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Abstract A multiscale time integrator Fourier pseudospectral (MTI-FP) method is
proposed and analyzed for solving the Klein—Gordon—Schrodinger (KGS) equations
in the nonrelativistic limit regime with a dimensionless parameter 0 < ¢ < 1 which is
inversely proportional to the speed of light. In fact, the solution of the KGS equations
propagates waves with wavelength at O (%) and O (1) in time and space, respectively,
when 0 < ¢ < 1, which brings significantly numerical burden in practical compu-
tation. The MTI-FP method is designed by adapting a multiscale decomposition by
frequency of the solution at each time step and applying the Fourier pseudospectral
discretization and exponential wave integrators for spatial and temporal derivatives,
respectively. We rigorously establish two independent error bounds for the MTI-FP
at O(t?/e? 4+ h™0) and O(g? + k™) for ¢ € (0, 1] with T time step size, & mesh
size and my > 4 an integer depending on the regularity of the solution, which imply
that the MTI-FP converges uniformly and optimally in space with exponential con-
vergence rate if the solution is smooth, and uniformly in time with linear convergence
rate at O (t) for ¢ € (0, 1]. In addition, the MTI-FP method converges optimally with
quadratic convergence rate at O(t?) in the regime when 0 < © < &2 and the error
is at O(¢?) independent of 7 in the regime when 0 < ¢ < t!/2. Thus the meshing
strategy requirement (or e-scalability) of the MTI-FP is t = O(1) and » = O(1) for
0 < & < 1, which is significantly better than that of classical methods. Numerical
results demonstrate that our error bounds are optimal and sharp. Finally, the MTI-FP
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method is applied to study numerically convergence rates of the KGS equations to its
limiting models in the nonrelativistic limit regime.

Mathematics Subject Classification 65105 - 65L.20 - 65L70

1 Introduction

Consider the Klein—-Gordon—Schrodinger (KGS) equations in d-dimensions (d =
3,2,1)[2,23,41]:

2
inoy(x,t)+ zh—Alﬁ(x, ) +gpx, HY(x,t) =0, xe R, (1.1a)
nmi

2.2
m2C
h2

1
c_28”¢(x’ 1 —Ap(x, 1) + ¢(x, 1) — gly(x, > =0, (1.1b)

which represent a classical model for describing the dynamics of a complex-valued
scalar nucleon field ¥ := ¥ (x, ) interacting with a neutral real-valued scalar meson
field ¢ := ¢ (x, t) through the Yukawa coupling with O # g € R the coupling constant.
Here 7 is time, x € R is the spatial coordinate, 7 is the Planck constant, c is the speed
of light, m| > 0 is the mass of a nucleon and m, > 0 is the mass of a meson.

In order to scale the KGS (1.1), we introduce

-t X - . ) - .o~ QX 1)
t=—, X=—, Y&, 1) = xs/ v(x, 1), oKX, 1) = , (1.2)
Ig Xs s
where x;, t; and ¢, are the dimensionless length unit, time unit and meson field unit,
2 —d)2
respectively, satisfying ¢, = Zm,;xl and ¢ = h\%ﬁ with v = );—J = % being the

wave speed. Plugging (1.2) into (1.1), after a simple computation and then removing all
", we obtain the following dimensionless KGS equations in d-dimensions (d = 3, 2, 1):

i (X, 1) + AY (X, 1) + Ap(x, DY (x,1) =0, x € RY, (1.3a)
2
2 p(X, 1) — AB(X, 1) + ’8’“—2¢><x, N — Y, 1> =0, (1.3b)

where ¢ is a dimensionless parameter inversely proportional to the speed of light and
is given by X B

Dce=2 X _ <1, (1.4)
c  tge 2cmyxg

m g\/2m1x27d/2 . . .
and u = ﬁ > 0 and A = ==—~—— € R are two dimensionless constants which

are independent of €.
We remark here that if one chooses the dimensionless length unit x; =

2cmy?
) A2p1—df2 . . .
ty = % = ch'ml and ¢ = (;mlﬁw in (1.2), then ¢ = 1 in (1.4) and Egs. (1.3) with

¢ = 1 take the form often appearing in the literature [2,23,41]. This choice of x; is
appropriate when the wave speed is at the same order of the speed of light. However,
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when the wave speed is much smaller than the speed of light, a different choice of
X 1s more appropriate. Note that the choice of x; determines the observation scale of
the time evolution of the particles and decides: (1) which phenomena are ‘visible’ by
asymptotic analysis, and (2) which phenomena can be resolved in a discretization by

specified spatial/temporal grids. In fact, there are two important parameter regimes:
. _ . h _ h _ Cd/2 hl—d /2

one 1s When e =1 (<=> Xy = Tml, t:g = m and ¢S = (2}711)(—]_‘1)/2)’ tljleIl EqS

(1.3) describe the case that wave speed is at the same order of the speed of light; the

other one is when 0 < ¢ < 1, then Eq. (1.3) are in the nonrelativistic limit regime.

To study the dynamics of the KGS (1.3), the initial data is usually given as

1
v (x,0) =vo(x), ¢(x,0)=¢o(x), 3¢(x,0)= 2% x), xeR‘  (L5)

where the complex-valued function ¥y and the real-valued functions ¢y and ¢; are
independent of ¢. The KGS equations (1.3) are dispersive and time symmetric. They
conserve the mass of the nucleon field

¥ ¢ 07, :=/ ¥ (x, r>|2dxs/ ¥ (x, 0)|2dx=/ [YoX)>dx, >0,
R4 R4 R4

(1.6)
and the Hamiltonian or total energy

1 2
E(r) := /]R [5 (82 19:01° + [Vp|* + ’:—2 |¢|2) + VY - Mw%] dx

1 (1 2
/Rd [5 (8—2 611”4+ Vol + ’:—2 |¢0|2) +1Viol* — /\|1ﬂ0|2¢0} dx

= E0), t>0. 1.7)

For the KGS equations (1.3) with ¢ = 1, i.e. O(1)-speed of light regime, there
are extensive analytical and numerical results in the literatures [3,37,44,45,47,48].
For the existence and uniqueness as well as regularity, we refer to [14,23-25,31-
33,41,49] and references therein. For the numerical methods and comparison such
as the finite difference time domain (FDTD) methods and Crank—Nicolson Fourier
pseudospectral method, we refer to [13,50,52,53] and references therein. However,
for the KGS equations (1.3) with 0 < ¢ < 1, i.e. nonrelativistic limit regime (or the
scaled speed of light goes to infinity), the analysis and efficient computation of the
KGS equations (1.3) are mathematically and numerically rather complicated issues.
The main difficulty is due to that the solution is highly oscillatory in time and the
corresponding energy functional E(f) = O(¢72) in (1.7) becomes unbounded when
e — 0.

Formally, in the nonrelativistic limit regime, i.e. 0 < ¢ < 1, similar to the analysis
of the nonrelativistic limit of the Klein—Gordon (KG) equation [39,40,42,43], taking
the ansatz

dx, 1) = M/ (x, 1) + e €T (x, 1) £ o(e), xeRY, >0, (1.8
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where z denotes the complex conjugate of a complex-valued function z, and plugging
it into (1.3) and (1.5), we obtain a semi-limiting model—the Schrddinger equations
with wave operator—as

i, ) +AYX,1)=0, xeR? >0, (1.9a)
2ipdz(x, 1) + 20,2(x, 1) — Az(x, 1) =0, (1.9b)

with the well-prepared initial data [6,7]

! . .
2(x,0) = 3 [¢0(X) - l;dn (X)] , 92(x,0) = —;—MAZ(X, 0), ¥(x,0) = Yo(x).

(1.10)
In addition, after dropping the second term in (1.9b), formally we get a limiting
model—the Schrodinger equations—as

i (x, 1) + Ay (x, 1) =0, (1.11a)
2ipdiz(x, 1) — Az(x,1) =0, xeRY, >0, (1.11b)

with the initial data
1 .
2(x,0) = 3 [d)o(X) - i(ﬁl (X)] . Y 0)=Yo(x), xeR. (1.12)

This formally suggests that the solution of (1.3) propagates highly oscillatory waves
with amplitude at O (1) and wavelength at O (¢2) and O(1) in time and space, respec-
tively, when 0 < ¢ « 1. To illustrate this, Fig. 1 shows the solution of the KGS
equations (1.3)~(1.5) with d = 1, u = & = 1, Yo (x) = Hsech(x?), do(x) = %e_"z
and ¢1(x) = %e"ﬁ for different 0 < ¢ < 1.

The highly temporal oscillatory nature of the solution of the KGS equations (1.3)
causes severe burden in practical computation, making the numerical approximation
extremely challenging and costly in the regime 0 < ¢ < 1. Recently, different numer-
ical methods have been proposed and/or analyzed for the nonlinear KG equation in the
nonrelativistic limit regime in which the solution shares similar oscillatory behavior as
that of the KGS equations (1.3), including the FDTD methods [9], exponential wave
integrator Fourier pseudospectral (EWI-FP) method [9,11], asymptotic preserving
(AP) method [22], stroboscopic average method (SAM) [16], two-scale formulation
(TSF) method [15] and multiscale time integrator Fourier pseudospectral (MTI-FP)
method [8], etc. Among them, TSF and MTI-FP methods are uniformly accurate (UA)
fore € (0, 1], while FDTD, EWI-FP, AP and SAM methods are not. TSF method intro-
duces an extra dimension to the original problem by separating the fast time scale out,
which would require more computational and/or memory costs. From the practical
computation point of view, the MTI-FP is simpler and thus more efficient than the
TSF method. The main aim of this paper is to propose and analyze a MTI-FP method
for the KGS equations (1.3) in the nonrelativistic limit regime by adapting a multi-
scale decomposition by frequency of the solution at each time step and applying the
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Fig. 1 Plots of the solution of the KGS (1.3)—(1.5) with d = 1 for different ¢, where Im{y} denotes the
imaginary part of v
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Fourier pseudospectral discretization and exponential wave integrators for spatial and
temporal derivatives, respectively. Two independent error bounds will be established
for the MTI-FP, which imply that the MTI-FP converges uniformly and/or optimally
for 0 < & < 1. The MTI-FP method is also applied to study numerically convergence
rates of the KGS equations (1.3) to its limiting models (1.9)—(1.10) and (1.11)—(1.12).

