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Abstract

We propose a phase field model for simulating solid-state dewetting and the morphological evolution of patterned islands on a sub-
strate. The evolution is governed by the Cahn–Hilliard equation with isotropic surface tension and variable scalar mobility. The pro-
posed approach easily deals with the complex boundary conditions arising in the solid-state dewetting problem. Since the method
does not explicitly track the moving surface, it naturally captures the topological changes that occur during film/island morphology evo-
lution. The numerical method is based on the cosine pseudospectral method together with a highly efficient, stabilized, semi-implicit algo-
rithm. Numerical results on solid-state dewetting in two dimensions demonstrate the excellent performance of the method, including
stability, accuracy and numerical efficiency. The method was easily extended to three dimensions (3D), with no essential difference from
the two-dimensional algorithm. Numerical experiments in 3D demonstrate the ability of the model to capture many of the complexities
that have been observed in the experimental dewetting of thin films on substrates and the evolution of patterned islands on substrates.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent set of experiments on the solid-state dewett-
ing of patterned nickel films on magnesium oxide sub-
strates, Ye and Thompson [1–4] demonstrated the
geometric complexity and importance of capillarity-driven
instabilities and crystalline anisotropy in dewetting. Solid-
state dewetting of thin films plays an important role in
microelectronics processing and has also become a com-
mon method used to produce nanoparticles (see e.g. [5])
and catalysts for the growth of carbon nanotubes [6] and
semiconductor nanowires [7]. In most situations of techno-
logical relevance, solid-state dewetting is driven by capillar-

ity effects and occurs through surface diffusion controlled
mass transport [8,9]. Although the problem is highly non-
linear, most analytical approaches to modeling solid-state
dewetting begin by linearizing the transport equations,
treating the problems in reduced dimensions, applying per-
turbation theory, and/or focusing upon highly simplified
geometries [9,10]. The recent experiments by Ye and
Thompson [1–4] demonstrate that such approaches miss
important phenomena, such as corner-induced instabilities,
faceting and the break-up into patterns of islands (pinch-off
phenomenon, see Fig. 1). To understand these important
phenomena, predict the evolution of complex patterned
films and guide new experiments, numerical simulations
of the full mathematical problem (including complex geom-
etry, three dimensions (3D) and non-linear equations) rep-
resent the most powerful option [11–13].

In general, the dewetting problem belongs to a more
general class of capillarity-controlled interface/surface evo-
lution problems. Because the problem includes complex
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geometry and topology evolution, the phase field approach
represents a powerful candidate for simulating this type of
problem. The phase field method has been successfully
applied to a wide range of problems in materials science,
e.g. solidification [14], viscous fingering [15], fracture [16],
solid-state nucleation [17] and dislocation dynamics [18].
One of the major advantages of the phase field approach
over other explicit interface tracking approaches is its abil-
ity to naturally capture the types of topological events that
are observed in experiments. It is also straightforward to
generalize a simulation from lower to higher spatial dimen-
sions using this approach. The basic idea behind the phase
field method is to describe the interface evolution by a par-
tial differential equation for the evolution of an auxiliary
field (the phase field) that plays the role of an order
parameter. This phase field takes two distinct values (e.g.
+1 and �1) in each of the two phases bounding an inter-
face and varies smoothly across the interface, i.e. interfaces
are diffuse in phase field simulations. In this paper, we
develop a phase field approach for modeling and simulat-
ing solid-state dewetting. Although we apply this approach
to the case of isotropic films on flat substrates, it is easily
extended to other interface shapes, and the case of aniso-
tropic surface tension and surface diffusion. For the sake
of simplicity, we first develop the method in two dimen-
sions (2D) and then simply extend it to 3D – for the sake
of comparison with experiments and because much of the
interesting physics only occurs in dimensions larger than
two.

The paper is organized as follows. First, we briefly pres-
ent the sharp interface model for the solid-state dewetting
problem, which includes morphology evolution via surface
diffusion and contact line migration. We then propose a
phase field model for solving the solid-state surface-diffu-
sion-controlled dewetting problem. Next, we present an
efficient numerical algorithm, based on a stabilized semi-
implicit spectral method, making full use of discrete cosine
transforms (DCT) and discrete sine transforms (DST), for
solving the governing equations with appropriate bound-
ary conditions. Stability and convergence tests for the
new method are then presented for the two- and three-
dimensional simulations. Finally, we simulate the evolution
of one of the patterned Ni film geometries studied experi-
mentally by Ye and Thompson [2], and show that the
agreement is qualitatively excellent.

2. Problem formulation: sharp interface model

The two-dimensional solid-state dewetting of a thin film
on a solid substrate can be described in the following form
by the Lagrangian representation [11,12]:

dX

dt
¼ V nn ð2:1Þ

where X = (x(s, t),y(s, t)) represents the evolving solid film/
vapor interface (free surface), s is the position along the free
surface (i.e. the arclength in 2D), t is time, Vn is the normal
velocity of the free surface and n = (n1,n2) is the interface
outer unit normal direction (in 2D, n is a function of s).
As a thin solid film evolves via surface diffusion, the normal
velocity Vn can be written as described by Mullins [19]:

V n ¼ B
@2j
@s2

ð2:2Þ

where j is the mean curvature of the evolving surface (in
the two-dimensional case, it is the curvature of the curve),
which can be expressed as

j ¼ � @
2y
@s2

@x
@s
þ @

2x
@s2

@y
@s

ð2:3Þ

and B is a material constant that is proportional to the sur-
face diffusivity and surface (energy) tension.

