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Summary

In the thesis, we study numerically and asymptotically dimension reduction of three-
dimensional (3D) Gross-Pitaevskii equation (GPE) for Bose-Einstein condensates
(BEC) in certain limiting trapping frequency regimes. As preparation steps, we take
the 3D GPE, scale it to get a three parameters model, and review how to reduce it
to 2D GPE in disk-shaped condensation or 1D GPE in cigar-shaped condensation.
Then we compute the ground state of 3D GPE numerically by a normalized gradient
flow under backward Euler finite difference discretization [9] and verify numerically
the formal dimension reduction for ground state. From our numerical results, for
relative errors of the interaction parameter, we observe numerically the convergence
rate of 3/4 with respect to 7, for dimension reduction from 3D to 2D, and respec-
tively, of 1/3 with respect to 7, for reduction from 3D to 1D, when the ratio between
trapping frequencies goes to infinity. Furthermore, we obtain Thomas-Fermi and
first order approximations for energy and chemical potential of the ground state for
d-dimension GPE with d =1, 2, 3.

Then we classify approximations of the ground state of 3D GPE in three cases based
on the ratios between the trapping frequencies: i). isotropic condensation; ii). disk-
shaped condensation; iii). cigar-shaped condensation. Approximate ground states

as well as their energy and chemical potential are provided explicitly in weakly,

vi



Summary vii

intermediate repulsive and strongly repulsive interaction regimes. These results are
fully confirmed by our 3D numerical results. Also, convergence rates in relative error

for all interacting quantities are observed and reported.

Finally, we study dimension reduction of time-dependent GPE from 3D to 2D nu-
merically by a fourth-order time-splitting sine-spectral method [11]. Our numerical
results confirm the formal dimension reduction for time-dependent GPE and also

suggest convergence rates in limiting trapping frequency ratios.

Key words: Gross-Pitaevskii equation, Bose-Einstein condensate, Normalized gra-
dient flow, Ground state solution, Backward Euler finite difference, Time-splitting
sine-spectral method, Cylindrical symmetry, Radial symmetry, Dynamics, Dimen-

sion Reduction, Cigar-shaped condensation, Disk-shaped condensation.
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Chapter

Introduction

The famous Bose-Einstein condensation (BEC), was theoretically predicted by Bose
[20] and Einstein [33] in 1924, and was first observed in 1995 in a remarkable series
of experiments on vapors of rubidium by Anderson [6] and of sodium by Davis [27].
In these two experimental realizations of BEC the atoms were confined in magnetic
traps and cooled down to extremely low temperatures, of the order of fractions
of microkelvins. The first evidence for condensation emerged from time-of-flight
measurements. The atoms were left to expand by switching off the confining trap
and then imaged with optical methods. A sharp peak in the velocity distribution
was then observed below a certain critical temperature, providing a clear signature
for BEC. In 1995, first signatures of the occurrence of BEC in vapors of lithium
were also reported by Bradley [21].

Though the experiments of 1995 on the alkalis should be considered a milestone
in the history of BEC, the experimental and theoretical research on this unique
phenomenon predicted by quantum statistical mechanics is much older and has
involved different areas of physics (for an interdisciplinary review of BEC see [37]).
In particular, from the very beginning, superfluidity in helium was considered by
London [45] as a possible manifestation of BEC. Evidence for BEC in helium later
emerged from the analysis of the momentum distribution of the atoms measured in

neutron-scattering experiments by Sokol [54]. In recent year, BEC has been also



investigated in the gas of paraexcitons in semiconductors (see [55] and references
therein), but an unambiguous signature of BEC in this system has proven difficult

to find.

In fact, besides internal interactions, the macroscopic behavior of BEC matter is
highly sensitive to the shape of the external trapping potential. Theoretical predic-
tions of the properties of a BEC like the density profile [19], collective excitations
[32] and the formation of vortices [51] can now be compared with experimental data
6, 41, 47] by adjusting some tunable external parameters, such as the trap frequency
and/or aspect ratio. Needless to say, this dramatics progress on the experimental
front has stimulated a corresponding wave of activity on both the theoretical and

the numerical fronts.

The properties of a BEC at temperatures T° very much smaller than the critical
temperature T, [37, 42] are usually described by the nonlinear Schrodinger equation
(NLSE) for the macroscopic wave function [37, 42] known as the Gross-Pitaevskii
equation (GPE) [38, 48, 31, 19], which incorporates the trap potential as well as
the interactions among the atoms. The results obtained by solving the GPE showed
excellent agreement with most of the experiments. In fact, up to now there have
been very few experiments in ultracold dilute bosonic gases, which could not be

described properly by using theoretical methods based on the GPE.

The effect of the interactions is described by a mean field which leads to a nonlinear
term in GPE. The cases of repulsive and attractive interactions - which can both be
realized in the experiment - correspond to defocusing and focusing nonlinearities in
the GPE, respectively. Note that equations very similar to the GPE also appear in
nonlinear optics where an index of refraction which depends on the light intensity,

leads to a nonlinear term like the one encountered in the GPE.

There has been a series of recent studies which deal with the numerical solution of
the time-independent GPE for ground-state and the time-dependent GPE for finding
the dynamics of a BEC. For numerical solution of time-dependent GPE, Bao et al.

[8, 14] presented a time-splitting spectral method, Ruprecht et al. [52] and Adhikari



et al. [2, 3] used the Crank-Nicolson finite difference method to compute the ground-
state solution and dynamics of GPE, Cerimele et al. [22] proposed a particle-inspired
scheme. For ground-state solution of GPE, Edwards et al. [31] presented a Runge-
Kutta type method and used it to solve 1D and 3D with spherical symmetry time-
independent GPE, Adhikari [4, 5] used this approach to get the ground-state solution
of GPE in 2D with radial symmetry, Bao el al. [7] presented a general method to
compute the ground state solution via directly minimizing the energy functional.
Other approaches include an explicit imaginary-time algorithm used by Cerimele et
al. [23] and Chiofalo et al. [24], a direct inversion in the iterated subspace (DIIS)
used by Schneider et al [53], and a simple analytical type method proposed by Dodd
[28].

In many experiments for BEC, the trapping frequencies in different directions are
far distinct. Experimentally, either a disk-shaped condensate or a cigar-shaped
condensate is observed. In these cases, physicists suggest the original 3D GPE can
be reducd to either a 2D GPE or 1D GPE since the energy in some directions are
much larger than other directions and the wave function is not easy excited in the
directions with larger energy. Therefore, to understand BEC in these cases, we need
only to solve either a 2D GPE or a 1D GPE instead of the original 3D GPE. Thus the
computational time and memory can be saved significantly. To our knowledge, the
formal dimension reduction for 3D GPE is only based on physical intuition. There
is no mathematical or numerical justification yet. Of course, this kind of rigorous
justification is very important for the formal dimension reduction of 3D GPE. In
this thesis, we will study numerically and asymptotically the dimension reduction
of 3D GPE for BEC in certain limiting trapping frequencies regimes. Convergence
rates for interesting quantities are observed and reported when the ratio between
trapping frequencies goes to infinity. Based on these study, we provide approximate
ground state, and their energy and chemical potential for 3D GPE in all kinds of

different parameter regimes.



The thesis is organized as follows. In Chapter 2, we take the 3D GPE, scale it to
get a three parameters model. Then we review the definition of the ground state
for 3D GPE and the backward Euler finite difference (BEFD) method to compute

ground state.

In Chapter 3, first we show how to reduce 3D GPE to 2D GPE in disk-shaped con-
densation or 1D GPE in cigar-shaped condensation. Then we compute the ground
state of 3D GPE numerically by a normalized gradient flow under backward Eu-
ler finite difference discretization [9] and verify numerically the formal dimension
reduction for ground state. From our numerical results, for relative errors of the in-
teraction parameter, we observe numerically the convergence rate of 3/4 with respect
to v, for dimension reduction from 3D to 2D, and respectively, of 1/3 with respect
to 7, for reduction from 3D to 1D, when the ratio between trapping frequencies goes
to infinity. Furthermore, we obtain Thomas-Fermi and first order approximations
for energy and chemical potential of the ground state for d-dimension GPE with
d=1,2,3.

In Chapter 4, we classify approximations of the ground state of 3D GPE in three
cases based on the ratios between the trapping frequencies: i). isotropic condensa-
tion; ii). disk-shaped condensation; iii). cigar-shaped condensation. Approximate
ground states as well as their energy and chemical potential are provided explicitly
in weakly and strongly repulsive interaction regimes. These results are fully con-
firmed by our 3D numerical results. Also, convergence rates in relative error for all

interacting quantities are observed and reported.

In Chapter 5, we study dimension reduction of time-dependent GPE from 3D to 2D
numerically by a four-order time-splitting sine-spectral method [11]. Our numerical
results confirm the formal dimension reduction for time-dependent GPE and also

suggest convergence rates in limiting trapping frequency ratios.

Finally, some conclusions based on our findings and numerical results are given in

Chapter 6.



Chapter

The Gross-Pitaevskii Equation

At temperatures T much smaller than the critical temperature T, [42], the BEC
is well described by the macroscopic wave function 1) = ¢ (x,t) whose evolution is
governed by a self-consistent, mean field nonlinear Schrodinger equation (NLSE)
known as the Gross-Pitaevskii equation [38, 48, 49]. If a harmonic trap potential is

considered, the single particle equation becomes:

o(x,t h?
ih% = 5 AU VU NP, x € R, (2.1)

where t is time, x = (2, v, )T is the spatial coordinate vector, m is the atomic mass,

R is the Plank constant, N is the number of atoms in the condensate. V(x) is a

real-valued external trapping potential whose shape is determined by the type of

system under investigation. When a harmonic trap potential is considered, V' (x) =

%(wi:ﬁ + wyy? + w,2?) with w,, w,, w, the trap frequencies in z, y and z-direction,

respectively. Uy describes the interaction between atoms in the condensate and
Arh2a

has the form U, = with a the s-wave scattering length (positive for repulsive

T om

interaction and negative for attractive interaction).

It is convenient to normalize the wave function by requiring

/RS (x, £)[2dx = 1. (2.2)



2.1 Nondimensionalization

2.1 Nondimensionalization

Following the physics literatures [23, 7, 8, 49], in order to rescale the equation (2.1)

under the normalization (2.2), we introduce:

- t ~ - .
= %= 2O = d Px,t), (2.3)
s Qg

where the dimensionless length and time units are chosen as:

R 1
ty=—. (2.4)

Y
mwy, Wy

apg =

Here ag is the length of harmonic oscillator ground state in z-direction. Plugging

(2.3) into (2.1), multiplying by —X7 and then removing all ~, we get the following

5 1/2
mwzag

dimensionless Gross-Pitaevskii equation under the normalization (2.2) in 3D:

0Y(x, 1)
ot

1

= LAl 1)+ VR 1) 4 Bl D D), x € R, (25)

where V(x) = 5(2% +7y° +922%), 7, = 2, 7. = 2= and § = 2%
Here positive/negative 3 corresponds to the defocusing/focusing NLSE, respectively.

There are two conservation laws of the GPE (2.5). They are the normalization of

the wave function

N@E0) = GO = [ ot Px (2.6

. [¥(x,0)dx = N(¥(-,0)), =0

and the energy

Bl = [ |3IT0enl + Vel + Sl ax - (21)
B@W(.0), 120

2.2 Ground state

To find a stationary solution of (2.5), we write:

¢(X7 t) = eiwt¢(x)v (28)



2.2 Ground state

where p is the chemical potential of the condensate and ¢ is a real function inde-

pendent of time. Inserting (2.8) into (2.5) and (2.2) gives the following equation for
¢(x):

p(x) = —%&b(X) +V(x)o(x) + Blo(x)*o(x), xR’ (2.9)

under the normalization condition:

NG £ ol = [ 1oaPix =1 (2.10)

This is a nonlinear eigenvalue problem under a constraint and any eigenvalue p can

be computed from its corresponding eigenfunction ¢ by:

p=no) = | B|v¢<x>|2+v<x>|¢<x>\2+m¢<x>|4 ix

R3

= E(¢) + En(9), (2.11)

where Ej(¢) denotes the two-body interaction energy:
Eul@) = [ Lo
n(0) = [ Slo(x)[ dx. (2.12)
R3

In fact, the eigenfunctions of (2.9) under the constraint (2.10) are equivalent to the

critical points of the energy functional E(¢) over the unit sphere
S={oll¢l> =1, EBE(¢) <oo}.

Furthermore, as noted in [9], the solutions of (2.9) are equivalent to the steady state

solutions of the following continuous normalized gradient flow (CNGF):

00 Lao-veoe-Blofe+ Mo xR 120, (213

ot lo(, )]
d(x,0) = ¢o(x), x€R® with [¢o| =1. (2.14)

The Bose-Einstein condensate ground state ¢4(x) is a real non-negative function
(2.10) found by minimizing the energy E(¢) over the unit sphere S; i.e. find (p,, ¢, €
S), s.t.

E(¢y) = glelg}E(@a ttg = 11(¢g) = E(dg) + Eint(9yg), (2.15)
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The existence of unique positive minimizer of the minimization problem (2.15) was

given in [44].

Any eigenfunction ¢(z) of (2.9) under constraint (2.10) whose energy E(¢) > E(¢,)

is usually called as excited states in physics literatures.

2.3 Numerical methods for computing ground state

There are many numerical methods to compute the ground state in the literatures,
e.g. imaginary time method [24] and normalized gradient flow [9]. Since the exper-
iments setup are usually in a cylindrical symmetric trap, here we only review the
normalized gradient flow with backward Euler finite difference (BEFD) discretiza-
tion, proposed in [9], to compute ground state in 3D with a cylindrical trap, i.e.
7y, = 1in (2.5).