The paper is organized as follows. In Sect. 2, we introduce a multiscale decompo-
sition for the KGS equations (1.3) based on frequency. A MTI-FP method is proposed
in Sect. 3, and its rigorous error bounds in energy space are established in Sect. 4.
Numerical results are reported in Sect. 5. Finally, some conclusions are drawn in Sect.
6. Throughout this paper, we adopt the standard Sobolev spaces [1] and use the notation
A < B to represent that there exists a generic constant C > 0, which is independent
of time step t (or n), mesh size h and ¢, such that |[A| < CB.

2 Multiscale decomposition
Let T = At > 0 be the time step size, and denote time steps by t, = nt forn =

0, 1, .. .. In this section, we present a multiscale decomposition of the solution of (1.3)
on the time interval [#,, t,,4+1] with given initial data at ¢ = ¢, as

1 1
P, 1) = gp(x) = 0(1), (X, 1) = 8—2¢’f(X) =0 (8—2) , (2.1a)
VX, 1) = ¥ (x) = O(1). (2.1b)

Similar to the analytical study of the nonlinear KG equation in the nonrelativistic limit
regime in [8,42], we take an ansatz for the function ¢ (X, 1) := ¢ (X, 1, + s) of (1.3b)
on the time interval [#,, t,,4+1] with (2.1) as [8,12]

(X, t, +5) = eim/szz"(x, s) + e_il‘s/gzz_”(x, $)+r'(x,s), xeRY 0<s<r.

2.2)
Differentiating (2.2) with respect to s, we have

By (X, 1y + 5) = e/ [i%z”(x, 5) + %Z"(x, s>] + 9" (X, 5)

+ e*ilﬂ/é‘z |:85Z_n(x7 s) — ;—I;Z_”(X, S)i| , XE€ Rd, 0<s=<rt.

2.3)
Plugging (2.2) into (1.3), we getforx € R4, 0 < s < r and ¥ (X, 1, +5) =: ¥"(X, 5)

eiis/e? [828mz" (X, §) + 2B 2" (X, 5) — A7 (X, s)]

teins/e [ezassz_n(x, §) — 2ipds 77 (X, 5) — AZA(X, s)]

2
+ 8205, (%, 5) — AP (%, ) + (%, 8) = A |9 (x, 9]
&
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Substituting (2.2) into (1.3a) and multiplying the above equation by e "*s/ ¢ and
gins/e? , respectively, we can re-formulate the KGS equations (1.3) for " := ¥"(x, s),
7" = 7"(x,s) and " :=r"(x, s) as

ips _ipus
P0sy" + Ay + 2 (e 2 e Y+ r"w") =0
2ipdsz" + 207" — A" =0, xeRY, 0<s<r, 24)
£2055P" — AP 4 Lo — g2,

In order to find proper initial conditions for the system (2.4), setting s = 0 in (2.2)
and (2.3), noticing (2.1a), we obtain

2"(x,0) +27(x, 0) + r"(x, 0) = ¢ (x), x € RY, 2.5)
L[ (x, 0) — 77(x, 0)] + 852" (%, 0) + 3,77 (x, 0) + 3" (x, 0) = L 7

&

Now we decompose the above initial data so as to: (1) equate O (6%) and O(1)
terms in the second equation of (2.5), respectively, and (2) be well-prepared for the

second equation in (2.4) when 0 < ¢ < 1, i.e. 957" (X, 0) is determined from the
second equation in (2.4) by setting ¢ = 0 and s = 0 [6-8]:

'(x,0) + 2% (x,0) = ¢f (x), in [z" (x,0) — 2 (x, 0)] = ¢7 (x),
2ipds7"(x,0) — AZ"(x,0) =0, x € R4, (2.6)
r(x,0) =0, dr"(x,0) 4 952" (x, 0) + 52" (x, 0) = 0.

Solving (2.6) and noticing (2.1b), we get the initial data for (2.4) as

0 =1 [#500 - Lof ], 82"x.0) = — LA (X, 0), xR,
Y(x,0) = Yl (x), r"(x,0)=0, 8r"(x,0)=—0dz"(x,0) — dz"(x,0).
2.7)
The above decomposition can be called as multiscale decomposition by frequency
(MDF). In fact, it can also be regarded as to decompose slow waves at £2-wavelength
and fast waves at other wavelengths, thus it can also be called as fast-slow wave
decomposition. After solving the decomposed system (2.4) with the initial data (2.7),
we get " (X, 1), 7" (X, 7),0s2" (X, T), 7" (X, ) and 9;+" (X, ). Then we can reconstruct
the solution of the KGS (1.3) at ¢ = #,,41 by setting s = 7 in (2.2) and (2.3), i.e.

YO ) =" (T = Y X0, i ) = H60 T (0, x e RY, n>0,
(X, tyy1) = Mt/ N (x, ) + eI T(X, T) 4 (X, T) = ¢6’+1 (x),
(2.8)
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with

#1 (x) = eint/e? [82351”(3(, T) + i (x, T)]

+&%0,r"(x, 1), xeRY, n>0.

In summary, the MDF proceeds as a decomposition-solution-reconstruction flow at
each time interval, and this makes it essentially different from the classical modulated
Fourier expansion [17-20,34-36] which only carries out the decomposition at the
initial time ¢ = 0. In addition, due to that r"(x,0) = 0 in (2.7) for n > 0, the
numerical error for discretizing the highly oscillatory equation, i.e. the third equation
in (2.4), will not accumlated. This enables us to design the uniformly accurate MTI-FP
method for 0 < ¢ < 1.

3 An MTI-FP method

For the simplicity of notations and without loss of generality, we take © = A = 1 in
(1.3) and present our numerical method in one space dimension (1D). Generalizations
to higher dimensions are straightforward and the results remain valid. We truncate the
whole space problem (1.3) into a finite interval & = (a, b) with periodic boundary
conditions, where due to the fast decay of the solution at far field, the truncation error
can be negligible by choosing a, b sufficiently large. In 1D, the problem (1.3) with
u = X =1 collapses to

iy (x,t) + 0 (x, ) +d(x, )Y (x,t) =0, xe, t>0,

E20up(x, 1) — dxd (. ) + L0 ) = Y@ 0P xeQ, (>0,

¢a, 1) =¢(b,1), Oxpla, 1) =0p(b,1), t=>0,

V(a,t) =y (b,1), oxYla,t)=0x¥(b,1),

$(x,0) =¢o(x), &P(x,0) = %, ¥ (x,0) = Yo(x), x€Q=la,bl
3.1

We remark that the boundary conditions considered here are inspired by the inherent
physical nature of the system and they have been widely used in the literatures for the
simulation of the KGS equations [10,13,52,53].

Consequently, for n > 0, the decomposed system MDF (2.4) in 1D collapses to

ia‘vwn + 8xx¢n + eis/szznwn + e—is/azz_nwn 4 rnwn =0,
2i8,7" + €%0557" — 0yx2" =0, a<x<b, 0<s <7, (3.2)

1 2
20557 — et + " = [P
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The initial and boundary conditions for the above system are

[ "(a,s) =2"(D,s), 09:7"(a,s)=03,7"(b,s),

r'(a,s) =r"(b,s), 0" (a,s) = 0,r"(b,s),

Y (a,s) =¢"(b,s), Y'(a,s)=0y"(b,s), 0<s=r1;
'(x,0) = S [op(x) —igl ()], 82" (x,0) = —Ld,,2" (x,0),
r'*(x,0) =0, dr"(x,0) = —0;7"(x,0) — 9,2 (x, 0),

[ ¥"(x,0) =¢Y5(x), a<x=<b

(3.3)

In what follows, we present a numerical integrator Fourier pseudospectral discretiza-
tion for the MDF (3.2) with (3.3), in which we apply the Fourier pseudospectral
discretization to spatial derivatives followed by using some proper exponential wave
integrators (EWI) for temporal discretizations in phase (Fourier) space.

Choose the mesh size 1 := Ax = (b —a)/N with N a positive integer and denote
grid points as x; :=a + jhfor j =0,1,..., N. Define

. — 2ml N N
Xy = span {070 ¢ x e @ = 1= -N Nl
N Span [e X 129 b—a ) )
N-1
YN = {V = (1)0, Vly oo vy UN) € CN+1 LV = UN} ) ||V||12 =h Z |vJ|2
j=0

For a periodic function v(x) on Q and a vector v € Yy, let Py : Lz(Q) — Xy be
the standard L2—projection operator, and Iy : C(R2) — Xy or Yy — Xy be the
trigonometric interpolation operator [30,46], i.e.

N/2-1 N/2-1
(Pvo)(x) = > D™D (Iyw)(x) = D weht o, (3.4)
I=—N/2 I=—N/2

where 7; and V; are the Fourier and discrete Fourier transform coefficients of the
periodic function v(x) and vector v, respectively, defined as

v =

| b _ 1 Nl .
m/ Ve MUy, § = = 3 e T (35)
a ]:0
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Then a Fourier spectral method for discretizing (3.2) reads:
Find 2}y := 2} (x, ), r}y :=r}(x,5), ¥§ = vYh(x,s) € Xy for0 <s <7,ie.