The governing Eqs. (2.1)–(2.3) for the solid-state dewett-
ing problem are subject to the following boundary
conditions:

1. Contact point condition (BC1)

yðxc; tÞ ¼ 0 ð2:4Þ
where xc represents the moving contact point where the
film, substrate and vapor meet. This point is free to move
along the substrate as the surface evolves.
2. Contact angle condition (BC2)

@y=@s
@x=@s

ðxc; tÞ ¼ tan hs ð2:5Þ

where hs 2 [0,p] represents the prescribed contact angle gi-
ven by the classical Young equation [20], i.e. coshs = (cVS �
cFS)/cFV, where cFV, cFS and cVS are, respectively, the inter-
face energy (density) describing the interfaces between film
and vapor, film and substrate, and vapor and substrate
(see Fig. 2).

Fig. 1. A two-dimensional schematic illustration of the solid-state dewetting of a thin film on a substrate.
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3. Zero-mass flux condition (BC3)

@j
@s
ðxc; tÞ ¼ 0 ð2:6Þ

This condition is necessary for total mass conservation of
the film. It implies that there is no mass flux at the contact
point – no mass diffuses under the thin film at the film/sub-
strate interface and any flux along the surface to the con-
tact point simply moves the contact point, xc, such that
no flux remains.

Several papers describe earlier approaches to develop
numerical algorithms to solve Eqs. (2.1)–(2.3) with the
boundary conditions in Eqs. (2.4)–(2.6) [11–13]. These
methods are based on front-tracking approaches (or mar-
ker particle methods) that employ marker particles to fol-
low the motion of the moving front. Owing to the
complex topological changes (such as pinch-off) that occur
during dewetting [1–4] and the difficulty of accurately com-
puting fourth-order derivatives along the surface [21,22],
these methods must redistribute the marker particles at
every time step and, hence, are not easily extendable to
3D or easily describe the topological change events in 3D.

The total interfacial free energy W of the thin film/sub-
strate system can be expressed by

W ðxÞ ¼ cFV jRFV j þ cFS jRFS j þ cVS jRVS j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wall Energy

ð2:7Þ

where jRFVj,jRFSj and jRVSj represent the corresponding
lengths (2D) or areas (3D) of the respective interfaces.
The first part of the total free energy in Eq. (2.7) is the total
interface energy between the thin film and vapor (we as-
sume that the film/vapor interface energy is isotropic);
the other two components refer to the solid substrate and
are referred to collectively as the wall energy.

The equilibrium configuration of the system is found by
minimizing the total interface free energy subject to conser-
vation of the film volume, i.e. Min W ðxÞ; subject to

R
x dx

¼ Constant.

3. Phase field model

In order to circumvent the challenging surface tracking
within the sharp interface model, we reformulate the prob-
lem within a phase field model context that can easily and

naturally handle boundary conditions BC1–BC3, and can
be easily extended from 2D to 3D. We start by putting
the system into a bounded rectangular box, denoted by X
with boundary oX = C0 [ C1 [ Cw (see Fig. 3). The phase
field function / = /(x) is introduced such that the zero-
level set {x:/(x) = 0} represents the film/vapor interface,
while {x:/(x) > 0} represents the film phase and {x:/
(x) < 0} the vapor phase.

Corresponding to the total free energy W in Eq. (2.7) in
the sharp interface model, the energy functional We can be
written, in the phase field framework, as

W e ¼ W e
FV þ W e

w ¼
Z

X
fFV dXþ

Z
Cw

fw dCw ð3:1Þ

where W e
FV represents the combined energy of the thin film

and vapor phases, W e
w represents the wall energy, and fFV

and fw are the corresponding energy densities, respectively.
e is a small parameter that represents the interface width.

The phase field model must satisfy the following condi-
tions in the limit that e ,! 0+,

� (C1) The total free energy We in Eq. (3.1) converges to
W in Eq. (2.7). More precisely, the film/vapor phase
energy W e

FV and the wall energy W e
w converge to the

film/vapor interface energy and wall energy in Eq.
(2.7), respectively. At the same time, the minimizers of
the functional in Eq. (3.1) also converge to the minimiz-
ers of the functional in Eq. (2.7). These requirements are
referred to as C-convergence [23].
� (C2) The “gradient flow” induced by the energy func-

tional in Eq. (3.1) converges to surface diffusion flow
with boundary conditions BC1–BC3 within the sharp
interface model.

In order to satisfy condition C1, we define the film/
vapor phase energy density fFV as

fFV ¼ k
1

e
F ð/Þ þ e

2
jr/j2

� �
ð3:2Þ

where the first term F(/) describes the energy of both the
homogeneous film and vapor phases. This can be modeled
as the well-known double-well potential, i.e.
F ð/Þ ¼ 1

4
ð/2 � 1Þ2. The second term in Eq. (3.2) is the energy

density of the interface between the two phases. Finally, the

Fig. 2. A schematic illustration of the three interfaces meeting at the
contact point. The illustration shows the location (and labels) of the film/
vapor (FV), vapor/substrate (VS) and film/substrate (FS) interfaces and
the contact angle.