The time step is given by &k = At > 0 and we define time steps by t, £ nk,
n=0,1,2---

In this cylindrical symmetric case, the solution ¢(x,t) = ¢(r, z,t) and the original 3D
problem collapses to a 2D problem with r = \/m € [0,00) and —oo < z < 400

[9]:

ﬁgzﬁ(r,z,t) . Ll 8 a¢ 82¢ 1 2.2 2.2 2
5 3 ;5(7‘5) 9.2 5(%7" +7:27)0 — B9,
0<r<+oo, —0 < 2 < 400, tn <t <tpy1, (2.16)
o(0, z,t) : :
_— L = = = >
o 0, TEE»noo o(r,z,t) =0, ZEIEOO o(r,z,t) =0, t>0,(2.17)
¢(T727tr_z+1)
o(r, 2, tnp) = — 2 n >0, 2.18
(2 bus) Sl (218)
o(r,2,0) = ¢o(r,2) >0 . (2.19)

The normalization condition reads:

o] = 27 /000 /_+OO ¢*(r, 2, t)rdrdz. (2.20)



2.3 Numerical methods for computing ground state

We choose R > 0, a < b and time step k£ > 0 with |a|, b, R sufficiently large.
Denote the mesh size h, = (R — 0)/M and h, = (b —a)/N with M and N two
positive integers. Let grid points be r; = jh,, j =0,1,--- , M and ri1= (j— %)hr,
7 =01--- M, zz =a-+1lh,, [ =0,1,---,N. Furthermore, Let (/b;l%’l be the
approximation of gzﬁ(rjfé, 21, tn).

Thus we get the BEFD discretization for the 3D problem with cylindrical symmetry

[9:
o, =P 1
.7777l .]7771 % * *
e [WH%J ECRRERNI S +"’J’*1¢a‘—%vl}
r'j—3
4 1 [(/5* Y T ]_1< 202 | 42,2
on2 [Cimgitt T 205 T Oy | T Uy TEI9 4
_B<¢7‘l_ll)2¢f_ll> j:17"'7M_17 lzl?"'aN_L
=% Yi-1,
¢i%’l :QS;p QS]*\/],%,Z =0, = L N—1,
qb;,%yo :qb;,%’]\[ :07 .] :0)1 7M7 (221)
¢n+1 :qb;_%,l j—O M =0 N n—19
j—%,l ||¢*|| ) ) ) ) ) ) ) ) <y )

qb?,%’lquo(rj_%,Zl) j:O,---7M7 l:(),...’N’

(b(ill:(bgl? l:0717”'7N7
2 27
where the norm is defined as

M N-1
1 1
®12 * 2 * 2 * 2
o™ |I© = 27Thrhz.zlrj_é {lzl(qu_%’l) +§(¢j_170) +§(¢j_%,1v) }
= -
M N-1

= 2mh Y Y (65 )

1 I=1

(2.22)

B
D=

In the next chapter, we will use this algorithm to compute the ground state of 3D

GPE and then verify dimension reduction of 3D GPE numerically.



Chapter

Dimension Reduction for 3D GPE

In this chapter, we will first review how to reduce 3D GPE to 2D or 1D GPE
in certain limiting trapping frequency regime. Then we use numerical methods to
verify this dimension reduction. Finally, we derive the Thomas-Fermi and first order
approximation for energy and chemical potential of ground state for d-dimension

GPE with d = 1,2, 3 in strongly defocusing regime.

3.1 Reduction to 2D in a disk-shaped condensate

For a disk-shaped condensate, i.e.
Wy Wy, W, D> w, <= 7Y ~1, 7>1, (3.1)

the 3D GPE (2.5) can be reduced to a 2D GPE by assuming that the time evolution
does not cause excitations along the z-axis since it has a large energy of approxi-
mately Aw, compared to excitations along the x and y-axis with energies of about
hw,. Following the physics literatures [43, 30, 7, 8|, for any fixed 5 > 0 and when
v, > 1, we assume that the condensation wave function along the z-axis is always
well described by the ground state wave function which is well approximated by the

harmonic oscillator in z-direction and set [40, 30, 7, 8]:

10
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w(xuyvzut) :¢12($7y7t)¢3(2)’ (32>
3 AV
b3(z) = (/ |(/§g(x,y,z)|2d:r:dy> ~ ¢ho(z) = (l> e == /2 (3.3)
R? v
where ¢,(z,y, 2) is the ground state of the 3D GPE (2.5).

Plugging (3.2) into (2.5), we get:

Oy 1Py | Py 1 d*¢s
ot b3 = _5( Ox? + dy? 95— 57#12 dz?

+ V(x)th1203 + Blth12* 12| @3] ¢,

Multiplying both sides by the conjugate of ¢3, then integrating with respect to z

over (—o0, 4+00), we obtain:

0 1 1
{ wtlz = ——QAwlz + 5 (1‘2 +’Y§y2 + C’) Y12 <ﬁ/ !¢3\4d2) Y212, (3.4)
where

2

+oo +oo
¢ = [ " Retrpas [ |9

0o —00 dz

Because equation (3.4) is time-transverse invariant, we can replace ¢1o — e "2

which drops the constant C' in the trap potential. Then we get the 2D GPE:

9 1 1
i80S+ S (A Bl (35
where
+oo +oo
8, =0 ¢4 (2)dz ~ 5/ |pholtdy = pho = 3 ;7 . (3.6)

To verify (3.3) and (3.6) numerically, we compute the ground state of the 3D GPE
by the continuous normalized gradient flow with BEFD discretization (2.21)-(2.22).
Then we get ¢,4(r, z), which is used to compute ¢3(z) by (3.3) and compute 32 by
(3.6).

The computational domain is chosen as (r,z) € [0, R] X [—a,a] for the algorithm

(2.21)-(2.22). The choice of R and a for different 5 and ~, is listed in Table 3.1.
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Table 3.1: The choice of (R, a) in the algorithm (2.21)-(2.22) for different 5 and ..

Yz 25 100 400 1600

B=1 (7,1.6)  (7,0.8)  (8,0.4) (8,0.2)
3 =10 (8,1.6)  (8,0.8)  (8,0.4) (8,0.2)
B=100 | (7.8,1.4) (88,0.7) (9.8,0.35) (10.6,0.17)
B
B

=1000 |(10.8,1.4) (12,0.7) (13.5,0.35) (15,0.17)
=10000 | (15,1.6) (18,0.8)  (21,0.4)  (25,0.2)

Table 3.2 lists the error |3}° — 3|, Table 3.3 lists the error w, Table 3.4 lists

the error max |(¢3)? — (¢45°)?|, Table 3.5 lists the error ||(¢3)? — (¢5°)?||z1 and Table

3.6 lists the error ||¢3 — ¢5°|| 2 for different 3 and ..

ho
Furthermore, Figure 3.1 shows the error |35°— 3,|, Figure 3.2 shows the error %—Qﬂ"",

Figure 3.3 shows the error max |(¢3)? — (#5°)?|, Figure 3.4 shows the error ||(¢3)? —
(#5°)?||z1 and Figure 3.5 shows the error ||¢5 — ¢4°]|z2 for different 3 and +..
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Table 3.2: Error analysis of |35° — (3, for dimension reduction from 3D to 2D.

1/, 1/25 1/100 1/400 1/1600
g=1 0.59499¢-02  0.52553e-02  0.43266e-02  0.32628e-02
rate 0.09 0.14 0.20
g =10 0.31876 0.24116 0.17620 0.12545
rate 0.20 0.23 0.25
£ =100 |0.10897e+02 0.80575e+01 0.57919e+01 0.41134e+01
rate 0.22 0.24 0.25
£ =1000 | 0.30959e+03 0.24654e+03 0.18164e+03 0.13020e+03
rate 0.16 0.22 0.24

£ = 10000 | 0.68895e4+04 0.67926e+04 0.54789e+04 0.40470e+04
rate 0.01 0.16 0.22

10 ; ; ; ;
= 85— —™=¢
8f ]
6 M ]
4t i
=2, %] =
1 Of 1 “‘?‘
%N -2 4—/“’/4‘—/4 : o
= =
4} £
0
-6 -©— B=1
sl —— B=10
—— B=100
—10+} —>— B=1000 |
i —&- B=10000
- -7 -6 = -4 -3
—In
a). ) b).

Figure 3.1: Convergence rate of |35° — ;| with respect to: (a) ~.; (b) 3.
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Table 3.3: Error analysis of 17

—;;6 2l for dimension reduction from 3D to 2D.

1/, 1/25 1/100 1/400 1/1600
g=1 0.29918e-02  0.13190e-02  0.54255e-03  0.20451e-03
rate 0.59 0.64 0.70
=10 | 0.16240e-01 0.60817e-02 0.22133e-02 0.78676e-03
rate 0.71 0.73 0.75
£ =100 | 0.57785e-01 0.20613e-01 0.73122e-02 0.25843e-02
rate 0.74 0.75 0.75
£ = 1000 0.18372 0.65869e-01  0.23295e-01  0.82260e-02
rate 0.74 0.75 0.75
£ = 10000 0.52762 0.20520 0.73731e-01  0.26021e-01
rate 0.68 0.74 0.75

In (1B, - B3/ B,)

o B=t

—— B=10
—— B=100
—>— B=1000

- B=10000

-3

Figure 3.2: Convergence rate of W with respect to: (a) v,; (b) S.
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Table 3.4: Error analysis of max |(¢3)? — (¢5°)?| for dimension reduction from 3D to

2D.
1/, 1/25 1/100 1/400 1/1600
g=1 2.8612e-03 1.7872e-03 1.0409e-03 5.7183e-04
rate 0.34 0.39 0.43
g =10 1.5352e-02  8.2049e-03 4.2377e-03 2.1350e-03
rate 0.45 0.48 0.49
B =100 | 5.2868e-02 2.7489%e-02 1.3941e-02 6.9970e-03
rate 0.47 0.49 0.50
£ = 1000 0.15315  8.4788e-02 4.3850e-02 2.2165e-02
rate 0.43 0.48 0.49
£ = 10000 1.0622 1.0758 0.13343  6.9129e-02
rate -0.01 1.5 0.47

2

< -3¢ ]
(\I,I\ -4 R
<

= o 1
(]

S

=

s i
-7t - [5:1
—+ p=10

—— B=100
—— B=1000
—8- B=10000

-7

a). b _m(y_j

4

-3

o 1,725
4 yz=100
- =400 ]

& 7,=1600

Figure 3.3: Convergence rate of max |(¢3)? — (¢4°)?| with respect to: (a) 7.; (b) 3.
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Table 3.5: Error analysis of ||(#3)% — (¢3°)?||11 for dimension reduction from 3D to

2D.
1/, 1/25 1/100 1/400 1/1600
6=1 3.0181e-03 1.3317e¢-03 5.4797e-04 2.0752¢-04
rate 0.59 0.64 0.70
6 =10 1.6287¢-02 6.1274e-03 2.2337e¢-03  7.9524e-04
rate 0.71 0.73 0.75
6 =100 | 5.6975e-02 2.0643e-02 7.3640e-03 2.6087e-03
rate 0.73 0.74 0.75
£ = 1000 0.17205 6.4757¢-02 2.3305e-02 8.2826e-03
rate 0.70 0.74 0.75
£ = 10000 0.43027 0.19054 7.2256e-02  2.6000e-02
rate 0.59 0.70 0.74
0 0
-1
_ot
-3
g;m -4+
o -5}
-9t —>— B=1000
-5 $=10000
-0 i 4 3
)
a). z

Figure 3.4: Convergence rate of ||(¢3)? — (#5°)?||z1 with respect to: (a) v.; (b) .
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Table 3.6: Error analysis of ||¢3 — ¢4°||z2 for dimension reduction from 3D to 2D.

ll2)

ho
3
|
o

In (1165 - 0
&

Figure 3.5: Convergence rate of ||¢3 — ¢3°|| 2 with respect to: (a) 7.; (b) 3.

1/, 1/25 1/100 1/400 1/1600

g=1 1.9542¢-03 8.6198e-04 3.5470e-04 1.3464e-04
rate 0.59 0.64 0.70

g =10 1.0565e-02  3.9683e-03 1.4459¢-03 5.1497e-04
rate 0.71 0.73 0.74

£ =100 | 3.7093e-02 1.3387e-02 4.7689¢-03 1.6891e-03
rate 0.74 0.75 0.75

£ = 1000 0.11322  4.2161e-02 1.5115e-02 5.3644e-03
rate 0.71 0.74 0.75

£ =10000 | 0.29025 0.12557  4.7072e-02 1.6868e-02
rate 0.60 0.71 0.74

o B=1

—— B=10
—— B=100
—— B=1000

—8- $=10000

-5
-In(y)

10
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=10

-0.01¢

18

-0.015
0

B=100

0.06
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0.02}

ho
3

-0.04 |

-0.06 - - -
0 0.2 0.4 0.6

0.3}

0.2t

< 0.1

(@) 0

ho
| ¢3

0.1

-0.21

-0.3}

e).

Figure 3.6: Error ¢5°(2) — ¢3(2) as function of z for different 8 and +..
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From Tables 3.2-3.6 and Figures 3.1-3.5, when § > 0, 7, > 1 and 5%—3/2 = o(1),

we can draw the following conclusions:

1/21 . _ pho 1/21 .
5 =5 (1+o<—ﬁ 3/2”)), R 2':0<—ﬁ 3/27>,
Yz 2 Yz

1/2 1 .
63(2) — (2|2 = O (67#) ,

1/2 1
1(63())” = (&5°(2) i~ = O (M) ,

1/2 ]y
[(65(2))* = (@5°(2)ll2 = O (M) .

Vz

Furthermore, from Figure 3.6, we can see that for fixed 3, ¢3(z) converges to ¢h°(z)

pointwisely when ~, — +o00.