N/2—1 . Nj2—1
Z';V(x,s) = Z (Zrllv)l(s)ezm(x—a)’ rlrif(x’s) Z (r )(s)e”“(x a)

I=—N/2 )

N/2—-1

Yy (x,s) = Z (IﬂN) ()=o),

3.6)
such that

Py + e Uy + €/ Py (W) + e Py () + Py () =0,
20957l —i—ezassz’li, — 0y =0, 0<s<7t, a<x<b,
2
828”’,7(/ - axxrx/ + Sizrlr\l/ = Py (|wlltl| ) :
(3.7
Substituting (3.6) into (3.7) and noticing the orthogonality of the Fourier basis, we
get

i(w/,”v\)’(s) — O, () + €2 @p) () Fe @), () + (T p), () =0,
2i(2) ) (s) + sz(zN)l () + p2@ ), () =0, O<s<t,

20, )+ (17 + %) 00,0 = WD), ¥ =1=¥-1

=

(3.8)

Foreach—N/2 <[ < N/2—1, we canrewrite (3.8) by using the variation-of-constant
formula as

@), (5) = ar(s)(@), (0) + 2By () (), 0), 0<s<t, (3.92)
() = S0 ”(N> ) + / %(IWIZ) ©)de, (3.9b)

W), (s) = e S (), (0) + ie 4T / o (42 @y 0y a0
0

. Soi(2—L) =— — S —
+ie_’“lzs/ o 62)9(1’,1\,1//,'\’,)[(9)d6+i/ e O Ry, (6) d,
0 0
(3.9¢)

where

L= P +
)“+els)\1 —)fe”)"l uAl ”)‘l
. 1 i —;e t=e '
ai(s) = L b (s i - 0<s<rt
l( ) )LT*)L[ 5 l( ) 2()L )L+) ’

AM=—% (11,/1+u}s2), w =51+ ple? = o(giz)
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Differentiating (3.9a) and (3.9b) with respect to s, we obtain

(@),(5) = aj(s) (@), 0) + £2b(5) (@), (0), 0 <s <7, (3.11a)
— — s f— 0
(), (5) = cos(@rs) (i), (0) + /0 %ﬁ”(wm,(@)da (3.11b)
where
eish _ ik ATeish _ aTeish
[(8) = iNTA —————.  bj(s) =~ — 0<s<rt.
W= T e 200 — ) ’
Taking s = 7 in (3.9) and (3.11), we immediately get
(@),(7) = ar(0) @), (0) + e2bi(2) (Z), (0),
(@),(0) = aj(1) (@), 0) + 2B} () (Z4), (0). (.12)

In order to approximate the definite integrals in (3.9b), (3.9¢) and (3.11b) with s = 7,
we adapt the Gautschi’s type quadrature [8,12,26-29,38]

/ "o 0y do ~ / " [£0) +0F(0)] do
0 0

i —ielT (1 —i87)e%T —
= f(0) + 52

Lo
5 10)

except the last term in (3.9c) which is approximated via a combination of the Gautschi’s
and Deuflhard’s quadratures as [12,21,36]

/O O (T, (6)do ~ /0 00 [(AD,6) + 6 (42),(9)] o

~ 2 [+ )] (3.13)

where A1(x, 0) 1= ry(x, )Yy (x,0) and Az(x,0) = ry(x,0)d ¥y (x,0) for 0 <
6 < 7t and thus A (x, 0) = Az(x, 0) = 0 since rl’t,(x, 0) = 0. Thus (3.9b), (3.9¢) and
(3.11b) with s = 7 can be approximated as

(@)~ DG 0) 4 pr () (WP, 0) + @i (@) (¥ P, 0),

(1) & cos(@rT)(ri), (0) + pl@) (WP, 0) + g/ (@) (¥ ), (0),
W, (1)~ e T, (0) + o (1) (@i, (0) + dF (D) @y ¥, (0) (3.14)

+ e (O, 0) +di (0@ ¥, (0)
+ 4 [0 + 7 @]
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where p;(1), qi(7), pl’(r), ql’(r), cli(r) and dli(‘t') as well as their bounds are given
in Appendix. For the derivatives, we can compute them as

(10312, = 2(Re(Uasu31) (0,
TR 0) = (352, 0) + (23,97, (0),

N|2
:—‘

where Re{z} denotes the real part of a complex number z, and for — % <l<

(l/«l T)——

(ZN) 0) = 5 —— (&, (0),

(l‘«[ T) —~

(I/IN) 0) = =i ——— W), (0) + t(¢N¢N) ),

which are approximations of 9;z"(x,0) = —%Bmz" (x,0) and oy (x,0) =
i0xx ¥ (x,0) + i¢" (x, 0)¥" (x, 0), respectively [8]. Inserting (3.12) and (3.14) into
(3.6) with setting s = 7, and noticing (2.8), we immediately obtain a multiscale time
integrator Fourier spectral method based on the MDF (3.2) for the problem (3.1).

In practice, the integrals for computing the Fourier transform coefficients in (3.5),
(3.9)‘and (3.11) are usually approximated by the numerical quadratures [9,11,46]. Let
@;f, <I>;? and \Il;’ be approximations of ¢ (x, #,), 3¢ (x, t,) and ¥ (x, t,,), respectively;
Z;"H, Z;."H, R’;H and R;.'H be approximations of 2" (x;, 7), 3,2" (x;, 7), r"()'c/», 7)
and ;7" (x, T), respectively, for j = 0,1, ..., N. Choosing dD(]). = ¢o(x;), d>(]). =
d1(x;) /82 and \IJ? = Yo(x;) for 0 < j < N, a multiscale time integrator Fourier
pseudospectral (MTI-FP) discretization for the problem (3.1) reads

"t — ir/sZZr_t+1_+_e—ir/ezzrg+l+Rr;+1
J

dﬂ—}-l l'L'/é‘ (Zn+1+ 2Zn+l)_i_eflr/g (Zn+ 1 n+1 +Rn+l
J e

L
vt = z (Wntlyem@i=a) i =0 1,...,N, n=>0,
[_,,

(3.15)

where

N N
Z"'H Z (Z”+1) eluz(x/—a) R"'H Z (Rn-H) ezm(x]—a)

N N
=% 1=—4

,_1 7—1
Zn+1 Z (Zn+1) eimxj—a) R"+1 Z (Rn—H) el (xj—a)
=% 1=—%

with
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(Zm )= 4 ()(Z0); + e2b1 ()(20). (Z0+1)= a]()(Z0); + €2b)(x) (20,

(3.16a)
Ry, = D G0 (W), 4 2 (0 Re[GTEY, (3.16b)
(R, = cos(ar) (RO, + pj () (W72, + 2/ () Re[@mEm)),  (3.16¢)

(W), = e T, + ¢ (1)(Z0W), + df (1) [(Z'Ow"n + (ZO\iJ")z]

+ ¢ (0)(Z0Wn), 4 d; (1) [(ZOW), + (ﬁ\iﬂz),} + %T(R”“\Il”),

)

+ (RN, N2 N2 (3.16d)
and
= = ~ g7 isin (177) =5
(20), = 5 [@ - ie2(@), ], (29), = =552 @0, (3.17a)

e

(R9), = —(29), - (ﬁ)l, (W), = _M(\m +i(@®Un),.  (3.17b)

This MTI-FP method for the KGS equations (3.1) (or (1.3)) is explicit, accurate, easy
to be implemented and very efficient due to the discrete fast Fourier transform. The
memory cost is O (N) and the computational cost per time step is O (N log N).

4 Uniform convergence of MTI-FP

In this section, we establish an error bound for the MTI-FP method (3.15) of the KGS
(3.1), which is uniformly accurate for ¢ € (0,1]. Let 0 < T < T* with T* the
maximum existence time of the solution of the problem (3.1). Motivated by the formal
asymptotic results (1.8) and (1.9) as well as the numerical results (cf. Fig. 1), we
make the following assumptions on the solution of the problem (3.1)—there exists an
integer mq > 4 such that ¢ € C'([0, T1; Hy*™(Q)), v € C([0, T1; H)* (@) N
Cl([0, T1; Hy()) N C2([0, T1; Hy*~*(R)) and

||¢||L0<>([07T];Hmo+4) + e’ ||31¢||L00( 0,T]; H"0t) S S

1Vl oo 0. 77 mo+2) + 10:¥ | oo 0, 79, 1oy + e’ 10 W1l oo (0. 7: 02y S1@D
where H7'(Q) = {f(x) e H"(Q)| fP(a) = fO®B),k=0,1,....m -1} C
H™(2). From the nonlinear Schrodinger equation (NLSE) in (3.1), it is easy to see
that

i0p(x, 1) 4+ 0y [Yor ¥ (x, 1) — Yo ¥ (x, )] =0, xeQ, >0,
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where p(x,t) := |V (x, t)|2. Then under the assumption (4.1), we have

peC ([0, Tl H;,"O“(sz)) nc! ([0, T1: H;“)(SZ)) nc? ([0, T]: H;"O—Z(sz)) ,

195 o1l Loo o, 73 rmo+2-2k ) S 1. k=0,1,2. 4.2)

Denote Cy = maXO<s§l{||¢||L00([0,T];HMO+4(Q))» 52||at(ﬁ”Looqo,T];H'"oH(Q))} and
Cx// = maXO<s§1{”W||L00([0,T];H'"0+2(Q))}~

Let ®" = (g, @Y, ..., DY) € Yy, V"' = (Y, ¥],...,¥y) € Yy and " =
(dJ”, (iJ'l’, R dD;i,) € Yn (n = 0) be the numerical solution obtained from the MTI-FP
method (3.15)—(3.17). Denote their interpolations as

¢](x) = (INOP")(x), Y] (x) = Uy¥")(x), ¢ (x):=UndPN(), xeQ,
“4.3)
and define the error functions as

ehx) = dlx, 1) — @F (), € (x) == Ylx, 1) — Y (x), 44
) = 0,p(x, 1) —Pf(x), xeQ, 0<n=<I '

then we have the following error estimates for the MTI-FP method (3.15)—(3.17).

Theorem 4.1 (Error bounds of MTI-FP) Under the assumption (4.1), there exist two
constants 0 < hg < 1 and 0 < vy < 1 sufficiently small and independent of ¢ such
that for any 0 < e < 1, when0 < h < hgand 0 < © < 19, we have

2
P L e L Hzghm0+z_2, (4.5)
eg H2+ eflp H2+52 ég Hzghmo+82’ Ofi’lfg, 4.6)
- Cyp+1
[67l 2 = Cot 1o Wil =Cut+1 ] < ¢82 L@

Thus, by taking the minimum of the two error bounds (4.5) and (4.6) for ¢ € (0, 1],
we obtain a uniform error bound with respect to € € (0, 1] for 0 <n < %

n

€

n

¢y

2
2§hm°+min[r 2]5h’”0+r. 4.8)

+ -, &
2 O<e<l | €2

+ &2
H2

n
e
H v H

In order to prove the above theorem, we introduce

ey N (X) = (PNO)(x, 1n) — @7 (x), ey y(x) := Py(0:d)(x, 1n) — P (x),
€y y X)) = (PNY)(x. 1) — Y] (x),  x€ Q o0<n<TI

?.

