy Cs —n% + 0(1)
E =+ ==+ "=+ 0O r——5—>+0(1 3.76
2D(¢51,52) 5% + K2€% + Ii&% +Cy ngl«; + ( )v ( )

where Cy (kK = 1,2,3,4) are constants independent of k, €1 and Cy > 0. Since n3 #
0, the last term is negative for k large, sending €1 — 07, one immediately finds that

lim Esp(e, c,) = —0o, which justifies the nonexistence. Under the condition
e1—01 e0=ke1

(B2”), i.e. n3 < 1 and A <0, by choosing « small enough in (3.74), sending £; to 0F, we

will have the same results. Case (B3”) will reduce to Theorem 3.1. O

3.3.2 Existence results for dynamics

Let us consider the Cauchy problem of equation (3.8), noticing the nonlinearity ¢(0n n, —
n3A)((—A)71/2|¢|?) is actually a derivative nonlinearity, and it would bring significant dif-
ficulty in analyzing the dynamical behavior. The common approach to solve the Schrodinger
equation is trying to solve the corresponding integral equation by fixed point theorem.
However, the loss of order 1 derivative due to the nonlocal term will cause trouble. This
can be overcome by the smoothing effect of inhomogeneous problem iu; + Au = g(x,t),
which provides a gain of one derivative [35,90]. To implement the idea in our case, it is con-
venient to consider the case Va(x) = 0. By configuring that (9n, n, —n3A)((=A)~2|4|?)
is almost a first order derivative, we are able to discuss the well-posedness of (3.8) with
above technical tool.

Cauchy problem of Schrédinger equation with derivative nonlinearity has been inves-
tigated extensively [80,91] in the literature. Here, we present an existence results in

the energy space with the special structure of our nonlinearity, which will show that the

approximation (3.8) of (3.4) is reasonable in suitable sense.
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Theorem 3.5 (Existence for Cauchy problem) Suppose the real potential Va(x) = &|x/?,
and initial value ¢o(x) € Za, one of the condition (1), (2') (3') in Theorem 3.4 holds,
then there exists a solution ¢ € L°°([0,00); Z2) NW ([0, 00); Z3) for the Cauchy problem
of (3.8). Moreover, there holds for L?* norm and energy Esp (3.55),

o( )Lz 2y = ol 2 (m2), Eap((t)) < Eap(do), 'Vt >0, (3.77)

Proof: We first consider the Cauchy problem for the following equation,

i0,¢° = Hxd® + g1(6°) + g2(¢7), (3.78)

with initial value ¢y, where 8y = Lﬁ;‘f:”, 0 = UzP « |#°|% (3.5) and

_3A

H, = —%A +Va(x),  91(6") = Bol¢’[*¢",  92(6") = =Z8" (On.n, — n3A)S". (3.79)

Then our quasi-2D equation II (3.4) can be written as

09 = Hx¢ + g1(¢) + G2(9), (3.80)
where
3\
§2(#) = =5 0(On,n, —n3A)(=A)"2(0). (3.:81)
We denote the pairing of Z3 and its dual =5 by (, )=, =; as
(1o )2z = Re [ fi0fa(x) dx (352)
R2

Using the results in [43] and Theorem 3.2, we see there exists a unique maximal solution
0 € C([=T2 s Tohan)s Z2) VO[T, TOas]s Z5). Maximal means that if either ¢ T T2,

ort | =10 |¢°(t)||=, — co. We want to show that as § — 07, ¢° will converge to a

solution of equation (3.8).

Ezistence. First, we show that 7°, = —oo, T, = +0c0. The energy conservation for
(3.78) is
1 1
Bit) = 5 IV I + 50007+ [ VaGloPx + Bly) = Es(0). (389
where

3\
B, (1) = — / 1612 (O m, — n3A)g dx. (3.84)
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Similar computation as in Lemma 3.5 confirms that Egip > 0, Bp > 0. Hence energy

conservation will imply that ||¢°(t)||z, < oo for all ¢, i.e. T3, = T2, = oc.
We notice that
Hy - H'— [? — H ' =35, (3.85)

where H~! is viewed as the dual of H!. Consider a bounded time interval I = [-T,T]. Tt

follows from energy conservation that there exists a constant Cj(¢g) > 0 such that

H¢6HO([—T,T};32) < C1(¢o). (3.86)

Moreover, Lemma 3.1 and Remark 3.2 would imply

16°(On ., —138)¢°llg < ClSll=1V16° Pllp < CllE°llgx 16|20/ 2 IV ll2, (3.87)

for ¢,p € (1,2), qi* + == %. Then we have

1
p
H¢5H01([—T,T];E;) < Ca(¢o). (3.88)

Thus, from (3.86) and (3.88), there exist a sequence §,, — 01 (n = 1,2,...,) and a function
¢ € L®([-T,T);Z9) N WHoo([-T, T); Z3), such that

PO (t) — ¢(t) in By, for all t € [T, T). (3.89)

For each t € [T, T, due to the mass conservation of equation (3.78), we know ||¢?" (t)||2 =
llpo||2, by a similar proof in Theorem 3.1, the weak convergence of ¢°(t) in Z5 would imply
that ¢°» (t) converges strongly in L?, which is a consequence of the fact that V5(x) = 3|x|?

is a confining potential. So, nh_)rglo 6% (t)||2 = [|¢(t)||2, and it turns out that [43]
¢ — ¢, in O([-T,T]; L*(R?)). (3.90)
In view of (3.89), (3.90) and Gagliardo-Nirenberg’s inequality, we obtain
¢ — ¢, in C([-T,T); LP(R?)), for all p € [2,00). (3.91)

We now try to say that ¢ actually solves equation (3.8). For any function i(x) € Z9 and
f(t) € C=([-T,T]), from equation (3.78), we have

T
/ [<i¢5"7¢>52,55 F1(E) + (Hyxd®™ + g1(¢°") + g2(6°"), )z, =5 f(£)| dE = 0. (3.92)

=T
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Recalling |g1 (v) — g1(v)| < C(|ul* + |[v]?)|u — v|, (3.91) implies that [43] for all t € [T, T
g1(¢7 (1)) — g1(4(t)), in LP(R?) for some p € [1,00), (3.93)

(91(6° (1)), ¥ ())zs =5 — (91((1)), %(t))=, =5 (3.94)

For go(¢"), consider ¢ (x,t), x = (z1,2), noticing the 8,0 = T/ (|¢°?) (j = 1,2)

(defined in Lemma 3.4), we have proven in Lemma 3.4 T]‘-S" is uniformly bounded from L?

to L? and as §,, — 0T,
T (|8(0)*) = Ri(|8(1)*) = 0, (=) 2(|6(t)) in LP(R?),p € (1,00), (3.95)
thus by rewriting
T3 (167 (1)*) = T3 (|¢° (O = 16(1)1%) + Ty (|6(t)[), (3.96)
recalling the fact (3.91), we immediately have
T3 (1™ () — Rj(|¢(t)[*) in LP(R?), for some p € (1,00), (3.97)
which is actually
695].@5"(75) — ﬁmj(—A)*l/Q(\gb(t)\Q), in LP(R?), for some p € (1,00). (3.98)
Hence, integration by parts,

(OO0 (O D)zaz; = Re [ 6 (00,06 (00

= —Re [ 00" (00,6 (0D + " (0, 5(0)dx,

passing to the limit as n — oo,

(07 (00,0, (0, 6(O)z,z; = Re [ B (00F) 0 0(0)500) + 6000 0(0))dx
= (S(1)00,2, (=) "2 (19(O), 1)z, 25,

in view of (3.98) and (3.89), we obtain

nlifgo<g2(¢6" (), ¥(t))=z,,z5 = (92(0(1)), ¥ (t))=, =5 (3.99)

Combining the above results and (3.94) together, sending n — oo, dominated convergence

theorem will yield

/ (i, 1)z = (1) + (Hx + g1(9) + G2(0), %)z, =5 £ ()] dt = 0,

-T
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which proves that
10t = Hyd + q1(d) + g2(@), in Z5, a.a. t € [-T,T], (3.100)

with ¢(t = 0) = ¢g, and ¢ € L®([-T,T);Z2) N WH([-T, T);Z3). Moreover, by lower

semi-continuity of Z norm, (3.93) and (3.99), the energy Esp (3.55) satisfies

Ean(9(t)) < Eap(éo). (3.101)

It is easy to see that we can choose T' = . 0

If the uniqueness of the L®([-T,T);Z2) N W ([~T,T]; Z%) solution to the quasi-
2D equation II (3.8) is known, we can prove that the solution constructed above in the
Theorem 3.5 is actually C([-T,T];Z2) N C*([~T,T); Z%) and conserves the energy.

Next, we discuss possible blow-up for continuous solutions of the quasi-2D equation II
(3.8). To this purpose, the following assumptions are introduced:

(A) Assumption on the trap and coefficient of the cubic term, i.e. Vi(x) satisfies
3Va(x) + x - Va(x) > 0, 2
(3.8);

—>\+>\n§ e
Vere = l¢ol

EL with 1y being the initial data of equation
2

(B) Assumption on the trap and coefficient of the nonlocal term, i.e. V5(x) satisfies

2V2(x)+x-VV2(x)20,)\:00r)\>0andn§2%.

Theorem 3.6 (Finite time blow-up) If conditions (B1), (B2) and (B3) are not satis-
fied, for any initial data ¢(x,t = 0) = ¢o(x) € Ep with [ps [x[*|¢o(x)]* dx < oo and
C([0, Trnaz ), Z2) solution ¢(x,t) to the problem (8.8) with L? norm and energy conserva-
tion, there exists finite time blow-up, i.e., Tmaz < o0, if one of the following condition
holds:

(i) Eap(¢o) < 0, and either assumption (A) or (B) holds;

(ii) FEap(¢o) = 0 and Im (faz o(x) (x - Vo(x))dx) < 0, and either assumption (A)
or (B) holds;

(iii) Bap(6o) > 0, and Tm (fga do(x) (x - Véo(x)) dx) < —/3Ban(60)l|xéolls if as-
sumption (A) holds, or Im ([g2 ¢o(x) (x - Vo(x)) dx) < — 2E5p (o) ||xol|2 if assump-
tion (B) holds.
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Proof: Calculating the derivative of variance defined in (3.49), for a = z,y, we have

%Ja( t) =2Im </ A(x,1) adyo(x,1) dx) , (3.102)
]RQ
and
d2 2 4 2 2 2
Zp0a(t) = /R 210001 + Bold|" + 3A[¢|° a0, n, — n3A)p — 20]6]*0aVa(x)] dx,
(3.103)
where fy = 20 (ZA)Y2p = (92, Writing p = 6, ¢ = (On,n, — n3A)p and

2me

noticing that p is real function, by Plancherel formula, similarly as Theorem 3.3, we get

/ 6 (x- V) dx = — 2 / 6% dx. (3.104)

Hence, summing (3.103) for @ = x, y, and using energy conservation, if assumption (A)
holds, we have

2
gaov) = 2 [ (IV6P 4 fulolt = S0P (Gn,n, — 138) o~ 6P TVal) )
R2

= 68(0)~ [ Vol + mlol)dx—2 | [o(x.0) (8Val00) +x - VY (x) dx
< BE(¢(-1)) =6E(dy), t>0. (3.105)

Thus,
ov(t) < 3E(¢o)t* + o1, (0)t + o (0), t >0,

and the conclusion follows as in Theorem 3.3. If assumption (B) holds, the energy contri-
bution of the nonlocal part is non-positive and we have
d? 9
Gaov) = 2 [ (IV6P 4 fulolt = S0P (Gn,n, — 138) o~ 6P TValo) )
3\ -
= B0 -5 [ loPpdx=2 [ [otx 0 (1a(x) + x- TVa(x) dx
< 4E(¢(-1)) =4E(d), 120, (3.106)

and the conclusion follows in a similar way as the assumption (A) case. 0

3.4 Results for the quasi-1D equation

In this section, we prove the existence and uniqueness of the ground state for the quasi-1D

equation (3.10) and establish the well-posedness for dynamics.
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3.4.1 Existence and uniqueness of ground state

Associated to the quasi-1D equation (3.10), the energy is

1 3A(1 — 3n3)
E :_/[ax 24 2Vi(x)|o)? + R s T 2}dm, 3.107
10(¢) = 3 ; 020 1(x)|9]” + Pipl4 orom (ol (3.107)
where G1p = %2::@,)/2 and
P(&) = U0 102), U () = 227 [~ i (3.108)
T 5 9 5 ﬁ |ac| . .

Theorem 3.7 (Existence and uniqueness of ground state)Assume 0 < Vi(x) € L (R)

loc

and ‘ l‘im Vi(xz) = oo, for any parameter 3, A and €, there exists a ground state ¢4 € Sy
xr|—0o0

of the quasi-1D equation (3.10)-(3.11), and the positive ground state |pq| is unique under

one of the following condition:

(C1) AX(1 —3n3) >0, 8— (1 —3n3)A>0;
(C2) M1 —3n2) <0, B+ 5(1—3n3) > 0.

Moreover, ¢g = ei90|¢g| for some constant 0y € R.

To complete the proof, we first study the property of the convolution kernel Ule (3.11).

Lemma 3.6 (Kernel UP (3.11)) For any f(x) in the Schwartz space S(R), we have

— N B \/58]3(5) 0o —e%s/2
U 1(6) = FoPe) = 8 [ s (3.109)
Hence
0002+ Pl < 2251 (3.110)

Proof: For any f(z) € S, rewrite the kernel

D) 20,/ / 2
U;D(:C) — \/_8 674 w (y /6’ z /6)w (y/g’ 2/6) dydzdy/dzl,
VI ke A =y (2 )

where w(y,z) = #e_(yuﬁ)/ 2 applying Fourier transform to both sides and using

Plancherel formula as in Lemma 3.1,

— V2e [ ud(etr,ebo)?
O | e

direct computation would yield the conclusion. 0

d&1 déa, (3.111)
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Lemma 3.7 For the energy E1p(-) in (3.107), we have
(i) For any ¢ € Sy, denote p(x) = |¢(z)|? for x € R, then we have

Eip(¢) > Eip(|9|) = Eip (Vp) , Vo € 51, (3.112)

s0 the ground state ¢4 of (3.107) is of the form ei90|¢g| for some constant 6y € R.
(ii) Erp is bounded below.
(iii) If condition (C1) or (C2) in Theorem 3.7 holds, E\p(/p) is strictly convex in p.

Proof: Part (i) is similar to that in Lemma 3.1. Part (ii) is well-known, once we notice

the property of kernel U!” (Lemma 3.6) and the Sobolev inequality in one dimension,

1113 < £ 1I201F]l2- (3.113)

(iii) We come to the convexity of Eyp(y/p). Following Lemma 3.2, we only need to

consider the functional

B4 A1 —3n3)/2 3A(1 — 3n3)
o) = [ [P 2Rp PU3 o io | an a1

Then under condition (C1) or (C2), using Plancherel formula and Lemma 3.6, after similar

computation as in Lemma 3.1, we would have Hip(p) > 0. For arbitrary ,/pr,/p2 € S1
and 6 € [0, 1], denote pg = Op1 + (1 — 0)p2, then \/pg € S1 and

0H1p(p1) + (1 = 0)Hip(p2) — Hip(pe) = 6(1 — 0)Hip(p1 — p2) = 0, (3.115)

which proves the convexity. O

Proof of Theorem 3.7: The uniqueness follows from the strict convexity in Lemma 3.7.

The existence part is similar as Theorem 3.1 and we omit it here for brevity. . g

3.4.2 Well-posedness for dynamics

Concerning the Cauchy problem, Lemma 3.6 shows that the nonlinearity in the quasi-
1D equation (3.10) is almost like a cubic nonlinearity, while the same property has been
observed in the quasi-2D equation (3.4)-(3.5). Hence similar results as Theorem 3.2 can

be obtained for equation (3.10) and we omit the proof here.
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Theorem 3.8 (Well-posedness for Cauchy problem) Suppose the real-valued trap potential
Vi(z) € C*°(R) such that Vi(z) > 0 for x € R and D*Vi(z) € L®(R) for all integers
a > 2. For any initial data ¢(xz,t = 0) = ¢o(x) € =y, there exists a unique solution

# € C([0,00),Z1) N CL([0,00),Z%) to the Cauchy problem of equation (3.10).

3.5 Convergence rate of dimension reduction

In this section, we discuss the dimension reduction of 3D GPPS to lower dimensions.
Inspired by the formal work of Ben Abdallah et al. [29,30] for GPE without the dipolar
term (i.e. A = 0), we are going to find a limiting e-independent equation as ¢ — 0". Thus
in the quasi-2D equation I (3.4), II (3.8) and the quasi-1D equation (3.10), we have to
consider the coefficients to be O(1). [10,42] have shown that the global solution exists for
the full 3D system (2.19)-(2.20) for A € [—38, 8] with 3 > 0, hence we would expect the
limiting equation in lower dimensions valid in a similar regime. Thus in lower dimensions,
we require that in the quasi-2D case, § = O(g), A = O(g), and in the quasi-1D case,
B =0(g?), A = O(g?), i.e., we are considering the weak interaction regime, then we would
get an e-independent limiting equation. In this regime, we will see that GPPS will reduce

to regular GPE in lower dimensions.

3.5.1 Reduction to 2D

We consider the weak regime, ie., 3 — /e, A — A/e. In Case I (3.1), for full 3D
GPPS (2.19)-(2.20), introducing the scaling z — z/e, ¢ — €'/2¢° which preserves the

normalization, then

1
W0 (x,t) = |Hy + SH. + (6 - M[Y? = 3eM0non. ¢ | ¥°, x = (2,9,2)" € R?,

(3.116)
where
H, = —%(am+8yy)+vz(:c,y), H. = —%8ZZ+Z—;, (3.117)
n. = (n1,n2,n3/e), On. =Nc-V, On.n. = . (On.), (3.118)
(=0 — Oyy — gizazz)goa = é|¢5|2, |xl\iinoo ©°(x) = 0. (3.119)
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It is well-known that H, has eigenvalues p = k + 1/2 with corresponding eigenfunction
wg(z) (k = 0,1,...,), where {w;}72, forms an orthornormal basis of L*(R) [65, 140],
specially, wo(z) = #6_22/ 2. Following [29], it is convenient to consider the initial data

polarized on the ground state mode of H,, i.e.,

Y(x,0) = do(z,y)wo(2), ¢o € Ez and |¢ol|r2re) = 1. (3.120)

In Case I (3.1), when ¢ — 07, quasi-2D equation I (3.4), II (3.8) will yield an e-

independent equation in the weak regime,

— _ 2
L\/Q—fw\lsﬁl% (z,y) € R?, (3.121)

with initial condition ¢(z,y,0) = ¢o(z,y). We will show the convergence from the full 3D

/Llatgb(xa Y, t) = HL¢ +

model to 2D. We follow the ideas in [29,30] to show the convergence from the 3D GPPS

to the 2D approximation. First, let us state the main result.

Theorem 3.9 (Dimension reduction) Suppose Vs satisfies condition (3.46), and —g <
A< B, >0, let Y € C([0,00);Z3), ¢ € C(]0,00);E9) be the unique solution of equation
(8.116)-(3.120) and (3.121) respectively, then for any T > 0, there exists Cp > 0 such
that

| (z,y, 2,t) — eii%qb(x,y,t)wo(z)Hg < Cre, Vtel0,T]. (3.122)

Under the assumption, we have the global existence of ¢° [10,42] as well as ¢ [29,43].

Define the projection operator onto the ground state mode of H, by
Iy (x,t) = e*i”‘)t/g(be(x,y,t)wo(z), (3.123)

where
¢ (z,y,t) = eihot/e* / P (x, t)wo(z)dz. (3.124)
R
Since the space (z,v, z) is anisotropic, we introduce the LEL% ,, space by the norm

1wy = W llzers, = IFC2)ee e, prg €L, 00]. (3.125)

The corresponding anisotropic Sobolev inequalities are available [29].
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Lemma 3.8 (Uniform bound) Let 1%, ¢ be the solution of (3.116) and (3.121) respec-
tively, \ € [—g,ﬂ], B3>0, we have

P° € L®((0,00), H'(R?)), ¢,¢° € L=((0,T), H'(R?)), (3.126)
with uniform bound in €. Moreover, for p € [2, 0],
o — T gy + 190 — T10%) oy < O, [0 — T o) < Ce, (3127
with C depending on ||¢o||=,, uniform in time t.
Proof: From energy conservation for equation (3.116), we have
3 32\

E(t) = (st(t),ws(t))Jré(szs(t),wE(t))Jr—||¢5H4+—||3nEV90 (t)z = E(0),

where (-,-) denotes the standard L? inner product. Using estimates for rescaled Poisson

equation (3.119), we have [|0n. V& (t)]l2 < 1|12 (t)]|3, which follows

5 A 352)\
——lv"lli+

1
100V (D)3 > 0, and E(0) = =5 + Co, (3.128)

o0
where Cy depends on ||¢o|l=,. Writing ¥(t) = > ¢p(z,y,t)wi(z), and using the L?
k=0

o0
conservation Y. ¢k (t)[|%. (R2) = 1, We can deduce from energy conservation that
k=0

MGy > (L), 0 (1) + o (Hv (1), (1)

= (H (0),9°() + 5 Zﬂk||¢k (Ol 72 re)

[e 9]

1 %
= (HLu (), 97(0) + 3 ) (k= )| 0w (D) 7202y + 3
k=1
Hence,
1029172 sy + 10y9° |72 rey < (H1Y®(2),9°(2)) < Co, (3.129)
1020172 sy < (Ho9", w) < o + Co?, (3.130)
9 = TT% |7 sy < Z i = 10) |6k (D) 3222y < 2C0e?, (3.131)

—Ho k=
oo

102 (v° — TIF) 172 sy < Z

k=

3
(1 = 109 (8)| 72 ey < 5C0s". (3.182)
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Estimates on [[1)° — TI)%||, 2) follows from Sobolev embedding. 0

We also need the following Strichartz estimates for the unitary group e+t which is
valid when V5, satisfies condition (3.46) [43].

Definition. In two dimensions, let ¢/, ' be the conjugate index of ¢ and r (1 < ¢,r <
o0) respectively, i.e. 1 =1/¢' +1/q = 1/r' + 1/r, we call the pair (¢,r) admissible and
(¢',7") conjugate admissible if

g = 2(% - %), 2<r<oo. (3.133)
Following [42,43,136], the following estimates can be established.

Lemma 3.9 (Strichartz’s estimates) Let (q,r) be an admissible pair and (v, p) be a con-
jugate admissible pair, I be a bounded interval of R, and 0 € I.
(i) There ezists constant a C depending on I and q such that
He_itHl‘PHLq(I,LT(RQ)) < C(LQ)H‘P”B(R?)- (3.134)

(ii) If f € L7(I, LP(R?)), there exists C' depending on I, q, p, such that

H/m - ML f(5) ds| par,orze)) < CUL @)l (1, po o) (3.135)
s<t

Now, we are able to prove the theorem.

Proof of Theorem 3.9: In view of Lemma 3.8, we can derive

_;U0 _;i0
[9° —e " dwo(2)|r2@sy < [[¥° — Y% p2ms) + [T — €= gwo(2)]| L2 (rs)

Ce +[|9°(t) — o(D) ]l 2(r2)- (3.136)

IN

Hence, we need to estimate the difference between ¢° and ¢. By (3.116) and (3.119), we

know ¢°(z,y,t) (3.124) solves the following equation
0" =H, ¢+ (8- A+ 3n§)\)ei“°t/52 / [vF 2wy (2)dz + eg°,
R

gs :GwotEQ/RPE(QOE)¢Ew0(Z)dZ,

2
with P.(¢%) = —3)\((71% — n%)@m + (n% — ng)ayy + 2111205y + g(am + 0y2))¢°.
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Denote x°(x,y,t) = ¢° — ¢, noticing that ||wol|} = 1/v2m, x° satisfies the following

equation

i0px" =HiX "+ fi +f5 +e9°, x°(t=0)=0,

c_ B3N oo o
i = LA s o),

£5= (5= A+ et [ (e[ — el g o) w ()i
R

Applying Strichartz estimates on bounded interval [0, 7] and recalling that (co,2) is an
admissible pair, we can obtain
XM oo o.m122®2)) < CUT Lo (0,70 ®2y) + 121 Lo (0,170 (R2y) + €N Il Lo (0,77 La(R2)))
where (p*, p), (v*,7) and (¢*, ¢) are some conjugate admissible pairs. By a similar argu-
ment in [29], we have the estimates for ff and f5 which comes from the cubic nonlinearity,
for appropriate p € (1,2) and v € (1, 2),

HflEHLP*([O,T};LP(R?)) < CHXEHLP*([O,T};LQ(R?))’ HfQEHLw*([o,T];m(R?)) < Ce. (3.137)
The basic tools involved are Holder’s inequality, Sobolev inequalities and the estimates in
Lemma 3.9, and we omit the proof of this part here for brevity. So,

XM zoe 0,7 2R2)) < CUNXN o (0,170 ®2)) + €97 Lo (o, 13520 m2)) + ) (3.138)

Next, we shall estimate g°. Let ¢, ¢5 to be the solution of rescaled Poisson equation

(3.119) with [1)°|? replaced by |I1y¢|? and |°|> — |T11)¥|? respectively, then rewrite
9" =Ji +J5 +J5, (3.139)
where
Ji - /R P.¢)o widz, J5 = ' /R Pu®) (0 — Tl Yugdz, J5 = ¢ /R P ()11 wodz.
For Jj, this one reduces to the quasi-2D equation I (3.4), where we have that
i = =3\(On.n, —m3AL)¢5pd°, and @hp = U2 x |67, (3.140)

with U2P given in (3.5). In view of the property of U2 in Lemma 3.1 and Remark 3.2,
recalling ¢¢ € L*([0,00); H'(R?)), using Holder’s inequality and Sobolev inequality, we
obtain

175 1lp < I1P=(50) 1o 185 lpe < CNVIE P llpy 6% 1pe < €, (3.141)
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where 1 < p < p; < 2, 5= T 5
For J5, applying Minkowski inequality, Holder’s inequality and Sobolev inequality, as
well as estimates for Poisson equation, noticing ¢ € L°(]0, 00); H! (R?)) and Lemma 3.8,

we estimate

151l < [[Pe(¢%) (¥ = I )woll(1,p) < ClIPe(0%) | Lo g3y 197 = T (00,2)
€12

‘M <c
IS

< Ce '
Lr™ (R3)

where p* = 2p/(2 — p) < 3.

For J3, similar as Jsl, JE, we have

151y < P(5) M woll(1,p) < CllP:(03) Lo m3) 16°] o2 (m2)
C
< e = 07 Pl o ey
C
< gWE — Iy Lo (may (|9 Les (r3) + [[T1Y° [ Los (m3)) < C,

where p3 = 2p?/(2 — p1) < 6. Hence, by choosing p = 6/5, and p; = 4/3 would satisfy all

the conditions for J;; (k=1,2,3), where we shall derive that uniformly in ¢,
6% oy < 1oy + 15 o ey + 15 oy < C. (3.142)
Then choose ¢ = p in (3.138), we have
X[ Lo (o.77:2®2)) < CUNXN o7 (0,752 (2)) + €)- (3.143)
Applying the results for all ¢ € [0,T], we find
eIy <c ( / EIE ds + ) L teln,T], (3.144)
and Gronwal’s inequality will give that [|x¢(¢)||2 < Ce for all ¢t € [0,7]. Combined with
(3.136), we can draw the desired conclusion. O

3.5.2 Reduction to 1D

In this case, we also consider the weak regime 3 — ¢~ 23, A\ — £ 2\. In Case II (3.2), for
full 3D GPPS (2.19)-(2.20), introducing the scaling = — x/e, y — y/e, 1 — € which

preserves the normalization, then for x = (z,v,2)" € R?,

1
i (x,t) = |H, + 6—2Hz,y + (8 = N[Y° > — 3eM0a.n. ¢ | V7, (3.145)
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where
1
H, = _—azz +Vi(z), Hyy= _5(8” + Oy + 2% + 97, (3.146)
IIE = (n1/€ 712/5 ng), 8n5 = IIE V 8n5n5 = 8;15 (aﬁs), (3147)
1 1
(=002 = 50y — 0:2)¢° |¢5|2 hm ©°(x) = 0. (3.148)

Note that the ground mode of H, , would be given by wq(z)wp(y) with eigenvalue 1, and

the initial data is then assumed to be

Y (x,0) = ¢o(2)wo(w)wo(y), ¢o € Z1 and [|¢ollr2(m) = 1. (3.149)

In Case II (3.2), when e — 07, quasi-1D equation (3.10) will lead to an e-independent
equation in the weak regime,

B+ A1 - 3nd)
2w

i0p(2,t) = Hoop + 616, z€R, (3.150)

with initial condition ¢(z,0) = ¢o(2).

Following the steps in the last subsection, we can prove the following results.

Theorem 3.10 (Dimension reduction) Suppose the real-valued trap potential Vi(z) €
C*®(R) such that Vi(z) > 0 for z € R and D*Vi(z) € L®(R) for all « > 2. Assume
—g <ALB,B82>20, let ¥f € C(]0,00);E3), ¢ € C([0,00);Z1) be the unique solution of
equation (3.145)-(3.149) and (3.150) respectively, then for any T > 0, there exists Cp > 0
such that

| (x,y, z,t) — efit/sgqb(z,t)wo(:ﬂ)wo(y)ﬂg < Cre, Vtel0,T]. (3.151)

3.6 Numerical methods

In this section, we consider the numerical methods for computing ground states of the
reduced models. In physical experiments, € is usually not sufficiently close to 0. In such
cases, quasi 2D equation II would not be a good approximation of the quasi-2D equation
I (3.4)-(3.5). Hence, we will only consider the quasi-2D equation I (3.4)-(3.5) and the
quasi-1D equation (3.10). In practical computation, the problem is usually truncated on a
bounded interval [a, b] in 1D or a bounded rectangle [a, b] X [¢, d] in 2D, with zero Dirichlet

boundary conditions. We adopt the method of gradient flow with discrete normalization,
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widely used in the literature: choose a time step At > 0 and set t, =n At forn=0,1,....
Applying the steepest decent method to the energy functional Eop(¢) (3.13) or Ei1p(¢)
(3.107) without the constraint ¢ € Sy, and then projecting the solution back to the unit

sphere Sy at the end of each time interval [t,, ,+1] in order to satisfy the constraint ¢ € Sy.