3.2 Reduction to 1D in a cigar-shaped condensate

For a cigar-shaped condensate, i.e.
Wy > Wy, Wy Sw, <<= 7,>1 7,.>1, (3.7)

the 3D GPE (2.5) can be reduced to 1D GPE analogously. For any fixed § > 0 and

when 7, — 0o and 7, — oo, we set:

Uy, 2,1) = i, (0, 2) (33)
and
ouln2) = ([ lontons |d:p) "’
~ ) = (L) e Y e (3.9)

where ¢,(z,y, z) is the ground state of the 3D GPE (2.5).
Plugging (3.8) into (2.5), we get:

3% 1Py

¢23 = T379.2 — 5 P23 — —¢1A¢23 + V(X)P1023 + Blebr|*e1|das|*pos -
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Multiplying both sides by the conjugate of ¢o3(y, 2), then integrating both sides in

yz-plane over R?, we obtain:

a 162 +oo
=y g @Ok (5[ lenlnds )l (30

where
oo +o0
C = / |V s |2 dydz + / (Vy® + 122%) | ¢asl dydz

_;Ct

Since equation (3.10) is time-transverse invariant, we can replace ¢, — e "z
which drops the constant C' in the trap potential. Then we get the 1D GPE:

oY _

e Ly S Bl (3.11)

where

8 = ﬁ/}RQ Gy, 2)dydz ~ ﬁ/RQ kot dydz = g = 5—% . (3.12)

To verify (3.9) and (3.12) numerically with v, = v, = ~., we compute the ground
state of the 3D GPE by the continuous normalized gradient flow with BEFD dis-
cretization for (2.5). Then we get ¢4(r, 2), which is used to compute ¢93(z) by (3.9)
and compute (; by (3.12).

The computational domain is chosen as (r,z) € [0, R|] X [—a,a] for the algorithm

(2.21)-(2.22). The choice of R and a for different 5 and ~, is listed in Table 3.7.

;—ﬁ{ml Table 3.10 lists

the error max |3 — ¢b|, Table 3.11 lists the error %"@z%‘ Table 3.12 lists the

error ||(¢e3)? — (#59)?||z1 and Table 3.13 lists the error ||(¢2ﬁ’()¢ 3()¢}‘21|§ et for different
2 Lt
6 and .

Table 3.8 lists the error |3; — 3|, Table 3.9 lists the error 1By

_ npho
Furthermore, Figure 3.7 shows the error |3, —31°|, Figure 3.8 shows the error %’

_ +ho
Figure 3.9 shows the error max |pa3 — ¢bs|, Figure 3.10 shows the error %,

Figure 3.11 shows the error ||(¢93)? — (¢59)?||z1 and Figure 3.12 shows the error

[|(¢23)%—(¢h
[[(f23)2 HLl

)21 for different 6 and Ve
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Table 3.7: The choice of (R, a) in the algorithm (2.21)-(2.22) for different § and ~,.

V 12.5 25 50 100 200
B=25 |(2.0,85) (1.4,95) (1.0,10.5) (0.7,12.0) (0.5,14.0)
B=50 |(2.0,9.0) (1.4,10.5) (1.0,12.0) (0.7,14.0) (0.5,16.5)
3 =100 | (2.0,10.0) (1.4,11.5) (1.0,13.5) (0.7,16.0) (0.5,19.0)
B3=200 | (2.0,11.0) (1.4,13.0) (1.0,15.5) (0.7,18.5) (0.5,23.0)
B =400 | (2.0,12.0) (1.5,14.5) (1.0,17.5) (0.7,21.5) (0.48,27.0)

21
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Table 3.8: Error analysis of |3, — 82| for dimension reduction from 3D to 1D.

Yr 12.5 25 50 100 200
B=25|11.62 19.66 32.85 54.40 89.37
rate 076 0.74 0.73 0.72
B =50 | 31.86 54.97 93.66 157.8 263.3
rate 079 077 075 0.74
B =100 | 83.00 146.7 255.8 440.5 749.8
rate 0.86 0.84 0.82 0.80
B =200 | 2054 3719 665.0 1174 2047
rate 0.86 0.84 0.82 0.80
B =400 | 484.8 897.7 1644 2976 5321
rate 0.89 0.87 0.86 0.84
9
gl
71
£
4 ) 4l
3 3l
2 25 3 85 4 45 5 55 s 85 4 45 5 55 6
a). In(v,) b). In(B)

Figure 3.7: Convergence rate of |3; — 4I°] with respect to: (a) v,; (b) 3.
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Table 3.9: Error analysis of Wl;—fm for dimension deduction from 3D to 1D.

L |1/125 1725 1/50 1/100 1/200
3=25 |0.3048 0.2463 0.1978 0.1584 0.1265

rate 0.31 0.32 0.32 0.32
6 =50 ]0.4712 0.3818 0.3078 0.2474 0.1982
rate 0.30 0.31 0.32 0.32

£ =100 | 0.7158 0.5838 0.4736 0.3827 0.3082

rate 0.29 0.30 0.31 0.31
B =200 | 1.067 0.8773 0.7177 0.5844 0.4738
rate 0.28 0.29 0.30 0.30
=400 | 1.559 1.294 1.068 0.8778 0.7179
rate 0.27 0.28 0.29 0.29

0.5
0 L
-0.5}
. S
o I o
- 5
I — F =
i{1.5 - B=25 =
= —— B=50 -
= ol —— B=100 | |
—— B=200
—8- B=400
25 : : : : : : : : : : : :
-55 -5 -45 -4 -35 -3 -25 -2 3.5 4 45 5 55 6
a). ) b). In(p)

Figure 3.8: Convergence rate of W%ﬁ with respect to: (a) 7,; (b) B.
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Table 3.10: Error analysis of max |¢3 — ¢hs| for dimension deduction from 3D to
1D.
Yr 12.5 25 50 100 200
B =25 02937 0.3490 0.4098 0.4772 0.5517
rate 0.25 0.23 0.22 0.21
B =250 | 0.4105 0.4963 0.5928 0.7010 0.8214
rate 0.27 0.26 0.24 0.23
B =100 | 0.5469 0.6759 0.8248 0.9949 1.187
rate 0.31 0.29 0.27 0.25
B =200 |0.6938 0.8776 1.096 1.353 1.651
rate 0.34 0.32 0.30 0.29
B =400 |0.8406 1.087 1.389 1.756 2.194
rate 0.37 0.35 0.34 0.32

ho

| In ( max|<|>23 )

3.5 4
In;)

Figure 3.9: Convergence rate of max |go3 — @59| with respect to: (a) y,; (b) .

4.5 5
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Table 3.11: Error analysis of

max |p23— 52|

for dimension deduction from 3D to 1D.

max |¢p23|
L 1/125 1/25  1/50  1/100  1/200
G =25 10.1727 0.1412 0.1145 0.09240 0.07428
rate 0.29 0.30 0.31 0.32
6 =50 |0.2591 0.2135 0.1746 0.1419  0.1148
rate 0.28 0.29 0.30 0.31
6 =100 | 0.3778 0.3151 0.2606 0.2141 0.1748
rate 0.26 0.27 0.28 0.29
6 =200 | 0.5334 0.4517 0.3791 0.3156  0.2608
rate 0.24 0.25 0.26 0.28
£ =400 | 0.7285 0.6266 0.5345 0.4521  0.3792
rate 0.22 0.23 0.24 0.25
0
-0.5
-0.5 B///E] :«J
~ 5
= | g
5-1.5— se'i—1-5
' g
= z 2
g <
=-25
-25
35 4 45 5
). b). (o)

Figure 3.10: Convergence rate of

max |¢o3 —@59|
max |¢p23|

with respect to: (a) 7,; (b) B.
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Table 3.12: Error analysis of [|(¢23)? — (¢55)?||z1 for dimension deduction from 3D

to 1D.
- 1/12.5 1/25  1/50 1/100  1/200
B3 =25 |0.2001 0.1651 0.1350 0.1097 0.08864
rate 0.28 0.29 0.30 0.31
B3 =50 | 0.2922 0.2441 0.2019 0.1658 0.1352
rate 0.26 0.27 0.28 0.29
B3 =100 | 0.4108 0.3490 0.2936 0.2446 0.2021
rate 0.24 0.25 0.26 0.28
B3 =200 | 0.5526 0.4796 0.4117 0.3494 0.2937
rate 0.20 0.22 0.24 0.25
B3 =400 | 0.7102 0.6305 0.5532 0.4799 0.4117
rate 0.17 0.19 0.21 0.22
oll & S=25
—— B=50
—— B=100 08
—— B=200
_ 7051] & p-400
N’Lm NT_1'5
£-15) : R
ot , =
-2.5 : : -2.5 : : ! : !
-5.5 -5 -4.5 -4 -3.5 -3 -25 35 4.5 5 55 6
a). ~nty) b). in(p)

Figure 3.11: Convergence rate of ||(¢93)? — (¢59)?||z1 with respect to: (a) v,; (b) 3.
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Table 3.13: Error analysis o

f ||(¢23)%—(¢53)

2l for dimension deduction from 3D to 1D.

[[($23)*1 1
% 1/12.5  1/25 1/50  1/100  1/200
B3 =25 | 0.2001 0.1651 0.1350 0.1097 0.08864
rate 0.28 0.29 0.30 0.31
B3 =50 | 0.2922 0.2441 0.2019 0.1658 0.1352
rate 0.26 0.27 0.28 0.29
B3 =100 | 0.4108 0.3490 0.2936 0.2446 0.2021
rate 0.24 0.25 0.26 0.28
B3 =200 | 0.5526 0.4796 0.4117 0.3494 0.2937
rate 0.20 0.22 0.24 0.25
B3 =400 | 0.7102 0.6305 0.5532 0.4799 0.4117
rate 0.17 0.19 0.21 0.22

Figure 3.12: Convergence rate o

3.5

f I1($23)2—(959)%(1 11
[[(623)2]] 1

4 45 5 55 6
in(B)

with respect to: (a) 7,; (b) B.
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Figure 3.13: Error of (¢a3(y, 2) — #55(y, 2)) = (d23(r) — ¢h9(r)) as function of r for

different 8 and v, = v,
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From Tables 3.8-3.11 and Figures 3.7-3.10, when 8 > 0, v, := 7, = 7, > 1 and

Byt = o(1), we can draw the conclusion:

1/3 . s
B = ﬁ (14—0(61—1/2%))’ Wlﬂﬁll O<61—l/r;%>7
Ir 1 r

[¢23(y, 2) — 53(y, 2) || L = O (ﬁl/:}%%/:} lnfyr) ,

P23 (y, 2) — 55y, 2) [ £ ~-0 B3 1n~,
||¢23(yaz)||L°° 7}/3 )

1635(5, 2) = (633)°(y, 2l = O (8'°% Iy
rw%%@—<%vmam;20(wﬂm%>.

H¢%3(y>2)”u 1/3

Yr
Furthermore, from Figure 3.13, we can see that for fixed /3, ¢23(y, z) does not con-

verge to ¢h9(y, 2) pointwisely when 7, — +o0.

3.3 GPE and conservation laws

In fact, the 3D GPE (2.5), 2D GPE (3.5) and 1D GPE (3.11) can be written in a
unified way [30, 7, 8]:

Mé’i L —%M(& t) + Va(x)p(x,t) + Ba [0(x, )20 (x, ), (3.13)
¢<X, ) = %(X), X € Rd, d = 1, 2, 3, (314)

where (33 = 3 and
x2, d=1,
1 2 2,2
Va(x) = 50 (@® +759°), d=2,
(% + vy +722%), d=3.
There are two important invariants of (3.13), i.e. the normalization of the wave

function

= /Rd (%, 1)]* dx = N(th) = /Rd [bo(x)]* dx =1, t>0, (3.15)

and the energy

Bw) = [ [5IVeP+ vl + ot dx= B, ez, (310
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3.4 Ground state of GPE and its approximation

To find a stationary solution of (3.13), we write:

P(x,t) = e M p(x), (3.17)

where p is the chemical potential of the condensate and ¢ is a real function inde-

pendent of time. Inserting (3.17) into (3.13) and (3.15) gives the following equation
for ¢(x):

pOGO) = 2 A0(X) + VXO() + BloPo), xR (319

under the normalization condition:

N() 2 ol = [ loGoPdx =1, (3.19)

This is a nonlinear eigenvalue problem under a constraint and any eigenvalue p can

be computed from its corresponding eigenfunction ¢ by:

p=ute) = [ [5IT060R + VGG + Gulo(ol | dx
= B(6) + Eul0) (3.20)

where Ejn(¢) denotes the two-body interaction energy:
_ ﬂd 4
Eul0) = [ Dol (3.21)
R4

In fact, the eigenfunctions of (3.18) under the constraint (3.19) are equivalent to the

critical points of the energy functional E(¢) over the unit sphere
S={¢lllo)*=1, E($) <oo}.

Furthermore, as noted in [9], the solutions of (3.18) are equivalent to the steady

state solutions of the following continuous normalized gradient flow (CNGF):

dp 1 1(9)
T §A¢ —V(x)p — Balp[*¢ + W¢7 xeRY t>0 (3.22)

d(x,0) = ¢o(x), x€R? with || = 1. (3.23)



3.4 Ground state of GPE and its approximation 31

The Bose-Einstein condensate ground state ¢4(x) is a real non-negative function
found by minimizing the energy E(¢) over the unit sphere S; i.e. find (g, ¢4 € S),
s.t.

E(¢y) = glelglE(@a 1y = 11(¢g) = E(dg) + Eint(9y), (3.24)

The existence of unique positive minimizer of the minimization problem (3.24) was

given in [44]. And different numerical methods were proposed in the literatures for

computing the ground state of BEC [9, 31, 4, 5, 7, 23, 24].