Fig. 3. A schematic illustration of the simulation domain.
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parameter k represents the mixing energy density. The func-
tion fFV in Eq. (3.2) is the well-known Ginzburg–Landau free
energy density. Modica and Mortola [24] proved that the en-
ergy functional W e

FV with energy density fFV defined as Eq.
(3.2) C-converges to cFVjRFVj in Eq. (2.7) if the mixing energy
density is chosen as

k ¼ 3
ffiffiffi
2
p

4
cFV ð3:3Þ

The wall energy W e
w, written in terms of the wall energy

density fw, must satisfy: fw = cVS and f 0w ¼ 0 when / = �1
and fw = cFS and f 0w ¼ 0 when / = 1. These requirements
are satisfied for the wall energy density [25,26]:

fwð/Þ ¼
cVS þ cFS

2
� /ð3� /2Þ

4
ðcVS � cFSÞ ð3:4Þ

Using this description of the energetics of the system, we
now derive the governing dynamical equations for the
solid-state dewetting problem within our phase field frame-
work. We first calculate the first variation of energy func-
tional We with respect to the phase function / for all
smooth functions w within our domain ("w 2 C1(X)),

1

k
d

dt
W eð/þ twÞjt¼0 ¼

Z
X

1

e
F 0ð/Þwþ er/ � rw

� �
dx

þ
Z

Cw

f 0w
k

wds

¼
Z

X

1

e
F 0ð/Þ � eD/

� �
wdx

þ
Z

Cw

e
@/
@n
þ f 0w

k

� �
w ds

þ
Z
@XnCw

e
@/
@n

wds

¼
Z

X

1

e
F 0ð/Þ � eD/

� �
wdx ð3:5Þ

where the following natural boundary conditions have
been used:

e
@/
@n
þ f 0w

k
¼ 0; on Cw ð3:6Þ

@/
@n
¼ 0; on all other parts of the boundary ð@X nCwÞ ð3:7Þ

The chemical potential l is the first variational deriva-
tive of We with respect to the phase function /:

l ¼ 1

k
dW e

d/
¼ 1

e
F 0ð/Þ � eD/ ð3:8Þ

Hence, the mass flux j is

j ¼ �Mrl ð3:9Þ
where M is the diffusional mobility of the film material,
which is a non-negative function of /. The evolution equa-
tion is then given in terms of Fick’s second law,

@/
@t
þr � j ¼ 0 ð3:10Þ

subject to the constraint that no material flows into or out
of the domain through its boundary

@l
@n
¼ 0 on @X ð3:11Þ

Although these evolution equations are well defined, we
must choose a mobility function M. If the mobility M is
chosen to be a constant, the above Eqs. (3.8)–(3.10) reduce
to the usual Cahn–Hilliard equation [27]. As indicated in
C2 above, we must choose M such that the flow described
by Eqs. (3.8)–(3.10) and the energy functional We con-
verges to surface diffusion flow in the limit that e goes to
zero. To achieve this objective, it is natural to choose M

such that it is non-zero at the interface and near zero in
the film and vapor phases. The choice of a mobility func-
tion that yields the correct asymptotics for surface diffusion
was discussed in Ref. [28]. In this paper, we choose the
mobility to be M = (1 � /2)/e. Using formal asymptotics
analysis, Cahn et al. showed that the zero-level set of the
solution to the Cahn–Hilliard equation with the above
phase field function-dependent mobility converges to an
interface evolving via surface diffusion in the limit that e
goes to zero [29,30].

For simplicity, we scale the time t as ~t ¼ t=e2; other sim-
ilarly scaled physical quantities are denoted by a tilde. In
this setting, the governing equations for the solid-state
dewetting problem can be written in scaled variables as:

@/
@~t ¼ r � ð eM r~lÞ
~l ¼ /3 � /� e2D/

(
ð3:12Þ

subject to the following boundary conditions:

� on Cw (the red line in Fig. 3)

e
@/
@n
þ

ffiffiffi
2
p

2
ð/2 � 1Þ cos hs ¼ 0 ð3:13Þ

@el
@n
¼ 0 ð3:14Þ

� on the other boundaries of the domain (i.e.
C0 [ C1 = oXnCw – the black and blue dashed lines in
Fig. 3),

@/
@n
¼ 0 ð3:15Þ

@~l
@n
¼ 0 ð3:16Þ

where eM ¼ 1� /2. The boundary condition (3.13) follows
from the Young equation: cVS � cFS = cFV coshs, where hs

is the contact angle, which comes from the natural bound-
ary condition on the first variation of the total free energy
functional of the system and yields the contact angle
boundary condition (BC2) in the sharp interface limit.
Boundary conditions (3.14) and (3.16) imply zero-mass flux
(BC3) in the sharp interface limit. For brevity, we drop the
tilde in the governing Eqs. (3.12)–(3.16) in the remainder of
the paper.
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4. Numerical algorithm

We now present an efficient and accurate numerical
algorithm for the solution of the above Cahn–Hilliard
Eq. (3.12) with variable scalar mobility and boundary con-
ditions (Eqs. (3.13)–(3.16)).

We first discuss the discretization in time. We propose a
stabilized semi-implicit time stepping method with a con-
stant time step Dt > 0:

/nþ1�/n

Dt ¼Ae2D2ð/n�/nþ1ÞþSDð/nþ1�/nÞþr�ðMnrlnÞ
ln¼ð/nÞ3�/n�e2D/n

(
ð4:1Þ

where D ¼ @2

@x2 þ @2

@y2 denotes the Laplacian operator, /n and
ln are, respectively, the approximations of / and l at the
time t = tn = nDt, the parameters A and S are stabilizing
coefficients, and Mn = 1 � (/n)2. The idea for adding the
stabilizing term Ae2D2(/n � /n+1) to the Cahn–Hilliard
equation with an isotropic mobility was discussed in [31].
However, we found that incorporating an additional stabi-
lizing term SD(/n+1 � /n) is necessary for the interface
evolution problems, especially when e is small. Similar
ideas have been applied to the Allen–Cahn equation [32]
and the usual Cahn–Hilliard equation [33]. The choices
of the two stabilizing parameters A and S are discussed
in the next section. It should be noted that this scheme is
first-order accurate with respect to time; a corresponding
second-order time stepping approach can be constructed
by combining a second-order backward difference method
for @/

@t with a second-order Adams–Bashforth method for
the explicit discretization of the non-linear term [32,33].

