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Abstract

In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the
Klein-Gordon-Schrodinger (KGS) equations with/without damping terms. The key features of our methods are based
on: (i) the application of a time-splitting spectral discretization for a Schrédinger-type equation in KGS, (ii) the utilization
of Fourier pseudospectral discretization for spatial derivatives in the Klein—-Gordon equation in KGS, (iii) the adoption of
solving the ordinary differential equations (ODEs) in phase space analytically under appropriate chosen transmission con-
ditions between different time intervals or applying Crank—Nicolson/leap-frog for linear/nonlinear terms for time deriva-
tives. The numerical methods are either explicit or implicit but can be solved explicitly, unconditionally stable, and of
spectral accuracy in space and second-order accuracy in time. Moreover, they are time reversible and time transverse
invariant when there is no damping terms in KGS, conserve (or keep the same decay rate of) the wave energy as that
in KGS without (or with a linear) damping term, keep the same dynamics of the mean value of the meson field, and give
exact results for the plane-wave solution. Extensive numerical tests are presented to confirm the above properties of our
numerical methods for KGS. Finally, the methods are applied to study solitary-wave collisions in one dimension (1D), as
well as dynamics of a 2D problem in KGS.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Klein—-Gordon—Schrodinger equations; Nonlinear Schrédinger equation; Klein—-Gordon equation; Wave energy; Time splitt-
ing; Plane wave; Solitary wave; Unconditionally stable; Schrodinger—Yukawa equations

1. Introduction

The specific problem we study numerically is the Klein—-Gordon—Schrodinger (KGS) equations describing a
system of conserved scalar nucleons interacting with neutral scalar mesons coupled through the Yukawa inter-
action [31,15]:
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Oy +AY + oy +ivy =0, xeRY >0, (1.1)
20,0+ 70,0 — AP+ — [P =0, xeR’ >0, (1.2)
Y(x,0) =y(x), ¢(x,0)=9"(x), 8p(x,0)=¢"(x), xR, (1.3)

where the complex-valued unknown function = (x,¢) represents a scalar nucleon field, the real-valued
unknown function ¢ = ¢(x,¢) represents a scalar meson field, ¢ > 0 is a parameter inversely proportional
to the speed of light, and y and v are two nonnegative parameters. In fact, when e=1,7y =0 and v=0,
it reduces to the standard KGS [15]. When v> 0, a linear damping term is added to the nonlinear Schro-
dinger equation (1.1) for arresting blowup. When y > 0, a damping mechanism is added to the Klein—Gor-
don equation (1.2).

There was a series of mathematical study from partial differential equations for the KGS (1.1), (1.2) in
the last two decades. For the standard KGS, i.e. e=1,y =0 and v =0, Fukuda and Tsutsumi [14-16]
established the existence and uniqueness of global smooth solutions, Biler [9] studied attractors of the sys-
tem, Guo [17] established global solutions, Hayashi and Von Wahl [21] proved the existence of global
strong solution, Guo and Miao [18] studied asymptotic behavior of the solution, Ohta [33] studied the sta-
bility of stationary states for KGS. For plane, solitary and periodic wave solutions of the standard KGS,
we refer to [12,22,28,39]. For dissipative KGS, i.e. ¢e=1, y>0 and v> 0, Guo and Li [19,27], Ozawa and
Tsutsumi [34] studied attractor of the system and asymptotic smoothing effect of the solution, Lu and
Wang [30] found global attractors. For the ‘nonrelativistic’ limit of the Klein-Gordon equation, we refer
to [7,8,37,11].

In order to study effectively dynamics and wave interaction of the KGS, especially in 2D and 3D, an
efficient and accurate numerical method is one of the key issues. However, numerical methods and sim-
ulation for the KGS in the literature remain very limited. Xiang [40] proposed a conservative spectral
method for discretizating the standard KGS and established error estimate for the method. Zhang [41]
studied a conservative finite difference method for the standard KGS in one dimension (1D). Due to that
both methods are implicit, it is a little complicated to apply the methods for simulating wave interactions
in KGS, especially in 2D and 3D. Usually, very tedious iterative method must be adopted at every time
step for solving nonlinear system in the above discretizations for KGS and thus they are not very efficient.
In fact, there was no numerical result for KGS based on their numerical methods in [40,41]. To our
knowledge, numerical simulation results for KGS are very limited in the literature [25,10], especially in
2D and 3D as well as in the ‘nonrelativistic’ limit regime, i.e. 0 < ¢ < 1. Thus, it is of great interests
to develop an efficient, accurate and unconditionally stable numerical method for KGS. Such a numerical
method is proposed here and it is applied to study the dynamics and wave interaction of the KGS (1.1)—
(1.3). The key points in designing our new numerical methods are based on: (i) discretizing spatial deriv-
atives in the Klein—-Gordon equation (1.2) by Fourier pseudospectral method, and then solving the ordin-
ary differential equations (ODEs) in phase space analytically under appropriate chosen transmission
conditions between different time intervals or applying Crank-Nicolson/leap-frog for linear/nonlinear
terms for time derivatives [5,4]; and (ii) solving the nonlinear Schrédinger equation (1.1) in KGS by a
time-splitting spectral method [36,13,3,1], which was demonstrated to be very efficient and accurate and
applied to simulate dynamics of Bose-Einstein condensation in 2D and 3D [2] and three-wave interactions
in nonlinear optics [6,29]. Our extensive numerical results demonstrate that the methods are very efficient
and accurate for KGS. In fact, similar techniques were already used for discretizing the Zakharov system
[5,24] and the Maxwell-Dirac system [4,23].

The paper is organized as follows. In Section 2, we review some properties of the KGS equations and
study dynamics of the mean value of the meson field. In Section 3, we present new efficient and accurate
numerical methods for discretizing KGS. In Section 4, we study properties of our numerical discretiza-
tion for KGS. In Section 5, we test the accuracy and stability of our methods for KGS with a solitary-
wave solution, and apply them to study numerically dynamics of a plane wave, soliton—soliton collisions
in 1D with/without damping terms and a 2D problem of KGS. Finally, some conclusions are drawn in
Section 6.
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2. Properties of the KGS equations

In this section, we will review some properties of the KGS equations (1.1)—(1.3) including time reversible,
time transverse invariant, conservation laws, and plane and solitary waves in 1D. We also study dynamics of
the mean value of the meson field and the ‘nonrelativistic’ limit of KGS.

(a) Time reversible and time transverse invariant. When y = 0 and v =0 1in (1.1)—(1.3), the KGS is time revers-
ible and time transverse invariant. If constants o and f are added to the initial data (ﬁ(O) and ¢V in (1.3),
respectively, i.e., ¢©(x) — ¢©(x) + « and ¢V (x) — ¢V (x) 4 B, then the solutions ¢(x,7) and W (x, )
obtained from (1.1)~(1.3) get added by acos(t/¢) + Besin(¢/¢) and multiplied by el*(*sin(t/a)=fecos(t/z)
respectively, i.e. ¢(x, 1) — ¢(x,1) + acos(t/e) + Besin(t/e) and Y(x, 1) — (x, ¢)elesint/e)=fecost/s) - which
leaves the density |i/(x, )| unchanged.