For a weakly interacting condensate, i.e. 5 = o(1), we drop the nonlinear term,
i.e. the last term on the right-hand side of (3.18), and get the harmonic oscillator

approximation:
1
HEON(X) = —5 AGL(X) + Va(dh(x),  x € R, (3.25)

The ground state solution of (3.25) is

1, e 2, d=1,
o 1 o 1
i =5 1w By (x) = () /4 e 2, d=2,
1 _|_ fyy _I_ 727 (Pyyfyz)1/46_(w2+7yy2+72'22)/2’ d:3
(3.26)

This solution can be viewed as an approximate ground state solution of (3.13) in
the case of a weakly interacting condensate, i.e. §; = o(1), with an O(f)-error in

approximating the chemical potential and the energy.

For a condensate with strong repulsive interactions, i.e. (5 > 1, we drop the
diffusion term, i.e. the first term on the right-hand side of (3.13), and get the

Thomas Fermi approximation:

My G (%) =Va(x)d," (x) + Baldg” (¥)[¢g" (x), xR (3.27)

9 9
Solving (3.27), we obtain the TF approximation for the ground state:

VI = Vi) [Ba, Va(x) < il

0, otherwise.

o, (x) = (3.28)
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Plugging (3.28) into (3.19) with ¢ = ¢, ", we obtain [7, §]

(351)2/37 d:1’
1 1/2
/
1567yy7= _
( 4":;/7 ) ’ d= 3

Due to ¢,"(x) is not differentiable at Vy(x) = p,", as observed in [7, 8, 11],
E(¢g") = oo, thus one can’t use the definition (3.16) to define the energy of the TF
approximation (3.28). According to (3.20) and (3.21), as observed in [11], here we
use the following way to calculate it:

d+2
EgTF ~ Ey, = E(¢g) = 11(¢g) — Eint(¢g) = M;FF - Eint(¢§F) =S

= ke (330)

3.5 Leading-order approximate energy and chem-

ical potential

Let us consider for simplicity a radial trap (d = 2 with v, = 1), or spherical trap
(d = 3 with v, = 7, = 1), the ground state solution of the nonlinear eigenvalue
problem (3.18) is symmetric, i.e. ¢,(x) = ¢(r) with r = |x| and satisfies:

1 d d 2
T opd-1 gy (Td_ld—f) + (% - u) ¢+ Bag” = 0. (3.31)

It is equivalent to:

L 26 d—1dé [ -
2 dr? o %+(E_ )¢+6d¢ = 0. (3.32)

Let R be the radius of the wave function, determined by the equation u’* = V(R)
which implies R = |/2ul*". Near this point, where |r — R| < R, we have

Va(r) —p = Vy(r) —p," =
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Moreover, for values of R much larger than the thickness of the boundary, the
seconde term in equation (3.32) is negligible. Indeed one can easily check that the
effect of the first derivative is much smaller than the one of the second derivative in
determining the shape of the profile close to R, when R is sufficiently large. Thus

one can approximate the GPE (3.32) in this limit with the new equation:

~5ga T (= R)Ro+ Bap® = 0. (3.33)

Let us introduce the dimensionless variable: s = (r — R)/l and let ¢(r) = ag@(s).
Then we get:

d*(s)
ds?

+ 25°R(s) + 2640212¢%(s) = 0.

Choose | and a such that:

2RI3 =1, I =(2R)Y3,
=
20340212 = 1. a = (2133,) V2R3,

Then the equation (3.33) is transformed into:

¢ —(s+¢°)p=0. (3.34)

As s — 400, 5 — 0, drop 53 item, then we get:

;5” - S;Z; = 07
which implies
~ A _2.2/3
P(s — +00) ~ 5o1/1¢ 55 A=0.794. (3.35)
s

As s — —o0, drop 5" term, then we get:

which implies
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Choosing ¢ such that | < ¢ < R, then using ¢, = ¢;" for r € [0, R — €] and
o(r) = ag(s) for r € [R — &, +00), we get:

_ 1 LT d-
B = /R (VoPdx = 5Ca / (&' (r)?r-d,
R—¢ +o00
- —02‘1 [/0 (gf)/(r))Qrd_ldr—i—/R_E |g25/(7’)|2rd_1dr ) (3.36)

We compute the two terms of (3.36), respectively. The first term is

R—e - R—c¢ d¢TF(T> 2 -
d - d
/0 (6 ()ridr ~ / ( - ) Ly

2

R—e¢
— / T/ﬂd Td_ldT
0 2 \/ TF __ /ﬁd
B /R—E d+1//6 0 1 /R—s TdJrl g
B T R T S e
R 2R

- o],

and the second term is

+o0
[ e

R—e

[e) B aQRd_l o] -~ ls .
= [ SBOres + Ryt = T [T gpa s s

—e/l —e/l

ZRd 1

Q

& ~ l T
2 _ ST
z /_E/l|¢(s)| ds  (r-Rl<R=1+72=2x1)
aQRd—l o
= / |9 (5)]*V1+ s2dIn(s + V1 + s2)
—e/l

l

C¥2Rd_1 r

- 16 (s)PVIF S ln(s + VI+52)|

+c]
—e/l

a?R-1 1 g2 €
- = 4/z L+ Sin(T+e/P-2)+C

2 pd—1 1 2 1
VTR e
Q?R&Y [ 2¢ R? 2
~ In— +4 — — 44
& [nﬁo} %{n +c}
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Summing the two terms together, we get

C’d RY 2R R = 2
Bn = In== — Dy)+ —(In = +4C
‘ it TPy >1

C’de 4R
— In— +4C — D
86, | TIC d]
CyR* [ 4R
= Sﬁd _ln (2R)71/3 —|' 40 — Dd:|

i
_ Cakt lnR4/3—|—§ln2+4C—Dd],

8034

where

Ca=1 2m, Dg=< 1+1n4,

Q& X
I
w o

8
47T, 3

\

[ (e,

2
R=\/2ult = ¢ (&)1 By =

g
(L2ByLe, 3,

QL o
Il
w [\ —

\

+o00
—e/l
0.176.

Q

Let:

)1/37 4/9 —1,

=
—~
N

Ag =

)

B
SUREEES S
I
w N —
>
ISH
I
(\] [\]
ol wl~
® @
=
v
S
M)
—
TRERD,
=
>~
w
SH
I

)3/5

SJE}
—
= -
§l5

g C’j/ (d+2) [(d+ ) 1]d/(d+2) 193
d 6(d+ 2) ) ) Ly Iy
(d+1)*—1

Cq

7 3
Gy = In +(d+2) <11n2+30—1Dd),
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We get:

C, R4 7
Euy = InRY3 4+ -In2+4C — D
k 35, n +3H + d
4

- Y
Hy

2/(d+2) (
d

)8, 77 In By + (AgIn By) B3,
In ﬁd + Gd)

Thus when ;> 1, we get the first order approximation for £, and g,

Eg ~ EgTF + Ekin<¢g)
d+2 [((d+1)2—1)8,]%? o,
2(d + 4) C, 53/_<d+2>

o d+2 (@12 - na)Y e g
N 2(d+4){ Cy ] * gY@ |

Hg = u§F+Ekin(¢g)
1 l<<d+ 1)? - 1)@}”“‘”) H,

9 Cd + W (ln ﬁd + Gd)

1 [((d+1)2—1)5dr/<d+2>+0< In 3, )

92 c, 562/(d+2)

Q

(In B4 + Gy)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

These asymptotic results were confirmed by the numerical results in [7] for d = 1,2, 3.



Chapter I

Approximate Ground States in 3D

In this chapter, we will derive approximate ground states as well as their energy
and chemical potential of 3D GPE (2.5) with d = 3 and external potential V' (x) =
% (x2 + 7§y2 + 7§z2) with x = (z,y, z) for different parameters regimes of 3, v, and

v., by applying the results in the previous chapter.

4.1 Isotropic shaped condensation

In the case of isotropic shaped condensation, i.e. v, = O(1) and 7, = O(1) (<=

wy ~ w, and w, ~ w,), there are three typical regimes:

4.1.1 Weakly interacting regime

When 5 = o(1), i.e. in a weakly interacting regime, the ground state is approximated

by the harmonic oscillator ground state:

1/4
Dg(x) = ¢2°(x, y,z) = MG_(x2+7yy2+7zz2)/2, x € R?, (4.1)

73/4
By g (b 492 +0(B), 18l <1, (1.2)
iy~ 5 (143 +72) + O(B). (4.3)

37



4.2 Disk-shaped condensation 38

4.1.2 Intermediate repulsive interacting regime

When § = O(1), i.e. in a intermediate repulsive interacting regime, the ground
state can be obtained by solving the 3D minimization problem (2.15). Different
numerical methods were proposed in the literatures for computing the ground states

7,9, 12, 23, 24).

4.1.3 Strong repulsive interacting regime

When > 1, i.e. in a strong repulsive interacting regime, the ground state is

approximated by the TF approximation:

e _ ;(15@%,%)/7 s~ 4 VT VOB Ve <t

g 47

0 otherwise,
5 H. 5 In g
Ey ~ 7 gTF 62/35 (Ing+ Gj) = 7,ug +0 (52/5> , 6>1, (4.5)
H. Inj3
ugx,ug +52—;’5(ln5+03) +O(ﬂ2/5) (4.6)

For v, =, =1, (4.5) and (4.6) were confirmed numerically in [7].

4.2 Disk-shaped condensation

In the case of disk shaped condensation, i.e. 7, = O(1) and 7, > 1 (<= wy, = w,

and w, > w,), we set
1/4

Mo R U 6y() & duley)ei(z) with 91°() = Lpe A (4)

Plugging (4.7) into (2.9), multiplying both sides by ¢i°(z) and integrating over
z € (—o0,00), we get
1
M¢(x7y> - __A¢+‘/2<x7y)¢+52 |¢|2¢7 (ZE,y) €R27 (48)

where Vy(z,y) = (x + 7y ) and 3, = 3,/3=. Using the results in the previous

section for 2D GPE, again we get approximate ground state in three typical regimes:
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4.2.1 Weakly interacting regime

When 3, = o(1), i.e. in a weakly interacting regime, the ground state is approxi-

mated by the harmonic oscillator ground state:

Gg(x) = @15 (2, y)5°(2) = P2°(w,y,2),  x€R’, (4.9)
. 1 L1

E, ~ 72 + z%’ + O(pho) = 72 + 2%’ +0 (877, (4.10)
.1 L1

[y A % + j;%’ +O(Bh) = 72 + z%’ + 0 (ByY?), 7. > 1&60 < 1. (4.11)

4.2.2 Intermediate or strong repulsive interacting regime

When Gy = O(1) or B > 1, i.e. in a intermediate or strong repulsive interacting

regime, the ground state can be approximated by

0g(x) = 6,°(x) = ;" (,9)#5°(2),  x€R’. (4.12)

E,~ E}S = B(@P(z.9)6}(2) = = + Ea(62) := = + B, (4.13)

pg ~ p® = (20 (@, y)d8°(2)) = % + pap (¢2°) = % + 2P, (4.14)

where
2D Lo 2pp2 w2, B8 apu
By = IV I+ Vala, )67 1" + =197 [ | dudy,
]RQ
1
i = [ ST+ Vate )62 + B16EPL | dody
R2

Here ¢2P, EZ° and 2P are the ground state, energy and chemical potential of the
2D problem (4.8). In this case, one needs only solve a 2D problem numerically and

thus computational time, memory and cost are saved significantly.

To verify (4.12), (4.13) and (4.14) numerically, we solve (3.13) with BEFD discretiza-
tion method we reviewed in chapter 2 for d = 2,3. The computational domain is
chosen as (r, z) € [0, R] X [—a, a] in the algorithm (2.21)-(2.22). The choice of R and
a is listed in Table 3.1 for different § and ~, for the 3D GPE. The computational
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domain for 2D GPE is chosen as r € [0, R]. The choice of R is also listed in Table
3.1. Then we get ¢g(x,y,2) and ¢2P(z,y). We got ¢4°(z) by (3.3). Finally we
compare ¢4(x,y, z) with nggDS(X) = ¢§D(x, Y)ph(2).

Table 4.1 lists the error max |¢, — @[, Table 4.2 lists the error ||¢, —¢2%|| >, Table
4.3 lists the error max |(¢,)? — (¢7%)?], Table 4.4 lists the error ||(¢g) — (¢2%)?|| L1,
Table 4.5 lists the error |E, — EP®| and Table 4.6 lists the error |p, — p2®] for
different 3 and ~,.

Furthermore, Figure 4.1 shows the error max |¢, — gbf 5|, Figure 4.2 shows the error
g — ¢2°|| 2, Figure 4.3 shows the error ||(¢y)* — (¢2°)?|| 1, Figure 4.4 shows the

error |E, — EPS| and Figure 4.5 shows the error |p, — u2°| for different 3 and ~,.
g g 9 g

Table 4.1: Error analysis of max |¢, — nggD S| for the ground state in 3D with a disk-

shaped trap.

1/, 1/25 1/100 1/400 1/1600
B3 =1 2.7165e-03 1.6256e-03 8.6990e-04 4.6582e-04
rate 0.37 0.45 0.45
B3 =10 | 9.9580e-03 4.4016e-03 1.8771e-03 7.8922e-04
rate 0.59 0.61 0.63
0 =100 | 1.8283e-02 7.8510e-03 3.3251e-03 1.4279e-03
rate 0.61 0.62 0.61
B =1000 | 2.9793e-02 1.3614e-02 5.8602e-03 2.5056e-03
rate 0.56 0.61 0.61
B3 = 10000 | 3.8178e-02 2.1891e-02 1.0138e-02 4.8558e-03
rate 0.40 0.56 0.53
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Figure 4.1: Convergence rate of max|[¢, — ¢} S1'in 3D with a disk-shaped trap with

respect to: (a) v,; (b) S.
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Table 4.2: Error analysis of ||¢, — ¢%||> for the ground state in 3D with a disk-

shaped trap.