(4.9)
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Using the triangle inequality and noticing the assumption (4.1), we have

lebll gz < IpGe. 1) — (PN®) O )l g2 + 1€yl S ™2+ el ol 2,

ley lg2 < 1Y (e, ta) — (PnY) (e, i)l g2 + lley, yllg2 <A™ + lley, yll g2,
- : : o pmots
lepllgz < loCx, tn) — (PN (X, t)ll g2 + llég yll 2 S 2 T lég vl p2-

(4.10)

Thus we need oply obtai.n estimates for ||€;Z>,N||H%’ IIe"II,,N | ;2 and ||é$,N||H2’ which
will be done by introducing the error energy functional

2
H2+

n

2
ol

Oy el ? !
xe‘P’NH w T\l

2
HZ), A.11)

and establishing the following several lemmas.
For any v € Yy, denote v_; = vy_1 and vy4+1 = v, and define the difference
operators (Sjv € Yy and va e Yy as

n n -1 e 2 || o
£ (€¢’N, ew’Ny e¢,N) =¢& €¢’N‘ e

+

e’v’/’N’

Vjt] — Vj Vig1 —2v; + v .
Stvj =L 2y, = IF /U=l j=0,1,...,N,
‘ h h?

and the norms as
2 2 2 2 2 2 20012
VI3, = IVIA +USEvIR, VI3, = IVIA + IS vIA + 182vih,  4.12)

with
N—-1 N—1 N—-1
2 2 2 2 2112 2 2
IVIG =h D" w2 18ivIh = D 18Fv% I8ivih =h D> 183012
art art art

then we can have the following estimates [7,8]

Mnviige S IVIva S Hnvlig, Hnvlige S IvIve S Hnviig2, Vv e Y.
4.13)

Lemma 4.1 (A new formulation of MTI-FP) For the numerical solution qﬁ?“ and
q}';“ (n > 0) obtained from the MTI-FP method (3.15)-(3.17), we have

N2-L ' N2 '
g0 = D (@O gt = Y (el
I=—N/2 I=—N/2

(4.14)
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where

Sln( T )/—\_/ —_~— —_

(1), = cos(wT) (D), + (&), + pr() (W), + 241 (x) (Re(Tmdn)),,

(@), = cos(@ ) (), — ay sin(wT) () + pl(0) (¥ 2),

—~—

+24/(7) (Re{Wm¥n}),.

Proof Forl = —%, % — 1, from (3.15), we get

((anrl) _egz(szr])l_i_e s (Zn+l) +(R"+1)l,

@y = e[y + Gz | + e B (2041) — & (Z) |+ Rty

1

(4.15)
and from (3.17), we obtain
— 1 r——o —_ —_ — =
(20 = [ (@ i@y ], (R =20 - (2°). (4.16)

Noticing (3.10) and (3.4), for v € Yy, we have

N N
ai(t) =a-(v), bi(v) =b_(v), l=——,....,> -1,

2 2
(V)l_["‘?l’ IZ_%

Plugging (4.16) into (3.16a)—(3.16¢), and (3.16) into (4.15), we get

e i —_

(®"+1), = Re [eiiaz(r)} (@), + £°Im [ei?azm] (&) + £ by (1)(29),

sin(w;t) 7~

n gze—%b—,(w(ﬁ)l + (RO, + pr(m) (W),

—_~—

+ 2, (7) (Re{Wmin}),,

—

(@), = 821m| al<r)+—ee2 azm] (&) +e2e 2 [b_ﬂf)—%b_z(r)} (29),

+Re|ei5a;(r>+8’—2ei§al<r>]@T)ﬁs [bl<r>+ bz(r)FZ\O/)l

—— —_~—

+ cos(@T)(RY); + pj(T)([W"[2); + 2¢, (v) (Re{TmPn}),;,

where Im{z} denotes the imaginary part of a complex number z. Then (4.14) can be
obtained by combining the above equalities and (3.10). O
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For the solution ¢ (x,s) := ¢ (x,t, + 5), ¥ (x,s) ;= ¥(x,t, + s) of (3.1), we
have

~ ~ 1 ~ —
29 (tn + 5) + Wi ity +5) + 8—2¢z(tn +5)=(¥>)ta+s), s>0 (4.17a)

iUty +5) — 103Gty +5) + @V (ta +5) =0, 1€ (4.17b)

By applying the variation-of-constant formula to (4.17) and noticing the ansatz (2.2)
with p”(x, s) = ¥ (x, 1, + 5)|?, we get

Filtar) = cos(@rT)P (1) + 2 ”)¢,(n) / W(pwewe,

(4.18a)
Bl (tns1) = cos(@ )P (t) — @y sin(@T)r (1) + /0 W( m,0)do.
(4.18b)
Diltasr) = e 10, (1) + i~ THTT / " () g, 0yae (4.18¢)
0

T — L —
4 et / (1 =2)° Gy, 0yae + / /1T =) (g, (0)do.
0 0

Combining the above results, we define local truncation error functions as

N2-L N2-1
Sp = D Gt g = D () e,
I=—N/2 [==N/2
S
= > (Enert? xeq, (4.19)
I=—N/2
where
@), 1= Bilen) = [cos@0Bin) + TG 0) 4+ (0 (97 0)
+ 291D Re(F70")),0)], (4200
€, = Bt = [ = @15in@DF ) + cos@DF ) + pj(R) (Y71, 0)
+ 24/ Re(T7" ), 0)], (4.200)

€)= Diltnsn) — MGt — f @EI0) — ¢ (D) EH),0)
—df O [ G0 + @0 ] — d @ [ GO + @y 0)]

iT T it? )
— ?(V"Jr Y¥)(0) — T(V" o). (4.20c)
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Here we introduce three auxiliary functions as

gpn(x) = Z(/(pn\)leill«l(xfa)’ Z’n(x) — Z(/an\)leim(xfa)’

IeZ leZ
Y = Y (e,
leZ
with
(") = = £sinGaP )W) +i @0, G = sin(uf D, 0).
" = PO (P 0) +2a1 (1) Re{§70" 1, 0) — *‘“(“"” (G + G -

4.21)

Similar to the case of the KG equation [8] with details omitted here for brevity, we
can prove a prior estimates for the solution of the problem (3.2) with (3.3).

Lemma 4.2 (A prior estimates for MDF) Let 7" (x, s) and r"(x, s) be the solution
of the MDF (3.2) with initial and boundary conditions (3.3). Under the assumption
(4.1), there exists a constant 11 > 0 independent of ¢, h and t (or n), such that

n n
”Z ||Loo([0’.[];Hm0+2) + ” a&‘z ‘|L°°([0,T];Hm0+l) + Lo ([0.7]: H™0) 5 1, (422)
i Se¥* 0<t<7m, k=012 (4.23)
L([0,7]; H6=K)

Based on this result, when 0 < 1t < 71, it is easy to see that ¢", 3" €
Hp'(Q), y" ! e H;‘(Q) and we have the prior estimates

n+1 H < 82

lo"lys S 10 18" e S0 ), S

v

With the above a prior bounds, we can estimate the local truncation error functions.

Lemma 4.3 (Estimates for local errors) Under the assumption (4.1), forany 0 < v <
71 with t1 given in Lemma 4.2, we have two independent bounds as

70 . T
T

£(sp60.8) S C( 60 6) ST 0=m=— -1 @24

Proof Subtracting (4.20) from (4.18) and by using the Taylor’s expansion, from (4.18a)
and (4.20a), we get

o — T o1 _ 1 — —
@D, = / st = 0)) 52 [ / (1 - [P P), <9s)ds} d6 + 241 (0 (Bo),.
e 0 2wy 0
(4.25)
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where
Bo(x) = Re{yy"(x,0)(3;¢" (x,0) — ")}, x€Q.

Noticing (7.1), we obtain

&), < / /

L <iforl=-%,....,5 — land (4.1), (4.2), we get

Noting 5 = ———
% o ARV

—_—

2 —_—
Y R), (05)| dsdo + —— ‘(Bo)l’ .
&2y

2
153152 < 1055017 o qo.70: 12y + T 197" € OV @Y ¢, 0) = ™) | 0
SOt Ay L0 — ¢t O<T <1 (4.26)

By Parseval’s identity, we have

N/2—1
[0 =" = >t + b | @) — [
I=— N/2
N/2—1 sin(1127) N/2—1
S > ou|l—=-u |(w">l<0)|2 <7 > PP
I=—N/2 I=—N/2
Sl <7l (4.27)
~ L®([0.T;H) ~ © - :
This together with (4.26), we get
n;2
IEM2,. ST° 0<T <1 (4.28)
Similarly, noting -5 ”’ | I Y —% N — 1, we obtain
J1+e2u? €
) 6 - 6
IxE5 e S 5 and 1§15, < . O<t<m. (4.29)

For SI’;, from (4.18c) and (4.20c) and by the Taylor’s expansion, we have
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— . T 4 1 —//
€D, = ie_”‘lzT/ e’(“lz+slz)992 / (1 — 5)(ym), (9s)ds]d9 (4.30)
0
tieTiHiT /T ei<M’2_€%)0 [ (1 —s)(Z/"lp);/(Gs)ds} do
0
3

e~ o T —
4@ [BD) + B |+ 0 [B) + By | + - By + 5 (Boy
)

+ 5 [B0+ By | = S P90 +i / /11Oy, 0)d6,
0
where

By (x) = [0, (x,0) = 3" ()| ¥"(x.0), Ba(x) =2"(x,0) [ds9" (x.0) — ¢"(x],
B3(x) = [8,2"(x,0) — 3" ()] ¥" (x,0), Ba(x) =2"(x,0) [3s9" (x,0) — ¢" (x)].
Bs(x) = r"(x, DO ¥ (x, 60, Bo() = [, 7) — " () |9 (x, 0,

Br) =", ) [097 (@, 0) =" 0], By = [0 1) =" @) | 0" @),

with 6y € [0, t]. For the last two terms in (4.30), we have

i /O i O=0) Gy (0)d — %(r/"w\")m

T d2 5 o
— iu;(0—=1) onqpn
< [Co - 0| [ren @] ao

Then by using the triangle inequality, we obtain

|(sw>|<r// \(z"w"n(@s)\

b o2 ([0 + @] + 2 [[@| + [ + [+« [ B

—_—

@Y™, (0s)

] dsdf

+r2‘(/B7\)l +r2)(/351)+r2/r
0

& &1 0= gy (9) || do
d6? !
Similar to (4.27), we find from (4.21)

192" = 5"l S 712" Ollge S 7 (19l qo. 710 + €210 L orrems)) S ©

Again, similar to (4.27) and noticing (3.9b), we have

. 2
sin(w;7) — |2
Iy = Ol S 18 + D+ uf + [ - @
leZ
SO+ 20" =55, ST
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By the assumption (4.1) and Lemma 4.2, we get

6 nony|? 61,12 614,712
T ||8SS(Z W )||L°°([O,T];H2)+t ”Z ”LOO([O’-[];HG)J’_T ||1ﬁ ”LOQ([O,I];HG)

2
+ 7 [ 05 V" [ oo, eperry + 72NV =G DG
6 2
aa ”rn‘pn ||L°°([O,r];H6)
6 2 6 2 T6
n n n n
+7 ” ds(r'y )”L"O([O,r];H“) +T H dss (rr )HLOO([O,r];HZ) S P
(4.31)
I"lugging (4.28), (4.29) and (4.31) into (4.11) with egyN = E(’;, e:’%N = €$ and é;,N =
& g, we immediately get the first inequality in (4.24).