3.6.1 Numerical method for the quasi-2D equation I

After truncation, the gradient flow with discrete normalization for the quasi-2D equation

I (3.4)-(3.5) for ¢ := ¢(x,y,t) reads as

1 B—A+3 3 o 3\ 9
=54 -V - —= — (O n, —n30)p| ¢, 152
6t¢ 9 Vo /o ‘?b’ +2(6LL ng )‘P ¢ (3 5)
ol y,t) = UL « |92, (z,y) €U =[a,b] x [e,d], tn <t < tni1, (3.153)
P2, Y, tryn)
(T, Y, tng1) = B(@,y, 65, 1) = 7“, (z,y) €U, n>0, (3.154)
||¢(’ n+1)”2
¢(:Cayat)|8U = QO(CC,iU,tNaU - 0’ t Z 0’ (3155)
¢(x,y,0) = do(x,y), with  ||¢oll2 = 1, (3.156)
where ¢(z,y,t5) = lim o(z,y,t).
t—tn
Let J and K be two even positive integers, choose the mesh size Az = bfT“ and

Ay = %, define the grid points z; = a + jAz, yp = ¢+ kAy for 0 < j < J and

0<k<K,let ;Lk be the numerical approximation of ¢(x;, y,t,) and denote

2qm
= M= =-J/2,...,J/2-1,¢q=—-K/2,... , K/2—-1. (3.157
b—a’ q d—C’ p /7 9 / 7q /7 bl / ( )

Then a backward Euler Fourier pseudospectral (BEFP) discretization for (3.152) read as

O — Ol B A+3ng

—1 S H* _ . n |2
A 2 " [‘é(wpyk)Jr o |9
3A
> ((aﬂng@ )| —n3(A%e") )]qb?k, (3.158)
gk ik

Jj2—-1 K/2-1

Pk = JK > X (@ ) SR (3.159)

p=—2J/2 q=—K/2

= (Wzy ) U2D(AZ N, —J/2<p<J/2-1,-K/2<q<K/2—1,

pr7q

*k .
St = qu] R &9 = do(xj,uk), 0<j<J0<k<K, (3.160)
k
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where (752\1) is given by (3.16), gZA)pq denotes the Fourier coefficients of ¢;;, defined by

J-1K-1 ok J-1K-1
=3 e e pjpe” Mo @) gmiNG (wk—c) (3.161)
Jj=0 k=0 j=0 k=0

|¢*|| denotes the discrete I2 norm of ¢* defined as

J-1K-1
671 = | Awdy Y D (o5l (3.162)
§=0 k=0
and A® and 9y, ,, are pseudospectral approximations of A and 0y, n, respectively, defined
as follows:

Jj2—1 K/2-1

(AS _ Z Z )2] ;b\pqei)\g (zj—a) e'»\g (yr—c) (3163)
p——J/Q q=— K/2
J/2—1 K/2-1

(95,0, 9); Z 3 (AL 4 naAy)® Gpge N (3.164)
p—fJ/2 g=—K/2

for —J/2 <p < J/2-1, —K/2 < ¢ < K/2—1. Similar as [12,21], one can introduce
stabilization parameter to the BEFP discretization. Above method is implicit and can
be solved explicitly via Fast Fourier Transform (FFT). Actually, taking discrete Fourier

transform of (3.158), we have
At At — — —~
1+ — (¢ —(\Y * = (" At Sn 1
(1+ 502+ Four) (), = (7) +a(F) . ey
with the mesh function S™ for 0 < j < J and 0 < k£ < K given by
) [
ik

8-+ 3)\n3
eV 2m

Equation (3.165) can be solved explicitly and then BEFP (3.158) is solved.

—n3(A%p")
ik

A
jnk;:_[VQ(xj’?/k)+ |67l — e <(83Lnl@)
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3.6.2 Numerical method for the quasi-1D equation

Similar as the quasi-2D equation I case, we have the gradient flow with discrete normal-

ization associated to the quasi-1D equation (3.10)-(3.11) for ¢ := ¢(z,t) as

1 A 2 1, 3 )
= |= N VA —(1 - -1 Nl
o(z,t) = UP  |¢)?, z€U =la,b], t,<t<tys, (3.167)
2.t
O(2,tnt1) = Bz, 0, 1) = Lﬁl), zeU, n>0, (3.168)
165t ll2
¢(zvt)‘8U = @(z,t)\aU = 07 t Z 07 (3169)
where ¢(z,tF) = lim. ¢(z,t). Let L be an even positive integer, choose the mesh size

t—tn

Az = ”_Ta, define the grid points 2; = a + [Az for 0 < < L, let ¢} be the numerical

approximation of ¢(z,t,) and denote

Vo 2rm

f=g— r=-L/2-L/2+1,... L2 -1 (3.171)
—a

Then a backward Euler Fourier pseudospectral (BEFP) discretization for (3.166) reads as

o —or _1

_ S ik A 2 1 n|2
A =5 00| = v + 5+ 50— 30) goglot
A a2 @) ]w (3.172)
8\/% 3 22 P . 1 .
| b
— - 2lrm — — g
o =7 (¢7) =, on=(jo"P) TP, —Lj2<r<L/2-1,
r=—L/2 " "
WH:HZiH’ # = do(=), 0<I<L, (3.173)
1

where (Zl\D is given by (3.109), g&r denotes the Fourier coefficients of ¢; defined by
X L-1 e 1 '
Gr= e L =) e, (3.174)
=0 =0

|¢*|| denotes the discrete I2 norm of ¢* defined as

(3.175)
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Figure 3.1: Comparison between the aspect ratios calculated by 3D and 2D models for
different v = 1/10,1/80, # and V(z,y,2) are chosen as Example 1. (a) A\/( increase
from 0 to 1 with n = (1,0,0)7; (b) A =90, n = (/1 — n3,0,n3) , ng increase from 0 to 1.

and 03, is the pseudospectral approximation of d,, defined as

L/2 1

z N N (z1—a) _ .
(95.0), L ;/2 ()2 (@ ) . —L/2<r<L/2-1. (3.176)

Taking discrete Fourier transform of (3.172), we have

(1 + %(Afﬁ) (qT) = (gﬁ) + At (ﬁ) (3.177)

with the mesh function F™ for 0 <[ < L given by
}bl

R == [Vt + (84 50 30)) Gglof P - (o0 = 1) (026")

Thus BEFP discretization (3.172) can be solved explicitly.

3.7 Numerical results

In this section, we report numerical results for ground states of the quasi-2D equation I
(3.4) and the quasi-1D equation (3.10). We compare the ground states of the reduced
models with the ground states of the 3D model. Let ¢3”(x,y, z) be the ground states of
3D GPPS (2.19)-(2.20), define the projection of ¢3 over the 2D z — y plane as

(ML) (z,y) = \//RW’D(w,y,z)!?dz, (3.178)

and the projection of ¢*P over the 1D z direction as

(IL¢°") (2) \// 63D (2, y, 2)|? dardy, (3.179)
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Figure 3.2: Comparison between the density |¢(2)|?, calculated by 3D and 1 D models
for different v = 1/10,1/80, with A = 90, 8 and V(z,y, z) are chosen as Example 2.
v = 1/10 on the left ((al) and (b1)); v = 1/80 on the right ((a2) and (b2)); n = (0,0, 1)”
for (al) and (a2); n = (1,0,0)T for (b1) and (b2).

and let ¢?P(z,y) and ¢'P(z) be the ground states of the quasi-2D equation I (3.4) and
the quasi-1D equation (3.10) respectively. We measure the difference between IT 1?0 and
¢*P for the quasi-2D approximation, and the difference between II,¢3" and ¢'P for the
quasi-1D approximation. In order to investigate the anisotropic properties of the ground

states in x, y directions, induced by the dipolar interaction, we use the aspect ratio given

by

o \/fR3 22|30 (z,y, 2) |2 dedydz

- ) (3.180)
Ty \/fRs y2|@3P (z,y, 2)|? dedydz
and we can define the aspect ratio for the quasi-2D model as
or /I 6P @ )P ddy -

Ty \/ Jr2 ¥21@?P (x,y)|? dxdy

We will also compare the aspect ratios calculated by the full model and the reduced model.
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03 02

(b1) (b2)

Figure 3.3: Surface plots for ground states ¢(x,y) computed by the quasi-2D equation I,
V(x,y,z) and 8 = 100 are given in Example 1, A = 90; v = 10 for (al) and (a2); v = 80
(b1) and (b2); n = (1,0,0)7 for (al) and (b1); n = (0,0,1)7 for (a2) and (b2).

Example 1. (Quasi-2D case) For GPPS (2.19)-(2.20) and corresponding quasi-2D I

equation, chooses = 100, A = 90 and

1 1
V(SL‘,y, Z) = 5(‘1‘2 + y2) + WZQ, V= 627 Y= 1/10 OI']_/80 (3182)

Example 2. (Quasi-1D case) For GPPS (2.19)-(2.20) and corresponding quasi-1D
equation, chooses 3 = 100, A = 90 and

1 1

V(z,y,z) = F(azz +y?) + 52'2, y=¢2 4 =1/10 orl/80. (3.183)
Y

Fig. 3.2 implies that the quasi 1D approximation (3.10) is fairly good. From Figs. 3.5

& 3.1, we see that the quasi 2D I approximation (3.4) is a quite good approximation. Figs.

3.3 & 3.4 show the rich phenomenon behind the dipolar BEC. Our extensive numerical

results confirm that our numerical methods can compute the ground states accurately

and efficiently. The results also confirm that our approximate equations: the quasi 2D

equation I and the quasi 1D equation are accurate.
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X

Figure 3.4: Contour plots for density p(x,%) := |¢(z,y)|? of ground state computed by the
quasi-2D equation I | V(z,y, 2) and 5 = 100 are given in Example 1, A = 90; v = 10 for

(al) and (a2); v = 80 (b1) and (b2); n = (1,0,0)7 for (al) and (b1); n = (1/v/2,1/v/2,0)T
for (a2) and (b2).
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Figure 3.5: Difference between the density p(z,y) := |¢(z,y)|? of ground state computed
by the 3D GPPS and that computed by the quasi-2D equation I, V(z,y,2) and S = 100
are given in Example 1, A = 90; v = 10 for (al) and (a2); v = 80 (bl) and (b2);
n = (1,0,0)7 for (al) and (b1); n = (1/v/2,1/v/2,0)T for (a2) and (b2).
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Chapter

Dipolar Gross-Pitaevskii equation with

rotational frame

In this chapter, we discuss the 3D dipolar GPE with rotational frame and its reduced 2D

model.

4.1 Introduction

At temperature T much smaller than the critical temperature 7., a dipolar BEC in a

rotating frame can be well described by the following dipolar GPE [92,113,161]:
h2
ihop)(x,t) = —%VQ + V(x) + Up|[vo|* + (Vaip * [¥*) — QL. | ¥, x € R?, £ >0, (4.1)

where x = (z,y,2)7 € R? is the Cartesian coordinates, {2 is the angular velocity of the
laser beam, V'(x) is the harmonic trap described in (2.2), L, is the z-component of angular
momentum (1.13) and other terms can be found in equation (2.1). Again the wave function

1 satisfies the normalization condition (2.4).

Introducing the dimensionless variables as in Chapter 2, t — wio, Q — Q/wy with

wo = Min{wy, wy,w, }, X = apx with ag = 4/ min, ¥ — Y% e obtain the dimensionless

3/2
)

rotational dipolar GPE as

i0p(x,1) = —%V2+V<x)—QszlleH(Udip*W)} ¥, XERY, >0 (42)

mN/Lo/LQi . . .
where 8 = hﬁfﬁg = 47rg§N, A= 3h2a0d L V(x)= %(fyﬁmQ—i—fy;yQ—i—fygzz) is the dimensionless
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Wz

harmonic trapping potential with ~, = ‘:}—3, vy = 2L and v, = o and the dimensionless

@o
long-range dipolar interaction potential Ugiy(x) is given by (2.6).

Similar to the non-rotational case (2.1), (4.2) conserves the mass

N(0) = [ |t dx = NG(,0) =1 (43)

and the energy per particle

— A
Erot(¥(,1)) = /R ) BWW + V)P + §|w|4 — QRe(VL:9) + 5 (Uaip * [0) [P | dx
EErot(¢("0))a t > 0. (44)

Quantized vortices have been observed in BEC experiments [2,41] when a rotating laser
beam is applied to rotate the condensate. Quantized vortices are quite related to the
superfluidity. Hence, it is important to understand the vortex properties. In addition,
the current experiments of rotating BEC are performed at ultra-cold temperature and the
system is on its ground state. As a result, ground state of rotational dipolar GPE (4.2)
plays an important role in understanding quantized vortices in dipolar BEC. So, for the
rotational dipolar GPE (4.2), we are more interested in the ground states. In Chapter 6,
we will consider Cauchy problem of rotational GPE (4.2) with A = 0, i.e. without dipolar
interaction term. Here, we focus on the ground states. Again, the ground state is defined
as the solution of the following minimization problem:

Find ¢4 € S3 such that
Efor = Erot(¢g) = gélsg Erot (). (4.5)

In view of the identity (2.17), we can reformulate the above rotational dipolar GPE

into the following rotational Gross-Pitaevskii-Poisson system (see Chapter 2):

Bu0(0,8) = | =57 + V() = QLo+ (5= W = Pamplct)| 0.0 (4)
Vip(x,t) = —|9(x, 1)), lim o(x,t)=0 x€R3 >0, (4.7)

|x|—o0

and the energy can be rewritten as

Bua) = [ [5190F + Vel + 25201t + 0,76l - aRe(i.n)| ax, (48)
R3

where ¢ is defined through (4.7).
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Two dimensional model. With the same setup of the anisotropic external trap V(x)
as Chapter 3, effective lower dimensional equations can be derived. In particular, consider
the Case I in Chapter 3 where

2

V(x) = Va(e,y) + =

2_647 (4.9)

then for small €, evolution of the solution ¥ (x,t) of rotational GPPS (4.6)-(4.7) would

be confined in the ground mode of —39,, + 21—24, which is spanned by e 1/27x=1/4¢™ 27
Thus the three dimensional (3D) rotational GPPS (4.6)-(4.7) will reduce to a quasi two-

dimensional (2D) equation. Due to the normalization condition |42 = 1, taking ansatz

. 1 1 22
Y1) = e 0=V 2y Dy (2/e), where g = 5, wo(z) = e T, (4.10)

we have the quasi-2D rotational dipolar GPE for rotational GPPS (4.6)-(4.7) as (see
Chapter 3)

08— A+ 3)\n§
eV 2

Q@nlnl — ngA)gpﬂ) —QL,| ¢, (4.11)

2
T

1
10 = —§A + Vo +
where
nJ_ - (nlvnQ)T7 al‘lL :nJ_'(ailhay)Tv 6nlnl :6nl(anL)7 A:aa:m+ayyv

and
6_82/2

2 ds
2v2m3/2 Jr /22 + 42 + 252

0P (z,y,t) = UZP « |¢f?, UZP(z,y) =

(4.12)

The energy of quasi-2D rotational dipolar GPE (4.11) is

B =X+ 303\

4 2 9D 7
v o[" = /\W ©?P —QRe(dL.¢)) dx, (4.13)

1
Ban(@) = [ (5IV6P +Valof+

where

@20 = (On,n, —n3A) ¢*P. (4.14)

The ground state of equation (4.11) is defined as the solution to the following minimization
problem:

Find ¢4 € S3 such that

E3p = Eap(dg) = min Fpp(9). (4.15)
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4.2 Analytical results for ground states

In this section, we report some fundamental results concerning the ground states of the
3D rotational GPPS and the quasi-2D rotational dipolar GPE (4.11).

In the model case where the external trap V(x) is harmonic

1
V(z,y,2) = 5 (52 + 90" +922%), Y72 > 0, (4.16)

from physical intuition, when rotational speed 0 < © < min{~;, vy}, there exists ground
state of rotational GPPS (4.6)-(4.7); when € > min{~v,,7,}, there exists no ground state
of rotational GPPS (4.6)-(4.7). Actually, we can justify this intuition and obtain the

following results.

Theorem 4.1 (Three dimensional case) Assume the trap V(z,y,z) is given by (4.16),
then there exists ground state of 3D rotational GPPS (4.6)-(4.7) , if 3 > 0, —g <\A<p
and |Q| < min{y;,vy}. In contrast, there exists no ground state of (4.6)-(4.7) if one of
the following condition holds:

(1) B <0;

(2) >0 and)\<—§ or A > 3;

(3) > min{ryz, 7y}

Proof: Under the condition |Q| < min{y,,7,}, Cauchy inequality implies for any ¢ € Z3

[ oLodx] <3 (0.7 10,08 + 92+ I0P). (4.17)
R3

Hence, in the case || < min{y,,vy}, > 0 and—g < X < 3, energy E.o is bounded
below in S3 C Z3. Similar arguments as those in Theorem 2.1 will yield the existence for
the minimizer of the energy E,o (4.8) in Ss, i.e. the ground state.

Next, we show the nonexistence if the conditions are not satisfied. First, let us notice
that for real-valued function ¢ € Z3, fR3 dL,pdx = 0. Hence, if either 3 < 0 or 3 > 0
and \ < —g or A > (3, choose the same test functions as in Theorem 2.1, then it is easy to
obtain qslélg:?) E,ot(¢) = —o0, i.e. there is no ground state. In order to prove the assertion,
we only need to check the case |Q| > min{~,,,}.

Without loss of generality, we assume that v, <, and 2 > v,. Choose a nonnegative

C§°(R?;[0,00)) function p(z,y) satisfying

/ PPz, y)dedy =1, supp(p) C {(z,y) € R*[1 < Va2 +y> < 2} (4.18)
RQ
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and
(Vw + 6)2
2

— Yz
2 b

Q
, 0<e< (4.19)

/R2 Va(z,y)p? (z,y) dedy =

then introduce the cylindric coordinate (r,0,z) (r > 0, 6 € [0,27)) with z = rcosf,y =

rsin @, and denote

fn(r’e’ Z) = e_inep(xay)U}O(z)’ wO(Z) = 7T_1/46_22/2’ ne AR (420)

Such p exists as we can take p? to be a Dirac distribution concentrated on point (1,0)”

in the limit sense. Then, using the property p = 0 for r < 1, we have

1 00 [ee] 2
L3 et ooty ax = [ e e [T
RBQ 0 0 T

n2

oo
<y —|—n27r/ \p\Qrdr =C1+ 5
0
Furthermore, noticing the proof in Theorem 2.1 and the property of p, we get

e /R TaLa(fn) dx = ~9 /R Tadu( ) dx = =

[ vzl ax =0
R3 2
3\
L (=000 + 5 ) a9 £ dx < 2800

Set f0 = 671 f,(r)5,0,2) = 6~ fu(x/6,y/6,2) for § > 0, then the energy Erot(f2) (4.8)

satisfies
P n? o o te)? 2
Eror(fp) < (C14 )62 40725 =+ G367 = nQ+ Gy, C1,C5>0. (4.21)
Choose
2
52 = |2t .. (4.22)
(’Ya: + 6)
then

0n, > n/Q, for sufficient large n, (4.23)

and we have

20

On / 2)_ —
ErOt(fn ) S (’YI-'—G)( 201 +n ) nQ+C4+QC3/n S (’YI-'—G) \/m TlE-I—C4+QCg/TL
Let n — 400, it is obvious that o (fo") — —oo, i.e. there exists no ground state. 0

Similarly, we can obtain the following results for two dimensional equation (4.11).
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Theorem 4.2 (Two dimensional results) Assume Va(z,y) = 3(v22* +729%) (Yo, vy > 0).
(1) If |Q| < min{~,, vy} and one of the following condition holds,

(1)X>0, 8—\>—eV21Cy;

(2) A <0, B+ (3 +3[nd — DA > —ev2rCy;
where Cy, is given by (3.12), there exists a ground state ¢4 € Sa of equation (4.11).
(it) If B+ AA(1 — 3nd) < —eV2rCy, or |Q| > min{y,, vy}, there exists no ground state of
equation (4.11).

Proof: The proof combines Theorem 3.1 and Theorem 4.1. It is quite straightforward

and we omit it here for brevity. 0

4.3 A numerical method for computing ground states of

(4.11)

In the study of the quantized vortices in rotating BEC, two dimensional model is a starting
point, because vortex structure in two dimensions is relative simpler compared to the three
dimensions case. In this section, we study the quasi-2D equation (4.11). To compute the
ground states, we use a backward Euler Fourier pseudospectral method, which has been
used for computing rotating GPE without dipolar term in literature [166]. The idea is
to use the gradient flow with discrete normalization as the non-rotating case (Chapter
3). After truncation, the gradient flow method with discrete normalization for quasi-2D

equation(4.11) for ¢ := ¢(z,y,t) reads as

[1 B=A+33 5  3) 5
at¢_ QA VYQ-'—QLZ 6\/% |¢| + 2 (anj_nj_ n3A)90 ¢’ (424)

o(z,y,t) = UEQD * |¢|2, (x,y) € U =[a,b] x [e,d], t, <t<tps1, (4.25)

Bosgstuss) i= ooy th) = 2ol len) ey w0, (20)
16( tni1)ll2

¢($,y,t)’8U = (p(xvyvt)laU = 07 t Z 07 (427)

¢(x’y’0) = ¢0(‘T’y)a with H¢0H2 = 1’ (428)

where ¢(x,y, t5) = lim. o(x,y,t).

t—tn
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Hereafter, we use the same notations as in subsection 3.6.1. Then a backward Euler

Fourier pseudospectral (BEFP) discretization for (3.152) read as

B=A+3\3 ., o
7= |1l
gk eV 2T

) ]wk, (4.29)
jk
Jj2—1 K/2-1

1 — - 2jpmw . 2kgm
()O?k :J—K Z Z (()OTL)pqel T ek, (4.30)

¥ 1
I =2 (A%g)

At 9 -y (6;¢n)

+ 19 <yk (0z0")
ik

ik

3\

+ Vil ) - 5 ((azlnm —nd(A%")

ik

Py = (\¢n\2)pq U2D(N, N, —J/2<p<J/2—1,—-K/2<q<K/2—1,

%k .
¢t :H¢z‘ R ¢l = do(zj,u), 0<j<J0<k<K, (4.31)
ik

where U2D is given by (3.16), ¢,, denotes the Fourier coefficients of ®jk, ||¢*|| denotes the

discrete 12 norm of ¢* and A* and 0?

h.n, are pseudospectral approximations of A and

On,n, respectively (see subsection 3.6.1). 97 and 0, are pseudospectral approximations
of 9, and 0, respectively, defined as

i J/2—1 K/2-1
@)= 7= Do D Ayl (4.32)

p=—J/2 ¢=—K/2

J/2—-1 K/2-1

s i T idE(xi—a) i\ (yp—c
(050);= 55 Do D Mpge ¥, (4.33)
p=—J/2 ¢=—K/2

for —J/2 <p<J/2-1, —K/2 < g < K/2 —1. Again, we can introduce stabilization
parameter to the BEFP discretization [12,21]. The above numerical method is implicit
and can be solved explicitly via Fast Fourier transform (FFT). Actually, taking discrete

Fourier transform of (4.29), we have

(145002 + Sop2) (7), = (77) +ae(57) . (4.3

2
) [
ik

with the mesh function S™ for 0 < j < J and 0 < k < K given by

B — X+ 3xn2

_2Asn
6\/% n3( QO)

ik

n n 3)\ S n

2
jk) .

Equation (4.34) can be solved explicitly and then BEFP (4.29) is solved.

—z; (950")

ik

+ i <?/k (0z9")
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4.4 Numerical results

To test the BEFP method for computing the ground states of the quasi-2D equation (4.11),
we report some numerical results in this section.

Example 1. In quasi-2D equation (4.11), we choose Va(z,y) = 3(z?+?), e = 1/V/10,
(n1,n2) = (0.58,0), 5 = 135, A = 125.

Example 2. In quasi-2D equation (4.11), we choose Va(z,y) = %(xQ—i—yz), e =1/V10,
(n1,n2) = (v/0.5,1/0.5), 8 =135, A = 90.

We choose the computational domain as [—8, 8] x [—8, 8] with 257 grid points in each
direction, time step At = 0.005. Ground state is numerically achieved if n}%x ‘¢;}];H _ ;Lk‘ <
1076, To find the ground state, we test different initial data. In the current study, we
choose the ground state of equation (4.11) with A = 0 and same /3, €, or the central vortex
state of it with single vortex, or a linear combination of them.

From Figs. 4.1 & 4.2, we can see that when the rotational speed € is small, there is
no vortex. When 2 becomes larger and larger above a critical value, there are vortices
in the ground state. The critical value of ) for the existence of vortex depends on the
trap Vo, parameter § and A. There are also critical values for n vortices appearing in
the ground state. In the case of 2D equation (4.11) with A = 0 and a radial trap V5,
there have been estimates [130] for such critical value. For our case with A\ # 0, it is
also interesting to estimate the critical value of €. Further mathematical analysis and

numerical investigation will be carried out in future.
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Q=0.2 Q=0.25

Figure 4.1: Contour plots for ground states in Example 1, for different €.

83



4.4 Numerical results

Q=0.2 Q=0.4

Figure 4.2: Contour plots for ground states in Example 2, for different €.
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Chapter

Ground states of coupled Gross-Pitaevskii

equations

In this chapter, we investigate ground state properties of the coupled GPEs modeling a
two component BEC in optical resonators. We analyze the existence, uniqueness as well
as non-uniqueness of the ground states. Efficient and accurate numerical methods are
presented to compute the ground states of the coupled GPEs modeling a two component

BEC with Josephson junction.

5.1 The model

At temperature T" much smaller than the critical temperature T, and after proper nondi-
mensionalization and dimension reduction [117,167], we recall that a two-component BEC
with an internal atomic Josephson junction in optical resonators can be well described by

the coupled Gross-Pitaevskii equations (CGPE) (1.15) in d (d = 1,2,3) dimensions:
i = Hv? + V() + 6+ (Bulunl® + MW)} Y1+ A+ P()Yo,
Bpta = | =52+ V) + (B + Baleaf)] v + 3+ 2P0 5.1

10, P(t) = /Rd yiba (%, 1)1 (%, 1) dx + v P(t), x € R%.
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It is necessary to ensure that the wave function is properly normalized. Especially, we
require
102 = || w2 = /Rd [l (x, D) + (o, 6)2] dx = 1. (5.2)
The dimensionless CGPEs (5.1) conserve the total mass or normalization, i.e.
N(t) = 9,07 = Ni(t) + No(t) = |9 (0> =1, ¢ >0, (5.3)
with

N0 = et = el = [ loPax 0200 =12 (654)

and the energy

E(V) = /Rd B (IV1? + [Va]?) + V(x) (11 |* + [vh2l*) + o |* + Bualvor |2

ﬁll ﬂ22

—_— 4_
+2|¢1|—|—2

o[ + 2\ Re(v192) + 2v Re(v1 P(£),) | dx + v [P(8)]* . (5.5)

In addition, if there is no internal atomic Josephson junction and no photons in (5.1) , i.e.

A = v = 0, the mass of each component is also conserved, i.e.

Ni(t) = /Rd i1 (x,0)]? dx := a, Na(t) = /]Rd [a(x,0)Pdx:=1—a, t>0, (5.06)

with 0 < o <1 a given constant.
In order to study the ground states (stationary states) of (5.1), we substitute the
following ansatz into CGPE (5.1)

o) = a0, ol = ek, PO=peC (57
Then we obtain the time independent CGPE as
por = =572+ VO + 8+ Gualonl + aléaP)| 1 + (3 + )
por= -5V H VO + (Gralorl + Bl 02 + 3+ omlen, (59
==y [ eorx e xR
under the constraint

12]* == [ @3 = /Rd (1 (x)[* + [p2(x)[?] dx = 1, (5.9)



5.1 The model

87

with the eigenvalue p being the Lagrange multiplier or chemical potential corresponding

to the constraint (5.9), which can be computed as
1
po= pw(®) = /Rd {5 (Vo1 + [Val*) + V(x)(I¢1]* + |¢2]%) + 8l¢1|* + Bl [*
+Ba2| 2|t + 2812|812 d2]* + (A + po) P12 + (A + Do) p1d2 | dx.  (5.10)

The eigenfunctions of the nonlinear eigenvalue problem (5.8) under the normalization (5.9)
are usually called as stationary states of the two-component BEC (5.1). Among them, the
eigenfunction with minimum energy is the ground state and those whose energy are larger
than that of the ground state are usually called as excited states.

Similar as dipolar GPE in Chapter 2 and 3, we will formulate the ground state as a
minimization problem. From the nonlinear eigenvalue problem (5.8), in convenience of
studying the ground state, we introduce the energy for stationary states ® = (¢1, ¢2)” of

CGPE (5.1) as

B®) = [ |5 (T0P +196a) + VGOlIorl + [6af) + 616n > + Gualon Pl

pu P22
2 2

2

+ o [+ B o]t 20 Re(¢1<52)} dx —o . (5.11)

/Rd ¢1(X) o (x) dx

where we denote 0 = 42/v (when v = 0, v = 0 and o = 0). In the case of CGPE (5.1)
without optical resonator, E; collapses to E.

Hence, the ground state ®4(x) = (¢9(x), ¢3(x))T of the two-component BEC with an
internal atomic Josephson junction in optical resonators (5.1) is defined as the minimizer

of the following nonconvex minimization problem:

Find (®4 € S), such that

E,:=E,(®,) = glelrsl E (D), (5.12)

where S is a nonconvex set defined as
Si={® = (¢1,02)" | [®|* =1, Es(®) < o0}. (5.13)

If there is no internal atomic Josephson junction and optical resonator in (5.1), i.e. A =
v =v =0, for any given «a € [0, 1], another type ground state ®g(x) = (¢f(x), #3(x))T
of the two-component BEC is defined as the minimizer of the following nonconvex mini-

mization problem:
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Find (@g‘ € Sa), such that

Ey = Ey (95) = qgélsri Ey (®), (5.14)

where S, is a nonconvex set defined as
Sa = {@ = (01.02)" | [61]> = . [2l® =1~ a0, Eo(®) <0},  (5.15)

and the energy functional Fy(®) is defined as

Eo@) = [ |56+ 1V60P) + VP +16a) + 80P + ulen]
43Pl +ﬁ12\¢112\¢212} dx. (5.16)

Again, it is easy to see that the ground state ®g satisfies the following Euler-Lagrange

equations,

p1 Q1 = [—%VQ +V(x)+ 6+ (Bulon | + ﬂ12|¢2|2)} é1,

(5.17)
1
o P2 = [—§V2 +V(x) + (Brz| 1> + ﬁ22|¢2|2)] ¢2, x € RY,
under the two constraints
orlf = [ oGP ax =, feul® = [ leabf dx=1-a. (5.18)
R4 Rd

with 1 and pe being the Lagrange multipliers or chemical potentials corresponding to
the two constraints (5.18). Again, the above time-independent CGPEs (5.17) can also be
obtained from the CGPEs (5.1) with A = 0 by substituting the ansatz

di(xt) = e MG (x),  da(x,t) = e gy (x). (5.19)

It is easy to see that the ground state ®, defined in (5.12) is equivalent to the following
minimization problem

Find (®4 € S), such that

E, (®4) = glelglEs (@) = arél[%)r’ll} Es(a), Es(a) = Doin Es (D). (5.20)

There are some analytical and numerical studies for the ground states of two-component

BEC without internal atomic Josephson junction or optical resonator, i.e. based on the
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definition of (5.14), in the literatures [9, 48,49, 99]. To the author’s knowledge, there
are no analytical results for the ground states of two-component BEC with an internal
atomic Josephson junction, i.e. based on the definition of (5.12). We are going to estab-
lish existence and uniqueness results for the ground states of two-component BEC with
an internal atomic Josephson junction and optical resonator and to propose efficient and

accurate numerical methods for computing these ground states.