1/, 1/25 1/100 1/400 1/1600
B3 =1 2.2292e-03  9.9667e-04 4.1720e-04 1.6839e-04
rate 0.58 0.63 0.65
B3 =10 | 1.2352e-02 4.7214e-03 1.7425e-03 5.8019e-04
rate 0.70 0.72 0.80
B3 =100 | 4.4559¢e-02 1.6419e-02 5.9334e-03 2.1262e-03
rate 0.72 0.73 0.74
(B3 = 1000 0.13758  5.3087e-02 1.9432e-02 6.9931e-03
rate 0.69 0.73 0.74
B3 = 10000 | 0.34614 0.15876  6.1901e-02 2.2674e-02
rate 0.56 0.68 0.72

2t

_3t

Vo)

4t

DS
¢}

S
N/L -5t
em
= 67
£ L
-7 -0~ p=1
gl — B=10
—— B=100
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0T 6 ‘ 4 3
@y
a).

Figure 4.3: Convergence rate of ||(¢g)* — (¢2°)?||r1 in 3D with a disk-shaped trap

with respect to: (a) 7.; (b) S.
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Table 4.3: Error analysis of max |(¢,4)? — (¢7°)?| for the ground state in 3D with a

disk-shaped trap.

1/, 1/25 1/100 1/400 1/1600
B3 =1 4.2104e-03  2.9316e-03  1.6270e-03  8.9928e-04
rate 0.26 0.42 0.43
B3 =10 | 6.8158e-03 3.3444e-03 1.6368e-03 9.0873e-04
rate 0.51 0.52 0.42
B3 =100 | 6.2500e-03 3.2179e-03 1.6262e-03 8.3692e-04
rate 0.48 0.49 0.48
O3 = 1000 | 5.5415e-03 3.1051e-03 1.6050e-03 8.2083e-04
rate 0.42 0.48 0.48
B3 = 10000 | 3.5845e-03 2.7072e-03 1.5437e-03  8.0167-04
rate 0.20 0.40 0.47

—— B=10
—— B=100

—— B=1000

-5 B=10000
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Figure 4.4: Convergence rate of |E, — EP?|
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4

respect to: (a) v,; (b) f.
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Table 4.4: Error analysis of [[(¢g)? — (¢7°)?/|11 for the ground state in 3D with a

disk-shaped trap.

1/, 1/25 1/100 1/400 1/1600
B3 =1 3.0733e-03  1.3850e-03 5.8874e-04 2.4139e-04
rate 0.57 0.62 0.64
B3 =10 | 1.7851e-02 6.8785e-03 2.5500e-03 8.4851e-04
rate 0.69 0.72 0.79
B3 =100 | 6.5043e-02 2.3857e-02 8.5544e-03 3.0379e-03
rate 0.72 0.74 0.75
(B3 = 1000 0.19508  7.4657e-02 2.7047e-02 9.6342¢-03
rate 0.69 0.73 0.74
B3 = 10000 | 0.47323 0.21564  8.3192e-02 3.0162e-02
rate 0.57 0.69 0.73

-8 ’@/@//@ - B=1

—— B=10
—— B=100
—>— B=1000

—5- B=10000 |{

-7

a). ” _ln@;

4

Figure 4.5: Convergence rate of |, —pl S| in 3D with a disk-shaped trap with respect

to: (a) v.; (b) B.
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Table 4.5: Error analysis of |E, —Eé) S| for the ground state in 3D with a disk-shaped

trap.
1/, 1/25 1/100 1/400 1/1600
O3 =1 2.5509e-04 1.9100e-04 1.1598e-04 4.6241e-05
rate 0.21 0.36 0.66
B3 =10 | 7.1493e-03 3.9211e-03 1.9933e-03 9.2032e-04
rate 0.43 0.49 0.56
B3 =100 | 8.3553e-02 4.3013e-02 2.1584e-02 1.0604e-02
rate 0.48 0.50 0.51
B3 = 1000 0.79026 0.42380 0.21651 0.10841
rate 0.45 0.48 0.50
B3 = 10000 6.3418 3.9073 2.1104 1.0662
rate 0.35 0.46 0.49
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Table 4.6: Error analysis of |, — ugD S| for the ground state in 3D with a disk-shaped

trap.
1/, 1/25 1/100 1/400 1/1600
Py =1 7.0581e-04 5.0744e-04 3.0116e-04 1.2072e-04
rate 0.24 0.38 0.66
B3 =10 1.5620e-02 8.2793e-03 4.1715e-03 2.4183e-03
rate 0.46 0.49 0.39
B3 =100 0.16745  8.6323e-02 4.3446e-02 2.1534e-02
rate 0.48 0.50 0.51
B3 = 1000 1.5391 0.84043 0.43244 0.21765
rate 0.44 0.48 0.50
B3 = 10000 11.748 7.5786 4.1793 2.1416
rate 0.32 0.44 0.48
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From Tables 4.1-4.6 and Figures 4.1-4.5, when 8 > 0, 7, > 1 and ﬁ7;3/2 =o0(1), we

can draw the following conclusion:

B2 In~, B2 In~,
g — &l 2 = O (T () = (65°)? I = O T ;

G Inn, G Iy,
]@—Efﬂ:O(W o g —p® =0 e

4.2.3 Strong repulsive interacting regime

When (5 > 1, i.e. strong repulsive interacting regime, the ground state is approxi-
mated by the multiplication of the TF approximation in xy-plane and the harmonic

oscillator approximation in z-direction:
Bg(x) = by (%) = dop (2, Y)05°(2),  x € R, (4.15)

where

VIS = Va(z,y)) /65, Va(z,y) < pds,

20 (. y) = | (4.16)
0 otherwise,
o 1/2 1/2_1/4
v _ (B8 _ B2y (4.17)
Hop = T T ol/ag3ja '

Plugging (4.12), (4.8), (3.30) with d = 2, (4.17), (3.37) with d = 2 and (3, = gh°
into (3.16), we get the approximate energy

E, = E(b) = E(4;"(2,9)¢5°(2) + O <%)

= 1+E2D(¢§D)+O<ﬁn7>:7—+E§D+O<ﬁ?/z>

2 N/ 2 :
1/2

V=, 2 (5w H, h Blny,
~ 24z ——(In3° + G O| ——=

s +3(B) rgpmmarrero (L

/2032, \1/4 1/4

oy 24282 H,(27) ) BIny,
~ o + oy 2 [In(6%y.) + 2G> —In2x| + O T

In(3%y.)  Blny,
- E;FFI +0 (ég%;/{l + 7;2 ) , (4.18)
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where L2
ETFL _ V= + 23/473/ (52%)1/4 Yo o 2
=

5 5 =+ 35D (4.19)

Similarly, we get the approximate chemical potential:

In(5*y.) | Bln~.
~ . TF
1y ~ u 4+ O ((62%)1/4 + e ) (4.20)

where

1/2 2, \1/4
V= (8%72) Ve
P eV e ) RS R o (4.21)

g 9 91/473/4 9
To verify (4.15), (4.18) and (4.20) numerically, we solve (3.13) with BEFD dis-
cretization method we reviewed in chapter 2 for d = 3 and we get ¢,(z,y,2). The
computational domains for 3D GPE and 2D GPE are the same as those in the pre-
vious subsection. Then we got ¢#°(2) by (3.3) and got ¢Z5 (x,y) by (4.16). Finally
we compare ¢4(x,y, z) with (bgTFl(x,y, 2) = oLt (z, y)phe(2).
Table 4.7 lists the error [[¢, — ¢F || 12, Table 4.8 lists the error ||(¢g)* — (o ")?(| 11,
Table 4.9 lists the error |E, — EI""| and Table 4.10 lists the error |u, — ] **| for

different 4 and ~,.

Furthermore, Figure 4.6 shows the error |E, — E*| and Figure 4.7 shows the error

g — pd ¥t for different 3 and ..
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Table 4.7: Error analysis of ||¢, — ¢ 7|2 for the ground state in 3D with a disk-

shaped trap.

1/7, 1/25 1/100 1/400 1/1600

B3 =1 0.54466  0.44370 0.35676 0.28780

rate 0.15 0.16 0.15

B3 =10 | 0.26575  0.21545 0.17363 0.14040
rate 0.15 0.16 0.15

B3 =100 | 0.12895  0.10296  8.4337e-02 6.7750e-02
rate 0.16 0.14 0.16

B3 = 1000 | 0.13991 6.4893e-02 4.1214e-02 3.1973e-02

rate 0.55 0.33 0.18
B3 = 10000 | 0.34437  0.156564  6.0349e-02 2.3976e-02
rate 0.57 0.69 0.67

From Tables 4.7-4.10 and Figures 4.6-4.7, when 5 > 0, 7, > 1 and ﬁ’y;?’/Q = o(1),

we can draw the following conclusion:

C(8) In7. ¢(p)In7.
65— 6™ 12 = O (%) - o=@ =0 (%) |

In~, In~,
‘EQ_E‘(;FF1|:O<’71/4 +ﬁ>7 |N9_M;I‘F1’:O< 1/4+ﬁ>’

z

where C(3) depends on 3. These results confirm the asymptotic results (4.18)
and (4.20). Furthermore, our numerical results indicate that (¢T7!(x))? doesn’t

converges pointwisely to the ground state ¢7(x) when v, — oo and 3 > 0.
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Table 4.8: Error analysis of |[(¢g)* — (¢5"")?||1 for the ground state in 3D with a

disk-shaped trap.

respect to: (a) v,; (b) f.

1/7. 1/25 1/100 1/400  1/1600
B3 =1 0.58819 0.41360 0.27900 0.18477
rate 0.25 0.28 0.30
B3 =10 0.16239 0.10752  7.1278e-02 4.7097e-02
rate 0.30 0.30 0.30
B3 =100 | 9.2648e-02 4.5162e-02 2.3347e-02 1.2906e-02
rate 0.52 0.48 0.43
(3 = 1000 0.19484  7.5742e-02 2.8252e-02 1.0454e-02
rate 0.68 0.71 0.72
B3 = 10000 | 0.47092 0.21356  8.1421e-02 2.8627e-02
rate 0.57 0.69 0.75
2 2
1t 1}
of ol
£t E ot
;m -27 w” |
= Ll Ll
S p=100
—4r —— B=1000 —4r
—=— p=10000
5 ‘ ‘ ‘ -5 ‘ ‘ ‘ ‘
% 7 [P T 4 5 6 7 8 9 10
). A b). e
Figure 4.6: Convergence rate of |[E, — EI*'| in 3D with a disk-shaped trap with
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Table 4.9: Error analysis of | E,— E] | for the ground state in 3D with a disk-shaped

trap.
1/, 1/25 1/100 1/400 1/1600
B3 =1 0.61409 0.51950 0.41888 0.29887
rate 0.12 0.16 0.24
B3 =10 0.31540 0.24876 0.18610 0.10594
rate 0.17 0.21 0.41
B3 =100 | 7.9214e-02 4.5140e-02 2.3770e-02 1.1733e-02
rate 0.41 0.46 0.51
(B3 = 1000 0.73168 0.38127 0.19196 0.11818
rate 0.47 0.50 0.35
B3 = 10000 6.3193 3.8930 2.1096 1.2518
rate 0.35 0.44 0.38
3—— : ‘ : 3
2/
1t ]
E:cn ol ]
i@ -1 / 1
E| ,
47 o Ejgggo ]
N R —In(\?j ” -3 b). 4 5 6 InZB) 8 9 10

Figure 4.7: Convergence rate of |py, — p*'| in 3D with a disk-shaped trap with

respect to: (a) v,; (b) f.
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Table 4.10: Error analysis of |ug—u3F 1] for the ground state in 3D with a disk-shaped

trap.
1/, 1/25 1/100 1/400 1/1600
B3 =1 0.48380  0.38452 0.29107 0.18647
rate 0.17 0.20 0.32
B3 =10 ]0.20034  0.15591 0.11214 4.7083-02
rate 0.18 0.24 0.63
B3 =100 | 0.12140 8.0114e-02 4.1908e-02 2.0630e-02
rate 0.30 0.47 0.51
B3 = 1000 | 1.5039 0.81591 0.42166 0.23790
rate 0.44 0.48 0.41
B3 = 10000 | 11.735 7.5715 4.1839 2.3312
rate 0.32 0.43 0.42

52
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4.3 Cigar-shaped condensation

In the case of cigar shaped condensation, i.e. 7, > 1 and v, > 1 (<= wy, > w,

and w, > w,), we set

o~ i+ 2,00 % p()oln), g s) = DIttt
(4.22)
Plugging (4.22) into (2.9), multiplying both sides by ¢i3(y, 2) and integrating over
(y,2) € R? we get

pO() = 30w + Vil + AloPS,  —co<z<oo, (423

where V) (z) = %2 and () = B—V;rwz Using the results in the previous chapter for 1D

GPE, again we get approximate ground state in three typical regimes:

4.3.1 Weakly interacting regime

When f; = o(1), i.e. in a weakly interacting regime, the ground state is approxi-

mated by the harmonic oscillator ground state:

Og(x) = ¢1°(x) %é’(y, 2) = ¢"(z,y,2), xERY 4, > 1&7, > 1 (4.24)

+ 72 + 72

Ba B L o) =2 S0 (), (429)
+7 1 +v 1

po e B S 0(B) = B+ S0 ()Y . (426)

4.3.2 Intermediate or strong repulsive interacting regime

When 8, = O(1) or 8; > 1, i.e. in a intermediate or strong repulsive interacting

regime, the ground state can be approximated by

Og(x) = 0y (%) = 0," ()03 (y, 2),  x ER, (4.27)
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Yy + V2 Ty T2 + 72

B, ~ B = B @)o,2) = 217 + Bin(el?) = 20 4 P, (428)
o Yy Yy
e = pg® = (e (x) 33(972)):%+M1D(¢;D) izyTJrM_},D’ (4.29)
where
2
* |1 |dg,° (@) B
g = [ 15[P50] +vi@er@r « R | de
oo | 2 dx
i = [ 5T @@+ Al de

Here ¢;°, E;P and p;° are the ground state, energy and chemical potential of the
1D problem (4.23). In this case, one needs only to solve a 1D problem numerically

and thus computational time, memory and cost are saved significantly.