(b) Conservation laws. When y = 0 and v = 01n (1.1)—(1.3), the KGS has at least two invariants which are the
wave energy

D(¢t) == / [ (x,1)] dx—/ |x// \dx =D(0), t>=0, (2.1)
and the Hamiltonian

) = [ [367000 + 2(0(x.0)* + [990x.0P) + V000 ~ 0G0, d

1 2.2
= [ 3@V + 2000 + 1967 W)+ 1900~ 06 o, (22)
=H(0), ¢t=0.
Furthermore, when v > 0, we have
/ W(x,7)|*dx = ’2”/ W (x)|Pdx := e 2"D(0), >0, (2.3)
which implies D(¢) decay to 0 exponentially when v > 0. And when y > 0 and v =0, we have
H' (1) = dH 778/ [0, (x, 1)[dx < t =0, (2.4)

which implies that H(¢) decreases when time ¢ increases.
(¢) Plane-wave solutionin ID. Whend =1,y =0,v=0and ¢ =11in (1.1)-(1.3), and the initial data in (1.3) is
chosen as

¢<0)(x) =d >0, ¢(l)(x) =0, ¢<0>( ) = \/c?exp ( bZTtb;)’ x € R, (2.5)

with / an integer, and a, b and d constants, the KGS admits the plane-wave solution [12]:

2nlx

¢, 1) =d, Y(x,1) = Vdexp {i (b

—wt)} xeR, =0, (2.6)

where

2nl
o= (b — a) —d
(d) Solitary-wave solution in 1D. When d=1, y =0 and v=0 in (1.1)«(1.3), the KGS admits the solitary-
wave solution [22]
W, (x,7) = 3Bsech’(Bx + c.t) expli(dsx + (4B* — d2)t)], (2.7)
¢, (x,t) = 6B’sech®(Bx 4 cst), x€R, t>0,
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where

4B — 1 1 4B — 1 cyr
cx ==+ 2¢ _O(E)’ de =7 4B¢ __E_O(g)

with B > 1/2 a constant.
(e) Dynamics of the mean value of the meson field when v = 0. Define the mean value of the meson field

as
N = Ng(.0) = [ dxndx, 1> 0 (29)
Rd
Integrating (1.2) over RY, integration by parts and noticing (2.3), we obtain
eN"(t) + 7eN’'(t) + N(t) = D(0), =0, (2.10)
with initial condition as
NO =N = [ 60 N0 =M@= [ 90 xax (211)
Rd
Denote
0y EVY -4 0 v WVr -4 _ VAP
S T )~2*2—87 /1072_8, :BO* 2¢ : (212)

Solving the ODE (2.10) with the initial data (2.11), we get the dynamics of the mean value of the meson field
when v =0:

(i) fory>2
N(¢") = (N (@) = D) o —N(¢") + (N(@") — D(0)) s,

e+ 00 e

N(7) = D(0) +
1) =D(0) N =25 N =2

(i) fory=2
N(1) = D(0) + (N(¢"”) = D(0))e™ + (N(¢")) = 20(N(¢"”) — D(0)))ze’;

and
(i) for0<y<?2

N(@@") — 2N (") — D(0))

N(t) = D(0) + &' [ (N(¢'”) — D(0)) cos(Byt) + sin(Byt) |-
These immediately imply that lim,_.,.N(¢) = D(0) when y > 0, and N(¢) is a periodic function with period

T = 2en when y = 0.
(f) ‘Nonrelativistic’ limit. When ¢ — 0 in (1.1), (1.2), corresponding to infinite speed of light, we get formally
the well-known Schroédinger—Yukawa (S-Y) equations without (v = 0) or with (v > 0) a linear damping

term:
Oy +AY + oy +ivy =0, xeR? >0, (2.13)
—Ap+p =), xeR’ 1>0. (2.14)

When v = 0, the S-Y equations (2.13) and (2.14) is time reversible, time transverse invariant, and preserves the
following wave energy and Hamiltonian:

/ W (x, 1) dx, (2.15)
HY = / ) [2 (&°(x,1) + Vo, OF) + [V (x, 0] = [Y(x, ) p(x, 1) | dx. (2.16)



W. Bao, L. Yang | Journal of Computational Physics 225 (2007) 1863—1893 1867

Similarly, letting ¢ — 0 in (2.2), we get formally the quadratic convergence rate of the Hamiltonian from KGS
with v =7 =0 to S-Y in the ‘nonrelativistic’ limit regime, i.e., 0 < ¢ < 1:

1) = [ |30+ [900.07) + (90, 0F = 0 Pot0ax + 2 [ @otx.0)ax
~ HY +0(). (2.17)

Our numerical results in Section 5 confirm this asymptotic result.

3. Numerical methods for the KGS equations

In this section, we present new efficient and accurate numerical methods for the KGS (1.1)—(1.3). For sim-
plicity of notation, we shall introduce the method for KGS in 1D with periodic boundary conditions. Gener-
alizations to higher dimensions are straightforward for tensor product grids and the results remain valid
without modifications. For d = 1, the problem becomes

Y, )+ 0y +ivy+ ¢y =0, a<x<b, t>0, (3.1

F0up + )0 — 0+ — Y =0, a<x<b, >0, (3.2)

Y(a,t) =y(b,t), OW(a,t)=0(b,t), t=0, (3.3)

dla,t) = ¢(b,t), Ocp(a,t) =0.¢(b,t), t =0, (3.4)

(0 =), $(x0 =¢Vx), a0 =¢"(x), a<x<b. (3.5)
As is well known, the above KGS in 1D has the following properties:

D(t) = / () Pdx = / W) e = eD(0), 13 0 (3.6)

So when v =0, D(¢) = D(0), i.e., it is an invariant of the KGS. When v > 0, it decays to 0 exponentially. Fur-
thermore, when v =0 and y = 0, the KGS also conserves the Hamiltonian:

() = [ |50 + 205,07 + @) + b O = s O bl = HO). 10,
(3.7)

In some cases, the periodic boundary conditions (3.3) and (3.4) may be replaced by the homogeneous Dirichlet
boundary conditions

Y(a, 1) =(b,t) =0, ¢(a,1)=(b,1) =0, 1=0. (3.8)
We choose the spatial mesh size 7 = Ax > 0 with 2 = (b — a)/M for M being an even positive integer, the
time step size being £ = Ar > 0 and let the grid points and the time steps be
xj:=a+jh, j=0,1,...,.M; t,:=mk, m=0,12,....
Let y" and ¢7' be the approximations of y/(x;,,) and ¢(x;,1,), respectively. Furthermore, let ™ and ¢™ be
the solution vector at time ¢ = t,, = mk with components ' and ¢7', respectively.

From time ¢ = ¢, to ¢t = t,,,1, the first NLS-type equation (3.1) is solved in two splitting steps [1-3,36]. One
solves first

10,y + 0y = 0, (3.9)
for the time step of length &, followed by solving
10 +ivy + ¢y =0, (3.10)

for the same time step. Eq. (3.9) will be discretized in space by the Fourier spectral method and integrated in
time exactly. For each fixed x € [a,b], integrating (3.10) from time ¢t =¢, to ¢t =t,, =t,+k, and then
approximating the integral on [¢,,?,.] via the trapezoidal rule [5,4], we obtain
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W (x, tny1) = €Xp [/ W(—v +igp(x, ‘L'))d‘[:| W(x, t,)

¢(x7 tm) + ¢(xa tm+1)
2

N

= exp [—vk +ik }lﬁ(x, tw), a<x<b. (3.11)

3.1. Phase space analytical solver + time-splitting spectral discretizations (PSAS-TSSP)

The Klein—-Gordon equation (3.2) in KGS is discretized by using a pseudospectral method for spatial deriv-
atives and then solving the ODEs in phase space analytically under appropriate chosen transmission condi-
tions between different time intervals. From time ¢ = ¢,, to ¢t = ¢,,.1, assume

M/2-1

b )= > PO a<x<bh, by <t <ty (3.12)

I=—M/2

where y, = 2L and (])7’(0 is the Fourier coefficient of the /th mode. Plugging (3.12) into (3.2) and noticing the