5.2 Existence and uniqueness results for the ground states

In this section, we will establish existence and uniqueness results for the ground states of
two-component BEC with and without an internal atomic Josephson junction and optical

resonator, i.e. the nonconvex minimization problems (5.12) and (5.14), respectively. Let

B = ﬁll ﬂ12 ’ (5.21)

512 ﬁ22

we say B is positive semi-definite iff 511 > 0 and (11022 — 5%2 > 0; and B is nonnegative
iff B11 > 0, B12 > 0 and (oo > 0. Without loss of generality, throughout the paper, we
assume (311 > (2. In two dimensions (2D), i.e. d =2, let C}, be the best constant defined
in (3.12). The best constant Cj, can be attained at some H'! function [155] and it is crucial

in considering the existence of ground states in 2D.

5.2.1 For the case with optical resonator, i.e. problem (5.12)
Denote
D= {<I> = (¢1,02)" |V [¢,]> € L'(RY), ¢; € H'(R) N LY (R?), j = 1,2} ;o (5.22)
then the ground state ®, of (5.12) is also given by
Find (®4 € D), such that
Fy = B (®,) = pin B, (@), (5.23)

where

Dy = {@ = (6nan)” [0l = [ (0160 + xRy ax =1} (521
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In addition, we introduce the auxiliary energy functional

E@ﬂ=iéd{%ﬂv¢ﬂ2+lv¢ﬂ5-kUNX)U@F*ﬂ¢ﬂ3-+N¢ﬂﬂ-+ﬁuWﬂﬂ¢ﬂ2
2
o Pz }dx —0 (/ |P1|[¢2] dX) , (5:25)
Rd

2 2
and the auxiliary nonconvex minimization problem

e I e o L DY T R o

Find (®4 € D), such that

E (®y) = min E (D). (5.26)

For ® = (1, 2)7T, we write Es(¢1, d2) = Es(®) and E(¢1, ¢o) = E(®). Then we have the

following lemmas:

Lemma 5.1 For the minimizers ®,(x) = (¢7(x), $3(x))T of the nonconvex minimization
problems (5.23) and (5.26), if —2|\| < o, we have

(i) If ®, is a minimizer of (5.23), then ¢(x) = €1|¢{(x)| and ¢§(x) = €%2|¢§(x)|
with 01 and 0y two constants satisfying 01 = 02 if A < 0; and 0y =0 =7 if A > 0. In
addition, <AI;g = (e3¢, e gbg)T with 03 and 04 two constants satisfying 03 = 04 if A < 0;
and 03 = 04 £ 7 if X\ > 0 is also a minimizer of (5.23).

(ii) If @, is a minimizer of (5.26), then ¢{(x) = €%1|¢9(x)| and ¢3(x) = €%2|¢§(x)|
with 01 and 0y two constants. In addition, E{q = (ei93¢§7,ei94¢g)T with 03 and 04 two
constants is also a minimizer of (5.26).

(111) If @4 is a minimizer of (5.23), then ®4 is also a minimizer of (5.26).

(iv) If B4 is a minimizer of (5.26), then &, = (|¢7], —sign(A)|@])" is a minimizer of
(5.23).

Proof: For any ®(x) = (¢1(x), ¢2(x))” € Dy, we write it as
$1(x) = M Og1(x)],  da(x) = Pga(x),  xeR’ (5.27)

Then we have

Vi (x) = 10 [V|gy (x)| + il¢1 (x)| VO (x)]

' (5.28)
Vo(x) = €2 [V|gg(x)| + [ 2 (x)|VO2(x)] .
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Noticing in the case of o > —2|\|, function h(s) = —2|\|s —0s? (s € [0,50], 0 < 59 < 1/2)

reaches its minimal at so, in view of [ |¢1]|¢2|dx < 1/2, we have

2 2
[ ovinax = -2 [ onlionlax—o ([ lorlloalix)

where the equality can be attained. Plugging (5.28) into (5.11) with ® and (5.25), we

2)\/Rd Re(gblqu) dx — o

obtain

1
Bu(61.02) = Bulal.—sign(Wleal) + | 5 [161PIV01 + [0nP 6P

AN L + sign(\) cos (61 — 62)] \¢1H¢2!} dx, (5.29)
B(o1,02) = B(nlsfoal) + [ 5[161PIVO + 16 ?v0aP] i, (5.30)
Es(|p1], —sign(A)[¢2]) = E(|¢1], [¢2]) < E(¢r1, d2), (5.31)
E(¢l)¢2) S ES(¢1)¢2)5 ) € Dl~ (532)

(i) If @, is a minimizer of (5.23), then we have
B(6, 69) < Ey(|64], —sign(\)|#4]). (5.33)
Plugging (5.33) into (5.29) with ® = ®,, we get
/R S [16t9617 + 1631219031 + 41 1 -+ sien(2) cos(0f — 6] 161641 dx = .

This immediately implies that

Vo) =0, vy =0, 1+ sign(\) cos(0 — 69) =0, (5.34)
and thus
0 A <0,
Hf(x) = 01, Hg(x) = (92, (91 = (5.35)
O +7 A>0.

In addition, we have
Ey(®y) = B, (|6f], —sign(N)]@§]) = Es(®,), (5.36)

which immediately implies that 5g is also a minimizer of (5.23).

(ii) Follows the analogue proof as those in part i) and we omitted the details here.
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(iii) If ®4 is a minimizer of (5.23), noticing (5.29)-(5.31), we have

E(@,¢3) = E(6),168]) = Es(|¢7], —sign(\)|¢3]) = Es(47, 65)
ES(\gbl], —sign )\gbg]) < E ¢1,¢2) (<I>), d € Dy, (5.37)

IN

which immediately implies that ®, is a minimizer of (5.26).

iv) If @, is a minimizer of (5.26), noticing (5.30) and (5.32), we have
g

Ey(®y) = E(|6]], —sign(\)|#3)) = B(167], |63]) = E(¢], ¢3)
< E(¢1,02) < Eo(¢1, ¢9) = Es(®),  ® €Dy, (5.38)

which immediately implies that 5g is a minimizer of (5.23). 0

Lemma 5.2 (strict convezity of E ) Assume that the matrix B is positive semi-definite

and at least one of the parameters A, v1 := P11 — Bog and v := (11 — P12 is nonzero,

—2|\| < 0 <0, for (p1,p2)T with p1,pa >0, VP1, /P2 € D1, then E[, /P1,+/p2] is strictly

convez in (p1,p2).

Proof: Similar to [98] for single-component BEC, the first term in E is convex. The second
and third terms in E are linear and quadratic forms, respectively, since we assume that B

is positive semi-definite, thus these two terms are convex. Now we just need to verify the

convexity of remaining terms. Let ®; = (\/p1, \/—) € Dy and @9 = (\/p), /P T e Dy,
for a € (0,1), then ®(a) = ([ap1 + (1 — @)p}]Y?, [aps + (1 — a)ph)/?)T € Dy. Denote

g(a) = /d[am + (1= a)ph]"? x [apa + (1 = @) ph]'/? dx, (5.39)
R
then consider the remaining terms in E as

R(a) = =2Ag(e) — o (9(e))?. (5.40)

By Cauchy inequality, we have

oV + (1= /oty frh < \Jap + (L= )y x \Jap + (1 —a)ph (5.41)

Thus g(«a) is concave, i.e. g’ < 0. Hence, we get

R'(a) = =20 (¢'(2))” = (20g(a) + 2|A)) " (). (5.42)
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Noticing that g(«) € [0,1/2], under the condition that o < 0 and |A| 4+ § > 0, we have
R'(a) >0, «a€l0,1], (5.43)

which shows the remaining terms in E is convex. The proof is complete. 0

Theorem 5.1 (Existence and uniqueness of (5.26) ) Suppose V (x) > 0 satisfying | l‘im V(x)
X|—00

00, then there exists a minimizer ®° = (¢5°, $3°)T € Dy of (5.26) if one of the following

conditions holds,

(i) d=1;

(i) d =2 and B11 > —Cy, Baz > —Cy, P12 > —Cp — V/Cp + B11vVC + P2;
(i1i) d =3 and B is either positive semi-definite or nonnegative.

In addition, if the matriz B is positive semi-definite and at least one of the parameters ¢,

A, 71 and o is nonzero, —2|\| < o < 0, then the minimizer (|¢5°|, |¢S°|)T is unique.

Proof: First, we claim that E is bounded below under the assumption. Case (iii) is clear.
For case (i), using the constraint ||®|3 = 1 and Sobolev inequality, for any e > 0, there

exists C; > 0 such that

losll3 < i M3l di13 < Ngsll3e < IVesllalidsllz < el Vel +Ce, j=1,2,
which yields the claim. For case (ii), using Cauchy inequality and Gagliardo-Nirenberg
inequality, we have

/RQ (B |pr|* + Baz| 2|t + 2612| 1] p2]?) dx > _Cb/ (v [p1]2 + ’¢2\2)4 dx

RQ

> _/11@2 (\/!¢1\2 + \¢2!2>2 dx/]R2 (Vv P11 + !¢2\2)2 dx
> [ (90 +[90aP) da,

which also leads to the claim. Thus, in all the cases, we can take a minimizing sequence
®" = (¢7,#%)T in Dy. Then there exists a constant C such that [|[Vé?| + |Vey|| < C,
@2 lla + [|¢5]ls < C and [a V(x)(|67(x)]? + |¢5(x)|*)dx < C for all n > 0. Therefore

" and ¢} belong to a weakly compact set in L*, H! = {¢ | ||6]> + |[V9|? < oo},
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and L} = {¢ | [paV(X)|6(x)]? dx < oo} with a weighted L*-norm given by |[¢[ly =
[fra |6(x)|?V (x)dx]*/2. Thus, there exists a ®*° = (¢3°,¢3°)7 € D and a subsequence
(which we denote as the original sequence for simplicity), such that
or = ot dh =3, mL*NLinLy,
(5.44)
Vol = Ve, Vi = Ve,  in L7
Also, we can suppose that ¢] and ¢3 are nonnegative, since we can replace them with
|¢7| and |¢%|, which also minimize the functional E. To show that E attains its minimal

|> =1, then the functional E can be re-written as

at ®>°, we recall the constraint ||®"

~ 1
-ﬂ%@%=A;kﬂwﬁﬁ+wwﬁ+V&MMW+M@3+MMF+mﬁ%ﬂ£F

P11 Ba2

2
+ ot Z2iog1t+ 1 — o3| ax— M - ([ otoyax)
Rd

First, we show that for any given € > 0,
/ Bia |67°12|0°|2dx < liminf/ Bia |72 |p%]%dx + €. (5.45)
Rd n—oo Rd

When 315 > 0, this is obviously true. For general B2, we decompose R? into two parts,
a bounded region Br = {|x| < R} and B% := R?\ B, such that V(x) > 1/n on B%,

where 7 > 0 sufficiently small, using the assumption lim V(x) = co. Then [ B}c%(|¢7f|2 +

|x|—o0

|p2]?)dx < Cn. In B, using the Sobolev-Gagliardo inequality, for d = 3 and 2* = 6, we

have
2
[ ettax <ot ([ joriax) < moivenl < MO (540
By Br
where M is a constant. Thus, by choosing R sufficiently large, we have

15
S rdx < ———— for all n. 5.47
/B§| A 2(1 + |r2]) (547)

In the case of d = 1, using the Sobolev inequality
Flloo < /N2 IFll2s  forall fe H' (R, (5.48)
and in the case of d = 2, using the Sobolev type inequality

IF1E < CUV IS+ 1£13), for all f € H'(R?), (5.49)
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we can get the same result.

The same conclusion holds for ¢4. Notice that for ¢{° and ¢5°, by the weak lower
semicontinuous property of L*(R%)-norm, H'(R?)-norm and L? (R%)-norm, we can have
Vel + IVeFll2 < C, [16%0a + 65l < C and fpa V(x)(65°]* + [¢3°*)dx < C.

Following the above arguments, the same conclusion holds for ¢$° and ¢5°, i.e., we have

4 g 4 15 .
Py < & / ©hgx<—— 5 i_12 n>0 (550
/B% 971 21+ B2])” JB 977 2(1+1Bual)’ 7 (5:50)

c
R

Then, by the Cauchy-Schwartz inequality, we have

1/2 1/2
/ Bual 721082 dx| < wm(/ |¢?|4dx> (/ |¢3|4dx>
B B, B,
< % n 20, (5.51)
and
g
| Bulorpior? x| <5 (552)
B%

Next, in the ball Br, applying the Sobolev embedding theorem, the strong convergence

holds,
Gt — 6. 6b — oF,  in L*(Br) N L*(Bg). (5.53)

By writing

Biol 721682 dx — / Brol 621652 dx

Br Br
< 18| [ [ (1082~ 16 logP? ax] + \ [ (s = o) P dx}
Br Br

< C (167 — 6 s + 165 — 611181 (5.54)

we have

| PP P 9P dx = lim | Bl (Pl dx. (5.55)

Hence, the inequality (5.45) holds by combining the above results.

By a similar argument, we can prove that ¢ — ¢3° in L’NL* (j=1,2),

imsup | [ (01 +logyix— [ Qo +loyix| < - (5.56)

n—oo
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Since L*(R%)-norm, H*(R%)-norm and L? (R%)-norm are all weakly lower semicontinuous,
we have

E(¢5°,¢3°) <liminf B(¢f,¢5) +e, >0, (5.57)

which immediately implies that E(®>) < hnrr_1>1£fE(<I>") Moreover, &> € D; by (5.56)
which implies the existence of minimizer of the problem (5.26).

If the matrix B is positive semi-definite and at least one of the parameters A, v; and
Y is nonzero, —2|A| < ¢ < 0, the uniqueness of (|¢$°],]¢5°|)” follows from the strict
convexity of E. For the case & #% 0 and A = y; = 9 = 0 = 0, the uniqueness is easy to

derive. 0

Remark 5.1 Under the same conditions, we can prove the existence of the minimization

problem (5.12). The proof is straightforward.

Notice that the the results in Lemma 5.1, Remark 5.1 and Theorem 5.1, we immediately

have the following existence and uniqueness results for the ground states of (5.12):

Theorem 5.2 (Existence and uniqueness of (5.12)) Suppose V(x) > 0 satisfying lim V(x) =

|| =00

oo and at least one of the following condition holds,

(i) d=1;

(i) d =2 and B11 > —Cy, Baz > —Cy, and P12 > —Cp — /Cp + B11VCh + Baz;
(i1i) d =3 and B is either positive semi-definite or nonnegative,

there exists a ground state ®, = (¢7,83)T of (5.12). In addition, if o > —2|)|, &;g =
(e?1|¢9|,e2|p3|) is also a ground state of (5.12) with 01 and 09 two constants satisfying
01 — 05 = 7 when A > 0 and 01 — 03 = 0 when \ < 0, respectively. Furthermore, if the
matriz B is positive semi-definite and at least one of the parameters §, A, v1 and ~s is
nonzero, —2|\| < o < 0, then the ground state (¢, —sign(\)|¢3|)T is unique. In contrast,

if one of the following conditions holds,

(i) d=2 and p11 < —C or fae < —Cy or B2 < —Cp — /Cy + B11VCh + P22 ;

(ii) d=3 and 11 <0 or Bog < 0 or B3 < 0 with ﬂ%Q > (11022.
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there exists no ground state of (5.12).

Proof: The first part of the theorem follows from Theorem 5.1. We are going to prove
the nonexistence results.

In 2D case, i.e. d =2, let ¢(x) € H'(R?) such that ||p|s = 1 and C, = || Ve|13/|l¢ll3
[155]. Consider ®° = (¢5, ¢5)7, where ¢5(x) = Ve Tp(x/¢), ¢5(x) = V1 — e Lp(x/e),

0 €10,1], e > 0. When 117 < —C}, choose 6 = 1, we have

Bu L+
lelli+00) = -2 Vel3 + o), £ — 07,

1
Ey(9°) = @HVPH% +

thus hm+ E4(®°) = —00. When (33 < —Cy, choose 6 = 0, similarly we can draw the same
e—0

conclusion. When (17 > —CY, P22 > —Cj and (13 < —Cy — /Cy + 511/ Cp + P22, choose

_ _ Boa—Pi2
0 = ﬁ11+2§22*2ﬁ12’ then

ﬁ11ﬁ22 - 5%2

= 02611 + 26120(1 — 0) + Baa(1 — 0)° = < =Gy,
Bo Bi1 +26120(1 — 0) + Baa( ) Bt B — 200 b
and
1+ 2 )
By(#) = — £ Vel3 +0(1), & — 0",
then liH(l) E4(®%) = —oo. Thus there exists no ground state in these cases.
E—

In three dimensions (3D) case, i.e. d = 3, choose ®° = (¢5,¢5)T, where ¢5(x) =
ﬁexp(ﬂxp/%), ¥5(x) = (a—v;)g/i exp(—|x[?/2¢), 6 € [0,1], ¢ > 0. When £1; < 0,
choosing § = 1, we obtain

B

Es(q)e) = 015_1 + 7(271'6)_3/2 + O(l), £ — 0+,
which shows lim+ E(®°) = —o0. When (92 < 0, choose 6 = 0, the same conclusion holds.
e—0
When 811 > 0, 320 > 0, 312 < 0 and (3% > B11522, choose 0 = % € (0,1), then

ﬁ11ﬁ22 - ﬁ%z

= 02811 + 2B120(1 — 0) + Paa(1 — 0)* = <0,
B P11 + 26120( ) + Ba2( ) Bir + Bas — 2512
and
Ey(9°) = Ce ' + %(%e)*?’/? +0(1), -0t
thus lim+ E4(9%) = —o0o. The above results imply that there exists no ground state in
e—0
such cases. 0

When B is nonnegative, we have the following uniqueness results for the ground states

of (5.12):
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Theorem 5.3 Suppose V(x) > 0 satisfying | l‘im V(x) = 00, the matriz B is nonnegative
X|—00

satisfying P11 = Paz > 0, at least one of the parameters 6, N\, vy1 and 7y is nonzero,

—2|A| <0 <0, and § # 0 if B12— P11 > 0, then the ground state D4 = (|¢9], —sign(A\)|¢3])T

of (5.12) is unique.

Proof: If B is nonnegative and (311 = P22 > (12 > 0 which immediately implies that B
is positive semi-definite, since at least one of the parameters J, A, 71 and -y, is nonzero,
o <0 and [A| + % > 0, the uniqueness of the ground state ®, follows immediately from
Theorem 5.1.

If B1a > P11 = Bz > 0, for any ® = (¢1,¢2)T € Dy, let

1 1
= Lot én. _ Lo~ 5.58
»1 \/5(% $2) ©2 \/5(¢1 $2) (5.58)
Suppose that ®, = (¢7, ¢3)” is a nonnegative minimizer of (5.26), then the corresponding
(¢, 9)T is a minimizer of the following energy functional
E(p1,¢2)

1
= /Rd {5 (IVe1l? + Ve2l?) + V(x) (le1* + l2l?) + (3611 — Bi2)lw1]?[ 2] + dRe(p152)

2
(0= 20 e+ 22 a1k ]| ax = ([ o) (5.59)

under the constraint [pq(|¢1(x)[* + [p2(x)]?) dx = 1.
P + 3011 — p
Noticing that the matrix 11+ bz H 2 is positive semi-definite in this

311 — B2 Bir + B2

case and 4 is nonzero, using the results in the Theorem 5.1, we can obtain the uniqueness
of the ground state (¢7,¢3)” to the problem (5.59) with ¢ > 0. Thus the uniqueness of
the ground state @, = (|¢{|, —sign(\)|¢3])T of (5.12) follows immediately. O

Theorem 5.4 Suppose V(x) > 0 satisfying |x1\igloo V(x) =00 and A=0 =0.

(1) If 6 > 0, B2 > Pz and Br1 > P22 > 0, then the ground state &4 = ( DT of
(5.12) must satisfy ¢ =0 and |¢9] is unique.

(11) If 6 < 0, B2 > P and PBaa > P11 > 0, then the ground state 4, = ( g,gf)g)T of

5.12) must satisfy ¢ = 0 and |¢?] is unique.
2 1
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Proof: (i) Suppose ®, = (¢, %) be a nonnegative minimizer of (5.12). Consider

013) =0, da(x) = /|12 + (07, x € R (5.60)
Then, ® = (¢, #2)T € Dy and satisfies
[ [woaPax < [ (96 + [9e800 ] ax
Rd Rd
L V60 (9160 +6260P) dx = | Vo (660 + 6360R) ax, (501
/Rd %|¢2(X)|4dx < /]Rd % [ﬂ11|¢£1?|4 + ﬁ22|¢§|4 + 2ﬂ12l¢€l2l¢§’l2] dx.
Thus,
Ey(®) = Ey(¢1,62) < a6}, 63) = Ey(®,) < Ey(®). (5.62)

So, the above inequalities must be equalities, which leads to our conclusion. The unique-
ness of |¢3] is also easy to see.

(ii) Follow the analogous arguments as in part (i) and the details are omitted. 0

Lastly, we stress that, if B is not positive semi-definite, the uniqueness of the ground
state of (5.12) may not hold. Actually, we have the following result in contrast with
Theorem 5.3.

Theorem 5.5 Suppose V(x) > 0 satisfying lim V(x) =00, d =0 =0 and (12 > P11 =
Boo > 0, then there exists a constant Ag > 0, |;‘L:/zothat for A € (—Ao, Ng), the ground state
D, = (|6, —sign(N)|o3))T of (5.12) is not unique.

Proof: Let ®; = (¢#9,¢9)T be the nonnegative minimizer of (5.25) in the subset of D;
{® = (¢1,02)" €,01 =2} and P2 = (0,¢)” be the nonnegative minimizer of (5.25) in
the set {@ = (¢1,02)T € Dy, 91 = 0}, then we know

E(® = i E(® 5.63
(®1) oo o, (@) (5.63)
1
= min, [ fSiwer 4 veole? + PUER2 g}
lplla=1 Jgra | 2 4

and

o Lo 2 P
By = min [ {31902+ voaio + Gliolt pax. (5.64)
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Since 312 > (11, we have

_ . 9 2 ﬁn—f—ﬁm 4}
- Hglll;nl/w{ VP + VP + 2t Py

— mi ZIVe|2 2 4 ﬁn 4}
u?ﬁi“%ﬂﬂw + V)6 + Sl

> 0.
Thus, for A € (=Ag,Ag), E(®)) > E(®,), which implies that for ground state P, =
(69, 99)T of (5.12), |¢]| # |¢3|. But under the assumption, we can see that if , = (¢, ¢3)7
is a ground state of (5.12), then (¢3,¢7)7 is also a ground state. So, the minimizer

P, = (|¢]|, —sign(\)|¢3])T of (5.12) can not be unique. O

Remark 5.2 In the above theorem, for ground state ®, = (¢, ¢3)T, we have (|¢],|43])

18 unique under the permutation of subindez.

Remark 5.3 When § = A = 0 = 0 and (511 = B12 = P2 > 0, the nonnegative ground
state 4 of (5.12) is not unique.

Remark 5.4 Similar to the results in [38, 40, 57], for any fixred f11 > 0 and [ag > 0,
the phase of two components of the ground state ®4, = ( ﬁ’,qbg)T will be segregated when

P12 — oo, t.e. @4 will converge to a state such that qbi] . qb‘g =0.

Remark 5.5 If the potential V(x) in the two equations in (5.1) is chosen different in
different equations, i.e. Vj(x) in the jth (j = 1,2) equation, if they satisfy V;(x) > 0,
lim Vj(x) = oo (j = 1,2), then the conclusions in the above Lemmas and Theorem

|x|—o0

5.1-5.2 are still valid under the similar conditions.

5.2.2 For the case without optical resonator and Josephson junction, i.e.

problem (5.14)

If « =0 or 1 in the nonconvex minimization problem (5.14), it reduces to a single com-
ponent problem and the results were established in [98]. Thus here we assume a € (0,1).

Denote

/811 = aﬁlh 6&2 = (1 - Oé)ﬁgg’ /812 =V Oé(l - a)ﬁle CY/ = Oé(l - Oé).

Then the following conclusions can be drawn.
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Theorem 5.6 (Existence and uniqueness of (5.14)) Suppose V(x) > 0 satisfying lim V(x) =

|| =00

oo and at least one of the following condition holds,

(i) d=1;

(it) d =2 and B}, > —Cy, Bhy > —Cy, and By > —+/(Cy + 071)(Ch + Bhy);

(i1i) d = 3 and B is either positive semi-definite or nonnegative,

then there exists a ground state ®, = (¢4, ¢3)1 of (5.14). In addition, 59 = (e1|pd), 92| 43))

is also a ground state of (5.14) with two constants 61 and 6. Furthermore, if the matriz
B is positive semi-definite, the ground state (|¢7|, |#3))T of (5.14) is unique. In contrast,

if one of the following conditions holds,
(i) d=2 and Bj; < —C} or By < =Cj or Py < —2%/; (afiy + (1= a)Byy + C));
(ii) d =3 and B11 <0 or By <0 or fia < —%(azﬁn +(1— 04)2/622).

there exists no ground states of (5.14).

Proof: The proof is similar to those of Theorems 5.1 and 5.2 and it is omitted here for

brevity. 0

5.3 Properties of the ground states

In this section, we will show some properties of the stationary states and find the limiting

behavior of the ground states when either |A\| — oo or |§] — oo.

Theorem 5.7 Suppose that V(x) > 0 and (11 = P12 = P22 = 0 = 0, for the stationary
states of (5.8) under the constraint (5.9), we have

(i) The ground state ®, = (¢7,¢3)T is the global minimizer of E(®) over the unit
sphere S.

(11) Any excited state ®; = ( {,qb%)T (7 =1,2,...) is a saddle point of E(®) over the

unit sphere S.
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Proof: Let ®. = (¢$,#5)” be the solution of (5.8) under the constraint (5.9) with 3;; =
Bi2 = P22 = 0 and p. be the corresponding eigenvalue. Obviously, ||[P.|l2 = 1 and
pe = E(®.). For any function ® = (¢1, ¢2)” with E(®) < co and ||®. + ®||2 = 1, we have
123 = [[(@e + @) — 3 = 17 + d1) — 115 + [1(65 + 62) — 513
— @+ BB~ I~ [ [656n + Gi6n + g5 + Gon] dx
R

= = [ 1651+ G501 + d50n + d50n] dx. (5.65)

From (5.11) with ¥ = ®, 4+ @, noticing (5.8) and (5.65) and integration by parts, we
get
E(B.+®) = E(@.)+E(®)+2Re [ [—%v%i (V%) + 0)5 + A5 b1 dx
Rd
+2 Re { %V2¢§ + V(x)e5 + )\qﬁ} b9 dx

= B(®)+ B@®) + e [ [6561+ 661+ 6500+ Gion] dx

= E(®c) + B(®) — pe|@I3

= E(®c) + [B(®/||®]2) — pe] |21 (5.66)

(i) Taking ®. = ®4 and pe = 14 in (5.66) and noticing E(®/||®||2) > pg for any @ # 0,
we get immediately that @4 is a global minimizer of E(®) over S.

(ii) Taking ®. = ®; and e = p; in (5.66), since E(®,) < E(P;) and it is easy to find
an eigenfunction ® of (5.8) satisfying ||®|| = 1 such that E(®) > E(®;), we get immedi-

ately that ®; is a saddle point of the energy functional E(®) over S. 0

When |A] — oo or |§| — oo, we have the following limiting behavior of the ground

states of (5.12).

Theorem 5.8 Suppose V(x) > 0 satisfying ‘1|im V(x) = oo and B is either positive

semi-definite or nonnegative. For fized V(x), B, o and §, let ®* = (¢7,$3)T be a ground
state of (5.12) with respect to A\. Then when |\| — oo, we have

1131 =¢%lls = 0, j=1,2, E(®) ~ 2E1(¢7) — [N, (5.67)
where @9 is the unique positive minimizer [98] of

Bi(@) = [ | [§196 + Vibolof + 1ol ax (5:69
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under the constraint
1
ol = 1oll5 = / |6(x)|? dx = 5 (5.69)
Rd

with
_ Bu + Baz + 2612
5 )

B (5.70)

Proof: Without loss of generality, we assume A\ < 0. In the case of |A| sufficient large,
we can assume that the ground states ®* = ( i\,qﬁé\)T satisfy gb;‘ > 0,5 =1,2. Since

(¢9,¢9)T € Dy, we have

E(¢7,63) < E(¢%,¢°). (5.71)

Noticing
2ol galdx = N [ (on] = foal)* = I (5.72)

we have
E(##,6%) = 2B1(¢°) — A = 7. (5.73)

Plugging (5.73) into (5.71) and noticing (5.72), there exists a constant C' > 0 such that

C
oM + ol <C llér — o |12 < R Al >0, (5.74)
this immediately implies
¢ — ¢ — 0in L?, as |A| — oo. (5.75)

Using the similar arguments as in the proof of Theorem 5.1, we can see that there exists

P> = (¢3°,¢5°)T € Dy such that

¢ = ¢, ¢y — ¢, inL*NL*NLY,
(5.76)
Vér = Ve,  Vey = Ve,  in L7
and
E(¢7,¢3°) < liminf E(67, 63). (5.77)

These together with (5.75) imply that

PT° = 957 == 9%, (5.78)
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Plugging (5.78) into (5.25), we obtain

E(6,¢) = 205(¢™) ~ A~ 7 < lminf E(6}.63) < limsup E(6}, ¢})

[A] =00 [A| =00

< 2E1(¢7) — [N - %, (5.79)
and
Ey(6™) < Ei(¢7). (5.80)

Since qﬁi\ and gb%‘ are nonnegative and gb{‘ converges weakly to ¢ in H', there exists
a subsequence such that gbi‘" converges to ¢> a.e. in any compact subset, which shows
$> is nonnegative. Recalling that ||¢>||? = ||®*||2/2 = 1/2 and ¢ is the unique positive
minimizer of (5.68) under the constraint (5.69), we conclude that ¢> must be equal to ¢9.
Therefore, all inequalities above must hold as equalities. Thus, with (5.75), we can obtain

the norm convergence,

ol = Ne7llz, 16212 — ll¢%]l2,

A . (5.81)
IVoillz = [IVell2,  IVe2ll2 = (VP2

Now, the weak convergence and the norm convergence would imply the conclusion since

H' is a Hilbert space. O

Theorem 5.9 Suppose V(x) > 0 satisfying ‘llim V(x) = oo and B is either positive
X|—00

semi-definite or nonnegative. For fired V(x), B, o and \, let ®° = (63, ¢3)" be a ground

state of (5.12) with respect to 6. Then when § — +00, we have
16312 — 0, |l 1¢3] = &7]l2 — O, E(®°) = Ex(¢9), (5.82)
and when § — —oo, we have
11651 = ¢%lla — 0, [|¢5]l2 — O, E(®°) ~ Ex(¢7) + 6, (5.83)
where ¢9 is the unique positive minimizer [98] of
1 p
Ba) = [ [5IV0P + VGolol + Flol*| ax (5.5)
Rd
under the constraint

Joll? = 161 = [ 1o dx =1 (5.55)
with B = Pog when § > 0, and B = (B11 when § < 0.
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Proof: Using the fact (0,¢9)7 € D; when § > 0 and (¢9,0)7 € D; when § < 0, the results

can be established by a similar argument as in Theorem 5.8. 0

5.4 Numerical methods

In this section, we will propose and analyze efficient and accurate numerical methods for
computing the ground states of (5.12) without optical resonator, i.e. ¥ =v = o = 0. This
is motivated by the research of atomic laser, produced by a two-component BEC without
optical resonator. In this section and the following sections, we will always assume that

there is no optical resonator in (5.1).