To verify (4.27), (4.28) and (4.29) numerically, we solve (3.13) for d = 1,3 with
BEFD discretization method we reviewed in chapter 2. The computational domain
for 3D GPE is chosen as (r,z) € [0, R] X [—a, a] in the algorithm (2.21)-(2.22). The
computational domain for 1D GPE is chosen as [—a,a]. The choice of R and a is

listed in Table 3.7 for different 5 and 7,. Then we get ¢,(z,y, z) and (b;D (z). We got

bs(y, z) by (3.9). Finally we compare ¢y(x,y, z) with ¢.°(x) := ¢2P(z,y)95°(2).

Table 4.11 lists the error max |¢, — ¢S] , Table 4.12 lists the error ||¢, — ¢55|| L2,
Table 4.13 lists the error max |(¢g)? — (¢5)?|, Table 4.14 lists the error ||(¢4)* —
(¢5)?[| L1, Table 4.15 lists the error |E, — ES®|, Table 4.16 lists the error |py — p&5].
Table 4.17 lists the error M Table 4.18 lists the error M Table

x| ¢g] l|égll 2
4.19 lists the error maxl((ig()f( (;bg 2 , Table 4.20 lists the error ”(%')‘(d) (;is) et , Table
4.21 lists the error 22 = 1By g7 and Table 4.22 lists the error 2 Mug il for different 3 and
g

Yr-
Furthermore, Figure 4.8 shows the error ||¢y — ¢5|| /2, Figure 4.9 shows the error

[(¢9)% = (¢5°)?| 11, Figure 4.10 shows the error |E, — ES®|, Figure 4.11 shows the

max |¢g—¢gs

error |f, — ugs |, Figure 4.12 shows the error l, Figure 4.13 shows the error

max |¢g|
_CSs 2_(4CS)2
%, Figure 4.14 shows the error maxlr(l(zi )‘( 3 (;Zgl ) I, Figure 4.15 shows the error
gL g



4.3 Cigar-shaped condensation 55

[1(¢9)*=(65"*)?ll 1
1(¢9)?lI L1

_,CSs
% for different 5 and ~,.

|Ey—Eg|
EQ

, Figure 4.16 shows the error and Figure 4.17 shows the error

Table 4.11: Error analysis of max |¢, — gbgs | for the ground state in 3D with a cigar-

shaped trap.

Yr 12.5 25 20 100 200

B3 =25 |0.1112 0.1275 0.1536 0.1842 0.2194

rate 0.20 0.27 0.26 0.25
B3 =50 | 0.1512 0.1862 0.2270 0.2746 0.3290
rate 0.30 0.29 0.27 0.26
B3 =100 | 0.2037 0.2531 0.3099 0.3750 0.4479
rate 0.31 0.29 0.28 0.26
B3 =200 | 0.2496 0.3087 0.3760 0.4525 0.5389
rate 0.31 0.28 0.27 0.25

B3 =400 | 0.2768 0.3408 0.4145 0.5001 0.5975
rate 0.30 0.28 0.27 0.26




4.3 Cigar-shaped condensation 56

Table 4.12: Error analysis of ||¢y — ¢%|| 1> for the ground state in 3D with a cigar-

shaped trap.

7—1T 1/12.5 1/25 1/50 1/100 1/200
B3 =25 | 0.1512 0.1283 0.1076 0.08953 0.07398
rate 0.24 0.25 0.27 0.28
B3 =50 | 0.2232 0.1914 0.1623 0.1363  0.1136
rate 0.22 0.24 0.25 0.26
B3 =100 | 0.3150 0.2742 0.2357 0.2006  0.1692
rate 0.20 0.22 0.23 0.25
B3 =200 | 0.4228 0.3740 0.3269 0.2826  0.2418
rate 0.18 0.19 0.21 0.22
B3 =400 | 0.5389 0.4851 0.4316 0.3798  0.3309
rate 0.15 0.17 0.18 0.20

-0.5 T T T ; " .
_-1.5¢
=
=
Oo_o
<
o 2f
= -6~ B=25
—— B=50
-25 —— B=100
—>— =200
-5 (=400
-3 . : : : : : : : : . : :
-55 -5 -45 -4 —?.5 -3 25 -2 3 3.5 4 4.5 5 5.5 6
=In(y,

b). In(B)

Figure 4.8: Convergence rate of ||¢, — ¢§S|| r2 in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.13: Error analysis of max |(¢,)® — (¢5*)?| for the ground state in 3D with a

cigar-shaped trap.

Yy 12.5 25 50 100 200
B3 =25 | 0.1748 0.2346 0.3117 0.4104 0.5359
rate 0.42 0.41 0.40 0.38
B3 =50 | 0.1871 0.2573 0.3494 0.4692 0.6233
rate 0.46 0.44 0.43 0.41
(3 =100 | 0.1900 0.2684 0.3741 0.5146 0.6989
rate 0.50 0.48 0.46 0.44
B3 =200 | 0.1829 0.2653 0.3799 0.5369 0.7483
rate 0.54 0.52 0.50 0.48
B3 =400 | 0.1681 0.2493 0.3659 0.5309 0.7601
rate 0.57 0.55 0.54 0.52
0 0
-0.51 /
=
qu 5
= —-©- B=25
ol —— B=50
—*— B:'IOO
—— B=200
—&- B=400
-2.5 -

55 -5 -45 -4 -?.5 -3 25 -2
=In(y,

b).

Figure 4.9: Convergence rate of [|(¢g)> — (¢57)?||11 in 3D with a cigar-shaped trap

with respect to: (a) 7v,; (b) B.
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Table 4.14: Error analysis of |[(¢g)? — (¢5°)?||,r for the ground state in 3D with a

cigar-shaped trap.

L 1125 1/25  1/50 1/100 1/200

B3 =25 |0.2336 0.1947 0.1601 0.1306 0.1059
rate 0.26 0.28 0.29 0.30
B3 =50 | 0.3383 0.2850 0.2373 0.1958 0.1604
rate 0.25 0.26 0.28 0.29
B3 =100 | 0.4691 0.4022 0.3407 0.2857 0.2375
rate 0.22 0.24 0.25 0.27
B3 =200 | 0.6212 0.5440 0.4706 0.4026 0.3408
rate 0.19 0.21 0.23 0.24
B3 =400 | 0.7856 0.7031 0.6221 0.5441 0.4706
rate 0.16 0.18 0.19 0.21

CS
-E%9))
S
CS
- ES%D)
- N
[6)] N [6)]

w” wr
= s
O L
o p=25 05
—— B=50 0
-1t —— B=100
—>— B=200 —05
—=— B=400
-2 : : : : : : -1 : : : : : :
2 25 3 3% 4 45 5 55 3 35 4 45 5 55 6
a) . n(y,) b) ] In(B)

Figure 4.10: Convergence rate of |E, — EgCS | in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.15: Error analysis of |E, — Egcs | for the ground state in 3D with a cigar-

shaped trap.

Vr 12.5 25 50 100 200
B3 =25 | 0.5007 0.6600 0.8612 1.112 1.433
rate 0.40 038 037 037
B3 =050 | 1.148 1.532 2.022 2.646 3.441
rate 0.42 040 039 0.38
B3 =100 | 2.533 3.437 4.614 6.132 8.086
rate 0.44 042 041 0.40
B3 =200 | 5.358 7.415 10.15 13.75 18.45
rate 0.47 045 044 0.42
B3 =400 | 10.86 15.35 21.45 29.66 40.60
rate 0.50 048 047 045

4.5
4t )
351 1
3 L 4
—~ 251 1
T
<> 2t 1
I
=215¢ 1
£ 1t 1
05l - p=25 ||
—— PB=50
of —%— B=100 |1
—— B=200
-05 —&— B=400
- s s s s s
2 25 3 3.5 4 4.5 5 55
In(y)
a). ‘

b).

Figure 4.11: Convergence rate of |u, — ugCS| in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.16: Error analysis of | ,ug—ugcs | for the ground state in 3D with a cigar-shaped
trap.

Y 12.5 25 20 100 200

B3 =25 | 1.114 1476 1.937 2.520 3.262

rate 041 039 038 0.37
O3 =050 | 2493 3.358 4.476 5.908 7.743
rate 0.43 041 040 0.39
B3 =100 | 5.349 7.351 9.991 13.43 17.90
rate 0.46 044 043 041
B3 =200 | 10.98 1542 21.42 29.40 39.95
rate 0.49 047 046 0.44

B3 =400 | 21.62 30.98 43.95 61.69 85.65
rate 0.52 050 049 047
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ax ‘¢g*¢gs|

Table 4.17: Error analysis of — max 5] for the ground state in 3D with a cigar-

shaped trap.

L 1/125 1/25 1/50  1/100 1/200

03 =25 | 0.1522 0.1351 0.1265 0.1183 0.1102
rate 0.17 0.09 0.10 0.10
B3 =50 | 0.2467 0.2335 0.2197 0.2057 0.1916
rate 0.08 0.09 0.10 0.10
B3 =100 | 0.4022 0.3815 0.3576 0.3325 0.3064
rate 0.08 0.09 0.11 0.12
B3 =200 | 0.6028 0.5663 0.5250 0.4822 0.4397
rate 0.09 0.11 0.12 0.13
B3 =400 | 0.8230 0.7674 0.7080 0.6486 0.5898
rate 0.10 0.12 0.13 0.14

From Tables 4.11-4.22 and Figures 4.8-4.17, when 3 > 0, v > 1 and 8y~ ! = o(1),

we can draw the following conclusion:

61/3 1n'7r ﬂ1/3 hl”}/r
||¢52] - (ﬁng)QHLl =0 (T ) ||¢9 - ¢§S(x)||L2 =0 71/3 ’

CS
|E9_Eg | -0 (ﬁlm hl%“) 7

Eg %%/3

|Eg - E§S| =0 (ﬂ ’77}/3111’%) )

g — g BY3 In~y,
|H9—N§S|:O<ﬂﬁ/3ln%)v gu—g:O i3 |-
g Yr
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Table 4.18: Error analysis of |

shaped trap.

\¢g—¢§SI\L2

llbgll 12

63

for the ground state in 3D with a cigar-

o= 1/12.5  1/25  1/50  1/100  1/200
B3 =25 [ 0.1512 0.1283 0.1076 0.08953 0.07398
rate 024  0.25 0.27 0.28
B3 =50 |0.2232 0.1914 0.1623 0.1363  0.1136
rate 022  0.24 0.25 0.26
(3 =100 | 0.3150 0.2742 0.2357 0.2006  0.1692
rate 020  0.22 0.23 0.25
B3 =200 | 0.4228 0.3740 0.3269 0.2826  0.2418
rate 0.18  0.19 0.21 0.22
B3 =400 | 0.5389 0.4851 0.4316 0.3798  0.3309
rate 0.15 0.17 0.18 0.20
0.5 0.5
0,
<_05
i8] o s
Ey - poroo 1S
§ -2 S B=200 | 1 -
— g B=400 = ’Yr=200
= -2
-25 : : : : : : : : : : : :
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Figure 4.14: Convergence rate of

max | (¢)> —(¢5%)?|
max |(¢g)?|

with respect to: (a) 7,; (b) B.

in 3D with a cigar-shaped trap
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Table 4.19: Error analysis of =

shaped trap.

ax |(¢9)° (05

max |(¢g)?|

A for the ground state in 3D with a cigar-

- 1/12.5  1/25  1/50  1/100 1/200
B3 =25 |0.3275 0.2635 0.2114 0.1692 0.1352
rate 0.31 0.32 0.32 0.32
O3 =50 | 0.4982 0.4047 0.3271 0.2634 0.2114
rate 0.30 0.31 0.31 0.32
B3 =100 | 0.7404 0.6095 0.4981 0.4047 0.3271
rate 0.28 0.29 0.30 0.31
B3 =200 | 1.067 0.8928 0.7406 0.6096 0.4982
rate 0.26 0.27 0.28 0.29
B3 =400 | 1.485 1.265 1.067 0.8930 0.7407
rate 0.23 0.24 0.26 0.27
0 : : : : : :
N%o.s B/@///E/‘/@/’/g
< )
%ﬂ 5
% -2t -0 p=25
] S
- o paoo
%5 5 s —Qt_ln( ?3)15 3 25 -2 35 45 5 55 6
a). ' b). n®)

Figure 4.15: Convergence rate o

respect to: (a) v,; (b) B.

f H(¢9)2_(¢gs)2||L1

AT

in 3D with a cigar-shaped trap with
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Table 4.20: Error analysis of 1%

)*—(65°)?lI 1

65

for the ground state in 3D with a cigar-

[CAEIP
shaped trap.

- /125 1/25  1/50  1/100 1/200
B3 =25 |0.2336  0.1947 0.1601 0.1306 0.1059
rate 026 028 029  0.30
B3 =50 | 0.3383 0.2850 0.2373 0.1958 0.1604
rate 025 026 028  0.29
B3 =100 | 0.4691 0.4022 0.3407 0.2857 0.2375
rate 022 024 025 0.27
B3 =200 | 0.6212 0.5440 0.4706 0.4026 0.3408
rate 019 021 023 0.24
B3 =400 | 0.7856 0.7031 0.6221 0.5441 0.4706
rate 0.16 018 0.19  0.21

-1 . . . . . .
-15}
ot
-25
Am
u” o
=
w235
I
w” -4
S _45 -©- B=25
—— B=50
=57 —— $=100
—>— =200
-55 -5 B=400
-6 . . . . . .
55 -5 -45 -4 35 -3 25 -2

). -in(y,)

Figure 4.16: Convergence rate of ‘E‘?_E—fg

spect to: (a) v,; (b) 5.