Next we show how to get the second estimate in (4.24). By using Taylor’s expansion,
truncating at the first order term and integrating by parts, we have

. T P
&)= [ T [ / (v 2)1<9s>ds]de—2qz<r>(Re{w"¢ Di(0),
1 1
— a0 /0 WD), (es)ds — /0 CH(@)[ (|x/f"|2>l<es)sds}de
— O [P Pry(0) — 241 (x) Re (7)), (0).

From (7.1) and noticing ¢;(0) = 0 and |¢;(7)| < 72, we find

€517, < 72t [||a,p||ioo([o,m,z) + 11040117 oo 0. 71,12 + ||ww"||iOC([O,T],H2)]
<%t 0<t<t, O0<e<l. (4.32)

Similarly, we can get

1965172 S 2% and )15, ST° O<t <11 (4.33)

~

In order to estimate é:;, we introduce

N/2—1 N/2—1
I"(x)y= > IO gy =D ettt (434
I=—N/2 I=—N/2

where _ P —
=G, - 4@ [V + @),
[/\ T (4.35)

T =64, —di [ GTum© + @ 0)].
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with

Grf[ = le—ll/«lf fr l( 2+ ) I:fo (Z”I/f")l(es)ds] e,
(13-2)s _ (4.36)
Gy, =ie RS 0 [fol (Z"I//”)l(és)ds} do.

Applying the Taylor’s expansion in (4.18c) and (4.20c) and truncating at the first order
term, we obtain

—_— o~ o~ T . — [ —_ —_—
€, = I+ +i / O (g, 0)d0— - [ (T 0) + T (e |
0
(4.37)
From (4.36), integration by parts, we get

") = e /0 ") /O 1 @20 05) + 0, 65) | dsd
—do [ e esyds - / “dt o) / G, s)sdsd
— eIkt /O ") /0 1 [(z’m")l(es)+(ZW")l(9s)] dsdo
=4 (@) / 1 [ @297 (xs) + i (x9) ] ds
- /0 d;t ) / (B2 05) + i @00y 05) | sdsdo — G, (4.38)

where X
. T (20 L o
Gg,l =e_”*zzf/ e’(“1+e2)99/ (Z"P"Y™),(0s)dsdb. (4.39)
0 0

Noticing the ansatz (2.2), we get

1 L. +s —
’31’1 :e*lﬂzzf/ |:/ el(M%+1€T)99((Z”)2¢")1(9S)d9
0 0
+ / " (3)0 gy, 0sya0+ / e(“’z+slz)99(zwn)z(0s)d9]ds
0

Using integration by parts and the triangle inequality, we have

+ e (127 Py (os)

1 —
G5 5 /0 [rezlaz"w")l(rs)

T
+82/
0

T
+82/
0

do

T
d@-i—/
0

Y2y, (0s)

(12" Py, ©s)

Ty ),(es)‘ d0:|ds. (4.40)
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Combining (4.34)—(4.40) and noting |dl+(t)| < 762 and Lemma 4.2, we get

1My S e’ [||3sZan||Loo([o,z];HZ) F 112" 3xx ¥ | oo 0,21 2y + 1055 2" V" | oo (j0.21: 2
H1052" 0¥ | Loo 0,21 12y F 1852" Qex " [ oo 0. r1: 12y F 12" Bsxx ¥ N oo 0,27 2
HIE2 " oo, 5 ] + 18 (13" ¥ 0,01 2) + 120" 1o qo,01: )]

+ Tl o,y S TE (4.41)

. " ) L

In order to estimate J", denote N, := 2[ . When |/| < Ng, we have |u;| < ﬁg
which indicates that |d; ()| < 762, Similar to the estimate of /", we have

S (1 +ul M;‘) T2 < r2e, (4.42)

[[|<Ne

On the other hand, when |u;| > ﬁ, we have |d; (7)| S 2. Due to the regularity of
the solution, i.e. the assumption (4.1) and Lemma 4.2, we can get

> (U +ui+u) >

s i

1]>Ne

St 110, Y o+ 13" 0+ 1127 G 009" (17,
Lo ([0,T]; HY) H

(z W”)Z(GS)

dsd9+r(\(g, o + \(z/”\w,w)\z)}

1 2 2
S 'L’484 |:|| as (ann) ”ioc([(),r];[.]f&) + ﬁ ”ann ||L°°([(),r];H4) + Hzn,l/[n¢n ||LDC([0,T];H4)]

< 264, (4.43)
From (4.42) and (4.43), we obtain
1" g2 <te?, O<t<71, O<e<l. (4.44)
Combining the above estimates and noting (4.37), we have

”%-W”HZ ~ ||In||H2+||Jn||H2+T ||”n‘/f ”LOQ([O‘[ H2)+T ||J/n+11/f ”LOO(O‘L’ HZ)
+ 7y e 13, S T (4.45)

Plugging (4.32), (4.33) and (4.45) into (4.11), we get the second estimate. O

Defining the errors from the nonlinear terms as

N2—1 N/2—1
M) = 3 ) @O i) = 3 i) e,
e I=—N/2 (4.46)
N/2—-1 o .
my ()= X ()T xeQ n =0,
I=—N/2
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where
), = @ [ (W) ] +241 () [(Re@_"\w"})AO)—(Re{W\P"})l] ,
(4.472)

), = i [P - @y 24100 | R0~ et
(4.47b)

e~
o —

Gf},\)l = Cl+(f) [(Z/"Iﬂ\")l(O) - (EE)\\EJ/")Z] + ¢/ (v) [(ann)l(o) _ (ﬁlp")l]
(4.47¢)
+d" (1) [(zﬂ\")l(m — (20w, + (), (0) — (ZO\iJ”)z:|

—

+d; (v) [(3:”1#\")1(0) — (20w, + @) (0) — (Z0Wm),

o 7]

n % [(yn+1¢n)l(o) — (RMHIWny, 4+ ¢ (()/"H(/)")l - (Rn+1\j1")l)i| ;

then we have

Lemma 4.4 (Estimates for ng, n:;, and ﬁg) Under the assumption (4.1) and assume
(4.7) holds (which will be proved by induction later), we have for any 0 < 7 < 11,

‘L'2]’l2m0
, 0<n<

—1. (4.48)

QN

& (o 1) S 726 (g g éhg) + -

Proof From (4.46) and (4.47a), we have

I3l S Tl GO = In W™ Pl g2 + T2 (L 0)¢" — Iy (T | 2
S TlIn " 0P = In " Pl g + N G 009" — Iy (OPY™) | g2 + Th™0
STV GO = (9" P lya + [P (. 0)g" — W |y, + Th™
Stlefllva+t2lle" — Wy + Th™

S tlelllya + 21059 (. 0) — 85 W .o + T3 [1¢" Y (-, 0) — "W |y, + TH™
Stlel g + Tllefll gz + 05,9 (¢, 0) — 85, 9" || g2 + Th™

S tllel g + tllegll g2 + th™, (4.49)

A

where the operator 35, on a function f(x) is defined as

Sin(Uft) ~ ;oo
S 1= = Dt ettt
leZ
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Combining (4.49) and (4.10), we get
Il < Tllely yllpz + Tllely ol g2 + Th™. (4.50)

In addition, we can obtain (by noting some estimates in Appendix)

2
. T
e g + N0unglze < — [ne:z,Nn%,z + llef y 1132 + hzmo], (4.51)

Similarly, we can estimate all the terms of ’7:;/ in (4.47¢c) except the last term. For the
last term, we have

N/2—1 -
D U+ pf + ) |y 0) — (R,
I=—N/2
N ”IN()/n_Hwn(', 0)) — IN(Rn-Hwn))”%.[Z + p2mo
S ey 3 + Iyt = InR" 2, + n2e, 4.52)

2

Noting (4.21) and (3.16b), we get

(T = R | 5 [@00) = @] + o) - | (90 — (W),

+ lqi(0)] - ‘(WW(O) — (U, | (4.53)
Combining the above two inequalities, we obtain
ly" = INR"™ e S el + 2 1Eg 1 g + Nl€f g2 + 2™, (4.54)
Plugging (4.54) into (4.52), we get
N/2—1 - 5
D U+ uf +u) |1y 0) — (RrHTwm,
I=—N/2
Slley 32 + ez + et 1eg 15, + h>™. (4.55)
Similarly, we can obtain
N/2 - 2
D (i +uh) |(rHleny, — (Rr1bm),
I=—N/2+1
S ey 52 + Nepllze + e*l1ép 17, + h>™. (4.56)
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Combining (4.55), (4.56) and (4.47¢), we have

Il S 7 (el + el + e o + ™)

<7t (lleglele 201yl + e e + hmO) : (4.57)

Plugging (4.50), (4.51) and (4.57) into (4.11), we get the estimate (4.48). m]

Remark 4.1 As part of the error propagation, the term || dy egy ~ | g2 isintroduced in the
error energy functional (4.11). While we do not have to estimate the related errors under
this term directly. By noting the fact of the coefficients p;, ¢; as given in Appendix,
the estimates of the local error 9, & (’; and the error of the nonlinear terms 0y n;’) can be
converted as

1 1
1065 1 S — gl Noxnglle S <l

Thus, throughout the proof, we do not require any bootstrap argument or induction
assumptions on the boundedness of 9, ¢} in H 2,

Proof of Theorem 4.1. The proof will be proceeded by the energy method and the
method of mathematical induction [6,7,9,11,12]. For n = 0, from the initial data in
the MTI-FP method (3.15)—(3.17) and noticing the assumption (4.1), we have

legll 2 + lley Il g2 + €2 116311 2
= ligo — Indoll g2 + 1Vo — InVoll g2 + llg1 — Indill g2 S ™02 < h™.