5.4.1 Continuous normalized gradient flow and its discretization

In order to compute the ground state of two-component BEC with an internal atomic
Josephson junction (5.12), we construct the following continuous normalized gradient flow

(CNGF):

%?t) = EVZ —V(x) =6 = (Bule[* + 512|¢2|2)} b1 — A2 + pa(t) b1,
Opa(x,t) [1 (5.86)
% = [§V2 = V(%) = (Bral 1] + ﬁ22|¢2|2)] bo — Ap1 + pa(t) b2,

where ®(x,t) = (¢1(x,t),¢p2(x,t))T and pue(t) is chosen such that the above CNGF is

mass or normalization conservative and it is given as

1ot) = THrTE foa|3 (TP + 90P) 4 VOO + 16 + 86

+B11|p1[* + Bazlpal* + 2812]61|?|pa|? + 2\ Re(p1h2) | dx

O(-, ¢t
e

For the above CNGF, we have
Theorem 5.10 For any given initial data

B(x,0) = (41(x), $3(x))" := 2 (x),  xeR, (5.88)
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satisfying | ®©)||? = 1, the CNGF (5.86) is mass or normalization conservative and energy

diminishing, i.e.

|®(, 1) = @)% =1, E(®(-,t) < BE(®(-,s)), 0<s<t. (5.89)

Proof: Follow the analogue proofs in [15] for single-component BEC and in [26] for spin-1
BEC. We omitted the details here. 0

Using an argument similar to that in [132], when V' (x) > 0 satisfying |Xl‘iir1OO V(x) = oo,
B is either positive semi-definite or nonnegative, and ||[®©)| = 1, we may get as t —
00, ®(x,t) approaches to a steady state solution, which is a critical point of the energy
functional E(®) over the unit sphere S or an eigenfunction of the nonlinear eigenvalue
problem (5.8) under the constraint (5.9). In addition, when the initial data in (5.88) is
chosen properly, e.g. its energy is less than that of the first excited state, the ground state

®, can be obtained from the steady state solution of (5.86), i.e.
By(x) = lim &(x,t),  x€ R (5.90)
—00

For practical computation, here we also present a second-order in both space and time
full discretization for the above CNGF (5.86). For simplicity of notation, we introduce the
method for the case of one spatial dimension (1D) in a bounded domain U = (a,b) with

homogeneous Dirichlet boundary condition
®(a,t) = ¢(b,t) =0, t>0. (5.91)

Generalizations to higher dimensions are straightforward for tensor product grids.
Choose time step k = At > 0 and let time steps bet,, =nk=n At forn=20,1,2,..;
and choose spatial mesh size h = Az > 0 with h = (b — a)/M for M a positive integer
and let the grid points be z; = a+jh, j =0,1,2,..., M. Let &} = ( T gyj)T be the
numerical approximation of ®(x;,t,) and ®" be the solution vector with component <I>§-L.

In addition, denote CI);LH/Q = ( ?jl/z’ qbgjl/z)T with
+172 1 )
op :§(¢Zj+1+¢}fj>, j=01,2,... .M, 1=12 (5.92)

Then a second-order full discretization for the CNGF (5.86) is given, for j = 1,2,..., M —1
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and n > 0, as

e R el Y e ) iy i

5J 5J — 5J 5] . o ’I’L n n

k e Viz)+ 5 o5 = 0t

1 n n n+1/2
G +W+wmﬂ)+ﬁu0¢“ﬁ+wwrﬂ Y2 (5.93)

n+1 n n+1/2 n+1/2 n+1/2
or 95, _ P+ T 2095 T P [V(m-) n+1/2} ¢n+1/2 ¢n+1/2

k 2h2 J

—% [512 <|¢n+1|2 + |¢?,j|2) + B2z (|¢n+l|2 + |¢2,]| )} n+1/2’ (5.94)

where
n+1/2 D;}";/Q
Pon' = = M , n >0, (5.95)
’ n+1/2 n+1/29
z(w+/w+w+/w
Jj=
with
M-1, 2
n+1/2 n+1/2 n 1/2 n+1/2 n+1/2
DR = 0 {3 (et — iy o+ Vel ) et e
7=0
1 n n n+1/2 n n+1/2
B (OTs P+ 16T, PSP 4+ S (655 P + 163, P65 /2P
1

380 (655 + 163,602 + (61 PL+ 1615 s P

+2) Re (¢”+1/2¢”+1/2) } (5.96)
The boundary condition (5.91) is discretized as
ot =it = bt = ¢”+1 =0, n=0,1,2,.... (5.97)
The initial data (5.88) is discretized as
o=, ooy =ah(wy), =01, M (5.98)
Similarly, for the above full discretization for the CNGF, we have

Theorem 5.11 For any given time step k > 0 and mesh size h > 0 as well as initial data
) in (5.88) satisfying ||®°|| = 1, the full discretization (5.93)-(5.98) for CNGF (5.86)
s mass or normalization conservative and energy diminishing, i.e.
2
Ngp:=nh Z Z \W,j’z = Ng,:=h Z |67 ()], n>0, (5.99)

=0
Ef, <Ef<---<Eg,, n >0, (5.100)
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where the discretized energy Eg , is defined as

M-1, 2
mn 1 n n n n
Esp = h Z {Z (W\ﬁbl,jﬂ - ¢l,j’2 + V(xj)]¢l7j]2> + 5‘¢1,j‘2

=0 1

=

1 n 1 n n n n in
Fg Pl I+ omlohi I+ Balot Pl + 27 Re (61,04,) }6.101)

Proof: Follow the analogous arguments in [26] for spin-1 BEC and we omitted the details

here. 0

In the above full discretization, at every time step, we need to solve a fully nonlinear
system which is very tedious in practical computation. Below we present a more efficient

discretization for the CNGF (5.86) for computing the ground states.

5.4.2 Gradient flow with discrete normalization and its discretization

Another more efficient way to discretize the CNGF (5.86) is through the construction of

the following gradient flow with discrete normalization (GFDN):

0 1
% = [§V2 —V(x) =6 — (Bulor|* + 512!(752\2)] P1 — A2,
b0y [1 (5.102)
S = |57~ V60— (Bl + pmloal)| 02 = 2n, tu <t <t
followed by a projection step as
O1(X,tyy1) == qbl(x,tiﬂ) = UZ"H 1(x,t, 1), =12, n>0, (5.103)

where ¢;(x, tf;_l) = lim ¢i1(x,t) (1 =1,2) and o] (I = 1,2) are chosen such that

“lnt1

100t )2 = ll61(x, s )| + o2, tas ) [P =1, 1> 0. (5.104)

The above GFDN (5.102)-(5.103) can be viewed as applying the first-order splitting
method to the CNGF (5.86) and the projection step (5.103) is equivalent to solve the
following ordinary differential equations (ODEs)

8¢1 (X, t) 8¢2 (X, t)

o o pa (1) 2, tn <t <tpya, (5.105)

= Up (t)¢17
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which immediately suggests that the projection constants in (5.103) are chosen as

ottt =of™ n>o0. (5.106)

1 1
%Gl florCtr )+ 6t

n>0. (5.107)

In fact, the gradient flow (5.102) can be viewed as applying the steepest decent method to
the energy functional E(®) in (5.12) without constraints, and (5.103) project the solution
back to the unit sphere S. In addition, (5.102) can also be obtained from the CGPEs
(5.1) by the change of variable ¢ — —i ¢, that is why this kind of algorithm is usually
called as the imaginary time method in physics literatures [9,15,50,126]. From numerical
point of view, the GFDN is much easier to discretize since the gradient flow (5.102) can
be solved via traditional techniques and the normalization (5.104) is simply achieved by
a projection (5.103) at the end of each time step.
For the above GFDN, we have

Theorem 5.12 Suppose V(x) > 0 and (511 = (12 = P22 = 0, then for any time step k > 0
and initial data ®©) in (5.88) satisfying | @) = 1, the GEDN (5.102)-(5.103) is energy

dimainishing, i.e.
E(®(-tnt1)) < E(®(-,t,) < -+ < B(®(-,0)) = E(®Y), n=0,1,2,... . (5.108)

Proof: Follow the analogous arguments in [15] for single-component BEC and we omit

the details here. 0

Again, for practical computation, here we also present a modified backward Euler

finite difference (MBEFD) discretization for the above GFDN (5.102)-(5.103) in a bounded
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domain U = (a,b) with homogeneous Dirichlet boundary condition (5.91):

1,07, 1
% =572 (97 1 — 2015 + 01 j1] — [(V(25) + 0+l 67 ; — Ad3
- (511|¢7f,j|2 + ﬂ12|¢§‘,j|2) o7, tagt,;, 1<j<M-1,
P25~ Py _ 1 (031 — 268 + 65, 1] — [V(2;) +a] 61, — AG: (5.109)
A = 972 P25+ 2,7 2,j—1 Tj) T @1 Lj :
— (Bral @t jI* + Baaldt ;1) 95+ ads;, 1<j<M—1,
b5
Pl = I j=0,1,....,.M, n>0, [=1,2;
b o]

where a > 0 is a stabilization parameter chosen such that the time step k is independent

of the internal atomic Josephson junction A\ and

J@% = | B D7 It 12 + log,[2]. (5.110)

M—1
j=1
The initial and boundary conditions are discretized similarly as those for CNGF.

For the above full discretization for the GFDN, we have

Theorem 5.13 Suppose V(x) > 0 and 11 = P12 = Po2 = 0, if a > || + max(0, —9),
then the MBEFD discretization (5.109) is energy diminishing for any time step k > 0 and
initial data ®©) satisfying |||, =1, d.e.

Egj;} <SEgp<--< Eg,h = Eg0 n >0, (5.111)
where the discretized energy Eg |, is defined in (5.101) with (11 = Pra = Pa2 = 0.

Proof: Denote

" = (¢711’17 ¢7f,27 ce 7¢?,M—17 (bg,lv ¢3,27 s 7¢3,M—1)T7
F = diag(V(xl), V(xg), e ,V(xM_l), V(.%'l), V(.%'Q), ey V(xM_l)),
G 0 Olyr—1 M1 (a —|—5)IM_1 My—q

D= Dy = Dy =
0 G )\IM—l 0 )\IM—l OéIM_l

)

where Ip;_q is the (M — 1) x (M — 1) identity matrix and G is an (M — 1) x (M — 1)
tridiagonal matrix with 1/h? at the diagonal entries and —1/2h? at the off-diagonal entries.

Let
T=D+F+Dy=D+F+ D+ alyp_s. (5.112)
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When 311 = 12 = B22 = 0, the MBEFD discretization (5.109) reads

o — P
— = —(D+ F + D9)®" + ad®" = —TP* + ad",
o (5.113)
n+l __

— >0
o, T

and the discretized energy Eg ) in (5.101) with 17 = P12 = P22 = 0 can be written as
Ef ), =h(®")(D+ F + D1)®" = h(®",T®") — af|®" |3, (5.114)
where (-, ) is the standard inner product. From (5.113), we have
(I+kT)®* = (1+ak)®", n>0. (5.115)

If & > |A| + max(0, —¢), then T is positive semi-definite, notice (5.114) and (5.115), using

Lemma 2.8 in [15], we get

O TP*) (14 ka)®™, (1 + ka)Td™)
En+1 o q)n+1 2 — h q)n+1 T(I)n+1 — ( ) < )
aa — e (@™ )= @ = (@ ka)or, (11 ha)@")

= W@®",T®") = Eg, —af @]z, n>0. (5.116)

Thus the conclusion follows immediately from the above inequality and the fact that||®"||;, =

12" = 1. 0

In fact, when o = 0, the MBEFD discretization (5.109) collapses to the standard
backward Euler finite difference scheme [15]. In addition, from the proof in the above

Theorem, in practical computation, we can choose o = |\| + max(0, —9).

5.5 Numerical results

In this section, we will report the ground states of (5.12) in 1D computed by our numerical
method MBEFD (5.109). In our computation, the ground state is reached when [ ®"+1 —
®"|| < e := 1077, In addition, for ground state of two-component BEC with an internal
atomic Josephson junction (5.12), we have A «— —\ <= ¢ < —¢3, and thus we only
present results for A < 0.

Example 1. Ground states of two-component BEC with an internal atomic Josephson

junction when B is positive definite, i.e. we take d =1, V(z) = %xQ and (11 : P12 : Boo =
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(1:0.94:0.97)3 in (5.12) [9,87,88]. In this case, since A < 0 and B is positive definite
when 8 > 0, thus we know that the positive ground state ®, = (¢1, $2)” is unique. In our
computations, we take the computational domain U = [—16,16] with mesh size h = 35

and time step & = 0.1. The initial data in (5.88) is chosen as

1 2
o (x) = ¢S(x) = ﬂ1/4\/§e_$ 2, x € R. (5.117)

In fact, we have checked with other types of initial data in (5.88) and the computed ground
state is the same.

Fig. 5.1 plots the ground states ®, when ¢ = 0 and A = —1 for different 3, and Fig.
5.2 depicts similar results when 6 = 0 and 8 = 100 for different A < 0. Fig. 5.3 shows mass
of each component N(¢;) = ||¢;||* (j = 1,2), energy E := E(®,) and chemical potential
p = p(®,) of the ground states when ¢ = 0 for different A and 3. Fig. 5.4 shows similar
results when 8 = 100 and 6 = 0,1 for different A\, and Fig. 5.5 for results when 8 = 100
and \ = 0, —5 for different §.

From Figs. 5.1-5.5 and additional numerical results not shown here for brevity, we can
draw the following conclusions for the ground states in this case: (i) the positive ground
state is unique when at least one of the parameters 3, A and J is nonzero which confirm
the results in Theorem 5.1 (cf. Figs. 5.1 & 5.2); (ii) when =0 and § = 0, ¢; = ¢ when
A <0, and ¢1 = —¢po when XA > 0 (cf. Fig. 5.1); (iii) for fixed § and §, when A — —o0,
¢1 — ¢2 — 0 and when \ — +00, ¢1 + ¢ — 0 (cf. Fig. 5.2) which confirm the analytical
results in Theorem 5.8; (iv) when 6 = 0, N(¢1) decreases and N (¢2) increases when A # 0
(cf. Fig. 5.3) which is due to 811 > fa9; (v) for fixed § and \, when 8> 1, E = O(5'/3)
and 1 = O('/3) which can be confirmed by a re-scaling x — £'/2x and ® — ¢~%*® with
e = ~4(@2) in the energy functional F(®) in (5.11) and the chemical potential u(®)
in (5.10) [10,167]; (vi) for fixed § > 0 and J, when |A\| — oo, then N(¢1) — N(¢2) — 0,
E ~ —|A\|+Cy and pp = —|A|+Cy with C; and Cy two constants independent of A (cf. Fig.
5.4) which confirm the analytical results in Theorem 5.8; (vii) for fixed # > 0 and A, when
§ — 400, N(¢1) — 0, N(¢p2) — 1, E = C3 and p ~ C4 with C5 and C4 two constants
independent of d; and when 6 — —oo0, N(¢1) — 1, N(¢2) — 0, E~ 6+ C5 and pu =~ §+ Cg
with C5 and Cps two constants independent of ¢ (cf. Fig. 5.5) which confirm the results in
Theorem 5.9. In addition, when § = 0 and A = 0, N(¢1) = 1/3 and N(¢2) = 2/3 which

are independent of § (cf. Fig. 5.3). In fact, in this case, the energy functional can be
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written as

B@) = [[3050P+1960P) + V60 (01 + 162P)

+§ (Jo1]* + 0.97|@2|* + 2 x 0.94]p1 [*|¢2|?) } dx. (5.118)

Denote p(x) = /|¢1(x)|? + |¢2(x)|?, using the Cauchy inequality, we have

E(®)

Y

/ [ Vi + Vol + L2 ot ﬁ(0.06\¢1\4+o.o3\¢214>} ix

0.9443 0.028
ol ax

Y

[ 5702+ veoloR + 2501+

and the above equality holds only if 2|¢1|? = |¢2|?>. Notice that the functional Es(p) =
I (%]Vp!z + V(x)|p* + @\p\‘l) dx admits a unique positive minimizer p, under con-
straint ||pll2 = 1 [98], then ®, = (1/1/3py,1/2/3py)" is a ground state of the original

problem, which justifies our numerical observation in Fig. 2.4.

Example 2. Ground states of two-component BEC with an internal atomic Josephson
junction when B is nonnegative, i.e. we take d = 1, V(z) = 322 + 24 cos?(z) and B :
Bi2 : a2 = (1.03 : 1 : 0.97)8 in (5.12) [9,74,75]. In our computations, we take the
computational domain U = [~16,16] with mesh size h = 5 and time step k£ = 0.1.

Fig. 5.6 plots the ground states ®; when 0 = 0 and A = —1 for different 3, and Fig.
5.7 depicts similar results when § = 0 and 8 = 100 for different A. Fig. 5.8 shows mass
of each component N(¢;) = ||¢;||* (j = 1,2), energy E := E(®,) and chemical potential
p = p1(®y) of the ground states when § = 0 for different A and 3.

From Figs. 5.6-5.8 and additional numerical results not shown here for brevity, same
conclusions as those in (ii)-(vii) in Example 1 can be drawn. Moreover, the numerical
results show that the positive ground state is unique in this case. Due to the appearance
of the optical lattice potential 24 cos?(x) in the trapping potential V (z), there are several
peaks in the ground state and the distance between two nearby peaks is roughly as w
which is the period of the optical lattice potential (cf. Figs. 5.6-5.7). In addition, when
d=0,A=0, N(¢p1) =0 and N(¢2) = 1 are independent of 3 (cf. Fig. 5.8), which can be

explained by Theorem 5.4.
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Figure 5.1: Ground states ®; = (¢1,¢2)T in Example 1 when § = 0 and A = —1 for
different 3.
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Figure 5.2: Ground states ®, = (¢1,¢2)’ in Example 1 when § = 0 and 8 = 100 for
different A.
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Figure 5.4: Mass of each component N(¢;) = [¢;]|> (j = 1,2), energy E := E(®,) and
chemical potential p := pu(®4) of the ground states in Example 1 when 3 = 100 and

6 = 0,1 for different .
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Figure 5.5: Mass of each component N(¢;) = [¢;]|> (j = 1,2), energy E := E(®,) and
chemical potential p := pu(®4) of the ground states in Example 1 when 3 = 100 and
A =0, —5 for different 9.
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Figure 5.6: Ground states ®;, = (¢1,¢2)T in Example 2 when § = 0 and A = —1 for
different 3.
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Figure 5.8: Mass of each component N(¢;) = ||¢;]|* (j = 1,2), energy E := E(®,) and
chemical potential p := 11(®g) of the ground states in Example 2 when § = 0 for different
A and g.



Chapter

Optimal error estimates of finite difference
methods for the Gross-Pitaevskii equation

with angular momentum rotation

In this chapter, we prove the convergence rates of finite difference methods applied to the
GPE with rotational frame in two and three dimensions (2D and 3D). Optimal convergence
rates will be established for both the conservative Crank-Nicolson finite difference method

and the nonconservative semi-implicit finite difference method.

6.1 The equation

Recalling equation (1.12), the Gross-Pitaevskii equation (GPE) with an angular momen-
tum rotation term in d-dimensions (d = 2,3) for modeling a rotating Bose-Einstein con-

densate (BEC) [4,20,117] reads as
i) (x,t) = —%v2 +V(x)— QL 4+ Bl t))?| ¥(x,t), xeUcCRYt>0, (6.1)
with the homogeneous Dirichlet boundary condition
P(x,t) =0, xel'=0U, t>0, (6.2)

and initial condition
P(x,0) =¢o(x), x€eU. (6.3)
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Here x = (z,y) in two dimensions (2D), i.e. d = 2, and resp. x = (z,y,2) in three
dimensions (3D), i.e. d = 3, are the cartesian coordinates, U is a bounded computational
domain, v := 9(x,t) is the complex-valued wave function, €2 is a dimensionless constant
corresponding to the angular speed of the laser beam in experiments, 3 is a dimensionless
constant characterizing the interaction between particles in the rotating BEC. V(x) is
a real-valued function corresponding to the external trap potential and it is chosen as
a harmonic potential, i.e. a quadratic polynomial, in most experiments. L, is the z-

component of the angular momentum defined as (1.13) or equivalently as
L, = —idy, (6.4)

where (r,0) and (r, 0, z) are the polar coordinates in 2D and cylindrical coordinates in 3D,

respectively. In fact, GPE (6.1) conserves the total mass

N((-1)) = /U (D2 dx = N@(,0)) = (), >0, (6.5)

and the energy

B0) = [ [5IV0P + VOO + 3010l - 00L.0| ix= B 20 09

Because of the observation of quantized vortices in rotating BEC [2,41,106] which is
related to superfluidity, theoretical studies of BEC and quantized vortices based on the
above GPE have stimulated great research interests in quantum physics and computational
mathematics communities. For mathematical analysis of the above GPE, well-posedness
of the equation can be found in [43,76,77,97] and references therein. For the numerical
methods, as introduced in chapter 1, different efficient and accurate numerical meth-
ods including the time-splitting pseudospectral method [23, 78,121, 142], finite difference
method [3, 5], and Runge-Kutta or Crank-Nicolson pseudospectral method [41, 55] have
been developed for the GPE without the angular momentum rotation term, i.e. £ = 0.
For Q # 0, efficient numerical methods also have been developed [16,25,27].

Error estimates for different numerical methods of NLSE, e.g. the GPE (6.1) without
the angular momentum rotation (2 = 0) and/or d = 1, have been established in the
literatures. For the analysis of splitting error of the time-splitting or split-step method
for NLSE, we refer to [32,54,103,110,143] and references therein. For the error estimates
of the implicit Runge-Kutta finite element method for NLSE, we refer to [6,114]. Error
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bounds of conservative Crank-Nicolson finite difference (CNFD) method for NLSE in 1D
was established in [46,67]. In fact, their proofs for CNFD rely strongly on the conservative

property of the method and the discrete version of the Sobolev inequality in 1D
117 <IVFlL2 - I1fll2s Vf € HY(U) with U C R,

which immediately imply a priori uniform bound for ||f||z~. However, the extension of
the discrete version of the above Sobolev inequality is no longer valid in 2D and 3D. Thus
the techniques used in [46,67] for obtaining error bounds of CNFD for NLSE only work
for conservative schemes in 1D and they cannot be extended to either high dimensions
or non-conservative finite difference schemes. To our knowledge, no error estimates are
available in the literatures of finite difference methods for NLSE either in high dimensions
or for non-conservative scheme. However, the GPE with the angular momentum rotation
is either in 2D or 3D [16,20,25,117]. Here, we are going to use different techniques to
establish optimal error bounds of CNFD and semi-implicit finite difference (SIFD) method
for the GPE (6.1) with the angular momentum rotation in 2D and 3D. Based on our results,
both CNFD and SIFD have the same second-order convergence rate in space and time. In
our analysis, besides the standard techniques of the energy method, for SIFD, we adopt
the mathematical induction; for CNFD, we first derive the [?>-norm error estimate and
then obtain a priori bound of the numerical solution in the [*°-norm by using the inverse
inequality.

In this chapter and the next chapter, we denote C' a generic constant which is inde-
pendent of mesh size h and time step 7, and use the notation p < ¢ to represent that there
exists a generic constant C' which is independent of time step 7 and mesh size h such that

Ip] < Cgq.

6.2 Finite difference methods and main results

In this section, we introduce SIFD and CNFD methods for the GPE (6.1) in 2D on a
rectangle U = [a,b] X [c,d], and resp. in 3D on a cube U = [a,b] X [¢,d] X [e, f], and state

our main error estimate results.
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6.2.1 Numerical methods

For the simplicity of notation, we only present the methods in 2D, i.e. d =2 and U =
[a,b] x [c,d] in (6.1). Extensions to 3D are straightforward, and the error estimates in
I>-norm and discrete H'-norm are the same in 2D and 3D. Choose time step 7 := At
and denote time steps as t, := n7 for n = 0,1,2,...; choose mesh sizes Az := b_wa and
Ay = % with M and K two positive integers and denote h := hyax = max{Az, Ay}

and grid points as
rj:=a+jAzr, j=0,1,..., M; yp:i=c+kAy, k=0,1,..., K.
Define the index sets

Turk ={0G,k) |7=12,.... M -1, k=1,2,..., K — 1},

T ={G,k)|j=01,2.... M, k=0,1,2...,K}.

Let 97, be the numerical approximation of V(xj, Yk, tn) for (j,k) € T, and n > 0 and
denote ¢ € CM+UX(K+1) he the numerical solution at time ¢ = t,. Introduce the

following finite difference operators:

1 1

1 mn n

Syl = (?/)j+1k; Vi), O U, = A—y(?/)?kﬂ — ), OFY, = ;W AN

1 n —n 1 n n —.mn 1 n n—1
Oy Vi = AL — (W =7 k), O,V = A—y(%k —Uie-1), O Ul = ;( = Yk )
Son — e — Y1k S — V1 — Yk 5 AR
kTR T TR, T T

N 9yn 4gn oy 4
2 m _ Tjtlk jk j—1k _]k+1 ik jk—1 .
) (AIE)z ) sz)jk; (Ay) ) (]ak) € TMKa
SO = (O, 6 0T), Ol = O2a00h + 02T, LIyl = —i(x;6,07 — yrdatfh).

Then the conservative Crank-Nicolson finite difference (CNFD) discretization of the
GPE (6.1) reads

4o 1 B n o .
00 = [ = 508 + Ve — QLY+ SUU5 P+ Wi 52, (k) € Tarxe, n 2 0, (6.7)

where

(WHJr >’ (G,k) € Ty, m=0,1,2,....

n 1
ijk = V(‘Tjayk)’ sz)]]:rl/Q = 5
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The boundary condition (6.2) is discretized as

and the initial condition (6.3) is discretizaed as

As proved in section 6.4, the above CNFD method conserves the mass and energy in the
discretized level. However, it is a fully implicit method, i.e. at each time step, a fully
nonlinear system must be solved, which may be very expensive, especially in 2D and 3D.
In fact, if the fully nonlinear system is not solved numerically to extremely high accuracy,
e.g. at machine accuracy, then the mass and energy of the numerical solution obtained
in practical computation are no longer conserved. This motivates us also consider the
following discretization for the GPE.

The semi-implicit finite difference (SIFD) discretization for the GPE (6.1) is to use
Crank-Nicolson /leap-frog schemes for discretizing linear /nonlinear terms, respectively, as
¢";’LI;|>1 wn 1

5 + BT P, (4, k) € Tk, n > 1. (6.10)

< m 1
i = [—55% + Vii, — QLZ}

Again, the boundary condition (6.2) and initial condition (6.3) are discretized in (6.8) and
(6.9), respectively. In addition, the first step can be computed by any explicit second or

higher order time integrator, e.g. the second-order modified Euler method, as
1 o _ . 1o DAY (1)12,,1) ;
, 1

wjk = w]k —15 [(_55% + Vik — QL?) ¢?k + ﬁ\w?klzw?k] .
For this SIFD method, at each time step, only a linear system is to be solved, which is
much more cheaper than that of the CNFD method in practical computation.
6.2.2 Main error estimate results
Before we state our main error estimate results, we denote the space

Xvuk = {U = (Ujk)(j,k;)eT]em | uor = unrk = wjo = ujx =0, (j,k) € 71\041(} C CMFx(K+1),
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and define norms and inner product over X;x as

M-1K-1 M-1K-1 , ,
Jully = Az Ay 37 S ful, 155ul = Az Ay 3 3 (J6dul® + [ wnl) . (6.12)
j=0 k=0 j=0 k=0
M-1K-1
lullo = sup fugel, fulls = Az Ay > D jul?, 0<p <o, (6.13)
(k)ETY =0 k=0
) M-1K-1
S(u) = 5”5$u”% + Az Ay Z |:V]k’u]k’2 — Q’U,jk Lgujk} , Yu € Xyxk, (6.14)
j=1 k=1
1 3 M-1K-1
Ep(u) = Sll0gullz + §HUH3 +Az Ay Y Y [V}k\umz — Qayp, Lgujk] ; (6.15)
j=1 k=1
M-1K-1 M-1K-1
(u,v) = Az Ay Z Z wpUik, (u,v) = Az Ay Z Z UKk,  Vu,v € Xy (6.16)
j=0 k=0 j=1 k=1

We also make the following assumptions:
(A) Assumption on the trapping potential V' (x) and rotation speed (2, i.e. there exists

a constant v > 0 such that

V(x) € Cl(U), V(x) > 72(x2 —|—y2), Vx e U, Q] < ;

1
2
Assumption on the exact solution 9, i.e. let 0 < T < Tpax with Tihax the maximal

existing time of the solution [43,76]:

(B) ¢ € CY0,T]; L>(U)) N C*([0,T]; W>*(U)) N C*([0, T|; W>>(U)) N

CH([0, T); Wh(U)) N CO([0, T); W>*(U) N Hy (U)).
Define the ‘error’ function €™ € X /x as

Then for the SIFD method, we have

Theorem 6.1 Assume h < hpyiy := min{Az, Ay} and 7 < h, under Assumption (A) and
(B), there exist hg > 0 and 0 < 19 < % sufficiently small, when 0 < h < hg and 0 < 7 < 79,
we have the following optimal error estimate for the SIFD method (6.10) with (6.8), (6.9)
and (6.11)

le™le S A2+ 72 ||oge™]le S B2 4 7372, 0<n< (6.18)

415
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In addition, if either @ = 0 and 0,V (x)|oy = 0 orp € C°([0,T); H3(U)), where 8y, = V-n
denotes the normal derivative with n being the unit outer normal vector on the boundary,

we have the optimal error estimates

"]l + 163€™l2 S h* + 72, 0<n< (6.19)

41N

Similarly, for the CNFD method, we have

Theorem 6.2 Suppose h < hpyiy = min{Az, Ay}, 7 < h and either 3 > 0 or < 0
with ||4°]]3 < ﬁ (1 - 2—;), under Assumption (A), there exists hy > 0 sufficiently small,
when 0 < h < hy, the discretization (6.7) with (6.8) and (6.9) admits a unique solution
P 0 <n < %) Furthermore, under Assumption (B), there exist hg > 0 and 19 > 0

sufficiently small, when 0 < h < hg and 0 < 7 < 19, we have the following error estimate
lela Sh?+ 72, |logela ShY2+ 2 0<n< (6.20)

In addition, if either Q = 0 and 8,V (x) = 0 or+ € C°([0,T); H3(U)), we have the optimal

error estimates

31N

le™l2 + 165 €™la S h* + 72, 0<n< (6.21)

6.3 Error estimates for the SIFD method

In this section, we establish optimal error estimates for the SIFD method (6.10) with
(6.8), (6.9) and (6.11) in I2-norm, discrete H'-norm and [*°-norm. Let 9" € X ;i be the
numerical solution of the SIFD method and e™ € X,k be the error function.