~ b

orthogonality of the Fourier functions, we get the following ODE:s:
¢t der(t - .
& ﬁ;( L iy d’C{f Ly G4 0dr - (W)l )r =0, ty <t<tyer, m >0, (3.13)
. 5O = M M
¢71(tm)={~(¢ )“ m =0, I=-F...5 L (3.14)
&7 (tn), m >0,

For each fixed / (-M/2 <1< M/2—-1), Eq. (3.13) is a second-order ODE. It needs two initial conditions
such that the solution is unique. When m =0 in (3.13) and (3.14), we have the initial condition (3.14) and
we can pose the other initial condition for (3.13) due to the initial condition (3.5):

d- d- o M M
TR =20 = (87)1 1=-F,. T (3.15)
Denote
P AGE ) R e T T ) VAT -2
o= VA D) VY 4(u1+1)7 g A+ 1) =7 (3.16)
2¢ 2¢ 2¢

Then the solution of (3.13), (3.14) with m =0 and (3.15) for / (—-M/2 <1< M/2)and 0 <t <t 18

(i) For y» —4(@2 +1) >0

~ O — — O
d)(l)(t) _ ('u% - 1)1 yz = :(’u? - 1) <¢(1))[ (¢(0)) ('u% - l)l s eh!
N _ Lo
_ m (qﬁ“))/ _ (¢<0)>l _ w a | e (3.17)

(ii) for > —4(12 +1) =0,

WM+ @:),_M+ (o) +2 @,_M et (s

and
(iii) for y* —4(pr +1) <0
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— _ ’(E))/z - ’(5)“2
<7)(l)(t):ei%’% (Cb(l))ﬂrzlg ((15(0))1("1;“)1 sin(ft) + <¢(0))1(|Z;+|1)1

(1wr),

t)| +
cos(fit) ]

(3.19)
But when m > 0, we only have one initial condition (3.14). One cannot simply pose the continuity between

4 7 (1) and %(}7"1 (¢) across the time ¢ = ¢, because the last term in (3.13) is usually different in two adjacent

time intervals [¢,_i,t,] and [¢,, t,.1]; 1.€., (|1//(tm,1)|2>; #* (|1//(tm)|2) ;. Since our goal is to develop an explicit

scheme and we need to linearize the nonlinear term in (3.2) in our discretization (3.13), in general,

d-,. . d - . d - d- M M

—¢" N (t) = lim — ¢! lim — @7 (1) = — 7 (¢! =1,2,... =——,..., =1L 2

dt ! (tm) ZHI}% t¢l (t) 7é tirg df¢l (t) dt¢[ (tm)v m < ’ l 2 ’ ) 2 (3 0)
Unfortunately, we do not know the jump $ or(eh) — & d7~'(r,) across the time ¢ = 1,,. In order to get a unique
solution of (3.13) and (3.14) for m > 0, we pose here an additional condition:

- ~ M M

(,Zs;n(tm—l):d)}]nil(tm—l)a lz_?a"'vf_l' (321)

Condition (3.21) is equivalent to posing that the solution &T(t) on the time interval [¢,,7,.1] of (3.13) and
(3.14) is also continuous at the time ¢ =1, ;. After a simple computation, we get the solution of (3.13),
(3.14) and (3.21) with m > 0 for I (I = —M/2,... . M/2 — 1) and t, < { < twsr:

(i) for > —4(p2 +1) >0

2
m 1 <|l/j | )1 - m— S m— — —
1) = S | @2 = 1) + @) (tuor) — @7 (t)e 2 [ P11

P (W|2)l(e:“1 — 1)+ @ (tnr) — @) (t)e ™ el +w' (3:22)
e*k/iz — e*k/ll ’u% + 1 ! m—1 I m 1 T 1 .

(ii) for 2 —4(;2 +1) =0

(‘m?’. (3.23)

and
(iii) for 2 —4(w2 +1) <0

_2t—tm)

i ] W),
() = <z>;"'<rm>—q (cos(B(t — tn)) + cot(BK) sin(B(t — 1))

1+
() singpte—ny|  (WF):
e W_(ﬁl (1) sin(Bk) + w+1 (3.24)

From time ¢ = ¢, to t = t,,,1, we combine the splitting steps via the standard Strang splitting [35,1,3]:
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M/2-1 A
Pt = Z (¢ il
’ =M /2
mpa
lp*: Z C_lk”/ﬂ(lpm)lewl(x/_a),
S

o vk 2
lpj =¢ ) lpj7

M/2-1
= Y e IR, 0K <M =1, m > 0
I=M/2

where a, the Fourier coefficients of a vector U = (U,, Uy, Us, ..., UM)T with Uy =

1 & 4 M M
_ iy (xj—a) _ ~
7M§7 Ue i@ | = R 1,
and
(i) for > —4(w2 +1) >0

s(ef‘-lkfeizh) (@) 1+ _"’ulf"zkf%ze’*k) (;0/)) !

P2 —4(i3 +1 72 =4 +1)
o(dae 1 —iye2k) (WP _
(¢"), = +< VA +1> g m=0,

_ela+ik (d)m—l)[ + (M 4 ek (?Jm/)l

m|2
+(eMh — 1) (e - 1) (v )1, m=1;

;t%Jrl

(ii) for 2 —4(2 +1) =0 -
(1+%e= (¢<°> + ke s (qﬁ(l))]

kY ok WO R)
(q;r;:l)l _ _<(1 +5)es - 1) (,43+1) , m=0,
2e % (¢"), —eF (¢ 1),

N 2 m2
+(e’3’t—l) (Wzl)l, m = 1;

Hy+l

and
(iii) for 9> —4(u7 +1) <0

(cos(Bh) + 5 sin(B) ) % (6, + 288 (40),

(), = —((cos/(fk) + 55 sin(k) )e % 1)('?—;> m=0,
—eH (@™ )+ 2cos(Bh)eE (9"
—(2 cos(fk)e % — et — 1) (E;i)f, m> 1.

The initial conditions (3.5) are discretized as

W=y"0x), ¢=0"), oV =¢"(), 0<j<M.

(3.25)

(3.26)
Uy, are defined as

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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Note that the spatial discretization error of the above method is of spectral order accuracy in /4, and the
time discretization error is demonstrated to be of second-order accuracy in k in Section 5 from our numerical
results.

3.2. Crank—Nicolson leap-frog time-splitting spectral discretizations (CN-LF-TSSP)

Another way to discretize the Klein—-Gordon equation (3.2) in the KGS is by using a pseudospectral
method for spatial derivatives, followed by application of a Crank—Nicolson/leap-frog method for linear/non-
linear terms for time derivatives:

m+-1 m m—1 m+1 m—1
¢TT =297 + @' "
82 J 4)2/ d)/ &y d)/ d)/

— DL(B" " + (1= 2B)¢" + " ).,

k 2k
+ (B + (1= 2B)¢7 + By ™) — WP =0, 0<j<M, m=>0, (3.32)
where 0 < < 1/2 is a constant; D/, a spectral differential operator approximation of 9., is defined as
‘ M-t
DLU|_, =— > wUeht, (3.33)
I==M/2

When f = 0 in (3.32), the discretization (3.32) to the Eq. (3.2) is explicit. When 0 < f < 1/2, the discretization
is implicit, but can be solved explicitly. In fact, suppose

M1
¢j = Z (¢™) =9 j=0,...,M, m=0,1,.... (3.34)

I=—M/2

Plugging (3.34) into (3.32) and using the orthogonality of the Fourier functions, we obtain for m > 1

m+1 _ ;m) m—1 m+1 _ m—1 .
&2 (") 2(f2)1+(¢ )l+8’/ (¢ )zzk(ff’ )1_ (|lpm|2)l+('u%+1)(ﬁ(¢m+l)l
+(1=28) (@) +B(@" 1)) =0, 0< <M. (3.35)

Solving the above equation, we get

Sy 422028 - D) + D

2evk —
m+1 _ my 1— m—1
(@), 2B + 1) + epk + 262 (@™ ( 273 + 1) + epk + 2¢2 (@™
21> — M M
+ ") 5 <I<s, m=L 3.36
22 B(13 4 1) + eyk 4 2¢2 ("p |)’ 2 " (3.36)

From time ¢ = ¢, to ¢t = t,,,1, we combine the splitting steps via the standard Strang splitting [35,1,3]:

Mp2-1
¢;n+1: z (qsm-l—l)lem,(xj_a)7 (337)
I=—M)2
M/2-1
A —— .
o= S e et
I=—M /2

- k(P 2

Wj = o YRk T/ l//j
M/2-1 .