In addition, using the triangle inequality, we know that there exists 21 > 0 independent
of ¢ such that

: ||¢1|| Co+1
162052 < I9ollz + ez < Co+ 1 1Bl < =5 + NGl < —25—,

12 < IVollgz + e 2 <Cy +1,  0<h < hl.

Thus (4.5)—(4.7) are valid for n = 0. Now we assume that (4.5)—(4.7) are valid for
0<n<m-—1<T/t— 1. Adding (4.20) and (4.14), we have

TN sin(@) )5~

(e ), = cos(wzr)(e¢) + —1( $), T ($¢,) + (n¢)1, (4.58a)
@), = —ar sin(@T)(eh), +cos@ )@, + G+ L. (4.58D)
(€D, =TT, + &), + (), (4.58¢)
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Using the Cauchy’s inequality, we obtain

— 2 _
(egﬂ)l <(1+1) cos(wlr)(€¢) + w( + ‘(Etﬁ

(4.59a)
—— 2 It |
(égﬂ)z < (1+ 1) |cos(a)(éy), — @ sin(a)lt)(eg)l‘ ’(%

(4.59b)
— 2
@[ zarof@f+ (@, + o, " (4.590)

Multiplying (4.592)-(4.59%¢) by (u? + 812)(1 + u? + uh), e2(1 + pu? + pf) and
Eiz(l + ;L[ + Ml) respectively, then adding them together and summing up for
l=—-N/2,...,N/2 — 1, we obtain

Eeytys ety ept) < L+ DEE . el v €R)

1+ . .
+TS(§$ + g, &y + 0y Ep i)
Using the Cauchy’s inequality, we get

S(en—i-l n+1 n+l)

6N V/Nv 5(6(’; NﬂeiNaégyN)

1+ . o
STECp € )+ — £ €5 B + EGl )] (460)

Inserting (4.48) and the second inequality in (4.24) into (4.60), we get

g(enJrl n+1 n+1)_

#.N> €y N> E(e¢ Nyesze(p,N)

Th2m0 'L'S
té’(e¢ N el// N e¢ N F——+ -5 4.61)

Summing the above inequality for 0 < n < m — 1 and then applying the discrete
Gronwall’s inequality, we have

h2m0 ‘L'4

E€ NN N S —5 + 5 (4.62)

Similarly, by using the first inequality in (4.24), we obtain

2mo

EehnCyn G0 S 5 e (4.63)
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Combining (4.11), (4.62) and (4.63), we get that (4.5) is valid for n = m, which
implies

lej ll 2 + llejill g2 + e211E) 1 g2 < B0 + 7.

Using the triangle inequality, we obtain that there exist 7, > 0 and 7, > 0 independent
of & such that

167 12 = N@Cotm)llg2 + lleg g2 = Cp + 1,
17 12 < I Cot)llge + lleyllgr <Cy + 1, 0<h<hy, 0<71=<1,

; . Cyp+1
16712 < N . tmdlle + 165 I < =25

Thus (4.7) is also valid for n = m. Then the proof is completed by choosing 79 =
min{ty, 72} and hg = min{h, ho}. |

Remark 4.2 Here we emphasize that Theorem 4.1 holds in two/three dimensions
(2D/3D) and the above approach can be directly extended to 2D/3D without extra
effort. The only thing needs to be taken care of is the Sobolev inequality used in
Lemma 4.4 in 2D/3D

llull o) < ”u”HZ(Q)s ||M||W1,p(§z) S ||M||H2(Q), l<p<6, (4.64)

where €2 is a bounded domain in 2D/3D. By using the assumption (4.7), Lemma 4.4
still holds in 2D/3D. Thus (4.7) and the error bounds can be proved by the method of
mathematical induction since our scheme is explicit.

Remark 4.3 Under a weaker assumption on the regularity of the solution, i.e.
there exists an integer my > 4 such that ¢ € Cl([O, TI; H;”OH(Q)), /S
C([0, TT; Hy** (@) n €1([0, T1; Hy* ' (2)) N C2((0, T1; Hy*~>(2)) and

2
||¢”L°°([0,T];H’”0+3) +¢& ||8t¢”L°°([0,T];Hm0+3) 5 1,

”w”LOO([(),T];HmO+]) + ||at1/f||L00([0,T];Hmofl) + 82 ||8tzw||L00([(),T];Hmof3) ,S 1,
(4.65)

we can establish an H!-norm estimate of the MTI-FP method in Theorem 4.1 by a
very similar proof with all the H2-norm in the proof being replaced by H!-norm. In
1D case, the H!-norm estimate of the MTI-FP method holds without any stability (or
CFL) condition. However in 2D/3D, due to the use of the inverse inequality to provide
the bound in /*°-norm of the numerical solution [5-8], we need impose the technical

condition
1/]1 =2
0<t<SCy(h), with Cyh) = [\//%nhh Z 3,

Of course, if the solution of the KGS is smooth enough, we can always adapt the
H?-norm estimate in Theorem 4.1 and thus there is no need to assume the stability
(or CFL) condition (4.66).

(4.66)
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Remark 4.4 An MTI-FP method with higher order uniform accuracy in time could be
designed in the same spirit. For example, to get a second order UA scheme, we can
separate the O (82) terms explicitly out from the remainder term »” in the ansatz (2.2),
which pushes the new remainder to O (g*) [22]. After that, we need to integrate the
O(1) term z", the O(e?) term and the remainder by a fourth order EWI [51]. Then
error bounds at 0(1’4/84) and O(e*) can be obtained, which imply a second order
uniform error bound in time. Of course, the scheme and its corresponding analysis
would become much more complicated.

5 Numerical results

In this section, we report numerical results to demonstrate the uniform convergence
of the MTI-FP method for ¢ € (0, 1] and apply it to numerically study convergence
rates of the KGS equations to its limiting models (1.9) and (1.11) in the nonrelativistic
limit regime. In order to do so, we take d = 1 and © = A = 1 in (1.3) and choose the
initial data in (1.5) withd = 1 as

I+
2

2 1 —)CZ 1 —X2
Yo (x) = sech(x), to0) =3¢ hiw = e, reR (D)

5.1 Accuracy test

The KGS equations (1.3) with d = 1 and (5.1) is solved on a bounded interval
Q = [-32,32],ie. b = —a = 32, which is large enough to guarantee that the
periodic boundary condition does not introduce a significant aliasing error relative to
the original problem. To quantify the error, we introduce two error functions:

et = 1) = [0C.tn) =87 o e = max {eptn)].

h h Jh
et =)= [Vt =i, ejio® = max [er}.

Since the analytical solution of this problem is not available, so the ‘reference’ solution
here is obtained numerically by the MTI-FP method (3.15)—(3.17) with very fine mesh
h = 1/32 and time step T = 5 x 107°. Tables 1 and 2 show the spatial errors of the
MTI-FP method for ¥ and ¢, respectively, at + = 1 under different ¢ and & with
a very small time step 7 = 5 x 107 such that the discretization error in time is
negligible. Tables 3 and 4 list the temporal errors of the MTI-FP method for ¢ and ¢,
respectively, at + = 1 under different ¢ and t with a small mesh size 4 = 1/16 such
that the discretization error in space is negligible.
From Tables 1, 2, 3 and 4, we can draw the following observations:

(i) The MTI-FP method is spectrally accurate in space, which is uniformly for 0 <
& < 1 (cf. Tables 1, 2). The approximation in ¢ is more accurate than .

(ii)) The MTI-FP method converges uniformly in time for ¢ € (0, 1] with linear and
quadratical convergence rates for ¥ and ¢, respectively (cf. last rows in Tables
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Table 1 Spatial error analysis: erw’

h (t=1)witht =5 x 107° for different & and

&

e;’;(t =1 ho =1 ho/2 ho /4 ho/8 ho/16

g0 =1 6.90E—1 1.39E—1 1.70E—3 2.44E—7 8.96E—11
£0/2 7.57E—1 1.40E—1 1.70E—3 2.40E—7 8.37E—11
£0/2% 6.37E—1 1.45E—1 1.70E—3 2.40E—7 9.19E—11
£0/2° 6.46E—1 1.30E—1 1.90E—3 2.40E—7 8.89E—11
e0/2% 6.47E—1 1.31E—1 1.80E—3 2.38E—7 9.26E—11
g/2° 6.47E—1 1.31E—1 1.80E—3 2.38E—7 9.66E—11
£0/20 6.46E—1 1.27E—1 1.70E—3 2.52E-7 8.76E—11
£0/27 6.46E—1 1.31E—1 1.80E—3 2.38E—7 9.08E—11
£0/28 6.46E—1 1.27E—1 1.70E—3 2.52E—-7 9.08E—11
e0/2° 6.46E—1 1.31E—1 1.80E—3 2.38E—7 1.02E—10
g9/210 6.45E—1 1.26E—1 1.80E—3 2.52E—-7 4.42E—11
YR 6.46E—1 1.31E—1 1.80E—3 2.38E—7 9.07E—11
Table 2 Spatial error analysis: e;”};(t = 1) with r = 5 x 10~ for different ¢ and &

e;‘,};(t =1 ho =1 ho/2 ho/4 ho/8 ho/16

g0 =1 474E-2 1.60E—3 3.64E—6 3.57E—10 9.23E—11
£0/2 8.29E—2 1.90E—3 1.23E—5 3.92E—10 6.18E—11
£0/22 2.32E—1 1.12E—2 4.61E-5 1.46E—9 5.24E—11
£0/23 3.49E—1 1.30E—3 9.31E—5 5.33E—10 4.58E—11
g0/2% 2.64E—1 1.20E—3 3.35E—5 5.16E—9 4.49E—11
£9/2° 2.71E—1 2.09E—4 6.92E—6 8.76E—10 5.49E—11
£0/20 1.13E—1 5.27E—4 2.56E—6 1.73E—10 6.04E—11
e0/2" 3.99E—1 4.29E—4 6.28E—7 4.23E—11 6.20E—11
£0/28 6.74E—2 5.90E—4 7.20E—8 2.38E—11 6.20E—11
e0/2° 3.37E—1 5.13E—5 2.78E—8 1.86E—11 6.51E—11
80/210 3.81E—1 2.46E—4 9.80E—9 8.39E—12 3.09E—11
gg/21 3.09E—1 7.75E—4 2.98E—9 1.73E—11 6.19E—11