From (6.14) and (6.16), we have

Lemma 6.1 The following equalities hold

(Ogu,v) = — (u, dzv) , (02u,v) = — (61 u, 65 v), (6.22)
(Oyu,v) = — (u, oyv), <5§u,v> = — ((5;u,5;v) , Vu,v € Xy, (6.23)
[ull3 S N0gulls,  llull < flull3 - I6gul3,  Vue Xux. (6.24)

In addition, under the assumption (A), we have

1 02
5 (1 55 ) 1€l < 00 < 1660l + ol S 66wl Vu€ Xux. (029
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Proof: The equality (6.22) follows from (6.16) by using summation by parts as

M-1K-1 "

i1k — Uj—1k _

(Ogu,v) = AmAyZ Z%Tx]vjk
j=1 k=1
M-1K-1 5. 5

1k 1k _
= AwAyZ Zuﬂk L 2ij+ — (u, 05v) ,
7j=1 k=1
2 = 1U]+1k 2ujl€+u] 1k _

(Gou,v) = AwAyZ Z )2 Vj
7j=1 k=1
M-1K-1

U 1/€_ukvk_v 1k
— A:CAyZZ j+ J J5 AJ+
xr
7=0 k=0

= — ((5:11,, 5:1)) , Vu,v € Xy

Similarly, we can get (6.23). For u € Xk, we have

I
—

J

j—1
‘(Ujk)Q‘ = {(Ul+1 K = () } ‘ = Az | w1k + k)6
=0 =0
i1
< sz wigr ke + wiel - |0, wikl
1=0
M- M-
< oA k| D lukl?, (k) € Tuk (6.26)
Similarly, we have
K-1 K-1
(i)’ < V2AY | S 10wy | 3l GiR) € T (627)
m=0 m=0

Combining (6.26) and (6.27), using the Cauchy inequality, we get

M—-1K-1 M—-1K-1
lulli = AzAy > ful* = Axdy >N fugil - Jugul?
j=0 k=0 j=0 k=0
M-1K-1 M—-1 M—-1 K—-1 K—-1
< 20AzAy)? > > 0wkl | > k20| D105 wiml 4| D [tm
j=0 k=0 1=0 1=0 m=0 m=0
K-—1 M-1 M-1 K—1
= 2(AzAy)? |63 w2 Z g2 Z Z|6 Wim 2\ [ D [ |?
k=0 =0 = m=0 m=0
K—-1M-1 K—-1M-1 M-1K-1 M-1K-1
< 2(AzAy)? S lotwk?y | >0 D Jul? 8 wim 2| D0 D Tujml
k=0 1=0 k=0 1=0 j=0 m=0 j=0 m=0

IN
=
£
e
=
So
S
m
b
=
=
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The first inequality in (6.24) can be proved in a similar way. From (6.14), summation by

parts, we get

M-1K-1 M—-1K-1
E E Ujk Lzujk = — E Uk (xjéyu]k ykému]k)
J=1 k=1 J=1 k=1
M—-1K-1
= —i Wi (20yUj1 — YrOzljk)
=1 k=1
M—-1K-1
—h
= Uk Lzujk € R, Vu € Xyk, (6.28)
j=1 k=1

which immediately implies that £(u) € R for all u € Xj/x. In addition, using the Cauchy

inequality and triangular inequality, noticing Assumption (A), we get for u € Xyrx

M-1K-1 o M-1K-1
_ h .

—0 3 D Llup =5 > Y i [z (07 wik + 6 wik1) = vk (0 win + 07w 1)]

=1 k=1 i=1 k=1
M-1K-1 QQ

> - Vw4 o (S5 + 5 un?)] . 029)
i=0 k=0

Plugging (6.29) into (6.14) and noticing (6.12), we get (6.25) immediately. 0

From now on, without loss of generality, we assume that Az = Ay = h. From (6.25)

in Lemma 6.1, we have

Lemma 6.2 (Solvability of the difference equations) Under the Assumption (A), for any
given initial data ° € Xprxc, there exists a unique solution ™ € Xy of (6.11) forn =1

and (6.10) for n > 1.

Proof: The assertion for n = 1 is obviously true. In SIFD (6.11), for given "1 " €
Xnk (n > 1), we first prove the uniqueness. Suppose there exist two solutions IORTICHN=

Xnk satisfying the SIFD scheme (6.10), i.e. for (j, k) € Tyk,

- R R

== [—55% + Vji — QL’;} 4 Bl P, (6.30)
(2) n—1 2 n—1

Yk — ¥ 1 Yir Y5 n2m

i = [—56% + Vi QL’;} T B (6.3D)

Denote u = ™M) — 3 € Xy and subtract (6.31) from (6.30), we have

- 1
ik — [—55% + Vik — QL?] wjps  (j:k) € Tk (6.32)

T
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Multiplying both sides of (6.32) by @;; and summing together for (j,%k) € Ty, using the
summation by parts formula and taking imaginary parts, using (6.25) from Lemma 6.1,
we obtain |lul|3 = 0, which implies u = 0. Hence 9(1) = () i.e. the solution of (6.10) is
unique.

Next, we prove the existence. For (j,k) € Tyrx, rewrite equation (6.10) as
) 1
Wit 4+ T [—55% + Vi — QL’;} i 4+ Py = 0, (6.33)
where P € X i is defined as
P - n—1 n |2,n 152 QLh n—1
ik =~ Wi 2B + T | =507 + Vie — QLY ¢ (6.34)
Consider the map G : ¢¥* € Xy — G(¥*) € Xk defined as
. 1 :
G )ik = Wi+ 7 | =505 + Vik — QL’;} Uik + Pk, (,k) € Tk (6.35)

We know that G is continuous from Xk to Xpsx. Noticing (6.25) in Lemma 6.1, we
have

Im(G ("), %) = [[¢*[13 + Tm(P,y") > [[9*[[5 = | Pll2]]9" |2, (6.36)
which immediately implies

[(P"), ¢™)|

im = 00. 6.37
N R (6.37)

Hence G : Xk — Xk is surjective [94] and there exists a solution ¢! € X/ satis-

fying G(1)"*1) = 0. Then ¢! satisfies the equation (6.10). The proof is complete.

Define the local truncation error ™ € Xprx of the SIFD method (6.10) with (6.8),
(6.9) and (6.11) for n > 1 as

n . 1 Ty, ,tn, + Lj, atn
Nk = zét@b(:cj,yk,tn) — [—55% —QL’;+‘/jk] U( 5y Yk 1) . h( 5y Yk +1)

—B1Y(x, Yk, tn) P(25, ks tn), (4, k) € Tuk, (6.38)

and by noticing (6.9) for n = 0 as
. 1 ,
i 1= 10, (g, yu, 0) - (—55% + Vi - ﬂL’;) U = Bl P Gok) € Tar, (6.39)
T 1
Wl = oy, ) — iy [(—55% + Vik — QLZ) ol i) + Blvo (s, i) oz, yr) | -

Then we have
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Lemma 6.3 (Local truncation error) Assuming V(x) € C(U), under the Assumption

(B), we have

oo ST24+R% 0<n<=—1, and  [0n°)lec ST+ 1 (6.40)

~

In addition, assuming V(x) € CY(U) and 7 < h, we have for 1 <n < L —

. 4R, 1<j<M-21<k<K-2,
|05kl S (6.41)
T4 h, 17=0M—-1, ork=0,K —1.
Furthermore, assuming either Q =0 and 9,V (x) = 0 or u € C([0,T]; H3(U)), we have

T
167" oo S 72+ 0% 1<n<——1. (6.42)

Proof: First, we prove (6.40) and (6.42) when n = 0. Rewriting @bﬁ) and then using
Taylor’s expansion at (z;,y, 0), noticing (6.1) and (6.3), we get

1
?/)j(é) (0 (wj,yk, %) + Z% [(55% —Vik + QLQ) Yo(zj,yk) — Blvo(xs, ) *vo(z;, yk)

A (25, Yk, T) — Yo, yr)
o B ]

= (w5 g) +ig [% [0uatro (25 + 005 k) + Oyt (5,00 + hO'Y))

—3i0) (xjayywo (xj, Yk + heﬁ)) — YkOato (xj + hej(.i),yk))}

—Hiattw (xj,ykﬁeﬁ))} =¥ (wivyk’ %) +O0(r? +7h),  (j.k) € T, (6.43)

where 6?](.2) €[0,1/2] and 6](.2), 6?](.?, 6?](.4), 0](.‘2.) € [—1,1] are constants. Similarly, using Tay-
lor’s expansion at (x, Yk, 7/2) in (6.39), noticing (6.1) and (6.43), using triangle inequality

and the Assumption (B), we get

el S POl + b2 [[0zawetllLoe + 10yyyyllzoe + [0saatllLoe + [10yyyllL<]
+72 [|0uzal| oo + |Osyytd oo + [10uatllLoe + |0yl oo + 0wl oo 110]|7o0 ]
+7h [|[Yollws.co@ry + [0l Fee [[P0llwsce @] + O (R* +7%)
S TR, (k) € Tuk,
where the L>°-norm means || f||zo := supg<;<7 Supyey [ f(X,t)]. This immediately implies

(6.40) when n = 0 as

0 0| < 2 2
0o = Mmax L ST+ R
7l GReTd 7]
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Similarly, noticing 7 < h,
1 )
[N E|77?k;| ST+, (J, k) € Tuk,
which immediately implies (6.42) when n = 0. Now we prove (6.40), (6.41) and (6.42)

when n > 1. Using Taylor’s expansion at (x;, ¥k, tn) in (6.38), noticing (6.1), using triangle

inequality and the Assumption (B), we have

|77§lk;| 5 h2 [Haxa:x:cwHL‘x’ + Hayyyy¢||L°° + ||8yyy¢||L°° + Ha:mwaLO"]
472 110wt || Lo + [|Ostwat||Loe + | Ottyy || Loe + || Oyectd|| Loe + || Outet)]| 1oo]
T
S T2+h27 (Jvk)eTMKa 13”3__17
T
which implies (6.40) for n > 1 and (6.41) for j =0, M — 1 or k = 0, K — 1. Similarly, we

have

0505l S 12 100220 Vil oo + 18yyyy Vil oo + 18yyy Vbl Loo + [[0aza V| 1]
+72 10wV oo + [10ttza Vibl| Lo + 1hyy Vb Loo
0yt Vb || Lo + (|02t Vi) || Loe]
T
< 724 n? 1<j<M-21<k<K-2, 1<n<=—1, (6.44)
T
which immediately implies (6.41) for n» > 1. In addition, if @ = 0 and 0,V (x) = 0, using

the equation (6.1), we obtain the following derivatives of ¢ on the boundary are 0, i.e.

&MMaU = ayy@z)‘aU = &mm?/"aU = 8yyyy¢|aU =0. (6.45)

Hence (6.44) holds for the boundary case, i.e. j =0,M —1or k =0, K — 1, and we could
obtain (6.42) for n > 1. If ¢» € C°([0, T]; H3(U)), using the equation (6.1), we obtain that

O] oy = 0, m>0,n>0 m+n <4, (6.46)

and similarly (6.44) holds for j = 0,M — 1 or k = 0, K — 1, then we could obtain (6.42)

for n > 1. Thus, the proof is complete. 0

Theorem 6.3 (I12-norm estimate) Assume 7 < h, under the Assumptions (A) and (B),

~

there exist hg >0 and 0 < 19 < % sufficiently small, when 0 < h < hg and 0 < 17 < 79, we
have

T
le"llz S 754 A% "l ST+ My, 0 <,

(6.47)
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where My = maxo<i<7 [|¥(- 1) || Lo (1) -

Proof: We will prove this theorem by the method of mathematical induction. From (6.3)
and (6.9), it is straightforward to see that (6.47) is valid when n = 0. From (6.11) and
(6.39), noticing (6.40), we get

\e}k\ = ‘w(xj,yk,tl) - wjlk| = |—Z‘T17§']k| <7 (72 + h2) < 72412, (J, k) € Tmr, (6.48)

which immediately implies the first inequality in (6.47) when n = 1. This, together with

the triangle inequality, when 7 and h are sufficiently small, we obtain
[l < (@), yp t1)| + leje] < My +C (72 4+ B%) < 1+ My, (4, k) € Tuk,

which immediately implies the second inequality in (6.47) when n = 1. Now we assume
that (6.47) is valid for all 0 <n <m -1 < % — 1, then we need to show that it is still
valid when n = m. In order to do so, subtracting (6.38) from (6.10), noticing (6.2) and
(6.8), we obtain the following equation for the ‘error’ function e™ € X/x:

n+1 n—1
€k TCk o on ,
& Tk (4,k) € Tuk, n=>1, (6.49)

1
idpely, = —55% + Vi — QLE 5

where £" € Xy (n > 1) is defined as

= Bl Y tn) Py, + BT + (@5, Yk, tn) i) (j,k) € Tmk- (6.50)
Noticing (6.47), we have the following estimate
167115 < 98% (1 + M) e"[3, 105€" 13 < loge™ (5 +lle™[3, 1 <n<m—1. (6.51)

Multiplying both sides of (6.49) by e?,jl + e;.lk_l and summing all together for (4, k) € Tyrk,
taking imaginary parts, using the triangular and Cauchy inequalities, noticing (6.40) and

(6.51) , we have for 1 <n <m—1

e 3= e = 2rTm (€" 4", e 4 e )

IN

27 [lle" I3 + e M3 + ™13 + ll€™113]

< Ot + %) 427 ("3 + [le"HI3) + 18767 (1 + M)l 3.
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When 7 < %, we have
lem 3 = "3 < O [(h% + 72 + e[ + 521 + My)[le” 3]

Summing the above inequality for n =1,2,...,m — 1, we get

T
T

le™ 3+ le™ 3 < CT(h? + %)% + C7 [1 + B*(M; + 1)* Z €2, 1 <m < =. (6.52)

Using the discrete Gronwall inequality [46,67,95] and noticing ||e®s = 0 and |el|lz <
h? + 72, we immediately obtain the first inequality in (6.47) for n = m. Using the inverse

inequality, triangle inequality and [?>-norm estimate, noticing 7 < h, we obtain
m m C m
Wikl < 19(@s yes tm)[ + lefil < My + [l [loo < M+ S-l€™ |2

< M1+%(h2+72)§M1+Ch7 (. k) € Targe-

Thus there exists a constant hg > 0 sufficiently small, when 0 < h < hg and 0 < 7 < h,
we have
m T
Hw ”OO§1+M17 1S ST
which is the second inequality in (6.47) when n = m. Therefore the proof of the theorem

is completed by the method of mathematical induction. 0

Combining Theorem 6.3 and Lemmas 6.1, 6.2 and 6.3, we are now ready to prove the

main Theorem 6.1.

Proof of Theorem 6.1: We first prove the optimal discrete semi-H' norm convergence
rate in the case of either 2 = 0 and 9,V (x) = 0 or ¢ € C°([0, T]; H3(U)). From (6.9), we
know €” = 0 and thus (6.18) is valid for n = 0. From (6.11) and (6.39), noticing (6.40),

we get

|5V ]k| = |5$ (@Z)(Scjayk,tl)— ]lk” _| —iT0 77]k;|
S rrHh) ST R, (k) € Tuk, (6.53)

~

which immediately implies (6.18) when n = 1. Multiplying both sides of (6.49) by
e?lj - e?,; ! summing over index (j, k) € Tyx and summation by parts, taking real

part and noticing (6.13), we have

E(H) —E(e" ) = —2Re (" 40", " =" ), n> 1. (6.54)
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Rewriting (6.49) as

6?1:1 - e;‘lk_l = —2i7 [ + 0 + Xl (4, k) € Tuk, (6.55)

where x" € Xk is defined as

n+1 + n—1

1 e. . .

then plugging (6.55) into (6.54), we obtain

E(™) —E(e") = —ArIm (& + 0" 8" + " +X")

= —4rIm (" +n",x"), n > 1. (6.57)
From (6.56) and (6.50), noticing (6.22), (6.23) and (6.25), we have

ol = gl (e (5% v -ant) @)

S 5ter 05 (4 ] 5 [ v (@ ey
+ ‘<§”, QLh (e”Jrl + e”_1)>‘

S N1oge™ I + llage™ (I3 + [lage™ I3 + le™ I3 + le™ 13 + [le" 3
+H[ 6T I3 + 11€13

S 116G + ll0gen 3 + [loge™ I3, 1<n< ; -1 (6.58)

Similarly, noticing (6.51), (6.40) and (6.42), we have

1 1 _
’<77n7Xn>‘ = 5 ‘<77n’ (_55% +V - QLZ) (en+1 +e€" 1)>

S./ |<(5$7’]TL75$ (enJrl + en71)>| + ‘<,'7n7 174 (en+1 + €n71)>‘
e[ ozt @t v )
S 105 + 613 + 65 e I3 + llem™ 1 + €™ 13 + llen 13

HIOZ T + (1™ 113

T
S 16Gem B + 993 + 16ge™ I + (7* +h%)?, 1<n < ——1.(6.59)

Plugging (6.58) and (6.59) into (6.57), using (6.25) and the triangle inequality, we get

Ee) &™) < 77+ 07+ 7 [llage" [ + oge |5 + llogem 3]

< TR 4T [E(e"+1) +E(e") + 5(6”71)] ,1<n< r_ 1.

T
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There exists 7y > 0 sufficiently small, when 0 < 7 < 79, we have

EE -8 ST P HT [ +EE ], <0< T -1 (660

i
Summing the above inequality for 1 <n <m —1< % — 1, we get

m—1

(™) + ™) ST + h?)% 4 £(e! )+T Y Ele 1<m<

T
- T
=1

Using the discrete Gronwall inequality [95], noticing (6.47) and (6.53), we have

0Se™2 < E(e™) < EE™) 4+ E(E™ Y < (P24 2?2+ E(et) 4+ (0
v

S (PRt F+ logell3 S (7P +h%7 1

| /\

m <

AN

This together with (6.47) imply (6.18). For the case of the Assumption (A) and (B) without
further assumptions, we will lose half order convergence rate because of the boundary
(6.41). Notice that the reminder term is O(h? + 72)%/? instead of O(h? 4 72) in (6.59),
and the the remaining proof is the same. Hence, we will have the 3/2 order convergence

rate for discrete semi-H' norm. The proof is complete. O

Similar as the proof of Theorem 6.1, we can get error estimate for the mass and energy

in the discretized level as

Lemma 6.4 (Estimates on mass and energy) Under the same conditions of Theorem 6.1,

with only Assumption (A) and (B), we have for 0 <n <L

1™ 15 = N(o)| = | 10"15 = N@( ta))|
™13 = 1T () I3] + [ITad (t) 15 = N ()] S B2+ 7972,
[En(¢") = E(¢o)| = |En(¢") = E((tn))|

< Ba(¥") = Ba(T(ta))] + | Ea (I (1)) — E( (- 1)) S B2 + 72,

IN

where 11}, : ={feC)| flov =0} — Xy is the standard project operator defined

as

(Mnfe = f(zjye), f€X, (Tpe(tn)) ik = V(25, Yk, tn), (j.k) € Tayg- (6.61)

then we have

In addition, assume either Q =0 and 9,V (x) = 0 or ¢ € C([0,T]; H3(U)),

[ 10" = N(@o)| + [En (") = E(o)l S h* + 72, 0<n< (6.62)

AN
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In addition, from Theorem 6.1 and using the inverse inequality [145], we get immedi-

ately the error estimate in [°°-norm for the SIFD method as

Lemma 6.5 (I°°-norm estimate) Under the same conditions of Theorem 6.1 and assume
h < 1, we have the following error estimate for the SIFD with Assumption (A) and (B)

e [loo <

~

{ (h3/2 + 73/2)| In(h)], d=2,
h+ T, d=3.

In addition, if either Q =0 and 0,V (x) = 0 or ¢ € C°([0,T); H3(U)), we have

le™floo <

~

{ (h? 4+ 72)|In(h)|, d=2,
h3/2 4 73/2, d=3.

Remark 6.1 If the cubic nonlinear term B||?v in (6.1) is replaced by a general non-
linearity f(|v|?), the numerical discretization SIFD and its error estimates in [2-norm,

1°-norm and discrete H'-norm are still valid provided that the nonlinear real-valued func-

tion f(p) € C?([0,00)).

6.4 FError estimates for the CNFD method

In this section, we prove optimal error estimate for the CNFD method (6.7) with (6.8)
and (6.9) in [2-norm, discrete H'-norm and [**-norm. Let ¢ € Xj/x be the numerical

solution of the CNFD method and €™ € X ;i be the error function.

Lemma 6.6 (Conservation of mass and energy) For the CNFD scheme (6.7) with (6.8)
and (6.9), for any mesh size h > 0, time step T > 0 and initial data 1y, it conserves the

mass and energy in the discretized level, i.e.
173 = 19013, En(w™) = En(v®), n=0,12.... (6.63)

Proof: Follow the analogous arguments of the CNFD method for the NLSE [46,67] and

we omit the details here for brevity. 0

Lemma 6.7 (Solvability of the difference equations) For any given 9", there exists a

solution "t of the CNFD discretization (6.7) with (6.8) and (6.9). In addition, assume
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7 < h and either 3 >0 or 3 < 0 with ||¢°3 < IT%\ (1 - 2—;), under the Assumption (A),

there exists hg > 0 sufficiently small, when 0 < h < hq, the solution is unique.

Proof: First, we prove the existence of a solution of the CNFD discretization (6.7). In

order to do so, for any given " € X/, we rewrite the equation (6.7) as

Y2 =y i%F”(@b”“/Q), n=0,1,..., (6.64)
where F" : Xy r — Xy defined as
(™ () jke = —%5% + Ve — QLY | wjp + g(lQUﬂe — T+ 1T g, (k) € Tuk
Define the map G : Xy — Xuk as

G"(u) :u—w"—i%F"(u), u€ XyK,
and it is easy to see that G is continuous from X ;i to Xsx. Moreover,
Re (G"(u),u) = [[ulld = Re(¥",u) > [ul2(llulls = [¥"]2),  u€ Xux,

which immediately implies

i E@w |
lullz—o0  [Jull2

Thus G™ is surjective. By using the Brouwer fixed point theorem (cf. [94]), it is easy to
show that there exists a solution «* with G™(u*) = 0, which implies that there exists a
solution ¥"1/2 to the problem (6.64) and thus the CNFD discretization (6.7) is solvable

for any given 9". In addition, for the solution "' to (6.7), using (6.63), we have
059" 3 < CEp(v™h) = CEA(W°),  n=0,1,...; (6.65)

where when 3 > 0, we have C' = 2; and when 3 < 0 with [[¢93 < %‘(1 - 2—22), it comes

from

2
1 QO
_ 5(1 —) R R

,-YQ
1 02
_ B [— (1—7) Honz] J5bum 2.

02
En(?) — Ehw"“)zl(l g )na ey P e
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Thus assume h < 1, when 8 > 0 or 3 < 0 with |[¢°[]3 < ﬁ (1 - 3—22), using (6.65) and the

inverse inequality [145], we obtain
07 oo < Cl B 3 o < Clnh| Bu(@),  n=01...  (6.66)

Next, we show the uniqueness of the solution of the CNFD scheme (6.7). For given
Y™ € Xprk, suppose that there are two solutions ™! € Xy and v € Xjrx to (6.7).

From (6.66), we get
[u" oo < C Ep(@®) [Inhl, 0" oo < C ER(¢°) [ Inh. (6.67)

Denoting w := u" ™! — " € X/, from (6.7), we have

W 1 - .
ZTJk = <_§52V + V]k — QL?) Wik + Rjk, (], k) € TMK, (6.68)
where
> _ ﬁ n+1,2 n |2 ﬁ n+1 n n+12 n+12 ik T,
R, = §(|Uij "+ |¢jk| Jwik + E(Uj]g +?/)jk;)(|ujk " - |Ujk %), (J. k) € Tuk.

Multiplying both sides of (6.68) with w;;, summing for (j, k) € Tyk, and then taking
imaginary parts, using (6.66) and (6.67), we have

n n n 2
lwll3 < 7C [Ilu™ I3 + 10" 5 + [0 %] lwllf < O [Ea(4°) nh]™ [Jwl3.

Thus under the assumption 7 < h, there exists hg > 0, when 0 < h < hg, we have

~

Ct(Inh E,(yY))? < 1 which immediately implies
n+1l vn+1||2 =0 _— un-i—l — Un+1

[wlle = [|u

i.e. the solution of CNFD (6.7) is unique. 0

Denote the local truncation error " € Xy (n > 0) of the CNFD scheme (6.7) with
(6.8) and (6.9) as

. 1
Tt = 09w,y tn) — {—55% — QLY + Vi + g (I, iy tasr) 2
Zj, 7tn + Zyj, 7tn .
HUCe g t)?) | 2 b) 2 S 1) ) € T, (669

Then we have
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Lemma 6.8 (Local truncation error) Assume V(x) € L*(U) and under the Assumption

(B), we have
T
T

7" lee ST2+h*  0<n<——1. (6.70)

In addition, assuming V(x) € CY(U) and 7 < h, we have for 1 <n < L —

e 24+h%, 1<j<M-21<k<K-2,
LRTHABS (6.71)
T+ h, i=0M-1, ork=0,K —1.

In addition, if either =0 and 0,V (x) = 0 or ¢ € C°([0,T); H3(U)), we have

T
1667 loo S 72+ h%  1<n<——1. (6.72)
T
Proof: Follow the analogous line for Lemma 6.3 and we omit it here for brevity. 0

Theorem 6.4 (12-norm estimate) Assume 7 < h and either 3> 0 or 3 < 0 with ||[¢°[]3 <
W%\ (1 - 2—;), under the Assumption (A) and (B), there exist hg > 0 and 19 > 0 sufficiently

small, when 0 < h < hg and 0 < 7 < 19, we have

T
le*lz S 72+ k% ¥ o S V2(1+M1),  0<n< . (6.73)
T
Proof: Choose a smooth function a(p) (p > 0)e C*°([0,00)) defined as
1, 0<p<1,
alp) =14 €[0,1], 1<p<2, (6.74)
0, p=2
Denote My = 2(1 + M7)? > 0 and define
Fuo(p)=a () p 0<p<oo
0 MO ) = )
then Fyz,(p) € C°([0,00)) and it is global Lipschitz, i.e.
[Fato (p1) = Fago (p2)] < Cag [vo1 —V/p2l, 0 < p1,p2 < o0 (6.75)

Choose ¢° = 9% € X i and define ¢" € Xyx (n=0,1,...) as for (j, k) € Tux

67 0 = | =50% + Vi — QL8+ 5 (Fus (10557 ) + Fas (|¢jk|2))} ot (6.76)
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where

i = W“ m)s (k) € Tk, n>0.

In fact, ¢™ can be viewed as another approximation of 1(x, ¢, ). Define the ‘error’ function
e"e X MK

el = V(x5 Yk, tn) — Ofrs (. k) € Tyg, n>0,

and the local truncation error 7" € X i of the scheme (6.76) as

L . 1 3
e = 407 (), Yk tn) — [—55% — QLY + Vig + 5 (FMO(W(%’?/k’th)P) (6.77)

Zj, Yk, ln) + Zj, Yks tn .
B (a3t ) | 2 ) £ B Itt) Gy € Ty 0

Similar as Lemma 6.8, we can prove

T
["lloe S 754 1% 0<n<—.
Subtracting (6.77) from (6.76), we obtain
i an 1o w| vz | B nt1)2 n+1/2
il = | =508 + Vie = QL € 4+ 2 (Fan (165 ) + Fan (195 ) €5

ﬁ Fn IND .

where é” € Xk defined as
&5 = o (1605 1)+ Futy (1671 = Fato (1925, Ykt ) [P) = Fagy (19 (25, we, tn) 2, (G, k) € Tipge
This together with (6.75) implies

g (w(xj7 Yk, t?’H—l) + w(xjv Yk, tn)) fjk

sl +1e), Gk € T

Multiplying both sides of (6.78) with é A”'H + €}, summing for (4, k) € Ty, taking imag-
inary part and applying the Cauchy inequahty, we obtain

ez = ez < (112 + CUle™ I3 + llel13))

. . T
< @+ (B len)] . 0<n<— -1

Then there exists 79 > 0 sufficiently small, when 0 < 7 < 79, applying the discrete

Gronwall inequality [46,67,95], we get

e <2 4+h%, 0<n<

41N
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Applying the inverse inequality in 2D, we have

R 1. T2 T
¢"llo0 S 31"l Sho+ o She 0<n< =, (6.79)
which implies
v My T
19" loo < Mt (En)lloo + €7l = =5 , 0sn<—.
Thus under the assumption 7 < h, there exists hg > 0, when 0 < h < hg, we have
n i T
[¢" loo < VM = "< Mo, 0<n<—. (6.80)

Therefore, the discretization (6.76) collapses exactly to the CNFD discretization (6.7) with
(6.8) and (6.9), i.e.

wn:¢n’ en:én’ OSnS

41N

This together with (6.79) and (6.80) complete the proof. 0

Again, combining Theorem 6.4 and Lemmas 6.7 and 6.8, we are now ready to prove

the main Theorem 6.2.