CS‘

3.5 4 4.5 5 5.5 6

b). In(B)

in 3D with a cigar-shaped trap with re-
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_pCSs
Table 4.21: Error analysis of % for the ground state in 3D with a cigar-shaped

trap.
- 1/12.5 1/25 1/50 1/100 1/200
B3 =25 | 2.882e-02 2.011e-2 1.377e-02 9.257e-03 6.168e-03
rate 0.52 0.55 0.57 0.59
B3 =50 | 5.791e-02 4.152e-02 2.920e-02 2.018¢-02 1.376e-02
rate 0.48 0.51 0.53 0.55
B3 =100 | 0.1083  8.021e-02 5.829e-02 4.158¢-02 2.919e-02
rate 0.43 0.46 0.49 0.51
B3 =200 | 0.1885 0.1444 0.1086  0.08026  0.05828
rate 0.38 0.41 0.44 0.46
B3 =400 | 0.3068 0.2426 0.1888 0.1444 0.1086
rate 0.34 0.36 0.39 0.41
05 -0.5

|
= |
;.
|
o |
0 AN

ACD
= [}
U): -25 Oiz:n
Oicn | -25
I =37 =
=7 =
g c 8
-3 -0~ B=25 —+ %=25
4} —+ p=50 | | -3.5 % 1=50
—x B=100 L 1,=100
45 — B=200 | | _4 ¥.=200
. —& =400 =
-5 : : : : : : 45 : : : : ‘ :
55 -5 45 -4 35 3 25 -2 35 4 45 5 55 6
a). " b). In(p)
. lg—pSS| . . . .
Figure 4.17: Convergence rate of ——in 3D with a cigar-shaped trap with respect
g

to: (a) v.; (b) 5.
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Table 4.22: Error analysis o

67

g5 for the ground state in 3D with a cigar-shaped

trap.
71—7 1/12.5 1/25 1/50 1/100 1/200
O3 =25 | 5.494e-02 3.925e-02 2.752e-02 1.895e-02 1.289¢-02
rate 0.49 0.51 0.54 0.56
B3 =50 0.1035  7.634e-02 5.528e-02 3.929e-02 2.750e-02
rate 0.44 0.47 0.49 0.52
B3 =100 | 0.1814 0.1384 0.1038 0.07637  0.05525
rate 0.39 0.42 0.44 0.47
B3 =200 | 0.2971 0.2342 0.1816 0.1384 0.1037
rate 0.34 0.37 0.39 0.42
B3 =400 | 0.4584 0.3718 0.2973 0.2342 0.1816
rate 0.30 0.32 0.34 0.37
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4.3.3 Strong repulsive interacting regime

When ; > 1, i.e. in a strong repulsive interacting regime, the ground state is
approximated by the multiplication of the TF approximation in z-direction and the

harmonic oscillator approximation in yz-plane:
0g(x) = ¢y 2(x) == dip (2)d33(y, 2), xR, (4.30)

where

Vls —22/2) /B, a? < 2ul,

Ip(7) = , (4.31)
0 otherwise,
o 2/3
e _ L (30N 390y (432)
g2 2(4m)2/3 '

Plugging (4.27), (4.23), (3.30) with d = 1, (4.32), (3.37) with d = 1 and 3, = gh°

into (3.16), we get the approximate energy:

Eg = E((bg) = Eg(‘b;D(x) §§(y, Z)) + O (6%1/3 ln”yy)
_ Wt I ElD(¢;D) L0 (57;/3 Inv,) = Yy T = i Eg1D L0 (5”71/3 In,)

2 2 Yy
oN 2/3 ~
Y+ 31 (367 Cy ho 1/3
N —— = — — (1 G O 1
5 +52 5 +<5{w)2/3(n P+ Gi) 4+ 0 (87 Inv)
R~ E;FFQ +0 (ﬁﬁ/g Invy,), (4.33)
where
+7 | 33(BP:)?
ETF2 _ Ty y 4.34
g > T 10(an)e (4:34)
Similarly, we get the approximate chemical potential:
pg ~ pat? 4+ 0 (87,2 Iny,) (4.35)
where
TF2 Yy Tz 32/% (6272;’7,3)1/3
= 4.36
X > T 2an)s (4:36)
If v, = 7, := 7, then (4.32), (4.33) and (4.35) collapse to
E, ~ E;fm +0 (571/3 Iny), pg~ /[QFFQ +0 (571/3 Inv), (4.37)
T (367)%° TF2 373 (6)** TF2 323 ()
= = —_— = ———. (4.38
T oy M =T (4.38)

Hib = tamperr o EEE
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To verify (4.30), (4.37) and (4.38) numerically, we solve (3.13) for d = 3 with BEFD
discretization method we reviewed in chapter 2. The computational domains for 3D
GPE and 1D GPE are chosen as in the previous subsections. Then we get ¢,(z, y, 2).

Finally we compare ¢4(x,y, z) with ¢ "%(x) := ¢11(x)d53(y, 2).

Table 4.23 lists the error max |, — ¢; 7|, Table 4.24 lists the error [[¢g — ¢F 7?|| L2,
Table 4.25 lists the error max |(¢,)* — (¢§F2)2|, Table 4.26 lists the error ||(¢,)?* —
(¢47%)?]|11, Table 4.27 lists the error |E, — EJ*?|, Table 4.28 lists the error |u, —

max _ATF2 . _ 4 TF2
i 2|, Table 4.29 lists the error n‘if{—wig'l, Table 4.30 lists the error W,
L
max 2 (I TF2\2 . 2 (I TF2\2
Table 4.31 lists the error — |$;}3|(¢i(§)§| ) l, Table 4.32 lists the error “(¢g)“(¢i(§§|| 1) I ,
L

TF2|
g

Table 4.33 lists the error ‘EQ% and Table 4.34 lists the error Iug_u—“fm‘ for different

£ and 7.
Furthermore, Figure 4.18 shows the error ||¢, — ¢, 7?|| 2, Figure 4.19 shows the error
1(dg)* — (05 72)?|| L1, Figure 4.20 shows the error |E, — ET"?|, Figure 4.21 shows the

max |y —¢g 7|

error |py — pf*?|, Figure 4.22 shows the error , Figure 4.23 shows the

max |¢g|
_ATF2 max 2_(ATF2)\2 .
error %, Figure 4.24 shows the error — L(f;’)z'( d)(‘fg' ) l, Figure 4.25 shows
e i T By~ ETF2| .
the error —= g L- Figure 4.26 shows the error ——2— and Figure 4.27

(@021 B,

_,,TF2
shows the error % for different § and ~,.
g
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Table 4.23: Error analysis of max|¢, — gbgF 2| for the ground state in 3D with a

cigar-shaped trap.

L 1/12.5  1/25  1/50  1/100 1/200

B3 =25 |0.1226 0.1447 0.1711 0.2025 0.2390

rate 0.24 0.24 0.24 0.24
B3 =50 | 0.1633 0.1985 0.2402 0.2880 0.3426
rate 0.28 0.27 0.26 0.25
B3 =100 | 0.2110 0.2597 0.3158 0.3794 0.4516
rate 0.30 0.28 0.27 0.25
B3 =200 | 0.2517 0.3100 0.3769 0.4531 0.5393
rate 0.30 0.28 0.27 0.25

B3 =400 | 0.2772 0.3410 0.4146 0.5001 0.5975
rate 0.30 0.28 0.27 0.25




4.3 Cigar-shaped condensation 71

Table 4.24: Error analysis of ||¢, — ¢} "?|| > for the ground state in 3D with a cigar-

shaped trap.

7—1T 1/12.5 1/25 1/50 1/100 1/200
B3 =25 1 0.1549 0.1298 0.1079 0.08936 0.07368
rate 0.26 0.27 0.27 0.28
B3 =50 | 0.2216 0.1900 0.1612 0.1355  0.1130
rate 0.22 0.24 0.25 0.26
B3 =100 | 0.3139 0.2735 0.2353 0.2004 0.1690
rate 0.20 0.22 0.23 0.25
B3 =200 | 0.4225 0.3739 0.3268 0.2825  0.2417
rate 0.18 0.19 0.21 0.23
B3 =400 | 0.5389 0.4850 0.4316 0.3799  0.3309
rate 0.15 0.17 0.18 0.20
-05 ‘ ; ; ; ; ; -05
15} : 15
Fj:—z— B
E —o p=25 %
-25 i E:?go 25
—— B=200
—&- B=400
25 5 s —4_|n(—?15 3 25 -2 35 35 4 45 5 55 6
a). , b). In(B)

Figure 4.18: Convergence rate of |[¢g — ¢ "?||2 in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.25: Error analysis of max |(¢4)* — (¢,7?)?| for the ground state in 3D with

a cigar-shaped trap.

,Y—lr 1/12.5  1/25 1/50  1/100 1/200
B3 =25 {01749 0.2346 0.3115 0.4102 0.5358
rate 0.42 0.41 0.40 0.39
B3 =50 | 0.1870 0.2572 0.3493 0.4691 0.6233
rate 0.46 0.44 0.43 0.41
B3 =100 | 0.1899 0.2684 0.3741 0.5146 0.6989
rate 0.50 0.48 0.46 0.44
B3 =200 | 0.1829 0.2653 0.3799 0.5369 0.7483
rate 0.54 0.52 0.50 0.48
B3 =400 | 0.1681 0.2493 0.3659 0.5308 0.7600
rate 0.57 0.55 0.54 0.52
0 0
,:—0.5 r /
Ee |
‘_:;1.5
o~ B=25
—+— B=50
-2r —— B=100
—— B=200
—&- B=400
-25 : : : : ‘ : -25 : : : : : :
55 -5 45 -4, -85 -3 25 -2 3 35 4 45 5 55 6
a). " b). n®)

Figure 4.19: Convergence rate of [|(¢g)> — (¢, 7?)?||. in 3D with a cigar-shaped trap
with respect to: (a) 7.; (b) (.
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Table 4.26: Error analysis of ||(¢g)* — (¢77%)||L: for the ground state in 3D with a

cigar-shaped trap.

L1125 1/25  1/50  1/100 1/200
B3 =25 |0.2360 0.1958 0.1606 0.1309 0.1061
rate 0.27 0.29 0.30 0.30
B3 =50 | 0.3385 0.2851 0.2373 0.1958 0.1604
rate 0.25 0.26 0.28 0.29
B3 =100 | 0.4691 0.4022 0.3407 0.2857 0.2375
rate 0.22 0.24 0.25 0.27
B3 =200 | 0.6212 0.5440 0.4706 0.4026 0.3408
rate 0.19 0.21 0.23 0.24
B3 =400 | 0.7856 0.7031 0.6221 0.5442 0.4707
rate 0.16 0.18 0.19 0.21
4 ‘ ‘ ‘ ‘ ‘ ‘ 4
B// 35}
3, 4
3,
2t // | 25}
E_m // E: 2
11 1 '_“fm1.5—
: =l
- or 1 <
-o- B=25 057
@/@/@/j ol
1t —— B=100 |
—— (=200 _05
—=- B=400
-2 : : : : -1
2 25 3 3'5In(y) 4.5 5 5.5
a). ; b).

Figure 4.20: Convergence rate of |E, — £ | in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.27: Error analysis of |E, — E]"?| for the ground state in 3D with a cigar-

shaped trap.

% 1/12.5  1/25 1/50  1/100 1/200

B3 =25 | 04456 0.6229 0.8389 1.096 1.426
rate 0.48 0.43 0.39  0.38
B3 =50 | 1.110 1.506  2.008 2.635 3.438
rate 0.44 0.41 0.39  0.38
B3 =100 | 2.506 3.419 4.604 6.125 8.084
rate 0.45 0.43 0.41  0.40
B3 =200 | 5.338 7.402 10.14 13.75 18.45
rate 0.47 0.45 0.44  0.42
B3 =400 | 10.85 15.33 21.44 29.66 40.60
rate 0.50 0.48 047  0.45

Figure 4.21: Convergence rate of |u, — p/"?| in 3D with a cigar-shaped trap with

respect to: (a) v,; (b) B.
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Table 4.28: Error analysis of |p, — ygF 2| for the ground state in 3D with a cigar-
shaped trap.

L 1/12.5 1/25 1/50 1/100 1/200

B3 =25 | 1.087 1.459 1.928 2,513 3.261

rate 042 040 038 0.38
B3 =050 | 2.474 3.345 4.470 5904 7.743
rate 0.44 042 0.40 0.39
B3 =100 | 5.335 7.342 9.985 13.43 17.89
rate 0.46 044  0.43 0.41
B3 =200 | 1097 15.41 21.41 29.40 39.95
rate 0.49 047 0.46 0.44

B3 =400 | 21.61 30.97 43.94 61.67 85.63
rate 0.52 050 049 047
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max —pTF2 . . .
Table 4.29: Error analysis of rﬁi—l(;;g" for the ground state in 3D with a cigar-

shaped trap.

- 1/125 1/25 1/50  1/100 1/200
B3 =25 | 0.1678 0.1533 0.1410 0.1300 0.1200
rate 013 012 012 012
B3 =50 | 0.2665 0.2490 0.2324 0.2158 0.1995
rate 010 0.0 011  0.11
B3 =100 | 0.4166 0.3914 0.3644 0.3365 0.3090
rate 009 010 011  0.12
B3 =200 | 0.6080 0.5687 0.5262 0.4828 0.4400
rate 010 011 012  0.13
B3 =400 | 0.8239 0.7679 0.7082 0.6487 0.5898
rate 010 012 013 0.14

From Tables 4.23-4.34 and figures 4.18-4.27 , when 3 > 0, v > 1 and 3y~ = o(1),

we can draw the following conclusion:

1/3 1 1/3 1
lég = &3 "l12 = O (57_/0 - (89)* = (65"l = O (6—71/3 V) ’

E _ETF2 1/31
B~ BT =0 (34 mn), o Fa] '=O(—ﬁ I”),

Eg 72/3
g — by 5% Iny
1o =111 =0 (57 PP Ins), == = O T )
g

These results confirm the asymptotic results (4.37), (4.38), (4.33) and (4.35). Fur-
thermore, our numerical results indicate that (¢, *(x))? doesn’t converges point-

wisely to the ground state (¢4(x))? when v, — oo and 3 > 0.
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Figure 4.22: Convergence rate of

max [gg|
respect to: (a) v,; (b) B.
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Figure 4.23: Convergence rate o
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shaped trap.