Y= 30 e MRy e 0< <M =1, m >0, (3.38)

I=—M)2
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The initial conditions are discretized as

9 =4 _

=0V, 0<j<M-1L (3.39)

W=y ), ¢ =),
This implies that

oy, 2BV + DE o KRB + 1) — ek +287) )
(9= 2(e2 + B + D)i?) ((b >l+ 2(82;3(#?+1)k2) (d) )1

S o2
T2+ BGE + D) (W | )" (3.40)

Note that the spatial discretization error of the method is of spectral order accuracy in /4 and the time discret-
ization error is demonstrated to be second-order accurate in k in Section 5 from our numerical results.

4. Properties of the numerical methods

In this section, we will study properties of our new numerical methods for KGS, which are the discretized
version of those reviewed in Section 2. Define the usual -norm and mean value of a vector
U= (Uy,Uy,...,Uy)" which is a discretization of a periodic function U(x) on the interval [a,b] with
U;=U(;) (j=0,1,...,M) as

Ul =

(a) Time reversible and time transverse invariant. When v = 0 and y = 0, the numerical methods PSAS-TSSP
(3.25)—(3.26) and CN-LF-TSSP (3.37)—(3.38) are time reversible, i.e. they are unchanged if we inter-
change m + 1 <> m — 1 and k < —k. Furthermore, the PSAS-TSSP (3.25) and (3.26) is time transverse
invariant. If constants o and f§ are added to the initial data ¢” (x;) and ¢ (x;) in (3.5), respectively, i.e.
d)(o)(xj) — ¢(0>(xj) + o and (;S“)(xj) + B, then the solution ¢} and /' obtained from (3.25)~(3.26) get
added by o cos(t,/¢) + Besin(z,/¢) and multiplied by e“(*sin(n/o)=fecostn/o)) " respectively, ie. ¢} — ¢+
208 (1 /&) + Pesin(t,/e) and Y — el sintn/a-fecostin/e)) “which leaves the wave energy density |1p;.”|2
unchanged. This property is not kept by the finite difference method [41,25,10] and the spectral method
[40,38] used for KGS in the literature.

(b) Plane-wave solution in ID. When d=1,e=1, y=0 and v=20 in (3.1)—(3.5) and the initial data (3.5) is
chosen as (2.5), the KGS in 1D admits the plane-wave solution (2.6). It is easy to see that in this case our
numerical methods PSAS-TSSP (3.25)—(3.26) and CN-LF-TSSP (3.37)—(3.38) give exact results, pro-
vided that M > 2(]I| + 1).

(c) Dynamics of the wave energy. For the discretizations (3.25)—(3.26) and (3.37)—(3.38), we have the follow-
ing result for dynamics of wave energy in discretized level:

Theorem 4.1. The discretizations PSAS-TSSP (3.25)~(3.26) and CN-LF-TSSP (3.37)-(3.38) for KGS possess
the following properties:

my2 oy 2 “ow 2
" = e Y0l = e > [z, m=0,1,2,.... (42)

Proof. Follow the line of the analogous results for the damped NLS [1]and the Zakharov system [5] by a time-
splitting spectral method. [

(d) Dynamics of the mean value of the meson filed when v = 0. When v = 0, for the discretization PSAS-TSSP
(3.25)—(3.26), we have the following results for the dynamics of the mean value of the meson field in dis-
cretized level:
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Theorem 4.2. When v=0, the discretization PSAS-TSSP (3.25)-(3.26) for KGS possesses the following
property:

(i) when y>2

N(") = (N (") - D(0)) ~N (@) + (N (@) = D(0) s,

m+1y __ /lll)tm“ 1
N(¢™) = D(0) + i? - }g e + 1(1) — ig e ; (4.3)
(i) when y =2
N(g"!) =D(0) + (V@) = D)1 + (V@) = 20(N($") = D(O))tmire (44

and
(iii) when 0 <y < 2
N(@") = (N (9"") — D(0))
Bo

N(¢™") = D(0) + ™1 | (N($) — D(0)) cos(Botmsr) + sin(fotm+1) |;

4.5
where “3)

b M-1

D(0) = N(lol*) === >~ W (x)) P (4.6)

Jj=

Proof. See Appendix A. [

(e) Unconditional stability. By using the standard von Neumann analysis for the discretizetion PSAS-TSSP
(3.25)—(3.26) and CN-LP-TSSP (3.37)—(3.38), we have

Theorem 4.3. The discretization PSAS-TSSP (3.25)—(3.26) is unconditionally stable for any parameter value
y = 0, time step k>0 and mesh size h>0. When 1/4 < < 1/2 and y =0, the discretization CN-LP-TSSP
(3.37)-(3.38) is unconditionally stable; and when 0 < < 1/4 and y= 0, it is conditionally stable under the
stability condition

2he
V(= 4p) (2 + i)

k<

(4.7

Proof. See Appendix B. [
5. Numerical examples

In this section, we will first test accuracy of our new numerical methods for KGS, then apply them to study
solitary-wave interactions in 1D, and finally present a 2D example to demonstrate the efficiency and high accu-
racy of our numerical methods for KGS.

In all examples except for the plane wave, the initial data for (3.5) are always chosen such that y'©, ¢” and
¢V decay to zero sufficiently fast as |x|t — co. We always compute on a domain, which is large enough such
that the periodic boundary conditions (3.8) do not introduce a significant aliasing error relative to the problem
in the whole space.

5.1. Accuracy test of our numerical methods

Example 1. The standard KGS with a solitary wave solution in 1D, i.e., we choose d=1and v=0in (1.1)—
(1.3). The initial data in (1.3) is chosen as

VO =y, (x,t=0),0"x) =, (x,t=0), ¢"(x)=0¢,(x,t=0), xeR; (5.1)
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where Y, and ¢, are given in (2.7), (2.8). In our computation, we take B=1 in (2.7), (2.8) and solve the
problem on the interval [—32,32], i.e., a = —32 and b = 32 with periodic boundary conditions. When y =0,
the KGS admits the well-known solitary wave solution (2.7)—(2.8) as exact solution. When y > 0, there is
no analytical solution and we let i and ¢ be the ‘exact’ solutions which are obtained numerically by using
our numerical method with a very fine mesh and small time step size, e.g. h =35 and k = 0.0001. Let v, ,
and ¢, be the numerical solution obtained by using our method with mesh size /1 and time step k.

We present computations for two different regimes of the speed of light, i.e., 1/e.

Case I. O(1)-speed of light, i.e. we choose ¢ =1 in (1.3) and (2.7)—(2.8). Here, we test the spatial and tem-
poral discretization errors, conservation of the conserved quantities. To quantify the numerical
results, we define the error functions as

er(t) = W) — e Ollis ex(t) = 16C+0) — (D)
GO = Ol oG D) — Dl e(r) e(t)
O=""ole T~ 160l eIl 60

First, we test the discretization error in space. In order to do this, we choose a very small time step,
e.g., k =0.0001, such that the error from time discretization is negligible compared to the spatial discret-
ization error, and solve the KGS with different methods under different mesh size 4 and y. Table 1 lists
the numerical errors of e(¢) and e,(¢) at t =2 with different mesh sizes 4 and parameter values y for
different numerical methods.Second, we test the discretization error in time. Table 2 shows the numerical
errors e;(¢) and e,(¢) at t=1.0 under different time steps k& and mesh sizes /& for different numerical
methods.Third, we test the conservation of the conserved quantities. Table 3 presents the quantities
and numerical errors at different times with mesh size % :% and time step k= 0.0001 for different
numerical methods.