Proof of Theorem 6.2: As in the proof of Theorem 6.1, we only prove the optimal
convergence under the Assumption (A) and (B) with either Q = 0 and 9,V (x) = 0 or
Y € C°([0,T); H3(U)). Subtracting (6.69) from (6.7), we get

Zéje?k = |:— 5V + ij — QLh n+1/2 +§jl€ + ’ﬁ?k, (j, k‘) € Tk, n>0, (6.81)

where 5” € Xk defined as

- ﬁ - I _— 1/2
;Lk; = 5 |: m])yk‘)tn) +11Z)jnkeglk; + e?g_1¢(x]ayka TLJrl) 1#7]:_1 ;L,Ijl qb‘?]j /
ﬂ 1/2 .
+§(|¢(x])yk‘) )|2 + |¢($jayk)tn+1)|2) ;L]j / 9 (.]’k:) € TMK

Again, rewrite (6.81) as
el _en = _jir (yn = ﬁ”) . >0, (6.82)
where X" € Xk defined as

- 1 n )
Xjk = —552v + Vik — QLh} H/Q, (j.k) € Tyg, n>0.
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Multiplying both sides of (6.81) with e?,jl — €}, summing for (j, k) € Tk, noticing
(6.22), (6.23) and (6.82), taking real parts, we obtain

E(e™) — &) = —2Re<g"+77ﬂ,e"+l—e">
= —2Re<§"+ﬁ",—i7(§{"+€"+ﬁ”)>
- 271m<'§"+ﬁ",;">, OSngg—l.

Similar as those in the proof of Theorem 6.1, we can prove

Py - T
‘Im <§" + ﬁ",x"> ‘ S+ 4 &)+ &), 0<n<=-1

T

Combining the above two inequalities, we get

g(enJrl) _ S(en) <7 [(72 + h2)2 + g(enJrl) + g(en)] 7 0<n< g — 1. (6.83)

Then there exists 79 > 0 sufficiently small, when 0 < 7 < 79, using the discrete Gronwall
inequality [46,67,95] and noticing € = 0 and £(e°) = 0, we get
T

S(e”)§(72+h2)2, 0<n<—
-

)

which immediately implies (6.20). If we only have Assumption (A) and (B) without
further assumption, the convergence rate will be O(h3/2 4+ 73/2). The proof is the same as

in Theorem 6.1, and we omit it here. [l

Similarly, from Theorem 6.2 and using the inverse inequality [145], we get immediately

the error estimate in [*°-norm for the CNFD method as

Lemma 6.9 (I°°-norm estimate) Under the same conditions of Theorem 6.2 and assume

h < 1, with Assumption (A) and (B), we have the following error estimate for the CNFD

. (h3/2 + 73/2)|In(h)), d=2,
" loo <
h+ T, d=3.
In addition, if either Q =0 and 0,V (x) = 0 or ¢ € C°([0,T); H3(U)), we have
" (h? + 72)|In(h)], d=2,
le"[loo <
h3/2 4 73/2, d=3.
Remark 6.2 If the cubic nonlinear term (||?v in (6.1) is replaced by a general nonlin-
earity f(||?)y, the numerical discretization CNFD and its error estimates in 1*-norm,

[®°-norm and discrete H'-norm are still valid provided that the nonlinear real-valued func-

tion f(p) € C3([0,00)).
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6.5 Extension to other cases

In this section, we will discuss a discretization of the GPE with an angular momentum
rotation (6.1) when U is a disk in 2D, and resp. a cylinder in 3D and its error estimates.
As noticed in [16], the angular momentum rotation is constant coefficient in 2D with
polar coordinates and 3D with cylindrical coordinates. Thus the original problem of GPE
with an angular momentum rotation term defined in R? (d = 2,3) for rotating BEC
is usually truncated onto a disk in 2D and a cylinder in 3D as bounded computational
domain. Again, for simplicity of notation, we only consider SIFD in 2D, i.e. d = 2 and
U= {x||x| < R} with R > 0 fixed. Extension to 3D are straightforward. In 2D with
polar coordinate, the problem collapses

00 = =5 (70 100 + 50 ) + Valo) + W(r:0) + 000 + 80| v, (6) € U, (680

with boundary condition
Y(R,0) =0, P(r,0) =(r, 0 + 2m), 0<6<2mr, 0<r<R, (6.85)
and initial condition

P(r,0,0) = o(r,0), 0<r<R, 0<0<2m (6.86)

where ¢ = (1, 0,t) and here we split the external trapping potential V(x) into a radial
symmetry part Vp(r) and a left-over part W (x), i.e.

Vi(x) = Vo(r) + W(r,0), xeU.

Let M, K > 0 be two positive integers, and Ar := 2]\2/1111, Al = 2%, define the grid points

1

'rj:jAr’ r. :<]—|—§)AT, ]:0,1,7M, Hk:kAe, k’:O,l,...7K.

ity

Let 1/);,‘+ 1 be the approximation of 1/)(7"]. +1 ,0k,t,) and 9™ be the numerical solution at

time t = t,,. We adopt the similar notations as those in section 6.2.
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Then a semi-implicit finite difference (SIFD) discretization reads for n > 1
—1
i+ +1 -1 _ 3 (L -1 +1
T I T+ ) — (e ) U ) e+ v )
1 n+1 n+1 n+1 n—1 n—1
42, (A6)? {wﬂ% b T 2 e T e T e T 20 T ¢]+ k- 1}
+3

Vo(ri 1) ()
Ti+3 n41 4 n41 4l n—1
+ 9 (¢j+%k+¢j+ k) 2A0 [¢j+§k+1 ¢j+§k 1+¢g+ k+1 ijr%kfl}

BT PUS W 00Uy, 0SG<SM -1, 0<k<K. (6.87)

. n
Z(St’ll)j+% 3

The boundary condition (6.85) is discretized as
¢M+%k =0, 0<k<K; ¢j+%0 = ¢j+%K, wj-i—%K—l—l = qu_%l’ 0<j<M; (6.88)

and the initial condition (6.86) is discretized as
¥, =volry1. 6, 0<j<M, 0<k<K. (6.89)

The first step ¢! can be obtained by using the same spatial discretization combining with
any explicit second-order time integrator.

For this SIFD method, although it is implicit, however, at each time step, the lin-
ear system can be solved directly via fast direct Poisson solver via fast discrete Fourier
transform in f-direction with computational cost at O (MK In K), ie. it is very effi-
cient in practical computation [16]. In fact, this method is also widely used in simulating
quantized vortex dynamics of rotating Bose-Einstein condensate [16]. In addition, let

e?+1/2k- §L+1/2k’ — w(rj+%,0k,tn), similar as those in section 6.3, we can prove the

following error estimate.

Theorem 6.5 Assume hpyiy = min{Ar, A0} < h := hpax = max{Ar,A0} and 7 < h,
under Assumption (A) and (B), there exist hg > 0 and 0 < 19 < i sufficiently small, when
0<h<hyand 0 <7 <19, we have the following optimal error estimate for the SIFD

method (6.87) with (6.88), (6.89)

T
2 S 02+ 72 [6gem ]l S B2+ 0<n<—, (6.90)
where
M—1K-1 )
el =ara0 3 S fer, [ n=01
J=0 k=0
M-1K-1 I L T L=
5en (3 = Arag | = —
16" I r Tj+1 Ar T i A0
J=0 k=0 Ity
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In addition, assuming ¢ € C°([0,T]; H3(U)), we have

SN

"]l + 165e™l2 S h* + 72, 0<n<—. (6.91)

The CNFD method and its error estimate can be extended to this case directly and
we omit the details for brevity. Again, it is implicit and at every time step, a nonlinear

system must be solved.

6.6 Numerical results

In this section, we report numerical results of the SIFD (6.10) and CNFD (6.7) discretiza-

tions of the GPE (6.1) to confirm the error estimates.

We take d = 2, U = [-8,8] x [-8,8], V(x) = 2(z? +¢?), 8 = 10 in (6.1) and
Po(x) = %(x +iy)e~(@+¥*) in (6.3). For comparison, the numerical ’exact’ solution 1,

is obtained by the CNFD with a very fine mesh and a small time step, e.g. h = 1/64 and
7 = 0.0001. For SIFD scheme, at each time step, we use Gauss-Seidel iteration method to
solve the linear system. For CNFD scheme, to solve the fully nonlinear system, at each
iteration, the system is linearized, i.e. the CNFD (6.7) is linearized as

(m) n
wk — Yk 1 ﬂ n m—1 1 m n
i = |20 Vi = QLY S+ P S ), m > 1,

and we solve this inner problem to get ¢](.Zl) by Gauss-Seidel iteration method. Then the
solution w;’,j is numerically reached once w](.;:) converges.

Let v, » be the numerical solution corresponding to mesh size h and time step 7 and
define the error function as e := 1. — ¢, . The convergence rates are calculated as
logy(|le(h, 7)||/|le(h/2,7/2)||) with the corresponding norms. Tab. 6.1 shows the errors
lell2, |65 €ll2 and [lef|oo for the CNFD method (6.7) with different 2, h and 7; and Tab.
6.2 displays similar results for SIFD method (6.10). Figs. 6.1 & 6.2 depict time evolution
of the errors between the discretized mass and energy with their continuous counter-parts,
respectively, i.e. |[[¢"[3 — N(¢o)| and |Ex(¢™) — E(1)| of the SIFD method (6.10) for
different 2, h and 7. Fig. 3 displays similar results of the CNFD method (6.7) when the
nonlinear system is iteratively solved up to a given accuracy € > 0.

From Tabs. 6.1&6.2, they demonstrate the second-order convergence rate of both STFD

and CNFD methods in {2-norm, {®-norm and discrete H'-norm. From Figs. 6.1, 6.2 and
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h=1/4 h=1/8 h=1/16 h=1/32
rT=27° r=26 =277 r=28

lle]l2 5.424E-2 1.574E-2 3.907E-3 8.268E-4
Rate 1.78 2.01 2.24

Q=0 H(5$6H2 2.257E-1 8.008E-2 2.066E-2 4.448E-3
Rate 1.50 1.95 2.22

lle]lso 1.521E-2 | 3.273E-3 7.676E-3 1.585E-4
Rate 2.22 2.09 2.28

lle||2 4.758E-2 1.408E-2 3.502E-3 7.425E-4
Rate 1.76 2.01 2.24

Q=05 H5$e||2 2.097E-1 7.535E-2 1.943E-2 4.186E-3
Rate 1.48 1.96 2.21

lle]loo 1.259E-2 | 3.081E-3 7.233E-4 1.489E-4
Rate 2.03 2.09 2.28

lle|l2 4.406E-2 1.315E-2 3.272E-3 6.934E-4
Rate 1.74 2.01 2.24

0=09 H5$e||2 2.007E-1 7.240E-2 1.863E-2 4.011E-3
Rate 1.47 1.96 2.22

lle]loo 1.196E-2 | 3.105E-3 7.284E-4 1.494E-4
Rate 1.95 2.09 2.29

Table 6.1: Error analysis of the CNFD method (6.7) for the GPE (6.1) at time ¢t = 0.5 for
different €2, mesh size h and time step .

6.3, we can draw the following conclusions: (i) the SIFD discretization approximates the
mass very well (up to 4 significant digits, cf. Fig. 6.1) and the energy at second order
accurate in practical computation when 7 = O(h) are not too big (cf. Fig. 6.1). When the
final computational time ¢ increases, the errors in mass or energy are either oscillating or
slightly increasing (cf. Figs. 6.1&6.2). An interesting observation is that, for fixed h > 0
small, when 7 > 0 very small, the errors in mass and energy increase with time, especially
in long time (cf. Fig. 6.2). (ii) For the CNFD discretization, when the fully nonlinear
system 1is iteratively solved at every time step to extremely high accuracy, e.g. machine
accuracy, the solution obtained in practical computation conserves the mass and energy
very well (cf. Fig. 6.3). However, if the nonlinear system is solved accurately but not
extremely accurately, the solution obtained in practical computation doesn’t conserve the
mass and energy very well, especially in long time (cf. Fig. 6.3). (iii) From the accuracy
point of view, SIFD method is the same accurate as CNFD method and it approximates

the mass very well and the energy in the same order as the numerical solution in the
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h=1/4 h=1/8 h=1/16 h=1/32

=277 =28 =279 =210

lle]l2 4.943E-2 | 1.360E-2 3.285E-3 6.661E-4
Rate 1.92 1.99 2.30

Q=0 H5$6H2 2.084E-1 | 6.726E-2 1.663E-2 3.399E-3
Rate 1.63 2.02 2.29

lle]lso 1.298E-2 | 2.867E-3 6.709E-4 1.346E-4
Rate 2.18 2.10 2.32

lle||2 4.350E-2 | 1.212E-2 2.927E-3 5.938E-4
Rate 1.84 2.05 2.30

Q=05 H5$e||2 1.940E-1 | 6.319E-2 1.561E-2 3.191E-3
Rate 1.62 2.02 2.29

lle]loo 1.165E-2 | 2.748E-3 6.449E-4 1.295E-4
Rate 2.08 2.09 2.32

lle|l2 4.060E-2 | 1.136E-2 2.741E-3 5.557E-4
Rate 1.84 2.05 2.30

Q2=09 H5$e||2 1.863E-1 | 6.085E-2 1.499E-2 3.062E-3
Rate 1.61 2.02 2.29

lle]loo 1.101E-2 | 2.726E-3 6.339E-4 1.271E-4
Rate 2.01 2.10 2.32

Table 6.2: Error analysis of the SIFD method (6.10) for the GPE (6.1) at time ¢ = 0.5 for
different €2, mesh size h and time step .

discretized level. It is much cheaper than CNFD method, especially in high dimensions

and/or when fast Poisson solver is applied in practical computation.
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Figure 6.1: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e. |[|¢"[|3 — N(¢o)| and |Ej(¢¥™) — E(t)|, of the SIFD

scheme (6.10) for different 2 and 7 = O(h).
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Figure 6.2: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e. |[|¢"[|3 — N(¢o)| and |Ej(¢¥™) — E(t)|, of the SIFD

scheme (6.10) with h = 1/32 for different {2 and time steps 7.
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Figure 6.3: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e. | lv™|13 — N(¢0)| and |Ep (™) — E(¢0)|, of the CNFD
scheme (6.7) with mesh h = 1/16 and time step 7 = 277 when the nonlinear system is

iteratively solved up to the accuracy ¢ for different 2 and e.



Chapter

Uniform error estimates of finite difference
methods for the nonlinear Schrodinger

equation with wave operator

GPE (cubic NLSE) can be obtained by taking the nonrelativistic limit of Klein-Gorden
equation (KG), or singular limit of the Zakharov system. In such case, we will need to
consider a nonlinear Schrodinger equation perturbed by the wave operator (NLSW) in
the case of KG, where the solution highly oscillates in time in small perturbation regime.
Here, we are going to analyze the uniform convergence rates of finite difference methods

for NLSW, independent of the perturbation.

7.1 Introduction

Let us recall the nonlinear Schrédinger equation with wave operator (NLSW) in d (d =

1,2,3) dimensions (1.16):

i0puf (x,1) — 20k us(x,t) + V2l (x,t) + f([uf]?)uf(x,t) =0, xR ¢ >0, 1)
1

uf(x,0) = up(x), O (x,0) = uj(x), x € R,

where 0 < ¢ < 1 is a dimensionless parameter, f : [0,+0c0) — R is a real-valued function.

It is easy to see that NLSW has the following two important conserved quantities, i.e. the

153
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mass
Ne(t) := / lu®(x, )| dx — 262/ Im (ue(x,t)atus(x,t)> dx = N°(0), t>0, (7.2)
Rd Rd
and the energy
EE(t) = / (210" (x, )2 + [V (x, ) — F(ju(x,0)2)] dx = ES(0), >0, (7.3)
R4
and F' is the primitive function of f defined as

Feo) = [ fodn s> (7.4)

In the nonrelativistic limit of the Klein-Gordon equation and the singular limit of
the Langmuir wave envelope approximation, i.e. ¢ — 07, NLSW (7.1) collapses to the

standard nonlinear Schrédinger equation (NLSE) [31,104,129, 150]

iOpu(x,t) + V2u(x,t) + f([ul*)u(x,t) =0, x€R? >0, (75)
.9

u(x,0) = uy(x), x € RY,
and the corresponding conservation laws (7.2) and (7.3) hold for NLSE with ¢ = 0. In
particular, it is proved in [31] that, if the nonlinearity satisfies

0% f(p)] < Kp°*, for some constant K >0 and 0 >1, k=0,1,2,

then for the initial data (ug,u§) € H? x H? with ||u§|| g2 uniformly bounded, there exists a
constant 7" > 0 independent of €, such that the solution u® of NLSW (7.1) and the solution
u of NLSE (7.5) exist on [0,7] [104,129,150]. Furthermore, the following convergence rate

can be obtained (see Appendix D)
HUE - u\|Loo([07T};H2) < 062. (76)

Formally, as ¢ — 0T, the solution of NLSW (7.1) exhibits oscillation in time ¢ with
wavelength O(£2) due to the wave operator and/or the initial data u§. Actually, suppose

the initial data uj satisfies the condition

u§ (x) = i (Aug(x) + f(Juo(x)|*)uo(x)) +e®w(x), x€RY, a>0, (7.7)
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we would have the following asymptotic expansion for the solution u®(x,t) of NLSW

(7.1) as

uf(x,t) = wu(x,t)+ e?{terms without oscillation} (7.8)

+€2+min{°"2}v(x, t/e%) + higher order terms with oscillation, x € RY, ¢ >0,

where u := u(x,t) satisfies NLS (7.5). The expansion (7.8) can be verified in the spirit

e (X, t=1.5)]2
0.8 02 | ‘ | |
- P ;SN — — =14
I /2 2| 0.18 a
07 (0,0 R e=1/8
lu¥*©.H? 0.16 | £=1/16 | |
06> e t)|2 E e=1/32
: ’ 0.14
l 012}
04t 01l
03f 0.08 |
0.06 |
02f
0.04
> 0.02}
0 0 .
0 0.5 1 15 ~-10 10
t X

Figure 7.1: Temporal profile of [u¢(0,)|? and |u(0,t)|? (left) and spatial profile of |u®(x,t =
1.5)|? (right), for different ¢, with a = 0 and wug, w, f being given in section 7.5.

of [31], and we plot the densities |u(0,%)|? and |u®(x,t = 1.5)|? in the case of a = 0 and
d=1 (cf. Fig. 7.1).

Based on this asymptotic expansion, we can make assumptions (A) and (B) (cf. section
7.2) on the solution of NLSW. Furthermore, from (7.8), we can classify the initial data
into ill-prepared (0 < o < 2) and well-prepared (o > 2) cases. In fact, when 0 < a < 2,
the leading order oscillation term comes from the initial data; and resp., when a > 2, it
comes from the perturbation of the wave operator.

As stated in Chapter 1, there have been different kinds of numerical methods proposed
for GPE, or for more general NLSE, such as the time-splitting pseudospectral method
[18,78,121,142] and the finite difference methods [5]. However, few numerical methods
have been considered for NLSW in the literature, and most of them are the conservative
finite difference methods [51,73,154]. For NLSW in 1D with € = O(1), the error estimates

of conservative finite difference schemes have been obtained in [154]. However, the proofs
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in [154] rely strongly on the conservative properties of the schemes and the discrete version
of the Sobolev inequality in 1D while the corresponding Sobolev inequality is unavailable
in two (2D) and three (3D) dimensions (similar as Chapter 6 for the NLSE case). Thus
their proof can not be extended to either higher dimensions (2D or 3D) or nonconservative
schemes. Noticing the above asymptotic expansion results for NLSW, there exists high
oscillation in time for small e, which would cause trouble in analyzing the discretizations
for NLSW (7.1), especially in the regime 0 < ¢ < 1. Our aim is to develop a unified
approach for establishing uniform error estimates in terms of £ € (0, 1], of conservative
CNFD and SIFD for NLSW (7.1) in d-dimensions (d = 1,2,3). Our approach combines
the techniques used in Chapter 6, which include the energy method, cut-off technique
for dealing with general nonlinearity and the inverse inequality for obtaining a uniform
posterior bound of the numerical solution.

Throughout this chapter, we adopt the standard Sobolev spaces and their correspond-
ing norms, let C' denote a generic constant independent of &, mesh size h and time step
7, and use the notation p < ¢ to mean that there exists a generic constant C' which is

independent of e, 7 and h such that |¢| < Cq.

7.2 Finite difference schemes and main results

In practical computation, NLSW (7.1) is usually truncated on a bounded interval U =
(a,b) in 1D, or a bounded rectangle U = (a,b) x (¢,d) in 2D or a bounded box U =
(a,b) x (c,d) x (e, f) in 3D, with zero Dirichlet boundary condition. For the simplicity of
notation, we only deal with the case in 1D, i.e. d =1 and U = (a,b). Extensions to 2D
and 3D are straightforward, and the error estimates in [?>-norm and discrete semi-H' norm

are the same in 2D and 3D. In 1D, NLSW (7.1) is truncated on an interval U = (a,b) as

i0puf (z,t) — 20uu’ + Oppuf + f([uf)?)u® =0, 2€UCR,t>0,
us(z,0) = up(x), O (z,0) = uj(x), r €U = [a,b], (7.9)

ua(x,t)|aU:0, t>0.
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Formally, as e — 07, the equation (7.9) collapses to the standard NLSE [31,129,150]

iOpu(z,t) + Oppu(z, t) + fu)u(z,t) =0, z€UCR, t>0,
u(z,0) = up(z), reU, (7.10)
u(m,t)|aU:0, t>0.

We assume that the initial data uj satisfies the condition
ui(x) = up(x)+e“w (z), ur(z) = du(x,t)|=o =i [&muo(x) + f(\uo(x)lz)uo(x)] , (7.11)

where x € U, w® is uniformly bounded in H? (w.r.t. &) with lim ig_lf ||w®]| gz > 0 and o > 0
e—0

is a parameter describing the consistency of the initial data with respect to NLSE (7.10).

7.2.1 Numerical methods

Choose time step 7 := At and denote time steps as ¢, := n7 for n = 0,1,2,...; choose
mesh size Az := 1’77“ with M being a positive integer and denote h := Az and grid points

aszj:=a+jAx,j=0,1,..., M. Define the index sets
Tu={jlj=12....M-1}, T9={jlj=012...,M}.

Let uj” and u? be the numerical approximations of u®(xj,t,) and u(z;,t,), respectively,
for j € T, and n > 0, and denote u®", u™ € C(M+1) t6 be the numerical solutions at time
t =t,. We adopt notations of the finite difference operators as in Chapter 6.

The conservative Crank-Nicolson finite difference (CNFD) discretization of NLSW

(7.9) reads as

y ’ 1 n+1 s —1 y —+1 n—1 .
(i6, — 267 )us" = =3 [@%;u;” + 025" -GS WY, e T, n> 1, (7.12)

where G(z1, 22) is defined for 21,29 € C as

otz F(l21?) = F(|22]*) 21+ 2
2 |21]? = |22/ 2

1
Gl21, ) ::/0 FO12 P + (1 0)[2]2) dO L (7.13)

The same as GPE case (Chapter 6), although conservative CNFD type method can
keep the mass and energy conservation in the discretized level which are analogous to the
conservation in the continuous level, a fully nonlinear system has to be solved very accu-

rately at each time step which may be very time consuming, especially in 2D and 3D. So
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we also consider the semi-implicit finite difference (SIFD) discretization for NLSW anal-
ogous to the GPE case (Chapter 6). The SIFD discretization for NLSW (7.9) is to apply

Crank-Nicolson/leap-frog schemes for discretizing linear /nonlinear terms, respectively, as

1 _
ious" = 207" — 5 O3S + 2uS T = (WS P)S", j €T, n> 1 (7.14)

For both schemes, the boundary and initial conditions are discretized as

ug" =uy =0, n>0; uj’o =uo(z;), 7 €Ty (7.15)

Since CNFD (7.12) and SIFD (7.14) are three-level schemes, value at time step n = 1
should be assigned.
Choice of the first step value: Under the hypothesis of suitable regularity of u®(x,t),

one may use the Taylor expansion to have

2
T .
~ ug(zj) + Tug(z,0) + 7?@(% 0),  wui(z;,0) =uf(z;), j €Ty, (7.16)

us,l
J

ug(z5,0) = Elg[iU?(xj) + Ougtio(7) + f(Juol*)uo(x;)] = ie® 2w (z;), j €Ty (7.17)

Due to the oscillation in time especially for the ill-prepared initial data case (0 < a < 2),
approximation (7.16) is not appropriate if ¢ < 1. In such case, 7 has to be very small to
resolve the error from the Taylor expansion (7.16). Our aim is to obtain a suitable choice

of the first step value uj’l which is uniformly accurate for all € € (0, 1]. Denote
O(v) = 0yzv + f([0*)v, v e HXU), (7.18)
then by integrating NLSW (7.9) with respect to ¢, we can write the solution u®(z,t) as
u(z,t) = up(x) — ’iEQ(eit/€2 — Duf(z) — 2'/01‘/(61‘(“/5)/52 —1)0(u(x,s)) ds. (7.19)
Rewriting the integral term as
/Ot(ei(t_s)/e2 —1)O(u"(s)) ds = /Ot(ei(t_s)/62 =D [6(u(s)) = O(u™(0)) + ©(u(0))] ds
- [—1'52(@”/82 1) - t} O(u(0)) + /O t (e“t*s)/EQ - 1) [O(uf(s)) — O(u(0))] ds,

then applying the trapezoidal rule to the integral in the RHS, we could obtain a second

order approximation of u®(x,7) as

u®(x, 7) = up(x) — 62(6iT/€2 — 1)(iuj(x) + O(u(z,0))) + i7O(u(z,0)). (7.20)
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Hence, we propose the first step as

uft = ug(x;) — i€ (e — D (2;) +i10;, j € Tar. (7.21)

where ©; is given by
0; = S2uo(x)) + f(luo(a;)|*uo(zy), j € Tur. (7.22)

Now (7.12) or (7.14), together with (7.15) and (7.21) complete the scheme CNFD or
SIFD for NLSW (7.9). For both CNFD and SIFD schemes, we can prove the uniform
convergence rates at the order of O(h? 4+ 72/3) and O(h? + 7) for ill-prepared and well-

prepared initial data, respectively.

7.2.2 Main results
Before introducing our main results, denote
Xy = {v = (vj)jeT}Q, | vo = vy = 0} c cM+

and define the norms and inner product over Xj; analogous to Chapter 6 as

M-—1 M-—1 ) M-—1 )
Jv]l5 = h Z 0%, 165 vll5 = A Z |0 vs] 7, N1030]5 = h Z 1520517, vlloe = sup |vjl,
=0 =0 j=1

7€Ty
M-1 M—1
(u,v) =h Z ujvj, (u,v)=nh Z u;v;, Yu,v € Xp. (7.23)
j=0 j=1
For simplicity of notations, we also define
o = min{a, 2}. (7.24)

According to the known results in [31, 104, 129, 150] and the asymptotic expansion in
section 7.1, we can make the following assumptions, i.e. assumptions on the initial data

(7.11) for (7.9)

(A) 1< st(x)HLOO(U)JrHame(x)HLOO(U)JrHame(UC)HLOO(U) S
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and assumptions on u®(+,t) and u(-,t) for 0 < T' < Tipax with Tiax being the maximal

common existing time and Ur = U x [0, T,

(B) u,u® € C* ([0, T); Wh>2(U)) n C2 ([0, T]; W**(U)) N C° ([0, T]; W>>(U) N Hy(UV)) ,

5 m
e ) + 190l ooy + D || 5 St
m=1 Lee(Ur)
gmtn 1
and H u® —_—, 2<m<4, m+mn<b5.
otmoxn ~ 52m727a
L>(Ur)

Under assumptions (A) and (B), the following convergence rate holds,

Ju(t) — u®(t) [y S % tE€[0,T]. (7.25)
Define the ’error’ function =™ € X,s for n > 0 as

e,n

e;" = u(z,tn) — uj’", j € Ty, (7.26)

then we have the following estimates:

Theorem 7.1 (Convergence of CNFD) Assume f(s) € C3(]0,+00)), under assumptions
(A) and (B), there exist hg > 0 and 19 > 0 sufficiently small, when 0 < h < hy and
0 < 7 < 19, we have the following optimal error estimates for the CNFD method (7.14)
with (7.15) and (7.21) for e € (0,1]

2
T T
el + 5 el Sh* + ey 0<n< (727)
T
e lla + 105 e 2 S B+ 72 4% 0<n< (7.28)
i
Thus, by taking the minimum, we have the e-independent convergence rate as
. T
e l2 + NoF e l2 S B2+ 74070, 0 <n < (7.29)
-

Similarly, for the SIFD method, we have

Theorem 7.2 (Convergence of SIFD) Assume f(s) € C?([0,+0c0)), under assumptions
(A) and (B), there exists hyg > 0 and 19 > 0 sufficiently small, when 0 < h < hy and
0 < 7 < 719, the discretization (7.14) with (7.15) and (7.21) admits a unique solution

u®™ € Xyr such that the following optimal error estimates hold,

£,1 + _en 2 7_2 T
le=™ Iz + 10z €™ |2 S 7™+ 5w, O <—, (7.30)
T
e l2 + (|65 e la Sh* + 72 +6%,  0<n< . (7.31)
T
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Thus, by taking the minimum, we have the e-independent convergence rate as

T

5™ |2 + H(S:es,nuz < B2 + 7_4/(6701*)’ 0<n< . (7.32)

7.3 Convergence of the SIFD scheme

In order to prove Theorem 7.2 for SIFD, we first establish the following lemmas.

Lemma 7.1 (Solvability of SIFD) For any given u®°,u®' € Xy, there evists a unique
solution u*™ € Xy of (7.14) with (7.15) for n > 1.

Proof: Standard fixed point arguments would apply (see [11]) and we omit the proof for

brevity. 0

Denote the local truncation error n™ € X of SIFD (7.14) with (7.15) and (7.21) for

n>1and j € Ty as

1
(020 (2, 1)+ 020 (2, 1)) + ([ (g, )P (2, ).

;" = (16— %07 Jut (), tn) + 5

Lemma 7.2 (Local truncation error for SIFD) Under assumption (B), assume that f €
C1(]0,0)), we have

T
1<n<=-1 (7.33)

R e P AR -

Proof: Using the Taylor expansion and NLSW (7.9), we obtain for j € 73y and n > 1,

2‘7_2 1 0 rs 7_2 1 r0
njm :7/0 /0 / ugy (x0T + t,) dodsdd + 7/0 /Gui:a:tt(xja ST + ty,)dsdo
s _

2 1 [ s o
+ % / / / Z uimmm(xj + s1h,ty, + k‘T)d.SldUdeH
0 70 JO =0 kg

1 0 ps ro
—627'2/ / / / uittt(xj’sl'r—f—tn) dsidodsdf.
0o JOo JO J—0o

Under assumption (B), using the triangle inequality, for j € Tpy and n > 1, we get

2
)
e P P R ==
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where the L°°-norm means |[u||p= := supy<;<7 sup,cy [u(z,t)|. The first conclusion of
the lemma then follows. For 1 < j < M — 2, applying ;" to ;" and using the formula

above, noticing f € C1(]0,)), it is easy to check that

5505|247 <||amufum 2| Ot 1 + ||amttufum>

2

<h?+

~ 64—04* :

For j = 0 and M —1, we apply the boundary condition to deduce that %ue(:c, t)|zeou =0
for k > 0, and the equation (7.9) shows that uy.(x,t)|,cov = 0 and Uzgae (2, t)|rcov = 0.