Next, we consider the discretization in space. Let
X = [a,b] � [c,d] be a rectangular domain and denote mesh
sizes Dx ¼ b�a

K and Dy ¼ d�c
J , with K and J the mesh grid

numbers along the x and y directions, respectively. Because
the x-direction boundary conditions are equivalent to the
boundary conditions @/

@x ¼ 0 and @3/
@x3 ¼ 0, we can apply the

standard cosine pseudospectral method in the x-direction
and a finite difference method in the y-direction. We per-
form the following truncated cosine expansion for the
phase field function:

/ðx; y; tÞ ¼
XK�1

k¼0

c/k ðy; tÞ cosðmkðx� aÞÞ; a < x < b;

c < y < d ð4:2Þ

where mk ¼ kp
b�a ðk ¼ 0; 1; . . . ;K � 1Þ is the kth mode wave

number, K is an even positive number and c/k is the cosine
spectral power for the kth mode along the x-direction. De-
note the grid points xi = a + (i + 0.5)Dx for i = 0,1, . . . ,
K � 1, yj = c + jDy for j ¼ 0; 1; . . . ; J ;/n

i;j the approxima-

tion of /(xi,yj, tn), and ðc/k Þ
n
j the approximation of the

kth mode c/k ðyj; tnÞ. Using this description, we can write

a discretized counterpart of Eq. (4.2) as

/n
i;j ¼

XK�1

k¼0

ðc/k Þ
n
j cosðmkðxi � aÞÞ;

i ¼ 0; 1; . . . ;K � 1; j ¼ 0; 1; . . . ; J ð4:3Þ

Inserting Eq. (4.3) into Eq. (4.1) and using the orthogonal-
ity of the cosine basis functions and a second-order central
finite difference method to discretize the derivatives along
the y-direction, we obtain

ðc/k Þ
nþ1
j � ðc/k Þ

n
j

Dt

¼ �Ae2
ðc/k Þ

nþ1
jþ2 � 4ðc/k Þ

nþ1
jþ1 þ 6ðc/k Þ

nþ1
j � 4ðc/k Þ

nþ1
j�1 þ ðc/k Þ

nþ1
j�2

ðDyÞ4

� ðAe2m4
k þ Sm2

kÞðc/k Þ
nþ1
j þ ð2Ae2m2

k þ SÞ

�
ðc/k Þ

nþ1
jþ1 � 2ðc/k Þ

nþ1
j þ ðc/k Þ

nþ1
j�1

ðDyÞ2
þ ðcP k Þnj þ ðcQk Þ

n
j ð4:4Þ

where ðcP k Þnj is defined as

ðcP k Þnj

¼ Ae2
ðc/k Þ

n
jþ2 � 4ðc/k Þ

n
jþ1 þ 6ðc/k Þ

n
j � 4ðc/k Þ

n
j�1 þ ðc/k Þ

n
j�2

ðDyÞ4

þ ðAe2m4
k þ Sm2

kÞðc/k Þ
n
j � ð2Ae2m2

k þ SÞ

�
ðc/k Þ

n
jþ1 � 2ðc/k Þ

n
j þ ðc/k Þ

n
j�1

ðDyÞ2
ð4:5Þ

and Qn = $ � (Mn$ln), which can be discretized as

Qn
i;j ¼

XK�1

k¼0

ðcQk Þ
n
j cosðmkðxi � aÞÞ;

i ¼ 0; 1; . . . ;K � 1; j ¼ 0; 1; . . . ; J ð4:6Þ

We discuss below how to compute the kth mode spectral
power ðcQk Þ

n
j . For simplicity, Eq. (4.4) can be written in

the following nearly diagonal (i.e. penta-diagonal) matrix
form:

a�2ðc/k Þ
nþ1
j�2 þ a�1ðc/k Þ

nþ1
j�1 þ a0ðc/k Þ

nþ1
j þ a1ðc/k Þ

nþ1
jþ1

þ a2ðc/k Þ
nþ1
jþ2 ¼ Rn

j ; j ¼ 0; 1; . . . ; J ð4:7Þ

where the terms on the right-hand side Rn
j are

Rn
j ¼ ðc/k Þ

n
j þ ððcP k Þnj þ ðcQk Þ

n
j ÞDt ð4:8Þ

and the coefficients al for l = �2,�1,0,1,2 are given as

a�2 ¼ a2 ¼ Ae2 Dt

ðDyÞ4
ð4:9Þ

a�1 ¼ a1 ¼ �4Ae2 Dt

ðDyÞ4
� ð2Ae2m2

k þ SÞ Dt

ðDyÞ2
ð4:10Þ

a0 ¼ 1þ ðAe2m4
k þ Sm2

kÞDt þ 6Ae2 Dt

ðDyÞ4
þ ð4Ae2m2

k

þ 2SÞ Dt

ðDyÞ2
ð4:11Þ
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In order to solve the matrix algebra Eq. (4.7), we consider
the boundary conditions along the y-direction (shown by
C0 and Cw in Fig. 3). On the boundary C0, the boundary

conditions (3.15) and (3.16) can be expressed as @ b/k
@y ¼ 0

and @3 b/k
@y3 ¼ 0. By using the central difference method, the

values of the ghost points ðc/k Þ
nþ1
Jþ1 and ðc/k Þ

nþ1
Jþ2 involved

in Eq. (4.7) can be obtained as: ðc/k Þ
nþ1
Jþ1 ¼ ðc/k Þ

nþ1
J�1 and

ðc/k Þ
nþ1
Jþ2 ¼ ðc/k Þ

nþ1
J�2. Similarly, we can express boundary con-

ditions (3.13) and (3.14) on Cw by

e
@c/k

@y
¼

ffiffiffi
2
p

2
cos hs

cBk ;
@3c/k

@y3
¼ 0 on Cw ð4:12Þ

where cBk is defined as the kth mode cosine spectral power

of the function /2 � 1 defined on Cw, i.e. ð/2 � 1Þjy¼c ¼PK�1
k¼0
cBk ðtÞ cosðmkðx� aÞÞ; a < x < b. Following the above

definition and using the central difference method, we can
obtain the discretized boundary conditions on Cw as