Case II. “Nonrelativistic’ limit regime, i.e. 0 < ¢ < 1. We take y =0 in (1.2). Here we test the e-resolu-

tion for different methods when ¢ — 0. Two types of initial data are chosen:
e Type 1. O(¢)-wavelength in the initial data, i.e. we choose the initial data as in (5.1) with e.
e Type 2. Well-prepared initial data with O(1)-wavelength, i.e., we choose the initial data as

|/2.

Table 1
Spatial discretization errors e;(¢) and e,(¢) at time 7 = 2 for different mesh sizes 4 under & = 0.0001. I: For y =0 (upper 4 rows); II: for
y = 0.5 (lower 4 rows)

Mesh h=1.0 h=1/2 h=1/4
PSAS-TSSP ey 1.341 5.031E -3 9.006E — 8
e 1.056 8.342E - 3 7.476E — 7
CN-LF-TSSP e 1.341 5.031E -3 8.418E — 7
e 1.056 8.342E - 3 7.491E — 7
CN-LF-TSSP e 1.341 5.031E -3 9.327E — 8
e 1.056 8.342E - 3 7.510E — 7
CN-LF-TSSP e 1.341 5.081E — 3 1.140E — 7
e 1.056 8.342E -3 7.587E -7
PSAS-TSSP e 0.823 4.094E — 3 1.127E — 6
e 0.715 3.324E -3 1.729E — 6
CN-LF-TSSP ey 0.823 4.094E -3 1.612E — 6
e 0.715 3324E -3 1.078E — 6
CN-LF-TSSP e 0.823 4.094E — 3 1.625E — 6
e 0.715 3.324E -3 1.105E — 6
CN-LF-TSSP e 0.823 4.094E -3 1.622E — 6

e 0.715 3324E -3 1.120E — 6
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Table 2
Temporal discretization errors e; (¢) and e, (¢) at time z = 1 for different time steps k. I: For y = 0 (upper 4 rows); II: fory = 0.5and h = 1/4
(lower 4 rows)

h Error k=3 k=1 k=g k= s
PSAS-TSSP i e 7.414E -3 4.728E — 4 2971E -5 1.861E — 6
e 2.409E — 3 1.538E — 4 9.681E — 6 7.421E -7
i e 7.414E -3 4.728E — 4 2971E -5 1.859E — 6
e 2.409E -3 1.538E — 4 9.672E — 6 6.054E — 7
CN-LF-TSSP (f=0) % e 7.935E -3 5.067E — 4 3.185E -5 1.995E — 6
e 7.882E — 4 5.086E — 5 3.242E -5 4.738E — 7
3 e 7.935E -3 5.067E — 4 3.185E -5 1.993E - 6
e 7.882E — 4 5.086E — 5 3212E-6 2.013E -7
CN-LF-TSSP (f =1/4) i e 6.714E - 3 4.269E — 4 2.681E — 5 1.680E — 6
e 5.690E — 3 3.622E — 4 2275E -5 1.486E — 6
i e 6.714E - 3 4.269E — 4 2.681E — 5 1.678E — 6
e 5.690E — 3 3.622E — 4 2.274E -5 1.423E -6
CN-LF-TSSP ( =1/2) i e 6.737E — 3 4.284E — 4 2.690E — 5 1.685E — 6
e 1.061E — 2 6.752E — 4 4237E -5 2.686E — 6
% e 6.737E — 3 4.284E — 4 2.690E — 5 1.683E — 6
e 1.061E — 2 6.752E — 4 4237E -5 2.651E -6
Error k:}1 k:é k:f—é k:3]_2 kz&
PSAS-TSSP e 4.135E — 1 7.965E — 2 1.885E — 2 4.694E — 3 1.173E - 3
e 9913E -2 2.287E — 2 5.500E — 3 1.364E — 3 3.402E — 4
CN-LF-TSSP ( =0) e 3.948E — 1 7.120E — 2 1.656E — 2 4.117E -3 1.028E — 3
e 5475E -2 1.246E — 2 2957E -3 7.322E — 4 1.827e-4
CN-LF-TSSP (f =1/4) e 3.848E — 1 5.956E — 2 1.321E -2 3.272E -3 8.166E — 4
e 2.058E — 1 5.011E -2 1.235E -2 3.079E - 3 7.690E — 4
CN-LF-TSSP (f=1/2) e 3.966E — 1 5.948E — 2 1.323E -2 3283E -3 8.16E — 4
e 3.517E — 1 8.874E — 2 2.216E -2 5.541E -3 1.385E — 3

Table 3
Conserved quantities analysis: k =0.0001 and h =
Time e D H
PSAS-TSSP 1.0 1.690E — 8 12.0000000 11.7286127
2.0 2.672E — 8 12.0000000 11.7286128
CN-LF-TSSP =0 1.0 6.556E — 9 12.0000000 11.7286127
2.0 2.211E -8 12.0000000 11.7286128
CN-LF-TSSP g =1/4 1.0 2.163E — 8 12.0000000 11.7286127
2.0 4.342E — 8 12.0000000 11.7286128
CN-LF-TSSP =1/2 1.0 2.473E — 8 12.0000000 11.7286127
2.0 4815E — 8 12.0000000 11.7286128
— 0 — =2i(x+p) _ —2i(x—p)
’ - - ’ :
W(x,0) =y (x) = sech(x + p)e + sech(x — p)e (5.2)
0
$(x,0)= "), p(x,0)=0, —oo<x< oo, (5.3)
where ¢ satisfies
2
—0 () + ¢V (x) = WO ()P, —o0 <x < o0. (5.4)

This kind of initial data for the KGS (1.1)—(1.2) is compatible with the initial data for its limiting S-Y equa-
tions (2.13)—(2.14).
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We take p = 8 in (5.2). Fig. 1 shows the numerical results of PSAS-TSSP at = 1 when we choose the mesh-
ing strategy h = O(¢) and k = O(e): T = (&, ho, ko) = (0.125,0.25,0.04), 7 /4,7 ¢/16; and h = O(e) and
k = 0.04-independent of &: 7y = (o, ho) = (0.125,0.25), 7 /4,7 (/16 for Type | initial data; and Fig. 2 shows
similar results for Type 2 initial data. In addition, CN-LF-TSSP with = 1/4 or 1/2 gives similar numerical
results at the same meshing strategies.

meson field ¢ nucleon density ||?
a 7 10
9r 4
6 4
sl
5t ] 7
4t &
sl
3t al
2 3r
l
i
1L
0t ————+ A+
-30 0 30 =30 0 30
X X

0 ‘
0 -30 0 30
X X

Fig. 1. Numerical solutions at z = 1 for Example 1 with Type 1 initial data in the ‘nonrelativistic’ limit regime by PSAS-TSSP. ‘—": exact

solution given in (2.7), (2.8), “+++": numerical solution. I. With the meshing strategy 7 = O(¢) and k = O(e): (a) T = (&0, ho, ko) =
(0.125,0.25,0.04), (b) 7o/4, and (c) /16 (‘this figure’); II. with the meshing strategy 4 = O(¢) and k = 0.04-independent of &:
(d) 7o = (&, ho) = (0.125,0.25), (e) T /4, and (f) T,/16 (‘continued’).
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meson field ¢ nucleon density ||
d 7 10 T
ol ]
o |
sl ]
5t 1 7 i
4 1 61 |
sl ]
3t g ol ]
2F 1 3 ]
2l ]
a |
.1 ]
————+ 0 44+ LB s e e s s e
-30 30 =30 0 30
X X