Similar as above, we can get

+,.6m 2 7'2 + 2 4 ’
‘5:)3 /'707 ’ S h + 54—&* ) ’5 77 ’ S h 54—&* . (734)
Thus, we complete the proof. 0
Since u®° and u®! are known, we have the error estimates at the first step.
Lemma 7.3 (Error bounds at n = 1) Under assumptions (A) and (B), we have
1 + 61 2 e,1 2 7 + 2,0 + s+ £,0 2 7
e 2 + 167 €™ llz + 106 Ml S A"+ ey 167 € 2 + 16707 € ll2 S 77 + ==
(7.35)

and also
e 2 + 165 2 + [102e% [l S h* + 72+, |16/ €Iz + 16765 €2 S 1. (7.36)

Proof: By definition, e5? = 0 € CM*!. For n = 1, recalling NLSW (7.9) and the choice

of u! (7.21), using the Taylor expansion, we see that for j € Tys

u® (25, 7) =uo(2;) + 7(i (Dawtuo(25) + f(luo(z;)[*)uo(z;)) +e*w(x;))

T~ a2, ¢ L[r € 2
+76 w (xj)+§ ; ug(xj,8) - (1 — 5)"ds,

it =ug () + 7 [i (Quwuo(xs) + f(luolay) P uo(a;)) + ew (z;)]

o f.T 72 m’h2 (1)
+ l:—T —ie <z€—2 264 19 ——Ozazato(xj + ‘9j h),
iTh? +3
e?l = - ﬁawxzwuﬂ(xj + 0(1) ) + atttua(xjv g 2)7—) (84 o )wa ((L‘j),
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where 6?](.1) € [-1,1], 0](-2) € [0,1] are constants. Noticing that for £ € (0,1], s < ==

gd—a —= E4—a*7
it is easy to get the conclusion in (7.35) for |[e®!||2 + [|0,; e=!||2 (the boundary case is the

same as that in Lemma 7.2) and ||6;7e¥0||2. For 1 < j < M — 1, we get

3 T

T

‘526?1‘ SO <€4—a> ’ HaxxwaHL"O(U) + ThHamacma:acuOHLOO(U) +/ SQdSHatttxxUEHLOO(UT)
0

2
<pZ4
Nh +54701*’

7_2

605 e SO <€4_a> 105w || Lo (1) + B [|Orawantioll oo ) + 721 Outtat®[| oo (17

7_2

gl—a*?

<K+

which implies the results for ||5;" 6|2 (the boundary case is similar as above) and
|62e51 |2 in (7.35).
For the assertion (7.36), we use the relation between u(x,t) and u®(z,t). Taylor ex-

pansion would give for 1 < j < M — 1
g1
u(fL'j, 7—) —uy’

j
’iThQ 2 i . 24« iT/52 €
= —Tammuo(:cj +65h) + ; uy(xj,8)(T —5)ds +ie” (e — Dw®(z;),

and

05 (s, 7) = w1 ) | S Th2Ormzatiol| oo + 72| Orta]oe + €210 1oc,

82 (g, ) = 5" ) | S ThllOssasotioll o + 721100zl e + Do 1.
it is convenient to use the boundary condition as before to find that
lutg, 7) = w5 o 4106 (o) = 5t) U+ 102 (o) = w5t ) lls S B2 72 4 22
Recalling the convergence |uf(x;,7) — u(zj,7)| < €? and

|5; [ue(xj77_) - u(xj77—)H S 62 + hQ(Huﬂ?ﬂ?ﬂ?HLoo(UT) + Hui":vaL‘x’(UT))’ .7 = 07 17 e 7M - 17
|02 [u (27, 7) — ulwy, M| S €8 + " ([ towall Lo W) + |UzawallLe ) = 150, M =1,

the triangular inequality then gives the conclusion for |e=!||s + [|6Fe5t||o + [|62e5! |2 in

(7.36).
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Similarly, for 0 <j < M —1

61 (1(5,0) = 15°) | S W2zt o) + 71Ol e ) + = 0 o0,
&€
J

6765 (w(a5,0) = 05°) | S W2 0uawawtol ey + 7 Ousatll e ) + 21000 oo,

combined with the triangle inequality and assumption (B) which implies

|6, u(2,0) = 6 u(zj,0)| + |6, 0 u(25,0) — 6 6 u(x;,0)| <1, (7.37)

~

we draw conclusion (7.36) for [|6;7e0||s + ||6,7 6 €0||2. n

One main difficulty in deriving error bounds for SIFD and/or in high dimensions is the
[*° bounds for the finite difference solutions. In [6,13,145], this difficulty was overcome
by truncating the nonlinearity f to a global Lipschitz function with compact support in
d-dimensions (d = 1,2,3). This is guaranteed if the continuous solution is bounded and
the numerical solution is not far away from the analytical solution. Here, we could apply

the same idea. Choose a smooth function p(s) € C*°(R!) such that

L, 0<[s| <1,
p(s) =14 €[0,1], 1<]s| <2, (7.38)
0, |s| > 2.
By assumption (B), we can define
My = max {HU(%t)HLoo(UT), sup ||U€($,t)\|Loo(UT)} (7.39)
€€(0,1]

and choose a positive number B = (Mg + 1)2. For s > 0 and z € C, define
f8(s) = f(s)p(s/B), F(s) = /Os fB(0)do, py(s) = p(s/B), 95(2) = 2p,(|2*).  (7.40)
Then fp(s) and g,(z) are global Lipschitz and
|fB(s1) — fB(s2)| < Cgl\/s1 —v/s2|, Vs1,s2 > 0. (7.41)
Choose v50 = 40 v51 = 4! and define v*" € Xy (n > 1) for j € Ty as

(Z(St - 625252) ’UE "

1 _
o 4 5(53057"“ + 6205 + fa(JUE" )" = 0. (7.42)

In fact, v=™ can be viewed as another approximation of u®(z,t,).
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Define the ‘error’ function 5™ € Xy, as

e =t (wj,tn) — 0", € Ty, n >0, (7.43)

and the local truncation error 7™ € X for n > 1 and j € Ty as
. . 1
57 = =202+ ([ () ) () 5 (020 (2t 1) 020 (5, 1) (7.44)

Similar as Lemma 7.2, we have the bounds for 7" (n > 1) as

175" |2 + 1657 [l2 < (7.45)
Subtracting (7.42) from (7.44), we obtain the ’error’ equation for é>™ € X as
. ~E,M 1 ~EM ~EN— ~E,T n
(i6; — £%67) " + 5(53236;’ oy 536? h— "+ & =0, (7.46)
where €57 € Xy (n > 1) is defined for j € Ty as
6" = Ip(05"E" + (2. ta) (Fp(u (@i t)P) — fo(™P)) . (747)

For £, we have the following properties.

Lemma 7.4 Under the assumptions in Theorem 7.2, for £&&™ € Xy (n > 1) in (7.47),

we have
M1, 66T SIET NI, 0<j < M1 1<n< - (7.48)
Proof: Using the properties of fg(s), it is easy to obtain
&S 15", je T n> 1 (7.49)
For0<j<M—1,n>1and#f € |0,1], denote
S0 =0u(zj41,t n) + (1= 0)us(z),ty), Vig = ijfl + (1 — (9)1);’”, (7.50)

then we have

5; (f(’us(xj’tn)‘Q)u (zj,t )) 5+ (f(’ v; ’2)1);”) =5 -1 with
1 e
I :/0 [(fB(|u§,6|2) + 5([u5 o) o) 03 u® (2, ) +fjg(|u§’9|2)(u§79)25:u5(a@j,tn)} 4o,

(050 ) + TP o?) 81057 + £ ()50 BT
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Using the definition of fp, it is easy to see fp € C3(R) and the following holds

[(FB(1u56°) + FB(1u5 o5 o1?) = (F(10501%) + fB(105 01105 01%)] 6 u” (2, )

Aan AETZ|

S |5l = 150l | S 165"+ 16554

[ (15 01*)(w59)* = fé(lvf,GIQ)(vi,a)z] 0F uE (2, tn)

S lufol = [W5l| < 16571+ €541,

[F(105,01%) + FB(105 ) 0561%] (8 u® (2, t0) = 03 05™)| S 18,565,
(10502 (v50)? (0T 0 (g, ta) — 057 )| S 16757,
Hence, we get
ore Sl e+ 1ore", 0<i<M—-1,n>1 (7.51)
The proof is complete. 0

Proof of Theorem 7.2: The proof is divided into 3 main steps.
Step 1. To establish (7.30)-type error bound for é=™. From the ’error’ equation (7.46),
multiplying both sides of (7.46) by é; pentl éE =1 and summing for j € Ty, using sum-

mation by parts formula, taking imaginary parts, we have

Héa,n-HH% +4€2 Im (ée,njézréa,n) o {Héem_lH% +4€2 Im (ée,n—l’égrée,n—l)}

= —27Im (& — 7", et e ) | n> 1. (7.52)

Adding (7.52) for 1,2,...,n (n <

!

— 1), in view of Lemma 7.4 and the local truncation

‘error’ (7.44), we have
2 Tl+1
-
16515 + 167 3 + 4T (&7, 57 e°") < (h+—) 7 2 e (7:59)

Multiplying both sides of (7.46) by A; ntl éj’"fl and summing for j € T3y, using sum-

mation by parts formula, taking real parts, we have

1 1
— ()16 eMI3 + o e HIE) + (2o e IS + S llad e )

— —_Re (ga,n _ 7¢l€,n7 ée,n+1 o éé‘,n—l) ) (754)
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Noticing that

Re (55 no_ Az-: n z—:,n+1 . és,nfl) Re (ge,n . ﬁs,n’ (r);l—és,n + 5:—é5,n71)

=T

Cr 72 \? . o .
<G {(#+ o)+l | v (ot en 1 + o)
combined with (7.54), taking summation for 1,2,...,n and using Lemma 7.3, we find that

e?|la7e="|I3 + - ||5+A5”+1||2+ \|5+”\|2

7_2 2 ntl T
S5 (o) Ly U+ T3 S LSns DL (159)

m=1

Forlgngg—l,deﬁne
. 1 . 1 . . .
S§" =38 (€2H5t+65’"\|§ + §|l5§65’"+1||§ + §|l5§€€’"||§> 55 (1" T3 + le="3) . (7.56)
In view of the Cauchy inequality which implies

R L S
8207 ¢ 3 + o5 e 3 = 4| (5rem o),

together with E% x (7.53) 4+ 16 x (7.55), we obtain

2 72

sngg(h +

= T
P+rY S 1<n<=-—L (7.57)

T

Hence, discrete Gronwall inequality [46,67] implies that for 7 small enough,

2
1 /.5 72 T
sngg(h +€4a*> S isas— -1 (7.58)
In particular, we have established the {? error bounds
lems Sh 4+ ey n< L (7.59)
e —_— — .
2 5 64_a* ) = 7_

However, the discrete H' convergence is not optimal. In order to derive the optimal conver-

gence rate in discrete semi- H! norm, multiplying both sides of (7.46) by 52(% Ly éj’”_l),
then summing together for j = 1,2,..., M — 1, after taking the imaginary parts of both

sides and applying the summation by parts formula, using the I2 error estimates (7.59),
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we have

16553 + 4e* Im (5 6™, 6, 0. =) — {||6F "3 + 4e* Im (57 e, 5o e=™ 1)}

— 97 Im <é—€,n . Asn 62(AE n+1 +é ~E,M— 1)> — 927Im (5:£5m . 5;ﬁ€’n,5;é5’n+l + 6;@5':’"71)

2

2
.
< Or [logee B + Iages B + logeem g + e + (42 + - >]

4—a*
2 2
<or (W + o ) +OnllateEn I + 15 + Jofen ), 1<ns Do

N

Summing above inequalities for 1,2, ..., n and making use of Lemma 7.3, we then have
5765 AT 4 (5157, 70 )

2 T2 ? = + se,m |2 +Az-:m2 + 46,0 ¢+ 26,1
<nr (W4 o +TZ 63 e=™|13 +Z 163 ¢5™ 3 + 4e” Tm (87670, 6,7 5,6")

) 7_2 2 n+1 ) T
< <h + 64_a*> brYolaEET 1sms o1 (7.60)
m=1

Multiplying both sides of (7.46) by 5%(é§’n+1 — éj’”_l), summing up together for j =
1,2,.... M —

1, then taking the real parts both sides and applying the summation by

parts formula, using the [? error estimates (7.59) and the local truncation error (7.44), we

have for n > 1
1 1
2|0 o eI + §H5§é5’"+1||§ S A P §|l5§é€’"*1||§

— Re <€e,n o ﬁa,n’ 5§(é§,n+l . éé,n71)> — _Re (5;—55,71 o 5;—7?5’”, 6;-(é§,n+l o ég,n71)>

J J
— _7Re (5;&” A R A 5,#5;@;7”—1))
N . Cr R Cr 72 2
<7 @larerer g+ 2lataseny) + Glsseng+ (w4 o)

Summing the above inequalities together for 1,2,...,n and using Lemma 7.3, we find that

1 1
e*llof oy e I3 + 5 llazes ™ 5 + S lloze 13

n+1 2 2
N N . . T
S0 BB+ T S o+ ot + 1678 0l + <h2+w>
m=1 m=1
n+1 7_2 2 T
<7_Z 2H5+5+A€m”2+ Z||5+A€m”2+_(h2 a*> ’ 1§n§;_1.
m=1
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In view of (7.60) and (7.61), define 7" for n > 1 as

1

— (I e 13 + o e 3)

1 1
T =8 (L1forenip + gl g + g1 g) +

Again, Cauchy inequality with E% X (7.60) + 16 x (7.61) will give that

"
« T

1 2 \? - T
7%57<M+14 )+¢§ 7", 1<n<—-1 (7.62)
(3 3
m=1

Then the discrete Gronwall inequality [46,67] will imply that for 7 small enough,

1 2 \? T
T"<S < (R + —4— 1<n<=-1 7.63
sa(meate) . asast (7.63)
Hence, the discrete-H' bounds for the ’error’ é5" holds as
5+ ~E,M < p2 7—2 T
[0z €= l2 S R +€4,—a*, né;- (7.64)

Step 2. To prove (7.31)-type error bound for é=™. For the approximation v=" € X,
defined in (7.42), introduce the ’biased error’ function é*" € Xy, ie. the difference

between v=™ and the solution u(z,t,) of NLSE (7.10), for j € Ty as

& = u(wj,tn) — 05", >0, (7.65)

Define the ’local truncation error’ 7=™ € Xjs for n > 1 and j € Ty as

- . 1

;" = (10 — €207 + fa(julz), ta)?))u(z), ) + 5(5§U($jatn+1) +05u(zj,ty-1)). (7.66)
Similar as Lemma 7.2, we can prove that under the assumptions in Theorem 7.2,

T
7" + 1057 S A% 47?4 1<ms T o1 (767

Subtracting (7.42) from (7.66), we obtain the ’error’ equation for é™ € X, as

1 . ~
(16 — 267) & + 5(53;&;’"“ o2 i+ S =0, (7.68)

where £5" € Xy (n > 1) is defined for j € Ty as

& = Fp(f " P)Es" + ulay,ta) (Sn(lutes, 0)P) = fo(05"R) - (7.69)
Then we have the following properties on 55’" similar as Lemma 7.4,

TSI G SIS e 155 e, 0<j <M ~1,n>1. (7.70)
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As shown in Lemma 7.3, we have 0 = 0 and
185 2 + (165 & l2 + 655 2 S A2+ 72+ €2, [I0F e + 167650 S 1. (7.71)

From ’error’ equation (7.68), multiplying both sides of (7.68) by €} ntl gy é;’"fl and

summing for j € 7y, using summation by parts formula, taking imaginary parts, we have
H~an+1H2+4€ Im(an 5+ en) {H~en 1H2+4€ Im(en 1 5+~an 1)}
= —2rTm (£ — g E T @) > (7.72)

Adding (7.72) for 1,2,...,n (n < L — 1), similar as the proof of (7.27) for =", we have

n+1
&1 B + 6™} + et (&, 6 &) Smr (W2 4724227 47 Y @B (773)

Multiplying both sides of (7.117) by é; pe éj’"fl and summing for j € 7y, using

summation by parts formula, taking real parts, we have

— (USFEE + SIoreE B + (lorEn I + 5l en T R)

— _Re (557" _ gl é&"*) o>l (7.74)
Noticing that
<£a,n _ e, gentl ée,n—l) ‘: -

- 1 —en— -
< = 5 (B2 472 462 +[1e72) + 5re® (167 e 2 + llo7 e m13)

Re (ge,n . ﬁe,n’ 5;réa,n + 5;réa,n—1>

summing (7.74) for 1,2,...,n and making use of (7.71), we have

n+1

- . - . 1.
o e+ 5 H5+ P H5+ "3 <TZ e 5+ 2|| 3
m=1 m= 1

C T

—|—n7’6—2(h2 + 72+ 2402+ CRP+ 12+, 1<n< -1 (7.75)
Let
£ = 8?16 &3 + 5 H5+~6 "B+ S H5+N€”H )+ (!Fé PEE A+ EmE)  n > 1,

(7.76)

then similar as the case of é=", using the Cauchy inequality together with (7.75) and
(7.73), we have

n 1 g m
£ ,<V€—2(h2+72+52)2+728 , (7.77)
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and the discrete Gronwall inequality [46,67] will imply for small 7

1 T
5”55—2(h2+72+52)2, 1<n<=-1. (7.78)
T
Hence the 12 estimate holds
T
el S A2+ 72462, n< =, (7.79)
T

To prove the corresponding discrete H' error estimates, multiplying both sides of (7.68)

by 5%(6;’”“ + éj’”_l), summing together for j = 1,2,..., M — 1, summation by parts,
taking imaginary parts of both sides and making use of the /2 estimates and (7.67), we

then have

5+~5,n+1 2 4 21 5+~a,n 5+5+~5,n o 5+~5,n—1 2 —4 21 6+~5,n—1 5+6+~5,n—1
Hme H2+6 m(me y0p Oz € ) Hme H2 € m(are y0p Oz € )

= 97 Im <ga,n o ﬁa,n’ég(éa,nﬁ-l + ée,n—1)> = 97 Im (5;—(55,71 o ﬁa,n)’ég— (ée,n—I—l + éa,n—1)>

< Or(llae™ G + lofesm 13 + I e M5 + ew[3) + Or(h* + 72 + &%)

T
< Cr(loFe™ 3 + o e 3 + oFe="3) + Cr(h* + 7% +€%)?, 1<n<— -1

-
Adding the above inequalities together for time steps 1,2,...,n, using Lemma 7.3, we

have
n+1
6 &3 + 1|0 &5 + 46 Tm (678", 6765 65™) S (WP + 72+ 22+ 7 > 65e™|3.
m=1
(7.80)

Multiplying both sides of (7.68) by 5%(62’”“ - éj’”_l), summing together for j = 1,2,..., M—

1, summation by parts, taking real parts of both sides and making use of the [? estimates

and (7.67), we get for 1 <n < % -1

1 1
e?llo oy eI + e G — e*laf o e g — Sllozes S
— Re <€~e,n o ﬁa,n’ 5§(ée,n+1 o éa,n—1)> — _Re (5;—55,71 o 6;—,,75,71’ 5;—(ée,n+1 o éa,n—1)>

— —rRe (587 — atiFn aF gt e 4 greEn )

. e Cr - -
< Ot (2|6, 6515 + 2|6 6.5 e="H3) + =3 [lo.r ™15 + [1e=™ 3]

C
+ E—J(h2 + 72 4 £%)2,
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Summing the above inequalities for time steps 1,2,...,n, using Lemma 7.3 on the error
of ||62&51 (|5 and [|6; 0, €52, we have for 1 <n <L —1
. 1, 9. 1o, - -
el e 5 + Sllogem ™ HIE + Sllazem I3 < o oF el 5 + lloge s
n 1 n+1
+CP Y o eEmE + <T > lske ™5 +nrC(h? + 7% + 52)2>
m=1 m=1
n+1
Selr Z 160 &=™ 13 + 3 Z o &= ™3 + (h2 +77 %)% (7.81)
m=1
Similar as before, define £ for n > 1 as
- ~ 1., 5. 1,9, 1 ~ -
E" =8(e*[16705 & |13 + 5102672 + 5110267 1Z) + 55 (97 & iz + 1o e 2)
(7.82)
combining (7.80) and (7.81), applying the Cauchy inequality, we get
£"<i(h2+72+e2)2+72n:£‘m 1<n<L_q (7.83)
~ 52 ’ = =7 . .
The discrete Gronwall inequality [46,67] implies that for small enough 7
fn o« 112 2, _2)2 T
& §€—Q(h +77+e%)4, 1<n<—-1 (7.84)
T
Hence
T
165 la Sh*+72+€%, 1<n<—. (7.85)
T
Noticing
éj’” = éj’n + (u (x5, tn) —u(zj,tn)), J€Tu,n >0, (7.86)

and assumption (B) which implies
[ (g, ta) = g, ta)la + 1630 ) = SFula to)lla S B2+ 72422 n>0, (787)

combining (7.79) and (7.85) together, we then conclude that

AN

67+ [0 &7 la S B2+ 72+ €%, 0 << (7.58)

Step 3. To obtain e-uniform estimate (7.59). From (7.59), (7.64) and (7.88), taking

o s 2
the minimum of €2 and o, We get

IN
S
IN

[ o + 165 &7 o S B2+ 77, 0 (7.89)

31N
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Noticing that 4/(6 — o*) > %, using the discrete Sobolev inequality [145]
~E,M + se,n 2 =
16" loo < Cl0; %" [l2 S h” + 78747, (7.90)
When 7 and h become sufficiently small, we have ||é*" || < 1, and
£,n € AEM € \/_ T
1™ oo < N[ullzoo @) + 167" oo < [[ull ooy +1 < VB, n< —. (7.91)

Thus, using the properties of fg(s), scheme (7.42) collapses to SIFD (7.14), and v*" is
the solution of SIFD (7.14). In other words, we have proved the results in Theorem 7.2
for SIFD (7.14). O

Remark 7.1 Here we emphasis that our approach can be extended to the higher dimen-
sions, e.g. 2D and 3D directly. The key point is the discrete Sobolev inequality in 2D and
3D as

lunlloe < ClAl fuplliz, — llonlloo < O3 (loplla, (7.92)

where up, and vy, are 2D and 3D mesh functions with zero at the boundary, respectively,
and the discrete norms || - ||g1 and || - |loo can be defined similarly as the discrete semi-
H' norm and the I° norm in (7.23) or in Chapter 6. The same proof in 2D and 3D
will lead to (7.89), and the above Sobolev inequalities will imply (7.91) by noticing that

4/(6 — o) > 2 > 1 and the assumption T < h.

7.4 Convergence of the CNFD scheme

In order to prove Theorem 7.1 for CNFD, again we first establish the following lemmas.

Lemma 7.5 (Conservation properties of CNFD) For CNFD scheme (7.12) with (7.15)
and (7.21), for any mesh size h > 0, time step 7 > 0 and initial data (ug,u3), it satisfies

the mass and energy conservation laws in the discretized level, i.e.,

1
Ni (us™) =3 (lu=™13 + Ju="TH13) — 2&% Im(5; u®", u®™) = Nj; (u?), n >0, (7.93)
n+1 1 M-1
K K +1
Er(u) = 0w 34 5 D Iofur ™1 = 5h D2 (P ) + F(s ™ 2))
m=n 7=0

=E;(u?),  n>0. (7.94)
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Proof: Follow the analogous arguments of the CNFD method for NLSE [46, 67] and
NLSW [73,154] and we omit the details here for brevity. 0

e,n—1

Lemma 7.6 (Solvability of the difference equations) For any given u and u®", there

exists a solution u®" 1 of the CNFD discretization (7.12) with (7.15). In addition, if the
nonlinear term f(|z|?)z (z € C) is global Lipschitz, i.e. there exists a constant C' > 0 such
that

|f(|z1|2)zl - f(|z2|2)22| < Clz1 — 29|, Vz1,29 € C, (7.95)

then there exists 79 > 0 such that the solution is unique when T < 7.

Proof: The proof is standard for NLSW [73,154] and we omit it here for brevity. 0

Denote the local truncation error ¢>" € X, for CNFD (7.12) with (7.15) and (7.21)

forn > 1 and j € Ty as

1
G"= (2'51:—525?)1&5(%7tn)+§(5§u5(%atn+1)+5§u€(%‘vtn—1)+G(u5(90jvtn+1)au€($jatn—1))-

Similar as Lemma 7.2, we can have the following results.

Lemma 7.7 (Local truncation error for CNFD) Under assumption (B), assume f €
C3(]0,0)), we have

N

7_2

15l + 105¢5 2 S * + lsn< -1 (7.96)

64_a* ) T

Proof: For n > 1and j € 7), expanding Taylor series for nonlinear part G at [u®(z},t,)|?,
and noticing (7.13) and the following
n 1 € 2 € 2 ! €2
07 = = (0 (s b)) = [0 (s ta) ) = | D6l ) (@5t + 57) ds,
0
B i= 2 (5 (0 (g, tug) P+ (g, t)?) — (g, )P
I 2\ 9 Jrtn+l Jrtn—1 jrln

1 r6
= / / O (|u€|?) (x5, ty, + sT) dsdb),
0o J—-0
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then applying the Taylor expansion and NLSW (7.9), we obtain

¢ = / / / ugy (x0T + t,) dodsdd + —/ / Uy (25, 8T + t,)dsdl
/ / / / Z Usppr (X5 + S1h, ty + kT)ds1dodsdd

T k==+1

2
2 — 0 n __ _ T'L712// ) o o T—,ugzc- QNTP
+(7’ /O /0(1 (O — (1 =0T )*f"(&(0,0)) dodf + — f'(ju(xj, tn)| )p]>

2

1 p0 ps fro
272 / / / / gy (25,517 + t,) dsidodsdl,
0 JOo JO J—o

where &;(0,0) = o(0u®(zj,tn1)]? + (1 — 0)|u(zj,tn-1)*) + (1 — o)|u®(z;,t,)|*. Under

1
@ tr) + 0t 1)) + (0 //u (25, -+ 57) dsdf

assumption (B), using the triangle inequality, noticing that f € C?(]0,00)), for j € Ty,

and n > 1, we get

167" S W2 |0szaatu®|| oo + 72 (100w (|2 + €[ Oraeeu® || ow + | Opetu® || oo | f (" [?) | Lo

HlOware vl zoe + (10eu® | Zoe | (1P Loe + [1F (12| oo [1Ouel P [ oe ) 1)
2
<h*+

~ 64—04* :

The first part of the Lemma is proven. For 1 < 57 < M — 1, in view of the above
representation of ¢;"* and a similar calculation as above, noticing f € C3([0,00)) when

dealing with the nonlinear term G, for 1 < 57 < M — 1, it is easy to check that
655 S 12 | Bramrt 1 + 7 (Hamusum T Ot e + [Hauuwmuf'uusrz)rrm
(ORI () e + 1 ) e el ] ) Hufum]

N0 lu Pl + (100 (@elu® )Mo L ()2 + L () | o | Outa | )

Az + (el PIToo 1F” (1) zoe + 1 (1) ] zoe 190 u® 2 o) 10007 | oo

7_2

+ 10rau® | Lo [Lf (0P o + HamttuaHLoo)é W+

—a*

For j = 0 and M — 1, we apply the boundary condition to deduce that %ue(:c, t)|zeono =0
for £ > 0, and the equation (7.9) shows that u,.(z,t)|zco0 = 0 and Uyzr (2, t)|zco0 = 0.
Similarly as above, we can get the above estimates for j = 0, M — 1. Thus, we complete

the proof.
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The error bounds for e=™ at n = 0,1 are the same as Lemma 7.3 since the boundary
and initial conditions for CNFD (7.12) and SIFD (7.14) are the same.

The proof for the CNFD scheme (7.12) is quite similar to that of the SIFD scheme,
and we outline the schedule below, i.e. we prove the key lemmas.

Let 450 = v®9, 45! = &1 and 45" € Xy (n > 1) be given by

(Z(St—€2(52)A€n+ 52(A5n+1+ﬂ5n 1)+G (Aanrl’ajn 1)_0’ jGTM, (797)

where Gp(z1, 22) for z1, 29 € C is given by

1
+
Gotan) = [ JalOlaaf + (1= 0 05, (252
0
) =l (1)
pr— .gB s

|21]? — |22/? 2

with g,(2), fp(-) and Fp(-) being defined in (7.40). Actually ﬁjn can be viewed as
another approximation of u®(z;,t,). From Lemma 7.6, (7.97) is uniquely solvable for

small 7. Define the ’error’ x*™ € X forn > 1 as

X;,n = ’U,E(xj,tn) — ﬁ;’n, j € Ty, (7.98)

and the local truncation error (5" € X for j € Ty and n > 1 as

~E,M . € 1 €
G= (i6; — €267 Ju (@5, tn) + 553( (@ tngr) +u (@), tn-1)) + G (U (2, tns), u (25, tn-1)) -

(7.99)
Similar as Lemma 7.2, we can prove that under the assumptions in Theorem 7.1,
Il + 165l S+ o, 1<m< 1 (7.100)
M2 22 S o 1sns——1 :
and the estimate for ||é51||s + |67 €52 is proved in Lemma 7.3.
Subtracting (7.97) from (7.99), we obtain
: 1 +1 1 n o ze .
0 XE —525?)(;"—1— 552 ( o —i—xjn > —1—19;"—(]5-" =0, je€Ty, (7.101)
where 95" € X is defined for j € Tpy and n > 1 as
95" = Gp (U (), tag), v (1), ta1)) — Gp(as™ a5 ). (7.102)

Then we have the following properties on 9™,
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Lemma 7.8 Under the assumptions in Theorem 7.1, for 9™ € Xpr (n > 1) in (7.102),
we have for 0 <j <M —-1,n>1

+1 1 ,
TSI+ TS Y (R + G -
m=n—1,n+1

Proof: For j € Ty, n > 1 and 0 € [0,1], denote

P57 0) = Ol (g, b 1) 2 o (1= ) b 0) 2, 457(6) = 015" 2 4 (1 = 0)[a5" ",

~e,n+1 + as,nfl

1 . . - A
:U’?n = 9 [u® (:C]’ tnt1) +u’ ('Tja n—1)] H?n = %’ 7T§7n = |u5(xjatn)| + |u§,n|’

using the definition of Gp, Fp and g, it is easy to get

1
057 =5 [ 118050 ~ (55" 010 + 0,657 — 00 55 [ (65"

Noticing the Lipschitz property of fz(s?) and

Hﬂa',n-i-l‘ 5n+1’+( 0)7r§,n—1’X;,n—1‘
e 0) =65 0)] < = L < I

_i_\/Aan - ’

combined with the Lipschitz property of ¢, (%), we can obtain

S S IGTT G, G e Thy (7.103)

Rewriting 79?’” as

1
9" = g (i5") /O [£B(057(8) = FB(55"(0))]d0 + g, (15™) = 9,5 (45™)] / TBp
(7 104)

and applying ;7 to 95", we have

SHET = g (A" / 551 (057(0)) — £,(557(0))] dO
T Loy (45™) — g5 (™) / 55 15 (5™ (0)) dO + 6% (g, (55™) — g, (™) / Fapon(
T 6tg, (05" / L5 (Fm (0)) — £ (557 (0))] do.