(iii)

3, 4, respectively). In addition, when 0 < 7 < &2, it converges quadratically in
time (cf. each row in the upper triangle above the diagonal with values in italics
of Tables 3,4); when0 <& <t 172 the error is at O (82) which is independent of
T (cf. each row in the lower triangle of Tables 3, 4) and it converges quadratically

in term of ¢ (cf. each column in the lower triangle of Tables 3, 4).

The practical temporal uniform convergence order of the MTI-FP in ¢ is better
than the theoretical error estimate result. In fact, the temporal local truncation
error of the MTI-FP in ¢ is at 0(r3), but due to the nonlinear coupling with 1,
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Table 3 Temporal error analysis: ef/j’hs(t = 1) and e@hoo(t = 1) with & = 1/16 for different ¢ and ©

e%(t =1 1=02 919/22 10/2% 10/2° 10/28 79/210 19/212
g9 =1 131E—1 1.60E—2 1.00E—3 620E—5 3.84E—6 235E—7  1.77E—8
Rate - 1.52 2.00 2.01 2.01 2.02 1.87
£0/2 1.59E—1 205E—2 130E—-3 7.J0E-5 4.76E—6 292E—7  1.37E-8
Rate - 1.48 1.99 2.04 2.01 2.01 2.20
£0/22 120E—1 148E—2 120E-3 7.65E—5 479E—6 295E—7  138E-8
Rate - 1.35 1.81 1.99 2.00 2.01 2.20
£0/2° 223E-2 530E-3 5.19E—4 320E—5 200E—6 123E—7  5.77E—9
Rate - 1.04 1.68 2.00 2.00 2.01 2.20
g0/2% 950E—3 3.50E—3 220E—3 1.32E—4 8.06E—6 4.94E—7  2.31E—8
Rate - 0.72 0.33 2.03 2.02 2.01 2.20
£9/2° 1.40E—3 1.00E-3 6.34E—4 4.67E—4 3.35E—5 202E—6  9.41E—8
Rate - 0.24 0.33 0.22 1.91 2.02 2.20
£0/20 3.82E—4 5.65E—5 143E—4 1.51E—4 1.16E—4 829E—6  3.80E—7
Rate - - —0.67 —0.18 0.19 1.90 2.22
g0/2" 5.64E—5 230E-5 128E—5 3.6lE—5 3.83E—5 2.89E—5 I.58E—6
Rate - - - —-0.75 —0.04 0.20 2.10
£0/28 2.10E-5 5.60E—6 64l1E—6 2.61E—6 1.10E—5 1.12E—5  5.70E—6
Rate - - - - —1.00 —0.01 0.49
£0/2° 5.82E—6 4.05E—6 240E—6 2.00E—6 241E—6 849E—7  2.50E—7
Rate - - - - - 0.75 0.88
g9/210 225E—6 340E—7 2.19E—7 547E—7 346E—7 629E—7  5.07E—8
Rate - - - - - - 1.81
go/21 2.09E—7 2.19E—-7 1.67E—7 1.58E—7 848E—8 143E—7  4.63E—8
Rate - - - — - - -
gg/213 175E—8 8.01E—9 7.32E—9 4.13E-9 627E—9 1.64E—10 7.53E—9
Rate - - - - - - -
e;;ﬁoo(t =1) 159E—1 205E—2 220E—3 4.67E—4 1.16E—4 2.89E—5  5.70E—6
Rate - 1.48 1.61 1.11 1.00 1.00 1.17

the theoretical error bound drops down to uniform linear convergence rate. The
rigorous mathematical analysis is still on-going.

(iv) In the nonrelativistic limit regime, i.e. 0 < ¢ < 1, the mesh strategy (or &-
scalability) of the MTI-FP method is T = O (1) and & = O(1).

To compare with existing numerical methods for the KGS [13], Table 5 shows the
temporal errors of the phase-space analytical solver time-splitting spectral method
(PSAS-TSSP), in which the time-splitting spectral method was used to discretize
the NLSE [4,13] and the exponential wave integrator spectral method was used to
discretize the KG equation [9,13], at r = 1 under different ¢ and t with a small mesh
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Table 4 Temporal error analysis: e;’};(t = 1) and e;’}éo(t = 1) with & = 1/16 for different ¢ and 7

e;‘é t=1 1=02 109/22 10/2% 19/20 19/28 79/210 19/212

g0 =1 3.74E—2 1.50E—3 3.82E—5 1.78E—6 1.09E—7 6.73E—9  3.32E—10
Rate - 2.32 2.65 221 2.01 2.01 2.17

£0/2 932E—2 4.80E—3 229E—4 135E-5 832E—7 5.11E-8  239E—9
Rate - 2.14 2.19 2.04 2.01 2.01 2.20
£0/22 9.65E—2 1.26E—2 7.09E—4 423E-5 26lE—6 1.60E—7  7.51E—9
Rate - 1.47 2.07 2.03 2.01 2.01 2.20
£0/2° 233E—2 4.10E-3 3.02E—4 195E—5 121E—6 747E—8  3.50E—9
Rate - 1.25 1.88 1.98 2.00 2.01 2.20
g0/2% 870E—3 330E—3 9.09E—5 6.00E—6 3.82E—7 236E—8 1.11E—9
Rate - 0.70 2.59 1.96 1.99 2.00 2.20
£0/2° 959E—4 8.29E—4 242E—4 373E—6 2.89E—7 18l1E—8  8.53E—10
Rate - 0.11 0.89 3.01 1.85 2.00 2.20
£0/20 471E—4 1.19B—4 133E—5 3.80E—6 2.13E—7 1.67E—8 8.01E—10
Rate - - 1.58 0.90 2.07 1.84 2.19
e0/2" 827E—5 2.88E—5 249E—6 176E—7  4.95E—8  1.30E—8  7.86E—10
Rate - - - 1.91 0.92 0.96 2.02
£0/28 3.33E-5 5.69E—6 3.28E—7 2.18E—8  337E—9  1.70E-9  6.57E—10
Rate - - - - 1.35 0.49 0.69
£0/2° 8.92E—6 3.98E—6 1.04E—7 546E—9 3.66E—10 5.75E—11 2.04E—11
Rate - - - - - 1.34 0.75
£0/210 230E—6 526E—7 159E—7 129E—9 897E—11 251E—11 234E—11
Rate - - - - - - 0.01
gg/21 3.05E—7 1.59E—7 5.64E—9 132E—9 721E—11 7.09E—11 7.43E—11
Rate — - - - - — -

gg/213 230E—8 7.26E—9 221E-9 7.75E—10 7.72E—10 7.72E—10 7.71E—10
Rate - - - - - - -

e;:’;o (t=1) 965E—2 126E—2 7.09E—4 423E—5 26lE—6 1.60E-7 7.51E—9
Rate - 1.46 2.00 2.00 2.00 2.00 2.00

size h = 1/16 such that the discretization error in space is negligible; and Table 6
lists similar results for the Crank—Nicolson leap-frog time-splitting spectral method
(CN-LF-TSSP), in which the time-splitting spectral method was used to discretize the
NLSE [4,13] and the Crank-Nicolson and leap-frog schemes were used to discretize
the linear and nonlinear terms in the KG equation, respectively [9,13].

From Tables 5 and 6, we can draw the following observations: (i) the e-scalability
of the PSAS-TSSP methodis 2 = O(1) and t = 0 (?) (cf. upper triangle above the
diagonal with values in italics of Table 5); and (ii) the e-scalability of the CN-LF-TSSP
methodish = O(1)and T = O(&3) (cf. upper triangle above the diagonal with values
in italics of Table 6). In fact, similar to the proofs in [4,9] for establishing error bounds
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Table 5 Temporal error ef/; (t = 1) of PSAS-TSFP with h = 1/16 for different & and t

e;’;(t =1 1©=02 19/22 10/2% 70/2° 19/28 79/210 19/212
g9 =1 351E-2 840E—4 5.14E—5 3.19E—6 1.89E—7 121E—8 1.00E—9
Rate - 2.69 2.01 2.00 2.03 1.98 1.80
£0/2 7.79E—2  450E—3 2.82E—4 1.76E—5 1.10E—6 6.85E—8  4.90E—9
Rate - 2.05 2.00 2.00 2.00 2.00 1.90
0/22 2.13E—1  1.75E—2  1.10E=3 6.96E—5 434E—6 275E—7 1.83E—8
Rate - 1.80 2.00 1.99 2.00 2.00 1.94
£0/2° 847E—1  288E—2 1.50E—3 939E—5 588E—6 3.78E—7  2.42E—8
Rate - 2.43 2.13 2.00 2.00 1.98 1.98
g0/2% 6.21E—1  741E—1 720E—3 3.7IE—4 230E-5 149E—6 9.21E-8
Rate - -0.13 3.34 2.13 1.99 2.00 2.00
£0/2° 146E—1  1.12E—1 127E—1 1.70E-3 864E—5 555E—6 3.42E—7
Rate - 0.19 —-0.09 311 2.14 1.98 2.01