ðc/k Þ
nþ1
�1 ¼ ðc/k Þ

nþ1
1 �

ffiffi
2
p

e cos hsðcBk ÞnDy and ðc/k Þ
nþ1
�2 ¼

ðc/k Þ
nþ1
2 � 2

ffiffi
2
p

e cos hsðcBk ÞnDy. Inserting these values for the

ghost points into Eq. (4.7), we obtain J + 1 unknown vari-
ables and J + 1 algebraic equations. Fast algorithms for
solving a penta-diagonal matrix system are available [34]
and can be easily applied to solve these equations.

We now address the question of how to compute the kth

mode spectral power ðcQk Þ
n
j of the non-linear term Qn. This

term can be divided into two parts, i.e. Qn ¼ @
@x Mn @ln

@x

� �
þ @

@y Mn @ln

@y

� 	
. The first two terms of ln = (/n)3 � /n

� e2D/n may be denoted as gn = (/n)3 � /n and expressed

as a truncated cosine expansion: gn
i;j ¼

PK�1
k¼0 ð bgk Þ

n
j

cosðmkðxi � aÞÞ; i ¼ 0; 1; . . . ;K � 1; j ¼ 0; 1; . . . ; J . Making
use of Eq. (4.3) and the central finite difference method to
discretize the derivatives along the y-direction, we obtain

@ln

@x

� �n

i;j

¼
XK�1

k¼1

ðclx
k Þ

n
j sinðmkðxi � aÞÞ;

i ¼ 0; 1; . . . ;K � 1; j ¼ 0; 1; . . . ; J ð4:13Þ

@ln

@y

� �n

i;j

¼
XK�1

k¼1

ðcly
k Þ

n
j cosðmkðxi � aÞÞ;

i ¼ 0; 1; . . . ;K � 1; j ¼ 0; 1; . . . ; J ð4:14Þ

where the kth mode spectral power ðclx
k Þ

n
j and ðcly

k Þ
n
j are

defined as

ðclx
k Þ

n
j ¼�mkðgkÞ

n
j � e2 m3

kðc/k Þ
n
j �mk
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n
jþ1þðc/k Þ

n
j�1�2ðc/k Þ

n
j

ðDyÞ2

 !
ð4:15Þ
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2Dy

þ e2 m2
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2Dy
�
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jþ1 þ 2ðc/k Þ

n
j�1 � ðc/k Þ

n
j�2
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Then we obtain @ln

@x

� �n

i;j
and @ln

@y

� 	n

i;j
by performing an inverse

discrete sine/cosine transform. We can compute the kth

mode values of ðcQk Þ
n
j following a similar procedure. It

should be noted that our algorithm requires the computation
of a large number of DCT and DST. These can be easily
accomplished using the well-known numerical computational
software FFTW package [35]. Finally, the steps of our pro-
posed numerical algorithm are summarized as follows:

� Step 1: Given the phase function /n at the time t = tn.
� Step 2: Compute the kth mode spectral power ðc/k Þ

n
j by

using DCT along the x-direction.
� Step 3: Compute the kth mode spectral power ðcP k Þnj by

using Eq. (4.5).
� Step 4: Use the DCT and DST to compute the kth mode

spectral power ðcQk Þ
n
j of the non-linear term.

� Step 5: Compute the coefficients al; ðcBk Þn;Rn
j and solve

the linear system (4.7) to obtain ðc/k Þ
nþ1
j .

� Step 6: Perform an inverse discrete cosine transform to
ðc/k Þ

nþ1
j to obtain the phase function /n+1 at the time

t = tn+1.
� Step 7: Repeat Step 3 through Step 6 until the prescribed

stop criterion is satisfied.

5. Results and discussion

In this section, we present several simulation results
using the phase field method proposed above to determine
appropriate stabilizing constants to demonstrate its accu-
racy, and show example applications in two and three spa-
tial dimensions. The simulations were performed within
simulation cells which were uniformly meshed, discretized
with 512 � 256 grid points in 2D and 256 � 256 � 128 grid
points in 3D except where noted.

5.1. Stability test

There are two important parameters, A and S, that are
related to the stabilizing terms in the numerical algorithm
proposed above. By performing a series of numerical
experiments, we determined that A = 0.5 and S = 1.0
allows an excellent compromise between numerical stabil-
ity, accuracy and computational efficiency. Table 1 shows
that adding the stabilizing term SD(/n+1 � /n) in our
numerical scheme (4.1) greatly increases the size of the
maximum allowable time steps. We define the maximum
allowable time step Dtmax as the largest time step for which
our numerical scheme is stable. Table 1 shows that adding
a non-zero stabilizing parameter S can increase the size of
Dtmax by several orders of magnitude; the increase is more
pronounced with decreasing e.