Firstly, for 0,s € [0,1], and n > 1, we denote «}"(0,s), 45" (0,s) for 0 < j < M —1 as

K0, 5) = spT (0) + (L= 9)p"(0),  &™(0,) = spC(6) + (1— )57 (0).  (7.105)
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Noticing that for 1 < j < M — 1
o7 |18 (5570)) = 15 (557 ))]
= s [ s (57 0.0) as— 550 [ s as
- [ [ (5 s)) i (R7(0.9))] 52057 (0) s
b [ 160, [ 65 @) - 5 0]

a careful calculation shows that

oF [0 (0) - ﬁj”w)}:e[me( (g s )0 T O U (@ b))

en+let+ en+l en+1 o4 5n+1 en—1lc¢t+ en—1 en—1let+ en—1
=X 02X ~ X1 Oz X ]+(1_9)[ X5 e X ~ X1 O X

—|—2Re( (IEJ, n— 1)6+ ne 1+X§f1 1(5: ($],tn1)):|a

e,n—1 ~e,n g,n—1 Aan
and VI —0Ix ., | < /00 (0)+|u ()L VI=0Ix 1< /57 (0)+|u(x),t, )],
s 1 ~ 1 ~
VOGH < P§+n1 0) + |uf (zj1, tasr)], VOXG"T] < 1 /577(0) + \u (2, tnt1)|. More-

over, from the Lipschitz property of fp (7.41), we have

/01 i /B (/3;41( )) /B (Aen( ))

s| = < . (7.106)
Recalling the boundedness of §; pj’n(ﬁ), g5(-) and fg(-) as well as the Lipschitz property

~E, AE,M
) =70 0 W o
of f(s?), ie. |f(s1)— fp(s2)| < C|\/s1— /2|, combining the proof for (7.103), we arrive
at

/1 oF [£a(657(0)) = 12557 (0)] b - g, (75"
0

S Y GG 180G
m=n+1n—1

(7.107)

Secondly, from the property g, (-) € C§°, we know

102 95 (05" <C <C XS = O (2, b)) — 6 U (2, 1) |

In view of the boundedness of fp(s) as well as the proof for (7.103), we get

S D (e e P B S

m=n—1,n+1

[fB< pEO)) — Lo (5 (0)] d0- 6t g, (5™)
(7.108)
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Thirdly, noticing 4, f5 (pj"(@)) is bounded and g, (z) is Lipschitz, we have
! +1 1
‘/ 65 15 (57(0)) a9+ (9, (u5™) = 9, (35" ' ShGTTHDGTL (7.109)
0
Lastly, denoting o7 (6), 67(¢) for 6 € [0,1] and 0 < j < M — 1 as
07 (0) = Op3yy + (L= 0)p3™, 67(0) = 0457 + (1 = 0)A5™,
recalling the definition of p,(s) and g, (z), we find that
67 (905™) = 9 (65™)) = oF [ (5" P05 ™ = pp (85" 25" = I + Do,
where
1
I = /0 (05157029, (07 (0)) = 015" 09, (7(0)) | d0, D, (2) = pi (%) + |22, (121P),
1 - N
I = /0 (05157029, (07 (0)) — 05157 D=9, (57(0)) | O, D=9, (=) = 226, (|=12).

Noticing d; p;" is bounded and the Cg° property of p,(s), we know 0,g,(2) is Lipschitz

and

1
/0 (6F (™ — AE™)] 0., (67(0)) dB

1
|11|g' [ 0:9,030) - 0.9, 570)) ¢ E"de\

< max o o 5n+1+ en—1 ‘
max {]1070)| ~ I} ")
S X (BTG +1EG™) -
m=n+1n—1
In the same spirit, we have
1 n+1 1 ;n—1 1 n—1
L] S G A G T+ G+ G T+ 185G + 185G - (7.110)

Hence, we obtain

' / o (500(0)) a0 52 {gB(uj’”)—gB(ﬂj’n)”,ﬂ S (b + )
m=n—1,n+1

(7.111)
Combining (7.107), (7.108), (7.109) and (7.111) together, we finally prove that

5;&9;’" S

3 (Ix LENTo |+|xj+1l) 0<j<M-1,n>1(7.112)
m=n—1,n+1
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The proof is complete. O

Having Lemma 7.8, local truncation error (7.100) and the initial error Lemma 7.3,

following the analogous proof for SIFD, we could obtain

2
T
T n<= (7.113)

- 2,
X" 2 + 1102 X" ll2 S 4%+ ==, T

To complete the proof, we have to prove (7.28) type estimate for x=™. It is a straight
forward extension of the proof for SIFD and the proof for Lemma 7.8. More precisely,

define
)Zj =z, ty) — ﬁj” = Xj’” +uz),tn) —us(xjtn), j€Tay, n>0. (7.114)

and the ‘local truncation error’ (5" € Xp; for n > 1 and j € Ty as

Temn . 1
C;’ = (25t—525t2)u(xjvtn)+§53:( (x],tn+1)+u(xj, n-1)) +Gp(u (xjvtn-l-l)vu(xj’tn—l))'

(7.115)
then we have
1C5" 2 + 165 ¢ |2 S B2+ 72+ €%, n>1. (7.116)
Subtracting (7.97) from (7.115), we obtain for n > 1
is Xs no 5252 SEM + 52 <~§ n+1 + )Z;,n71> + ,[@,';,n - <~]€,n _ 0’ ] c TM, (7.117)
where 9" € X is given for j € Ty and n > 1 as
5" = G (ulwg tun) (g, o)) = G (57,57 (7.118)

Then the following lemma holds and we omit the proof here.

Lemma 7.9 Under the assumptions in Theorem 7.1, for 95™ € Xy (n>1)1n (7.118),
we have for 0 < j < M —1 andn > 1,
~en+l - 1 e, - -
TS IS+ IS s Y (IR e+ 1) -
m=n—1,n+1
Following the analogous proof for the SIFD, in view of Lemma 7.9, local error (7.116)

and initial error Lemma 7.3, recalling assumption (B), we can derive that

T
X" Ml + 165 X" [l S B2+ 72+ €%, n< =, (7.119)

T
Proof of Theorem 7.1: Combining (7.113) and (7.119) together, analogous proof for
SIFD applies and the conclusion follows. O
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7.5 Numerical results

In this section, we report numerical results for both SIFD (7.14) and CNFD (7.12) schemes
applied to NLSW (7.9) with f(|u®|?) = —|uf|?>. The corresponding limiting NLSE is the
defocusing cubic NLSE.

For the numerical tests, we choose ug(z) = 7 /4e~**/2 and w®(x) = e~**/2 in (7.9).
The computational domain is chosen as [a, b] = [—16, 16]. The ‘exact’ solution is computed
with a very fine mesh h = 1/512 and time step 7 = 107%. We study the following two
cases of initial data:

Case I. o = 2, i.e. the well-prepared case.

Case II. a = 0, i.e. the ill-prepared case.

We measure the error ej, at time ¢ = 1 with the discrete H! norm |lep,||z1 = |lenll2 +
16 enle-

Tab. 7.1 depicts spatial errors of SIFD for Cases I and II, for different i and e, with
fixed 7 = 1075, where the time step 7 is so small such that the temporal error can be
neglected. From the Table, we can conclude that, SIFD is uniformly second order accurate
in h for all e. Tabs. 7.2 and 7.3 list temporal errors of SIFD for Cases I and 11, for different
e and 7, with fixed h = 1/512. With this very fine mesh h = 1/512, the spatial error can
be ignored. Tab. 7.2 shows that, when 7 is small (upper triangle part), the temporal error
is of second order for each &; when ¢ is small (lower triangle part), the temporal error is
also of second order; near the diagonal part (for o = 2, slightly upper), the degeneracy of
the second order accuracy is observed. This confirms our error estimates (7.30) and (7.31)
for SIFD. Tab. 7.3 presents the errors of SIFD at the degeneracy regime for a = 2 in the
regime 7 ~ €2, and resp., for a = 0 in the regime 7 ~ &3, predicted by our error estimates.
The results clearly demonstrate that SIFD converges at O(h? + 7) and O(h? + 7%/3) for
a =2 and a = 0, respectively. Similar tests were also carried out for CNFD and we obtain

similar conclusion, thus they are omitted here for brevity.
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a=2 h=1/2 h=1/22 h=1/22 h=1/2* h=1/2> h=1/25 h=1/27
e=1/22 151E-1 4.05E-2 1.03E-2 257E-3 6.45E-4 1.60E-4 3.90E-5

1.90 1.98 2.00 1.99 2.01 2.04
e=1/2% 194E-1 5.35E-2 1.36E-2  3.41E-3  8.51E-4  2.10E-4  4.92E-5
1.89 1.98 2.00 2.00 2.02 2.09
e=1/2* 215E-1 6.05E-2 1.55E-2  3.88E-3  9.67E-4  2.39E-4  5.68E-5
1.83 1.96 2.00 2.00 2.02 2.07
e=1/2> 222E-1 6.29E-2 1.61E-2  4.04E-3 1.01E-3  2.49E-4  5.93E-5
1.82 1.97 1.99 2.00 2.02 2.07
e=1/26 223E-1 6.36E-2 1.63E-2  4.08E-3 1.02E-3  2.52E-4  6.00E-5
1.81 1.96 2.00 2.00 2.02 2.07
e=1/2" 224E-1 6.37E-2 1.63E-2  4.10E-3 1.02E-3  2.52E-4  6.01E-5
1.81 1.97 1.99 2.01 2.02 2.07
e=1/210 224E-1 6.38E-2 1.63E-2  4.10E-3 1.02E-3  2.53E-4  6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07
e=1/220 224E-1 6.38E-2 1.63E-2  4.10E-3 1.02E-3  2.53E-4  6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

Table 7.1: Spatial error analysis for SIFD scheme (7.14) with different € and h for Case
I ie. a =2, with norm |le]|z1 = |le|l2 + [|6F e|l2. The convergence rate is calculated as

logy([le2h) [ g1/ lle(h) || 1)

a=0 h=1/2 h=1/22 h=1/2> h=1/2" h=1/2" h=1/25 h=1/27
e=1/2> 152E-1 4.09E-2 1.04E-2 260E-3 6.53E-4 1.62E-4  3.94E-5

1.89 1.98 2.00 1.99 2.01 2.04
e=1/2% 195E-1 5.36E-2 1.36E-2  3.41E-3  8.52E-4  2.10E-4 4.93E-5
1.86 1.98 2.00 2.00 2.02 2.09
e=1/2 215E-1 6.05E-2 1.55E-2  3.88E-3  9.67E-4 2.39E-4  5.68E-5
1.83 1.96 2.00 2.00 2.02 2.07
e=1/2> 222E-1 6.29E-2 1.61E-2  4.04E-3 1.01E-3  2.49E-4  5.93E-5
1.82 1.97 1.99 2.00 2.02 2.07
e=1/26 223E-1 6.36E-2 1.63E-2  4.08E-3 1.02E-3  2.52E-4  6.00E-5
1.81 1.96 2.00 2.00 2.02 2.07
e=1/2" 224E-1 6.37E-2 1.63E-2  4.10E-3 1.02E-3  2.52E-4  6.01E-5
1.81 1.97 1.99 2.01 2.02 2.07
e=1/21" 224E-1 6.38E-2 1.63E-2  4.10E-3 1.02E-3  2.53E-4  6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07
e=1/220 224E-1 6.38E-2 1.63E-2  4.10E-3 1.02E-3  2.53E-4  6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

Table 7.1: (con’t) For Case II, i.e. o= 0.
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=2 7=01 T:% T:% :02;31 T:% :02;51 :% :02;71

€ 2% 1.10E-1 4.75E-2 1.49E-2 3.86E-3 9.70E-4 2.43E-4 6.10E-5 1.56E-5
1.21 1.67 1.95 1.99 2.00 1.99 1.97

€= 2% 1.60E-1 5.06E-2 1.46E-2 5.45E-3 3.07E-3 8.27E-4 2.08E-4 5.21E-5
1.66 1.79 1.42 0.83 1.89 1.99 2.00

€= 2—14 1.98E-1 6.02E-2 1.85E-2 4.78E-3 1.25E-3 4.14E-4 3.74E-4 1.81E-4
1.72 1.70 1.95 1.94 1.59 0.15 1.05

€= 2% 1.90E-1 7.30E-2 1.92E-2 5.00E-3 1.39E-3 3.49E-4 8.75E-5 2.74E-5
1.38 1.93 1.94 1.85 1.99 2.00 1.68

€= 2% 1.89E-1 6.87E-2 2.18E-2 5.28E-3 1.32E-3 3.34E-4 9.09E-5 2.17E-5
1.46 1.66 2.06 2.00 1.98 1.88 2.07

€= 2% 1.89E-1 6.79E-2 2.06E-2 5.81E-3 1.36E-3 3.38E-4 8.26E-5 2.20E-5
1.48 1.72 1.83 2.09 2.01 2.03 1.91

€= 2%0 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.37E-3 3.50E-4 9.27E-5 2.14E-5
1.48 1.75 1.90 1.97 1.97 1.92 2.11

€= 2%0 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.36E-3 3.42E-4 8.56E-5 2.14E-5
1.48 1.75 1.90 1.98 1.99 2.00 2.00

Table 7.2: Temporal error analysis for SIFD scheme (7.14) with different € and 7 for Case
I ie. a =2, with norm ||e|| 1.

a=0 7=01 T:% T:% :02;31 T:% :02;51 :% :02;71
€= 2% 291E-1 1.39E-1 4.05E-2 1.04E-2 2.63E-3 6.59E-4 1.66E-4 4.54E-5
1.07 1.78 1.96 1.98 2.00 1.99 1.87
€= 2% 1.76E-1 9.04E-2 6.52E-2 7.35E-2 3.30E-2 8.71E-3 2.19E-3 5.50E-4
0.96 0.47 -0.17 1.16 1.92 1.99 1.99
€= 2%1 1.96E-1 6.02E-2 2.10E-2 1.01E-2 1.98E-2 3.81E-3 1.92E-2 8.16E-3
1.70 1.52 1.06 -0.97 2.38 -2.33 1.23
€= 2% 1.90E-1 7.26E-2 1.94E-2 6.11E-3 3.36E-3 3.61E-3 4.69E-3 1.01E-3
1.39 1.90 1.67 0.86 -0.10 -0.38 2.22
€= 2% 1.89E-1 6.87E-2 2.17E-2 5.32E-3 1.55E-3 8.15E-4 7.31E-4 1.39E-3
1.46 1.66 2.03 1.78 0.93 0.16 -0.93
€= 2% 1.89E-1 6.78E-2 2.05E-2 5.81E-3 1.39E-3 4.37TE-4 2.50E-4 2.03E-4
1.48 1.73 1.82 2.06 1.67 0.81 0.30
€= 2% 1.89E-1 6.77E-2 2.02E-2 5.48E-3 147E-3 3.46E-4 1.08E-4 6.21E-5
1.48 1.74 1.88 1.90 2.09 1.68 0.80
€= 2% 1.89E-1 6.76E-2 2.02E-2 5.39E-3 1.39E-3 3.70E-4 &.70E-5 2.35E-5
1.48 1.74 1.91 1.96 1.91 2.09 1.89
€= 2%0 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.37E-3 3.50E-4 9.28E-5 2.22E-5
1.48 1.75 1.90 1.97 1.97 1.92 2.06
€= 2% 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.36E-3 3.42E-4 &.56E-5 2.14E-5
1.48 1.75 1.90 1.98 1.99 2.00 2.00

Table 7.2: (con’t) For Case II, i.e. o= 0.



7.5 Numerical results

_, ¢&=1 e=1/2 e=1/2% e=1/23 e=1/2*
@ =02 r=02/22 71=02/2* 1=02/26 T=0.2/28
lellzn  1.07E-1 L.77E-2 3.86E-3 8.27E-4 1.81E-4

1.30 1.10 111 1.10
o =0 e=1/22 e=1/23 e=1/2% e=1/2° e=1/2°

N r=0.1 r=01/2> 71=01/28 7=01/2° 7=0.1/212

lellzn  2.91E-1 7.35E-2 1.92E-2 4.83E-3 1.21E-3
1.99/3 1.94/3 1.99/3 2.00/3

Table 7.3: Degeneracy of convergence rates for SIFD with h = 1/512, Case I and Case I1.
The convergence rate is calculated as logy(||e(227, 2¢)|| 1 /lle(7,€)||g1)/2 for a = 2 (Case
1), and logy(|le(237,2¢) || g1 /lle(r, &)l 1) /3 for a = 0 (Case I1).
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Chapter

Concluding remarks and future work

This thesis is devoted to mathematical analysis and numerical simulation for the Gross-
Pitaevskii equation (GPE), focusing on the ground state and dynamical properties as well
as their efficient computation.

We payed special attention to the dipolar GPE (2.5) involving a highly singular kernel.
Upon reformulating dipolar GPE (2.5) into a Gross-Pitaevskii-Poisson system (GPPS)
(2.19)-(2.20), we analyzed the ground sates and well-posedness of dipolar GPE (2.5).
The new formulation allowed us to develop a time-splitting sine pseudospectral method
for simulating the dynamics of dipolar GPE, and a backward Euler sine pseudospectral
method for computing the ground states of (2.5), based on the gradient flow with discrete
normalization method. Then, starting from GPPS, effective 1D and 2D equations were
derived for dipolar GPE with highly anisotropic confining potential. Subsequently, we
considered the ground sates and well-posedness of the 1D and 2D equations. Furthermore,
efficient and accurate numerical methods were proposed for finding the corresponding
ground states.

The second part was to investigate the ground states of coupled GPEs, modeling a bi-
nary BEC with an atomic internal Josephson junction in optical resonators. For analytical
results, the existence and uniqueness of the ground states were proved in different param-
eter regimes. On the other hand, for numerical implementation, we developed a backward
Euler finite difference method for the computation. In addition, numerical examples were

shown to confirm our analytical results.
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The remaining part was related to numerical analysis. Firstly, we presented the analy-
sis for finite difference discretizations for rotational GPE in 2D and 3D. In literature, the
results for GPE were only available in one dimension (1D) case for conservative schemes.
Using new technique, we proved the optimal convergence results in 2D and 3D cases, for
both conservative and non-conservative schemes, confirmed by numerical results. Then,
we worked on the uniform convergence analysis of finite difference methods for nonlinear
Schrodinger equation perturbed by the wave operator (NLSW). The difficulty was that the
solution exhibited high oscillation in time when the small perturbation strength € was con-
sidered. Due to the oscillation, it would be expected to choose the time step corresponding
to €, so that the difference schemes could capture the true solution. We proved rigorously
that the convergence rates of the finite difference schemes were independent of €. Hence,
it is not necessary to reduce the time step when ¢ decreases. Again, our approach works
for 1D, 2D and 3D, and for both conservative and non-conservation schemes. Numerical
examples confirmed our uniform convergence results.

The present work on dipolar GPE was focusing on the non-rotational case. For the
rotational frame, it is important to understand how the dipolar interaction affects the
quantized vortices. The 2D equation can be used to study the rotational dipolar GPE,
instead of analyzing the full 3D model, which is very complicated. Extensive mathematical
analysis and numerical experiments are needed to be done for the corresponding 2D model
in future. Of course, it is also desirable to study the full 3D rotational dipolar GPE directly.
We propose to do numerical experiments for the 2D model first in future. Another issue
is the convergence between the 3D model and the 2D model, which is proved in the weak
regime. It would therefore be quite interesting to prove the convergence in the strong O(1)
regime. To achieve this aim, new technique needs to be involved.

As shown in the coupled GPEs case, the ground state properties of the system depend
on the coupling among the equations. In the more general cases, we may consider the
spin-F' BEC, which can be described by 2F + 1 coupled GPEs. Both ground states and
dynamical behavior will be analyzed.

In the numerical analysis part, error estimates have been proved for the finite difference

approximations of GPE, for 1D, 2D and 3D. In practical computation, the time-splitting
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pseudospectral method has shown its efficiency especially for the GPE. Thus, it is favor-
able to study the error estimates for the time-splitting methods. Convergence has been
obtained for the semi-discretization [32,103]. To go further, we shall understand the full
discretization case. For NLSW, we have proved the uniform convergence of the finite
difference methods. In future, we will investigate the numerical methods particularly suit-
able for the highly oscillating dispersive equations, especially for NLSW. It is expected
that the new methods would achieve higher resolution on the oscillation and the uniform

convergence rates would be improved.



Appendix

Proof of the equality (2.15)

Let

X’n2
¢(x)—i<1_3( )>, r—|xl, xeR® (A1)

T3 72
For any n € R3 satisfies |n| = 1, in order to prove (2.15) holds in the distribution sense,

it is equivalent to prove the following:

o0k = <0~ [ 160 om (F)ix V) e CRE). (A2
R3 R3 T

For any fixed ¢ > 0, let B. = {x € R® | |x| < ¢} and B¢ = {x € R® | |[x| > ¢}. It is

straightforward to check that

$(x) = —Onn (%) , 0#x€cR3 (A.3)
Using integration by parts and noticing (A.3), we get
1
6f 0 = [ 160 0hn () ax
Be Be r
1 n-x 1
- /B o <;> e et [ 00 H 0, (;> ds
= [ S o7 0) dx I+ 15 (A1)
Be T

where
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From (A.5), changing of variables, we get

S et e
i = /aBE f(x)dS = /831 f(ex) e2ds

A 22

= —/aB (n-x)Qf(O) ds — (n'X)2 [f(&X) —f(O)] ds. (A6)

0B1
Choosing 0 # n; € R? and 0 # ny € R? such that {n;, na, n} forms an orthornormal

basis of R3, by symmetry, we obtain

1
A::/ <n.x)2dsz_/ [(n-%)? + (n1 - x)? + (ng - x)?] dS
0B1 3 0By
1/ ) 1/ A
S x|%2dS = = ds = —, AT
3 aBl| | 3 Jon, 3 (A7)

[ xR0 - oy as| = | [ -x2e x- Voo as
0B, 0B

< ey | dS < 47 |V e, (A.8)

1
where 0 < 6 < 1. Plugging (A.7) and (A.8) into (A.6), we have
- 4m 4
I3 —>—?f(0), e—0". (A.9)

Similarly, for € — 07, we get

1
51 < 19 ey [ 2 S = dme |9l 1wy = 0. (A10)

€

/ L e (f()) dx
B

r
5

1
S HDQfHL‘X’(Bs) / ; dx S 27T€2 HszHLOO(BE) — 0. (All)

5

Combining (A.9), (A.10) and (A.11), taking ¢ — 0" in (A.4), we obtain

[ 06t = =1 - [ Lom(fe)dx,  viG) e CFE). (A2
R3 R

3T

Thus (A.2) follows from (A.12) and the definition of the derivative in the distribution

sense, i.e.

1 1 .
[ 1) O (—) dx= [ S o) dx, VI € OFRY). (A.13)

3T

and the equality (2.15) is proved. O



Appendix

Derivation of quasi-2D equation I (3.4)

Here, we derive the 2D approximation of GPPS (2.19)-(2.20). Taking ansatz (3.3), multi-

plying both sides of GPPS (2.19) by e~ /2wyg(z/¢), integrating over z variable, we get

09w, ,1) =[5 (Bea +0y) + Vo 16 =3016 | Ouniplo 2 uf(c/2)dz

\/—|¢|

Hence, we only need to evaluate ¢! Jz Onn(2, ¥, 2, t)w3 (z/€)dz term. Making use of the

Poisson equation (2.20) —V2¢p = e !|¢|?w3(z/¢), we can have
Onn@(2,Y,2,t) = On n, ¢ + 2n1n30,:¢ + 2n2n30,.¢ — ngap — n§6_1]¢\2w8(z/5).

By the ansatz assumption, we know that ¢ = Ug;jp * |4|? is symmetric in z, and we can

derive that by noticing the odd function’s integral is 0 in the whole space,

/ Oano(,y, 2wk (/) dz
R

- (anLnL - n%(amm +6yy)) /Rap(x,y,z,t)w%(z/a)dz + \/—_’¢($ » Y, )’ : (Bl)
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Further calculations show that

61/R<p(:c,y,z,t)wg(z/s)dz
_ 1 [p(=',y', 1) [Pwi (2 /e)wi (2/2)
dwe? Jra \/(x =22+ (y — )2 + (2 — 2')?

/ o " / e~ (Z%+(2)?)/e? P
.CC zZ az X
~ Ar2e Y Vi =22+ (y— y)2+(z—z) g’

dx' dy' dz' dz

Tz (@ +(a')?)
i =azte'=a x' t)] / dadd' y di’ dy'
_______ 87T€2/ [CT { NE e } Y
1 2

1 e 2:2¢
= x’ t)] da s dx’ dy’
4/273/2¢2 Jgo (', {/ Vi —2)2+ (y—y)? +a? } Y

1 e_ST
s=¢ la g
x )] ds » dx' d
T 4\/_7r3/2 R2 oy, / \/ (z— a2+ (y — )2 + 252 Yy
= U2+ g2 (B.2)

Combining the above results together, we then arrive at the quasi-2D I equation (3.4)-(3.5).



Appendix

Derivation of quasi-1D equation (3.10)

Here, we derive the 1D approximation of GPPS (2.19)-(2.20). Taking ansatz (3.9), multi-
plying both sides of GPPS (2.19) by e lwg (x/e,y/¢), integrating over x, y variables, we
get

8-

2me?

016(2.1) = [~ 50+ Vi 22100 — 300 /R Ounpl,y, 1) (wi (/e y/e)) dudy,

Hence, we only need to evaluate €2 [1; Onng(2, y, 2, 1) (wy (2 /e, y/e))2 dxdy term. Mak-
g

ing use of the Poisson equation (2.20) —V2p = e 72|¢|* (wy (z/e, y/e))Q, we can have
2 2 2 o 1,2 (, L)2
ann@(xa Y, z, t) = azz90+2n1n381z90+2n2n38yz90+(nlaxx+n28yy)@_(n1+n2)5 |¢| <U}0 ) .

By the ansatz assumption (3.9), we know that ¢ = Ugip * 1| is symmetric in z and y,

and we can derive that by noticing the odd function’s integral is 0,

2
=2 [ Oty zit) (w (0/20/2)) dady
R2

_ 1— n2 )
—c 2/]1%2(71;2«; - 2)0..0(7,y, 2, t) <wd‘(x/s,y/e)) drdy —
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and consequently

g2 /R? o(z,y,2,t) <wd‘(y/5, z/e))2 dydz

_ 1 / 9@, ) (wg (' /2,2 [2))” (wg (y/e,2/))°
re? Jes (@ =22+ (y—y)?2 + (2 = 2

; /W’)\Q 6(y+()+z+(2))/26 dydy dzdz' \ da’
R 't zZaz X
it Y I P ) E P
y oo 1 / ) e 252 (a2 +(a’)2+524(s")2) , / /
YTV T = ——— Jt dadd’ d3dB'  d
z—z2'=s,z42"'=s 167T3€4 /RQ‘(b(x )‘ R2 \/ x_x/)2+a2+ﬂ2 ada ﬁ ﬁ t

N ;/ (2, 1)]? ez ) dods p dx’
8m2e? Jp ’ R2 \/(z —2')2 + a2 + 52

2

P
T 2e2
a:pc.ose _ l/ ‘(b(fl'/,t)P pe 2 dp da’
47 R

s=psinf R+ (CC — x,)z T ,02

Tp/g /|¢)xt / c dr p dx’
R+ \/(z —2)2 +e2r

UL « [P (C.1)

dx' dy' d2' dy dz,

MH

4\/_

Combining the above results together, we can obtain quasi-1D I equation (3.10).



Appendix

Outline of the convergence between

NLSW and NLSE

Here, we outline the convergence rate between the solutions of NLSW and NLSE in R?
(d=1,2,3). Let S§(t), S5 () be the semi-groups associated with the linear part of equation
(7.1), i.e. S§(t)uo is the solution of

i0pu(x,t) — e20uu(x,t) + V2u(x,t) =0, x€RY >0,

(D.1)
U(X, O) = UO(X)a 8tu(x’ O) =0, X € Rd’
and S7(t)u; is the solution of
i0pu(x,t) — e20uu(x,t) + V2u(x,t) =0, x€RY >0, (0.2)
.2
u(x,0) =0, Ou(x,0) = uy(x), x € R%.
There hold the estimates, for some constant C' > 0,
Vo, Vs, S50l < Cllllms, (1S5l < O[] e (D.3)

Then v := u®(x,t) solves equation (7.1) if and only if u° satisfies the integral equation
1 t
w0 = SO0 O) + S5 (000°0) - 5 [ Si - f(u P () ds. (D)
0
By rewriting the NLSE (7.5) as

10 — e20uu + V2u + f(|u*)u + e?uy =0, (D.5)
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we can see that the solution u := u(x,t) of NLSE (7.5) satisfies the integral equation,

u(t) = S5(t)u(0) + S7()dru(0) — 5% /O Si(t —s) (f(Ju(s)]*)u(s) + e*uu(s)) ds. (D.6)

Subtracting (D.6) from (D.4), and using the properties (D.3), in spirit of [31,51], we could

obtain for appropriate initial data, f(-) and T' > 0
uf (t) — u(t)||gs < Cre?, te[0,T], s>0. (D.7)
For the behavior of d,u®(x,t), we look at the case f =0 in NLSW (7.1), then

~ - 144/1+42¢|2 1—1/1+42[¢|2
W) =0 (€)' 22 T4 Co(8)e T 22 Y £eRY >0, (D.8)

1 o (€) + 2e2iti (€) Tio(€) + 2e%ia (€)

VI+ A NiEETE

Hence it is natural to make assumption (B) for the well-prepared and ill-prepared initial

] L OO =4 [ao@) -

data.
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