_¢§F2HL2

Table 4.30: Error analysis of 9o

llbgll 2

78

for the ground state in 3D with a cigar-

o= /125 1/25  1/50  1/100  1/200
B3 =125 | 0.1549 0.1298 0.1079 0.08936 0.07368
rate 026  0.27 0.27 0.28
B3 =50 | 0.2216 0.1900 0.1612 0.1355  0.1130
rate 022  0.24 0.25 0.26
B3 =100 | 0.3139 0.2735 0.2353 0.2004  0.1690
rate 020  0.22 0.23 0.25
B3 =200 | 0.4225 0.3739 0.3268 0.2825  0.2417
rate 0.18  0.19 0.21 0.23
B3 =400 | 0.5389 0.4850 0.4316 0.3799  0.3309
rate 0.15 0.17 0.18 0.20
0.5 0.5
0,
NE;o.s
:‘?0'71'5 -6~ B=25
;m —— B=50
= ol —*— B=100
g —— B=200
= - B=400
T 25 : : : : : : : : : : : :
-55 -5 45 -4 '-35 -8 -25 -2 3.5 4 4.5 5 5.5 6
-In(y) In(B)

Figure 4.24: Convergence rate of

with respect to: (a) 7,; (b) B.

b).

max |(¢9)°— (¢4 2)?|
max | (¢g)?|

in 3D with a cigar-shaped trap
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Table 4.31: Error analysis of =

ax|(99)*—(¢g "*)?

max |(¢g)?|
cigar-shaped trap.

- 1/125 1/25  1/50 1/100 1/200
B3 =25 |0.3276 0.2634 0.2113 0.1692 0.1351

rate 0.31 0.32 0.32 0.33
B3 =50 | 0.4981 0.4046 0.3271 0.2634 0.2113
rate 0.30 0.31 0.31 0.32
B3 =100 | 0.7403 0.6094 0.4981 0.4047 0.3271

rate 0.28 0.29 0.30 0.31
B3 =200 | 1.067 0.8927 0.7405 0.6096 0.4982
rate 0.26 0.27 0.28 0.29
B3 =400 | 1.485 1.265 1.067 0.8929 0.7406
rate 0.23 0.24 0.26 0.27

|

g 1.5}
I—_e_oa
o o B=25
<l —— p=50 ||
= - —— B=100
= —— B=200
—&- =400
-25 : : : : : :
-55 -5 45 -4 35 -3 -25 =2
=In(y)
a). '

Figure 4.25: Convergence

rate o

b).

f ||(¢g)2_(¢3F2)2HL1

with respect to: (a) 7,; (b) B.
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for the ground state in 3D with a

in 3D with a cigar-shaped trap
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Table 4.32: Error analysis of 1%

)?—(¢g ")l 1

80

for the ground state in 3D with a cigar-

184)? 1
shaped trap.

- /125 1/25  1/50  1/100 1/200
B3 =25 | 0.2360 0.1958 0.1606 0.1309 0.1061
rate 027 029 030  0.30
B3 =50 | 0.3385 0.2851 0.2373 0.1958 0.1604
rate 025 026 028  0.29
B3 =100 | 0.4691 0.4022 0.3407 0.2857 0.2375
rate 022 024 025 0.27
B3 =200 | 0.6212 0.5440 0.4706 0.4026 0.3408
rate 019 021 023 0.24
B3 =400 | 0.7856 0.7031 0.6221 0.5442 0.4707
rate 0.16 018 0.19  0.21

-9 . . , , , .
-15}
2t
25
-0
& -3.5
£
w
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LIJU’
Z45 -~ B=25
—— B=50
5l —— B=100
—— B=200
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-6 . . . . . .
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a). ' b).
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Figure 4.26: Convergence rate of ——2— in 3D

respect to: (a) v,; (b) B.
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Table 4.33: Error analysis of IE’rE—}‘Zng for the ground state in 3D with a cigar-shaped
trap.
- 1/12.5 1/25 1/50 1/100 1/200
O3 =25 | 2.565e-02 1.898e-02 1.341e-02 9.122e-03 6.137e-03
rate 0.43 0.50 0.56 0.57
O3 =50 | 5.597e-02 4.083e-02 2.900e-02 2.010e-02 1.374e-02
rate 0.46 0.49 0.53 0.55
B3 =100 | 0.1071  7.980e-02 5.816e-02 4.153e-02 2.919e-02
rate 0.42 0.46 0.49 0.51
B3 =200 | 0.1878 0.1441 0.1086 0.08024  0.05827
rate 0.38 0.41 0.44 0.46
B3 =400 | 0.3063 0.2424 0.1887 0.1444 0.1086
rate 0.34 0.36 0.39 0.41

Figure 4.27: Convergence rate o

25 -2 ’ 35 4 45 5 55 6

—4 —3:5 -3
=In(y,) b). In(B)
f =™ 5 3D with a cigar-shaped t ith
T 1n W1 a Clgar-s ape rap W1 re-

spect to: (a) v,; (b) 5.
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Table 4.34: Error analysis of m"fu—{gm for the ground state in 3D with a cigar-shaped
trap.
71—7 1/12.5 1/25 1/50 1/100 1/200
O3 =25 | 5.361e-02 3.879e-02 2.739e-02 1.891e-02 1.289¢-02
rate 0.47 0.50 0.53 0.55
B3 =50 0.1027  7.606e-02 5.520e-02 3.926e-02 2.750e-02
rate 0.43 0.46 0.49 0.51
B3 =100 | 0.1809 0.1383 0.1037 0.07635 0.05525
rate 0.39 0.42 0.44 0.47
B3 =200 | 0.2968 0.2341 0.1816 0.1384 0.1037
rate 0.34 0.37 0.39 0.42
B3 =400 | 0.4582 0.3716 0.2972 0.2342 0.1816
rate 0.30 0.32 0.34 0.37

82



Chapter

Numerical Results for Dynamics of GPE

In this chapter, we first review the fourth-order time-splitting sine-spectral method
[11] for computing dynamics of GPE. Then we use the method to study numerically
dimension reduction of time dependent GPE from 3D to 2D.

5.1 Numerical method

In this section, we review the time-splitting sine spectral method, proposed in [11] for
computing dynamics of GPE. For simplicity, we use 1D GPE as an example to review
this method. For high dimension, the method can be extended straightforward
by tensor grid. Now we consider 1D GPE with homogeneous Dirichlet boundary

condition.

v _

at %:ﬁ— ,lvb—i_ﬁle’ wa (Z<Qf<b, tZOa (51)
Wlat) = ¢(b, t) = 0, t>0, (5.2)
P(x,0) = o(x), a<x<b. (5.3)

We choose the spatial mesh size h = Az > 0 with h = (b — a)/M where M is an
even positive integer, the time step k = At > 0 and let the grid points and the time
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step be
z; £ a+ jh, tn 2 nk, j=0,1,..., M, n=0,1,2,---.

Let ¥7 be the approximation of ¥(z;,t,) and ¢" be the solution vector at time
t = t, = nk with components ¢}
From time ¢ = ¢, to time ¢ = ¢,.;, the GPE (5.1) can be written in the form of
10 = Ay + By with
1
A¢ = Vd(X)w(Xa t) + ﬁd|w(x7 t)|21/)(X7 t)a B¢ = _5 :L‘xﬂ)(xa t) (54)
Thus, the key for an efficient implementation of time-splitting is to solve efficiently

the following two subproblems:

(%, 1) = B = —50.00(x,1), (55)
and
i, 1) = A = Valx)p(x,8) + Gali o, )P, ), (56

Equation (5.5) will be discretized in space by the sine-spectral method and integrated
in time exactly. For t € [t,,tn41], the ODE (5.6) leaves |¢| invariant in ¢ [14, 17]

and therefore becomes:

n(,t) = V(@)i(w,t) + Bl (z, t)*e(x, 1), (5.7)

and thus can be integrated exactly.
Fourth-order time-splitting sine-spectral method

From time ¢t = t,, to t = t,,,1, we combine the splitting steps via the fourth-order

split-step method and obtain a fourth-order time-splitting sine-spectral method
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(TSSP4) [36, 56, 18] for the GPE (5.1). The detailed method is given by:
2%(1) _ e—iQ’wlk(V(xj)'i‘mw?P)w? 7
M—1
—jw 2 :
Y =" ekt o sin(py (z; — a)) |
=1
&) = emiwsk(V )+ ) ()
M-1 R
7,0](-4) _ Z e—iw4ku?¢l(3) sin(u(z; —a)), j=1,2,---,M—1,
=1
5 —i2w T; ()2 4
%( ) _ pi2wsk(V(x;) 01wy | )% ) :
M-1
—jw 2 7N :
U = 37 et sin(u(e; — a)
1=1
n —i2w Tj ©)2
Y = RV 81 6) (5.8)

where

wy = 0.33780 17979 89914 40851, we = 0.67560 35959 79828 81702,

wsg = —0.08780 17979 89914 40851, wy = —0.85120 71979 59657 63405.

5.2 Numerical results for reduction of time de-

pendent GPE

In this section, we will present some numerical results to verify the dimension reduc-
tion of time-dependent GPE for dynamics of BEC. In order to do so, for any given
V2, let 3P (z, y, 2, t) be the numerical solution of the 3D GPE (2.5) with v, = v, = 2,
= 100 and the initial data 1o(z,y, z) in (3.14) with d = 3 is chosen as the ground
state of (2.5) with v, = v, = 1, 8 = 100. This 3D dynamics of BEC corresponds
that initially the condensate is assumed to be in its ground state, when at ¢ = 0, we
double the trap frequencies in x- and y-axis and keep the trap frequency in z-axis,
i.e. setting 7, =, = 2. Similarly, let ¥*?(z,y,t) be the numerical solution of the
2D GPE (3.5) with 7, = 2, 7, = 2, 5, = /% and initial data vo(z,y) in (3.14)
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with d = 2 is chosen as the ground state of (3.5) with v, = v, = 1. In fact, 1??
is the solution of the 2D reduction problem. In order to do the comparison, we

introduce

1/2 / ,
st = ([ 1Pzt doay) =t = () 50)
P t) m P8 i P (), xR (5.10)

and the condensate widths

oa(t) = / a? {w?’D(x, t)|2dx, oa(t) = / a? WDS(X, t)|2dx, o=z, 2.

© ° (5.11)
The numerical solution ¥*" and 1?" are obtained by the fourth-order time-splitting
sine-spectral method in the previous section. In my computation, we take k£ = 0.001,
and choose the computation domain as [—R,, R,] x [—-Ry, R,] x [-R., R.] with
R, = R, for 3D GPE and [—R,, R;] X [—R., R,| for 2D GPE. The choice of R, and
R, is listed in Table 5.1 for different .. The mesh is chosen as 1283 for 3D GPE
and 1282 for 2D GPE.

Table 5.1: Values of R, and R, for different ~,.

Yz 8 16 32 64

3=100 | R, =54,R, =25 R,=56,R, =18 R,=6.0,R, =13 R,=62R, =09

Figure 5.1 shows the errors [[1)3(2,t) — ¢2°(2)|| 1, |0, — 09

02— 1, 0o — 05, |[YPP(0, )2 — [P5(0,1)]*] and max |5 — ¢5°|(t) for different ..

= |O'y—0';|, o, — 0=
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Figure 5.1: Numerical results for comparison of 3D GPE and its 2D reduction
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From Figure 5.1 the dimension reduction from 3D time-dependent GPE to 2D GPE
when 7, > 1 is verified numerically. Furthermore, we have the following convergence

rate:

195(2,t) = $5°(2) L= = O (#) o ou(t) =o0z(t) + 0 <ﬁ) )

1 1 1
o:(f) = 70 <73_/) - WD = e P+ 0 (7) |



Chapter

Conclusion

We study numerically and asymptotically dimension reduction of 3D GPE for BEC
in certain limiting trapping frequency regimes. First, we take the 3D GPE, scale
it to get a three parameters model, and review how to reduce it to 2D GPE in
disk-shaped condensation or 1D GPE in cigar-shaped condensation. Then we com-
pute the ground state of 3D GPE numerically by a normalized gradient flow under
backward Euler finite difference discretization [9] and verify numerically the formal
dimension reduction for ground state. From our numerical results, for relative er-
rors of the interaction parameter, we observe numerically the convergence rate of
3/4 with respect to ~y, for dimension reduction from 3D to 2D, and respectively,
of 1/3 with respect to 7, for reduction from 3D to 1D, when the ratio between
trapping frequencies goes to infinity. Furthermore, we obtain Thomas-Fermi and
first order approximations for energy and chemical potential of the ground state for
d-dimension GPE with d = 1,2,3. Then we classify approximations of the ground
state of 3D GPE in three cases based on the ratios between the trapping frequencies:
i). isotropic condensation; ii). disk-shaped condensation; iii). cigar-shaped conden-
sation. Approximate ground states as well as their energy and chemical potential
are provided explicitly in weakly, intermediate repulsive and strongly repulsive inter-
action regimes. These results are fully confirmed by our 3D numerical results. Also,

convergence rates in relative error for all interacting quantities are observed and
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reported. All the computational domains in solving ground state of GPE are also
shown in my thesis. Finally, we study dimension reduction of time-dependent GPE
from 3D to 2D numerically by a fourth-order time-splitting sine-spectral method [11].
Our numerical results confirm the formal dimension reduction for time-dependent

GPE and also suggest convergence rates in limiting trapping frequency ratios.
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