While the inclusion of stabilizing terms greatly increases
the maximum time step for which the algorithm is stable,
these terms will inevitably produce some level of consistency
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error. This consistency error is of the same order as the
error produced by the explicit treatment of the non-linear
term and can be diminished by reducing the time step size.
In real applications, a compromise must be struck between
these two competing considerations. Fig. 4 shows a compar-
ison of the numerical results produced by using three differ-
ent sets of stabilizing parameters and time steps over a range
of times from near the initial condition to near the equilib-
rium state (t = 1,10, 50 and 200). From the numerical
results (see Fig. 4), we observe that, in comparison with
choosing a zero stabilizing parameter S and a very small
time step size Dt = 0.0001, our choices of S = 1.0 and
Dt = 0.01 produce numerical results that accurately capture
the evolution dynamics with a time step that is many orders
of magnitude larger than that without the inclusion of sta-
bilizing terms. This demonstrates that our method is suit-
able for long-time simulations.

5.2. Convergence test

We next address the issue of convergence of the pro-
posed method by performing simulations in which the ini-
tial state of the thin film island is a rectangle, located in

[�0.5, 0.5] � [0,0.2] of a [�1,1] � [0,1] computational
domain X. The mesh size is denoted as h = Dx = Dy and
the time step is fixed as Dt = 0.5h. Because the size of the
initial rectangle is small relative to that of the computa-
tional domain, the Young angle is positive, mass (film area)
is conserved and the surface energy density is isotropic,
the equilibrium shape of the thin film island will be a
predictable truncated circle. In the following discussion,
we examine how the evolving shape converges to the theo-
retical equilibrium state.

Since the initial island shape does not satisfy the Young
contact angle boundary condition, it is instructive to see
how quickly that angle is established and maintained by
the numerical algorithm. We first define the numerical con-
tact angle hn at step n in the evolution using the procedure
suggested in Fig. 5. Suppose that A, B and C are three
points on the film/vapor interface as represented by the
zero-level set {x:/(x) = 0}. Point A is the left contact point
between the interface and the substrate with coordinates
(Pn, 0). Points B and C are, respectively, the intersection
points between the interface and the meshline y = h or
y = 2h with coordinates (x1,h) and (x2,2h). To determine
the numerical wetting angle, we fit a circle to these three
points and determine the angle from the tangent line of
the fitted circle at the contact point A. A similar definition
for the numerical contact angle was used in Ref. [36].

The numerical simulations were terminated when the
island shape achieves the equilibrium state, defined numer-
ically as the time at which k/nþ1 � /nkl2

< 10�6 is first sat-
isfied, where k � kl2

represents the discrete l2 norm. Fig. 6
and Table 2 show the convergence results of the numerical
equilibrium state compared with the theoretical equilib-
rium state by reducing the parameter e for two different
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Fig. 4. Two-dimensional numerical results produced using different stabilizing parameters and time steps for the same parameters, e = 0.01, hs = 3p/4, at
four different times: (a) t = 1, (b) t = 10, (c) t = 50 and (d) t = 200. The initial condition was a rectangular island film located in the region
[�0.5,0.5] � [0,0.2] (labeled as red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Allowed maximum time step Dtmax with different A and S.

e A,S Dtmax

e = 0.01 A = 0.0, S = 0.0 Dtmax < 1.0 � 10�7

A = 0.5, S = 0.0 Dtmax � 2.0 � 10�3

A = 0.5, S = 1.0 Dtmax � 9.0 � 10�1

e = 0.001 A = 0.0, S = 0.0 Dtmax < 1.0 � 10�7

A = 0.5, S = 0.0 Dtmax � 1.0 � 10�5

A = 0.5, S = 1.0 Dtmax � 3.0 � 10�1
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contact angles, hs = 3p/4 and hs = p/4. The computational
parameters are set to e = 0.04/n and h = 1/(64n), for
n = 1,2,4,8. Fig. 6 clearly shows that the numerical
equilibrium states (see the black lines) converge to the

theoretical equilibrium state (shown by the blue lines) on
reducing e. Table 2 shows the convergence of the contact
angle hn and the (left) numerical contact point position
Pn at the numerical equilibrium state to their theoretical
equilibrium counterparts. We define the relative error of
the contact angle as aerr = (hn � hs)/hs and the relative error
of the left contact point position as berr = (Pn � xc)/xc,
where xc represents the theoretical equilibrium contact
point position. Table 2 shows that the relative errors aerr

and berr both converge to zero with approximately first-
order accuracy with decreasing e.

5.3. Two-dimensional simulations

In this section, we report several two-dimensional applica-
tions of the wetting/dewetting phase field simulation method
presented above. First, we examine the evolution of an island
on the substrate under different prescribed contact angles.The
thin film island is initially occupied in the region
[�0.5,0.5] � [0,0.2]; the computational parameters were
employed as: X = [�1,1] � [0,1], e = 0.01, Dt = 0.1h and
h = 1/256. Fig. 7 shows the relative error aerr in the contact
angle as a function of time, normalized by ts (defined above
as the time at which the numerical equilibrium state is first
achieved). The figure shows that the relative error aerr decays
exponentially to a very low (65%) level (in a time �10�6ts)
under all prescribed contact angles. This demonstrates that
the simulation is capable of achieving numerical contact
angles hn in excellent agreement with the prescribed contact
angle hs over all meaningful times during the evolution.