Fig. 1 (continued)

From Tables 1-3 and Figs. 1, 2, we can draw the following observations:

(1) In O(1)-speed of light regime, i.e. ¢ = O(1) fixed, our new numerical methods PSAS-TSSP and CN-LF-
TSSP are of spectral-order accuracy in space discretization and second-order accuracy in time. More-
over, PSAS-TSSP and CN-LP-TSSP with 8= 1/2 or § = 1/4 are unconditionally stable, where CN—
LP-TSSP with ff =0 is conditionally stable. Both numerical methods conserve the wave energy D
exactly and the Hamiltonian H very well (up to eight significant digits). Furthermore, these two methods
are explicit, easy to program, less memory requirement, easy to extend to 2D and 3D cases, and keep
most properties of KGS in the discretized level.
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Fig. 2. Numerical solutions at # =1 for Example 1 with Type 2 initial data in the ‘nonrelativistic’ limit regime by PSAS-TSSP with the
meshing strategy 7 = 1/2 and k = 0.005 which are both independent of &. ‘—’: exact solution, ‘+++": numerical solution. (a): ¢ = 1/2;
(b): ¢=1/16; and (c) ¢ = 1/128.
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(i1) In the ‘nonrelativistic’ limit regime, i.e. 0 < ¢ < 1, the e-resolution of our numerical methods PSAS—
TSSP and CN-LF-TSSP with 8 =1/4 or 1/2 is h = O(¢) and k = O(e) for initial data with O(¢)-wave-
length, and resp., # = O(1) and k£ = O(1l) for well-prepared initial data with O(1)-wavelength. The
method CN-LF-TSSP with =0 gives correct numerical results only at meshing strategy # = O(¢)
and k = O(¢?) for initial data with O(¢)-wavelength, and resp., # = O(1) and k = O(e) for well-prepared
initial data with O(1)-wavelength.

Thus, in the following subsections, we always use PSAS-TSSP for solving KGS.

5.2. Convergence in ‘nonrelativistic’ limit regime (0 < e < 1)

Example 2. Reduction from KGS equations to S-Y equations and quadratic convergence rate in the
nonrelativistic limit regime, i.e., we choose d =1, v=0and y =0 1in (1.1) and (1.2). We solve the KGS (1.1)
and (1.2) in 1D with the initial condition in (1.3) chosen as (5.2) and (5.3) and the S-Y (2.13) and (2.14) in 1D
with the initial condition chosen as (5.2) in the interval [—80,80] with mesh size & = 5/128 and time step
k = 0.0005. We take p = 8 in (5.2). Here the initial data for KGS is compatible with those for its limiting S-Y
equations, i.e. well-prepared initial data. Let % and ¢*°S be the numerical solutions of the KGS (1.1) and
(1.2), and ySY and ¢°Y of the S=Y (2.13) and (2.14) by using PSAS-TSSP and TSSP [1,5], respectively. Table 4
shows the errors between the solutions of the KGS and its reduction S-Y at time ¢ = 1.0 under different .

From Table 4, we can see that the nucleon field Y5, meson field ¢X°5 and the Hamiltonian HXCS of KGS
(1.1) and (1.2) converge to > in P-norm, ¢3Y in P-norm and H5Y of the S-Y (2.13) and (2.14) quadratically
in the ‘nonrelativistic’ limit regime, i.e., 0 < ¢ < 1, respectively, provided that the initial data in (1.3) satisfy
(5.4) and l//(()) is with O(1)-wavelength, i.e. well-prepared initial data. These confirm the formal analysis in
(2.14) and (2.17). In contrast, from our additional numerical results not shown here, when ¢ = O(1) or
¢ = O(1) with ill-prepared initial data (e.g. (5.4) is not satisfied or % is with O(¢)-wavelength), the solutions
of the KGS are far away from the solution of the S-Y equations (cf. Fig. 7).

5.3. Applications

Example 3. The standard KGS with a plane-wave solution, i.e., we choose d=1,¢=1,v=0and y=0 in
(1.1)—~(1.3) and consider the problem on the interval [a, b] with ¢ = 0 and b = 2n. The initial condition is taken
as

(6, 0) =y ) =™, $x0)=¢ ") =1, ¢(x0)=¢"x)=0. (5.5)
It is easy to see that KGS (3.1), (3.2) with periodic boundary conditions (3.3), (3.4) and initial condition (5.5)
admits the plane-wave solution

Y, ) =0 p(x,t)=1, a<x<bh, t=0. (5.6)

We solve this problem by using the PSAS-TSSP (3.25), (3.26) with mesh size # = §, time step k£ = 0.001. Fig. 3
shows the numerical results at t =2 and ¢ = 4.

From Fig. 3, we can see that the PSAS-TSSP method for KGS really provides the exact plane-wave
solution of the KGS (3.1)—(3.5).

Table 4
Error analysis between KGS and its reduction S-Y: errors are computed at time = 1.0 under 4 = 5/128 and k = 0.0005

80:1/4 80/2 80/4 80/8
[[¢%GS — 5|2 0.357 3.26E — 2 7.762E — 3 1.809E — 4
[ — Y2 3.261E -2 7.597E — 3 1.399E — 3 3373E -4

|H — HSY| 0.165 3314E -2 8.721E — 3 2.492E — 4
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Fig. 3. Numerical solutions for the plane wave of KGS in Example 3 at time ¢ =2 (left column) and ¢# = 4 (right column). ‘—’: exact

solution given in (5.6), ‘+++": numerical solution. (a): Real part of nucleon filed Re(y/(x,7)); (b): imaginary part of nucleon field
Im(y¥(x,7)); and (c): meson filed ¢.

Example 4. Interaction between solitary-wave solutions in 1D for the standard KGS, i.e., we choose d =1,
e=1,v=0and y =0 in (3.1)~(3.3). The initial condition is chosen as

lﬁ(x,()):l,b+(x+p,l:0)+l//_(X7p,t:0), (57)
d(x,0)=¢, (x+p,t=0)+¢_(x—p,t=0), xR, (5.8)
0,p(x,0) =00, (x+p,t =0)+0,¢_(x —p,t =0), (5.9)

where .. and ¢ are defined as in (2.7) and (2.8), and x = +p are initial locations of the two solitons. We solve
the problem in the interval [—40,40], i.e., @ = —40 and b =40 with mesh size # = 5/128 and time step
k =0.001 by using our method PSAS-TSSP, and take p =8 and B = 1. Fig. 4 shows the values of |/(x,?)]
and ¢(x,¢) at different times.
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Fig. 4. Numerical solutions of soliton-soliton collision in the standard KGS in Example 4. I: Nucleon density |y(x, )| (‘this figure’); I1.

meson field ¢(x, ) (‘continued’).
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t=0.0 t=7.8
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Fig. 4 (continued)
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200

Fig. 5. Time evolution of nucleon density |/ (x, t)|2 (left column) and meson field ¢(x, ¢) (right column) for soliton—soliton collision of KGS
in Example 4 for different values of y.
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From Fig. 4, the time # = 9.2 corresponds to the time when the two solitons are at the same location and the
time ¢ = 18.5 corresponds to the time when the collision is nearing completion (cf. Fig. 4). From the figure we
can see that during the collision, waves are emitted, and that after the collision the two solitons have a reduced
peak value.