Table 6 Temporal error e;’}; (t = 1) of CN-LF-TSFP with 7 = 1/16 for different ¢ and t©

C;’ﬁ(z =1) 70 =0.2 19/23 19/20 70/2° 79/212
eg=1 1.29E—1 2.30E-3 3.65E-5 5.71E-7 9.78E—9
Rate - 1.94 2.00 2.00 1.95
e0/2 1.31 3.26E-2 5.19E—4 8.12E—6 1.36E—8
Rate - 1.77 1.99 2.00 1.97
80/22 2.56 9.55E—1 1.64E-2 2.57E—4 4.10E-6
Rate - 0.71 1.95 2.00 2.00
80/23 2.09 2.49 8.42E—1 1.40E—-2 2.18E—4
Rate - —0.13 0.78 1.97 2.00
e0/2 2.28 2.39 2.60 8.46E—1 1.38E—2
Rate - —0.34 —0.06 0.81 1.98
80/25 1.64 1.35 2.72 1.82 7.99E—1
Rate - 0.14 —0.50 0.29 0.59

of the NLSE and KG equation, we can establish an error bound for the PSAS-TSSP
method under the condition 0 < 7 < & (details omitted here for brevity)

and respectively, an error bound for the CN-LF-TSSP method

2
oy T
HI ™ 82

n

T
€y 0<n<—, 5.2)
T

n
H1+‘ellf

<wm 4+l g=n=<l (5.3)
T
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provided that the exact solution satisfy ¢ € C([0, T]; H,TO'H(Q)) N C%([0, T1:

H'(RQ)) and y € C([0, T]; HJ*'()) N C'((0, T1; H'(R)) with mg > 2. Here
eg and e"v/ are defined in (4.4).

5.2 Convergence rates of KGS to its limiting models

Let (¥, ¢) be the solution of the KGS equations (1.3) withd = u = A = 1 and (5.1),
which is obtained numerically on a bounded interval 2 = [—512, 512] by the MTI-FP
method (3.15)—(3.17) with very finemesh &1 = 1/16and time stept = 10~*. Similarly,
let (Ysw, zsw) be the solution of the Schrodinger equations with wave operator (1.9)
withd = p = 2 = 1 and (1.10) and (5.1), which is obtained numerically on the
bounded interval Q2 by the EWI-FP method [7] with very fine mesh # = 1/16 and
time step 7 = 10~%; and let (s, zs) be the solution of the Schrodinger equations
(1.11) withd = p = A = 1 and (1.12) and (5.1), which is obtained numerically on
the bounded interval 2 by the TSFP method [4] with very fine mesh 2 = 1/16 and
time step T = 1074 Tt is easy to see that gy, = Y. Denote

bow (. 1) = &/ 2, (x, 1) + e T (x, 1),
do(x, 1) = e/ 2 (x, 1) + e T (x, 1),

and define the error functions as

Ngyw®
o
o
N
2
Nngw® 7€

- s RS
AU ' AN AN A

0.2

ng(H)

0 5 10 15 20
t t

Fig. 2 Time evolution of ngw(¢) and ns(¢) for the smooth initial data (5.1) under different &
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x10°
6

e=0.1

= = *e=0.05

nY¥(t)

ngw®

05
0.4
e 0.3
<0
& 02
04 /‘A
oz ' ‘ ‘
0 5 10 15 20
t

n¥@) / €2

) /€2

¢
sw

n

(t) /€2

¢
s

n

0.6
0.5
0.4
0.3]
0.2

0.1

150
100
50

P

oo

0 ‘ ‘ ‘
0 5 10 15 20
t

Fig. 3 Time evolution of n‘// (1), n?w (t) and ng) (t) with nonsmooth data (5.5) for m = 2 under different &

Nsw (@) = [l¢ (¢, 1) — dsw -, Dl g1 + 1Y, 1) — Ysw(, Dl g1,

ns(@) = oo 1) = ds Ol + 1Y G 1) = s Dl g (5.4)

Figure 2 depicts nsw(#) and ns(¢) for different ¢. In addition, here we also study
numerically convergence rates of the KGS equations (1.3) withd = u =X = 1 toits
limiting models when the initial data in (1.5) is not smooth. For this purpose, we take
the initial data in (1.5) as

x™ x|

2x sech (xz) , ¢ox) =

xMx| _2

Yo(x) = e

x eR,

¢](x) € ’
\/z
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nY¥ ()

4
0.3
w
< ~ 3
o0 02 e
< o0 5
f=gd
0.1 ;
7
’
0 : : : 0 : : :
0 5 10 15 20 0 5 10 15 20

t t

Fig. 4 Time evolution of n‘/’(t), n?w(t) and nf(t) with nonsmooth data (5.5) for m = 1 under different &

where m = 1 or 2. In order to see the convergence rate to the semi-limiting model

(1.9) or limiting model (1.11) in each component ¥ and ¢ more clearly, we define the
error functions

18 (0) = 116, 1) — pow (-, Dl gty 12() =l (, 1) — P, )l s
1V () = 1Y 1) — Yaw Ol = 19 Cot) = PG Dl .

Figure 3 depicts rf/’(t), ng’w(t) and ng’(t) for the nonsmooth initial data (5.5) with
m = 2 under different ¢ and Fig. 4 shows similar results when m = 1 in (5.5).
From Figs. 2, 3, 4, we can draw the following conclusions:
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(i) The solution of the KGS equations (1.3) with (1.5) converges to that of the
Schrodinger equations with wave operator (1.9) with (1.10) quadratically in &
(and uniformly in time) provided that the initial data in (1.5) is smooth or at least
satisfies o, V1, ¢o and ¢ € H*(RY), i.e.

I (-, ) — Ysw(-, t)”Hl(Q) + P, 1) — dsw(, f)||H1(Q) =< C082, t >0,

where the constant Cy > 0 is independent of € and time ¢ > 0.

(i) The solution of the KGS equations (1.3) with (1.5) converges to that of the
Schrodinger equations (1.11) with (1.12) quadratically in ¢ (in general, not uni-
formly in time) provided that the initial data in (1.5) is smooth or at least satisfies
Yo, V1, ¢o and ¢y € H3(RY), i.e.

1ot = UG Dl gy + I8¢ 1) — s Dl g1y < (C1 + C2T)e?,
0<t<T,

where Cy and C, > 0 are two positive constants which are independent of ¢ and
T. On the contrary, if the regularity of the initial data is weaker, e.g. ¥, ¥1, ¢o
and o1 € H 2(RY), then the convergence rate in ¢ collapses to linear rate while
the convergence rate in ¥ is still quadratic rate (and uniformly in time), i.e.

19 G, 1) = Y, Ol iy < Coe?,
loC. 1) — s, Dllpgq) = (C3+CsT)e, 0=t =T,

where C3 and C4 are two positive constants which are independent of ¢ and T'.
Rigorous mathematical justification for these numerical observations is on-going.

6 Conclusion

A multiscale time integrator Fourier pseudospectral (MTI-FP) method was proposed
and analyzed for solving the Klein—-Gordon—-Schrodinger (KGS) equations with a
dimensionless parameter 0 < & < 1 which is inversely proportional to the speed
of light. The key ideas for designing the MTI-FP method are based on (1) carrying
out a multiscale decomposition by frequency at each time step with proper choice of
transmission conditions between adjacent time intervals, and (2) adapting the Fourier
spectral method for spatial discretization and the EWI for integrating second-order
highly oscillating ODEs. Rigorous error bounds for the MTI-FP method were estab-
lished, which imply that the MTI-FP method converges uniformly and optimally in
space with spectral convergence rate, and uniformly in time with linear convergence
rate for ¢ € (0, 1] and optimally with quadratic convergence rate at O(t2) in the
regime when 0 < 7 < &2 and the error is at O(g?) independent of 7 in the regime
when 0 < & < t!/2. Numerical results confirmed these error bounds and showed
that the MTI-FP method offers compelling advantages over classical methods in the
nonrelativistic regime 0 < ¢ < 1. Numerical results suggest that the solution of the
KGS equations converges quadratically to that of its limiting models when ¢ — 0.
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Appendix: Explicit formulas and estimates for the coefficients used in
3.14)

Define the functions

_ s sin(w(s—0)) s cos(wy(s—0))
pi(s) = Jo FEEL=2dO, pi(s) = [y SE—d0,
QI(S) _f? sm(wl(s (9))0d0 ql(s) f? cos(wl(s 9))9d9
2_ 1
cit(s) 1= iem ik fg el(“’ ) do, ¢ (s) = ie*’Mszos e’("' Z)Qde,
djt (s) = ie MY [Te ()09, dy (s) = ie S [Te (%) g,
(7.1

Taking s = t in (7.1), after a detailed computation, we have

1 — cos(w;T) , sin(w; T)
@) =—7 55— plO=—5—,
£ a)l & (1)[
- Tw; — sin(w;T) ') 1 — cos(w;T)
)= ——, )= —->——,
1 e2w; o e2w?
. r(2a L .
82e—1p,l2r (elf(#ri‘gz) _ 1) 82 (e*iﬂi;z _ efzs—z)
+ -
c (T) e ’ C (T) = ’
! 1+ &2} ! 1—e2u?

.2 .

e T .2
df (1) = ————|e? (82 —it (1 + &2 2)) _gZGIM/f]
o (1+82M12)2[ g

d; (v) = e |:e 2 (52 —it (ezuz - 1)) - 82ei“12T] .
a2 1
Based on (7.1) and noting &2} = \/H-T > 1, we have

Ipz(r)l—‘/ sin(w; (t — 0)) Q‘S/twd9</ 1d6 < 7.
0 0

2
erw */1+82M12

Similarly, we can get

2
T N N
la (0 <% Ipjol < ok lg/ (D < R l=——,..., = -1
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Again, based on (7.1) and noting 82(1)12 =,/1+ 82/L12 > e|u|, we get

’ i —0 1
Ol 5/ I | | sin(ay (T ))|d9 5/ Lo < 3
0 0 &

,/1+82M12 €

T9 3 -0 Tg 2
g (T) il 5/ |M|\|/SIH(L(T ))|d9 5/ Zdo < T
0 1+ &2} 0 ¢ €
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