The evolution of the island towards its equilibrium mor-
phology is shown in Fig. 8 for several prescribed contact

Fig. 5. A schematic illustration of the procedure used to determine the
numerical contact angle.
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Fig. 6. Convergence results to the theoretical equilibrium state (label as blue lines) obtained by using different e under the prescribed contact angles: (a)
hs = 3p/4 and (b) hs = p/4. The figures in the right column are enlargements of those in the left column near the left contact point. The black lines show the
numerical equilibrium states under different e, i.e. dashed lines (e = 0.04), dash-dotted lines (e = 0.02), dotted lines (e = 0.01) and solid lines (e = 0.005).
The initial state of the film is shown as red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Convergence results to the contact angle and contact point position of
theoretical equilibrium state obtained by reducing e.

e e = 0.04 e = 0.02 e = 0.01 e = 0.005 hs

hn 2.263 2.313 2.336 2.349 3p
4 � 2:356

(rad) 0.7306 0.7629 0.7708 0.7748 p/4 � 0.7854

aerr �0.03974 �0.01850 �0.008528 �0.003083
�0.06979 �0.02870 �0.01857 �0.01048

e e = 0.04 e = 0.02 e = 0.01 e = 0.005 xc

Pn �0.1693 �0.1792 �0.1831 �0.1851 �0.1871 hs = 3p
4

�0.5732 �0.5852 �0.5902 �0.5925 �0.5919 hs = p/4

berr �0.09514 �0.04222 �0.02138 �0.01069
�0.03159 �0.01132 �0.002872 0.001014
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angle 0 6 hs 6 p. From these figures, we clearly see that the
prescribed contact angle hs is rapidly achieved on the
timescale that the island evolves towards its equilibrium
case. Further, this angle is maintained throughout the
island morphology evolution. This includes the extreme
cases of complete dewetting hs = p (the equilibrium is a full
circle that touches the substrate at a point), complete
wetting hs = 0 (the equilibrium is a continuous film) or

any intermediate hs. Note that, for the larger values of hs,
the curvature of the center of the island changes sign dur-
ing the evolution; this feature occurs when capillarity-dri-
ven surface diffusion control the evolution and is absent
for many other types of kinetics (e.g. evaporation–conden-
sation) [8,9]. The mass loss during the entire duration of all
of the simulations is strictly below 0.1%.

Fig. 9 shows the evolution of a thin film containing a
small hole (that extends through the film to the substrate)
at its center for hs = 5p/6 and hs = p/6. (Note that the finite
island and finite hole are actually equivalent because of the
use of periodic boundary conditions here – the only quali-
tative different is the separation of the two island/hole
edges relative to the lateral domain size.) The initial film
occupies x 6 � 0.05 and x P 0.05, and has a thickness of
0.1. For the hs = 5p/6 case (see Fig. 9a), the hole grows
and eventually achieves the equilibrium circular shape
(because of the periodic boundary conditions). However,
for hs = p/6 (see Fig. 9b), the initial hole closes, the valley
where the hole was located disappears and the film
approaches a metastable flat morphology. The numerical
results are consistent with the analysis in Ref. [9].
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Fig. 7. Relative error between the numerical contact angle hn and the
prescribed contact angle hs as a function of time normalized by ts.
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Fig. 8. Several steps of the evolution of initially rectangular islands (shown in red) toward their equilibrium shapes (shown in blue) for eight different
prescribed contact angles: (a) hs = p, (b) hs = 5p/6, (c) hs = 3p/4, (d) hs = p/2), (e) hs = p/3, (f) hs = p/4, (g) hs = p/6 and (h) hs = 0. Images are shown every
104 time steps for (a)–(d) or every 103 time steps for (e)–(h) (labeled as black lines). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Next, we consider the evolution of an initially flat, semi-
infinite, uniform film (of thickness 0.05) on a substrate.
While a simple scaling analysis suggests that the contact
point should evolve as tb with b = 1/4 [9], more recent
simulations and analysis suggest that it should evolve with
b = 2/5 [11]. The numerical simulations show that the film
contracts via the motion of the contact point and eventu-
ally pinches off an island. Fig. 10 shows the evolution of
the position of the contact point as the semi-infinite film
retracts for several different contact angles (prior to
pinch-off). For each contact angle, the contact point

position as a function of time can be reasonably described
by a power law of the form xc / tb. The fitting suggests that
the exponent b decreases with increasing contact angle
from 0.53 at hs = p/4 to 0.41 at hs = 5p/6 (see Fig. 10).
These exponents are significantly larger than b = 1/4 pre-
dicted from the simple scaling analysis [9] and are much
closer to the more recent theoretical value of b = 2/5 [11].
We note that the quality of the power-law fit to the simu-
lation data is better for larger contact angle; this may be
related to the relaxation of the initial condition as the
retracting film acquires the correct contact angle, the
coarse, uniform discretization of the profile near the con-
tact point and the slower evolution of the film profile at
a smaller contact angle. Recent experiments on the retrac-
tion of contact lines in Ni on MgO show retraction expo-
nents in the 0.40 6 b 6 0.60 range, with values close to
0.4 being the most common [3].

Finally, we performed a series of two-dimensional
numerical simulations of the evolution of a very long, thin
island. Initially, the island is located in the region
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Fig. 9. The evolution of a thin film containing a hole in its center for
contact angles: (a) hs = 5p/6 and (b) hs = p/6. The film profiles are shown
every 500 time steps (solid black lines) and every 5000 time steps (dotted
black lines). The red and blue represent the initial and numerical
equilibrium states, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 10. The power law for the contact point retraction position as a function of time by numerical simulations under different contact angles: (a) hs = p/4;
(b) hs = p/2; (c) hs = 3p/4; and (d) hs = 5p/6.
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Fig. 11. The evolution of a very long, thin island for a prescribed contact
angle hs = 5p/6. Note that the vertical and horizontal scales in this figure
differ significantly.