Example 5. Soliton—soliton collision of KGS with a damping term in 1D, i.e., we choose d=1,¢e =1land v=10
in (1.1)—(1.3). The initial condition is chosen as (5.7) and (5.8). Again, we solve the problem in the interval
[—40,40], i.e., a = —40 and b = 40 with mesh size 4 = 5/128 and time step k¥ = 0.001 by using our method
PSAS-TSSP, and take p = 8 and B = 1. Fig. 5 displays time evolution of [y(x,7)|* and ¢(x, 7) for different val-
ues of y. Fig. 6 shows time evolution of the Hamiltonian H(¢) and the mean value of the meson field N(¢) for
different values of 7.

From Figs. 5 and 6, we can draw the following conclusions: (i) when y = 0, the collision between the two
solitons seems quite elastic (cf. Fig. 5, top row) although there are some waves are emitted; when y > 0 but
small, damping effect can be observed in the collision and the emission of sound waves is inconspicuous; when
y > 0 and large, a soliton wave which is a bound state of the KGS is generated after the collision (cf. Fig. 5 last
row). This observation seems new for the KGS. (i1). When y = 0, the Hamiltonian is conserved; when y > 0, it
decreases when time increases and converges to a constant when time goes to infinity (cf. Fig. 6, left). (iii)) When
y = 0, the mean value of the meson field changes periodically; where it oscillates and decays when y > 0 (cf.
Fig. 6, right). These agree very well with the analytical results in Section 2. (iv) The results here also demonstrate
the efficiency and high resolution of our numerical method for studying soliton—soliton collision in KGS.

Example 6. Soliton—soliton collision of KGS in the ‘nonrelativistic’ limit regime in 1D, i.e., we choose d =1,
y =0 and v=0 in (1.1)—(1.3). The initial condition is chosen as

¥ (x,0) = ¥ (x) = sech(x + p)e 2?) 4 sech(x — p)e 2, (5.10)
¢(x,0) = ¢ (x) = —[sech(x + p)[* — [sech(x — p)’, D(x,0) = 0. (5.11)
Notice that the above ¢'© does not satisfy (5.4), i.e. the initial data here is ill-prepared. We solve the problem
in the interval [—128,128], i.e., a = —128 and b = 128 with mesh size 4 = 1/8 and time step & = 0.0005 by
using our method PSAS-TSSP, and take p = 16 in (5.10). Fig. 7 displays time evolution of | (x,)|> and
¢(x, 1) for different values of e.
From Fig. 7, we can see that waves with O(¢)-wavelength are generated in the meson field although the

initial data are with O(1)-wavelength without satisfying (5.4). This implies that in this case the KGS can not be
reduced to S-Y when ¢ — 0.
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Fig. 6. Time evolution of the Hamiltonian H(¢) (left) and the mean value of the meson field N(¢) (right) in Example 4 for different
values of 7.
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Fig. 7. Numerical solutions at =2 for Example 6 in the ‘nonrelativistic’ limit regime by PSAS-TSSP for different ¢. (a): ¢ = 1/2; (b):
¢=1/8; and (c): ¢ =1/32.

Example 7. Dynamics of KGS in 2D, i.e., we choose d = 2, v=0and ¢ = 1 in (1.1)—(1.3). The initial condition
is taken as

"p(xvya 0) = 2 eiS/COSh(\/m)

et e~ (2427

)
e*(xz +y2>

¢(x7y7 0) = ei(XZerZ)a d)t(x?yv 0) = T? (x7y) € Rz'



1886 W. Bao, L. Yang | Journal of Computational Physics 225 (2007) 1863—1893

t=0

t=0

t=1.0

v -20 -20

t=3.0
= DT

0.1

005 T

-0.05

-0.1

[¢]

10 o

-10
Y

x

Fig. 8. Surface plots of the nucleon density [i(x, y,#)|* (left column) and meson field ¢(x,y, ) (right column) in Example 5 with y = 0 at
different times.
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Fig. 9. Time evolution of the Hamiltonian H(¢) (left) and the mean value of the meson field N(¢) (right) in Example 5 for different
values of 7.

We solve this problem on the rectangle [—64, 64]2 with mesh size # = 1/16 and time step £ = 0.001 by using

our method PSAS-TSSP. Fig. 8 shows the surface plots of ¢ and |w|2 with y =0 at different times. Fig. 9
depicts time evolution of the Hamiltonian H(¢) and the mean value of the meson field N(¢) for different
values of y.

From Figs. 8 and 9, we can draw the following conclusions: (i) when y = 0, the Hamiltonian is conserved;
when y > 0, it decreases when time increases and converges to a constant when time goes to infinity (cf. Fig. 8,
left). (ii) when y = 0, the mean value of the meson field changes periodically; where it oscillates and decays
when y > 0 (cf. Fig. 8, right). These agree very well with the analytical results in Section 2. (iii) The results here
also demonstrate the efficiency and high resolution of our numerical method for studying the dynamics of
KGS in 2D and 3D.

6. Conclusion

We have studied the dynamics of the Klein—-Gordon—Schrodinger (KGS) equations both analytically and
numerically. Along the analytical front, we studied the dynamics of the mean value of the meson field. On
the numerical side, we proposed two efficient and accurate numerical methods for discretizing the KGS equa-
tions. The methods are explicit, unconditionally stable, of spectral accuracy in space and second-order accu-
racy in time, easy to extend to high dimensions, easy to program, less memory-demanding, and time reversible
and time transverse invariant. Furthermore, they conserve (or keep the same decay rate of) the wave energy in
KGS when there is no damping (or a linear damping) term, give exact results for the plane-wave solution of
KGS, and keep the same dynamics of the mean value of the meson field in the discretized level. We also
applied our new numerical methods to study numerically soliton-soliton interaction of KGS in 1D and the
dynamics of KGS in 2D. We numerically found that, when a large damping term is added to the Klein—Gor-
don equation, bound state of KGS can be obtained from the dynamics of KGS when time goes to infinity. In
the future, these efficient and accurate numerical methods can be used to compute bound state of KGS and to
study the dynamics and wave interaction of KGS in 3D.
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Appendix A. Proof of Theorem 4.2 in Section 4

Proof. From (4.1), (3.25) and (3.27), noticing the orthogonality of the discrete Fourier series, we have

S

-1

b M-1 b M1 M/2-1 b g M2

N(¢m+l) _ m+l m+1 m, (xj—a) _ (¢n1+l)l ez;t,(x,—a)
M = M jZO L—ZMD M l:—ZM/Z =0
=(b—a)(¢"") (A.1)
Similarly, from (4.2) with v =0, we have
M- m+1
ey R U U N
(w7 1P)o = S < W W (0, s 0 (A2)

Jj=0

() When 7> 2, denote p = e“i* and g = ¢**. From (3.28) and (3.16) with /=0, (2.12) and (A.2), w
obtain

()0 = ~pg(6" o+ -+ 9) (@0 + (o~ Dig — ) (W)

= —pq (¢ 1)0+(P+61)( 9o+ (p =g =D (WOF)o, m>1; (A3)
O G = SR = I s

Rewrite (A.3), by induction, we obtain for m > 1:

()0~ (@0 + (0 1) (W) = q( 90— p(@" o+ (p - 1>(w<°>|2)0>

From (A.5), by induction again, we get

(¢A'":l)o = zm: {p’q’"’<(¢ml)o —P(fff)\(;})o) +p (" = 1)(p— 1)(|¢<N°)|2)o} +p! (@)0

r=0

m-+1 m+1 —— m+1 m+1l m+1 m-+1 m-+1 m-+1 -
_4 p (¢1) +qp Pq (d)(O))O +p q Pq qp q9—pP (|w(0)|2)0.