W. Jiang et al. / Acta Materialia 60 (2012) 5578–5592 5587



Author's personal copy

[�3.5, 3.5] � [0,0.05] (i.e. an aspect ratio of 140), and the
computational parameters are X = [�4.0,4.0] � [0, 0.5],

e = 0.005, h = 1/512, Dt = h and the prescribed contact
angle hs = 5p/6. The results are shown in Fig. 11.
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Fig. 12. The evolution of an initially rectangular, thin film island at five times: (a) t = 0; (b) t = 3.91; (c) t = 12.50; (d) t = 14.84; and (e) t = 78.13. The
right column figures show the cross-section profile of the thin film along the x- or y-direction across the origin. The wetting angle is hs = 5p/6.
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Interestingly, in this case (as in Fig. 8 for large hs), the
surface diffusion kinetics lead to the formation of a ridge
at the edge of the island and minima in the profiles on the
sides of the ridge. Both of these features become increas-
ingly exaggerated as the island edge retracts and the two

minima merge near the island center. Eventually (between
the last two times shown in Fig. 11), the minimum at the
center of the islands hits the substrate and two new con-
tact points are formed, breaking the island film into two
separate islands, which individually equilibrate. We note
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Fig. 13. The temporal evolution of an initially square, small, thin film island at five times for hs = 5p/6: (a) t = 0; (b) t = 7.81; (c) t = 15.63; (d) t = 39.06;
and (e) t = 156.25. The right column figures show the cross-section profile of the island along the x- or diagonal direction across the origin.
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that this pinch-off to form two separate islands (for the
island of initial aspect ratio of 140) is consistent with
the number of pinch-off events prediction for these condi-
tions by Dornel et al. [13].

5.4. Three-dimensional simulations

As described above, the phase field simulation method
proposed is just as easily applied in 3D as it was in 2D.
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Fig. 14. The temporal evolution of an initially square, large, thin film island at five times for hs = 5p/6: (a) t = 0; (b) t = 15.63; (c) t = 31.25; (d) t = 125.00;
and (e) t = 312.50. The right column figures show the cross-section profile of the island along the x- or diagonal direction across the origin.
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In this section, we report the results of three interesting
applications of the temporal evolution of initially rectangu-
lar and square thin film islands on a substrate. Fig. 12
shows the evolution of a rectangular thin film island, ini-
tially located in the three-dimensional region
[�0.8, 0.8] � [�0.1, 0.1] � [0,0.1] (i.e. Lx = 1.6, Ly = 0.2
and Lz = 0.1). The computational parameters were
X = [�1,1] � [�0.5, 0.5] � [0,0.5], e = 0.005 and Dt = 1/
1280. As shown in Fig. 12b, the long, thin island quickly
adjusts its numerical contact angle to the prescribed value
hs = 5p/6, the ends round, become bulbous (Fig. 12b)
and retract (Fig. 12c). The center of the island thins
(Fig. 12c), hits the substrate and pinches off in a Rayleigh
instability-like form, eventually forming a pair of islands
(Fig. 12d) that equilibrate into truncated spherical shapes
(Fig. 12e).

Figs. 13 and 14 show the evolution of two, initially
square, thin film islands of different sizes for the case of a
hs = 5p/6 wetting angle. In these figures, the island shapes
were initially small Lx = Ly = 1.6, Lz = 0.05 (Fig. 13) and
large Lx = Ly = 3.2, Lz = 0.05 (Fig. 14). In both cases,
the contact angles are rapidly established all around the
island perimeter and the initially straight island edges begin
to retract, with the corners retracting more slowly than
other parts of the edge (see Figs. 13b and 14b). In the small
island case, the corners become bulbous (Fig. 13b) and the
island center thins as the edges retract (Fig. 13c). Eventu-
ally, the corners catch up with the edges, and the island
center starts to thicken as the island shape approaches its
equilibrium truncated sphere shape (Fig. 13d and e). In
the large island case (Fig. 14), the edges form several rip-
ples as they retract (Fig. 14b and c) and the island center
thins (Fig. 14d). At a late time, the center of the island sur-
face center comes into contact with the substrate and forms
a large hole (Fig. 14e). The island continues to evolve,
breaking into four isolated islands via several Rayleigh
instabilities (not shown). The above numerical results are
consistent with the evolution of square islands observed
in the experiments of Ye and Thompson [2].

6. Conclusions

We have proposed a novel phase field approach for sim-
ulating the solid-state dewetting of thin films and the evo-
lution of thin film islands on a substrate. The evolution is
governed by the Cahn–Hilliard equation with isotropic sur-
face tension and variable scalar mobility. Our approach
easily handles the complex boundary conditions arising
from the features of the solid-state dewetting problem.
Compared with traditional front-tracking methods, this
approach does not explicitly track the moving surface but
can naturally capture the topological changes that occur
during the evolution of the film/island morphology. The
numerical method is based on a highly efficient, stabilized,
semi-implicit numerical algorithm, which makes full use of
discrete cosine and sine transforms. The extension of the
model and numerical algorithms from 2D to 3D is

straightforward. We performed a series of numerical exper-
iments to demonstrate that the algorithm has excellent
numerical stability and that the long-time numerical solu-
tions converge to the theoretical equilibrium state in the
limit of small interface width parameter e. Numerical
results are presented in two- and three-dimensional simula-
tions that capture many of the complexities associated with
solid-state dewetting experiments [1,2].

While, in the present model, we have focused on the case
of isotropic surface energy and diffusion, the model is gen-
eralizable to the anisotropic case. Such anisotropy has
recently been shown to be important in the retraction of
patterned holes in thin films and patterned islands on sub-
strates [3,4]. Future extensions also include a full asymp-
totic analysis of the relation between the sharp interface
and phase field model, and the development of an adaptive
mesh strategy to reduce the computational cost associated
with the currently employed regular meshing.
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