q—p ’ q—p q—p
(A.6)
Combining (A.1), (A.6) and (A.4), noticing (A.2) and (4.1), we obtain
m+1 _ om+l1 o AO 7} )» A
(") =T = [V @)+ G V) & 1+ S V)
m-+1 m+1 +1 _ m+l1 + m+1 __ m+1 4+g—
L P rq N () +p'” q rq qpr q pN(W(O)|z)

q—p q—p
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m m 0 _m+1 0_m+1 10 _m—+1 0__m+1
=gy e = Ap 0 Mgt — Jop” 02
= 20 }0 N(d)( ))"' L A() )o N(¢( ))"' 1-= }o )»0 N(|‘//<)| )
= - -

N@Y) + AN = NP s, N -2 << ) =N gt (an)

W =23 -

=N +

Thus, (4.3) is a combination of (A.7) and (4.6).
(ii) When y = 2, denote p = e’*. From (3.29) and (3.16) with [ = 0, (2.12) and (A.2), we obtain

(6o = (6 o+ 2080 + (0~ 0 (W)
= 26" o+ 20+ (0~ 1} (WOF o, m > 1 (AS)

(80 =kp(6")o+ (1 = dakp (6o + (1 = (1 = dakp) (10 ). (A9)

Rewrite (A.8), by induction, we obtain for m > 1:

0= @0+ 0= D (0o =p( (@06 o+ 0= (107 F)o)
:pm<(7471)0—p(@)0+(p—1)(|1//<T>|2)0). (A.10)

From (A.10), by induction again, we get

m

@0 = 3 [ (@0 =p(6)0) + 567 = 0= (WOF)o] +7 (6,

= (m4+10)p" (@)o = mp (87 )o + (1= p + (m+ D)o = 1p™) (WO ) (A1)
Combining (A.1), (A.11) and (A.9), noticing (A.2) and (4.1), we obtain

N (") = (m+ Dp"lkpN (™M) + (1 = Zok)pN (™) + (1 = (1 = 20k)p)N (WO P)] — mp™ N ()
+[1—pm“+(m+1)(p—1)p”’]N(ll/f I)
= (m+ Dip" N (@D) + (1= (m+ Digk)p" 'N(@O) + [1 = p" 4 (m+ D) dokp™ N (YO

")
= N(YOP) + IN@”) = NPl + V(@) = 20N () = N )t
(A.12)

Thus, (4.4) is a combination of (A.12) and (4.6).
(iii) When 0 < y < 2, denote p = etk and g = et~k From (3.30) and (3.16) with / =0, (2.12) and
(A.2), we obtain

()0 = =pa (6" Yo+ 0+ D@+ 0= Dig =) (07T

= —pa(9" o+ (0 + ) (& m>o+<p—1>< >(\w<° om > 1; (A.13)

—1
((17)0 _ sin(ﬁﬁo(])‘) et (%T)) i <COS(B0 sm (B, k) Jok ¢(o
)

n [1 B (cos(ﬁok) ; sin(fyk ) )OI‘] ( \z

0 (A.14)
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Rewrite (A.13), by induction, we obtain for m > 1:

0= @0+ (o= 1 (18 )o = 2@ - (@Yo + (o - 1 (W)

=q"(6)0=p(6”)o+ 0= 1) (1WP)0). (A.15)
From (A.15), by induction again, we get

@0 =3 [ (@0 =p(87)0) + 50 = 1= 1 (WOF)a] +7 (67

r=0

m+l o om+l —— m+1 m+l m+1 _ m+1 + m+l m-+1 +g— -
_4 p ((bl)o + qp pq ((2')(0))0 +P q Pq qp q9—P (|lﬁ(0>|2)o.
q—p q9—p q—p
(A.16)
Combining (A.1), (A.16) and (A.14), noticing (A.2) and (4.1), we obtain
m m+1l o m+1 y) . sin k e),()k
N(¢"") = % [(1 - (cos(ﬁok) 7 sm(ﬁok))e%’f)N(W‘”lZ) + ”}%N(qﬁ”)
) . m+1 _ m+1 + m+l m+1 +qg—
+ (costput) — 52 sin(puly ) (o) | 421 "‘j] A APy
0
qpm+1 _pqm+l
I DT (0) e (cos{(m-+ 1)fuk) = 5 sinl(m + 1)) )N (6)
- 0

+ [1 — gholm+Dk (cos((m +1)Bok) 5
0

et (U DR Y0 — () e
0

N(@") = (N (") = N(¥"P)) .
5 sm(ﬂotmﬂ)] . (A.17)

Thus, (4.5) is a combination of (A.17) and (4.6). O

=22 sin((m + )5, >)]N<|w )
(V@) = N () cos(Bytm:1)

+

Appendix B. Proof of Theorem 4.3 in Section 4

Proof. For the discretization PSAS-TSSP (3.25), (3.26), setting (W”z) =0 and plugging
. - . !
¢ = pdr = 12 ¢! into (3.28), (3.29) and (3.30) with |u| the amplification factor, we obtain:

(i) When y? — 4(p? + 1) > 0, the characteristic equation for p is

#2 _ (e/llk + e/izk)u + e(),1+),2)k —0. (Bl)
Solving the above equation, we have
w =", =t (B.2)
Thus, the amplification factor satisfies
77'*\/% M M
G, =max{|y |, ||} =¢ 7 < Z:_?""’E_l' (B.3)

(i) When y* — 4(y? + 1) = 0, the characteristic equation for p is

1w — 26%,14 +e 7 =0. (B4)
Solving the above equation, we have

v

p=cez.
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Thus, the amplification factor satisfies
M M

<l, I=——,...,——-1 B.5
> > (B.5)

(ili) When 7? — 4(p2 + 1) < 0, the characteristic equation for u is

e

G,:|u|:e

w— ZCos(ﬁk)e%u +e " =0. (B.6)
Solving the above equation, we have
= e 7 [cos(pk) +isin(Bk)]. (B.7)
Thus, the amplification factor satisfies
; . ; M M
G =y :e*Tk\/cosz(ﬂk)—&—ng(ﬁk):e*Tkg L, 12—7,...,?—1. (B.8)

(B.3), (B.5) and (B.8), together with (4.2), imply that PSAS-TSSP is unconditionally stable for any time step
k>0, mesh size &> 0 and parameter values y > 0.

Similarly for the discretization CN-LF-TSSP (3.37), (3.38), noting (3.36), we have the characteristic
equation

2 2 4 o \
26 B(2 + 1) + ek + 2¢2 26 B(13 + 1) + epk + 262

Solving the above equation, we obtain

(B.9)

h=1 (12 + DK + eyk N $ ( B (12 + DI + evk 2evk
2k

- —1+ .
2P B(p + 1) + epk + 262 B + 1) + eyk + 2gz> 2B + 1) + epk + 262
When 1/4 < f < 1/2 and y =0, we have

2+ K
1wt <1, k>0
2k B(u7 + 1) + 262

Thus,
2
2 2 2 2
#:1_ R (lulz+ 1)k :l:l 1— 1— R (:ulz+ 1)k .
262 + 1) + 262 2B + 1) + 262

This implies that the amplification factor satisfies

2 2 2 2 2 2
G, = |yl = 1- 2(“’“)1( +1—-(1- 2(“’“)1‘ =1, I=-M/2,....M/2—1.
2°B(3 + 1) + 2¢2 2°B(3 + 1) + 282
This, together with (4.2), implies that CN-LP-TSSP with 1/4 < < 1/2 is unconditionally stable. On the

other hand, when 0 < f < 1/4 and y =0, we need the stability condition

‘ (R
2B + 1) + 26|
This implies that

b < min 4¢? B 2he
= —mp<isma-1 \| (1 —4B) (1 + 122) \/(1 Ry .

Thus, we get the stability condition (4.7). O

1, I=-M/2,....M/2—1.
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