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A multiscale time integrator sine pseudospectral (MTI-SP) method is presented for 
discretizing the Klein–Gordon–Zakharov (KGZ) system with a dimensionless parameter 
0 < ε ≤ 1, which is inversely proportional to the plasma frequency. In the high-plasma-
frequency limit regime, i.e. 0 < ε � 1, the solution of the KGZ system propagates waves 
with amplitude at O (1) and wavelength at O (ε2) in time and O (1) in space, which causes 
significantly numerical burdens due to the high oscillation in time. The main idea of 
the numerical method is to carry out a multiscale decomposition by frequency (MDF) 
to the electric field component of the solution at each time step and then apply the sine 
pseudospectral discretization for spatial derivatives followed by using the exponential wave 
integrator in phase space for integrating the MDF and the equation of the ion density 
component. The method is explicit and easy to be implemented. Extensive numerical 
results show that the MTI-SP method converges uniformly and optimally in space with 
exponential convergence rate if the solution is smooth, and uniformly in time with linear 
convergence rate at O (τ ) for ε ∈ (0, 1] with τ time step size and optimally with quadratic 
convergence rate at O (τ 2) in the regime when either ε = O (1) or 0 < ε ≤ τ . Thus the 
meshing strategy requirement (or ε-scalability) of the MTI-SP for the KGZ system in the 
high-plasma-frequency limit regime is τ = O (1) and h = O (1) for 0 < ε � 1, which is 
significantly better than classical methods in the literatures. Finally, we apply the MTI-SP 
method to study the convergence rates of the KGZ system to its limiting models in the 
high-plasma-frequency limit and the interactions of bright solitons of the KGZ system, and 
to identify certain parameter regimes that the solution of the KGZ system will be blow-up 
in one dimension.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider the Klein–Gordon–Zakharov (KGZ) system in d dimensions (d = 3, 2, 1) [5,10,26,37]

∂ttψ(x, t) − 3v2
0�ψ(x, t) + ω2

pψ(x, t) + ω2
pφ(x, t)ψ(x, t) = 0, (1.1a)
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∂ttφ(x, t) − c2
s �φ(x, t) − n0ε0

4mN0
�
(
ψ2(x, t)

)
= 0, x ∈Rd, (1.1b)

where t is time, x ∈ Rd is the spatial coordinate, ψ := ψ(x, t) and φ := φ(x, t) are real-valued functions representing the 
fast time scale component of the electric field raised by electrons and the derivation of ion density from its equilibrium, 
respectively. Here ωp is the electron plasma frequency, cs is the speed of sound, v0 is the electron thermal velocity, n0 is 
plasma charge number, ε0 is vacuum dielectric constant, N0 is electron density and m is ion mass. The KGZ system (1.1)
is a classical model for describing the mutual interaction between the Langmuir waves and ion acoustic waves in a plasma 
[11,14] and is also adopted to model the strong Langmuir turbulence [29]. In fact, it can be derived from the two-fluid 
Euler–Maxwell system for the electrons, ions and electric field, by neglecting the magnetic field and further assuming that 
ions move much slower than electrons [10,33].

In order to scale the KGZ system (1.1), we introduce

t̃ = t

ts
, x̃ = x

xs
, ψ̃(x̃, t̃) = ψ(x, t)

ψs
, φ̃(x̃, t̃) = φ(x, t)

φs
, (1.2)

where xs , ts , ψs and φs are the dimensionless length unit, time unit, electric filed unit and ion density unit, respectively, 
satisfying ts = ωp x2

s

3v2
0

, φs = 3v2
0

x2
s ω

2
p

and ψs = v0
ωp

√
12mN0

n0ε0
. As pointed out in [10], in many physical situations where the thermal 

electron velocity is much larger than the ion-acoustic speed, i.e. 3v2
0 � c2

s , it is worthwhile to consider the regime 3v2
0

xsωp cs
≈ 1

when the plasma frequency ωp is large. Then by plugging (1.2) into (1.1), after a simple computation and removing all ̃, we 
consider in this paper the following dimensionless KGZ system in d dimensions as

ε2∂ttψ(x, t) − �ψ(x, t) + 1

ε2
ψ(x, t) + φ(x, t)ψ(x, t) = 0, (1.3a)

∂ttφ(x, t) − �φ(x, t) − �
(
ψ2(x, t)

)
= 0, x ∈ Rd, (1.3b)

where ε is a dimensionless parameter inversely proportional to the plasma frequency and is given by

0 < ε :=
√

3v0

xsωp
= ωs

ωp
≤ 1, with ωs :=

√
3v0

xs
. (1.4)

We remark here that if one chooses the dimensionless length unit xs =
√

3v0
ωp

and thus ts = ωp x2
s

3v2
0

= 1
ωp

, φs = 3v2
0

x2
s ω

2
p

= 1

and ψs = v0
ωp

√
12mN0

n0ε0
in (1.2), then ε = 1 in (1.4) and the KGZ system (1.3) with ε = 1 takes the form often appearing in 

the literature [11,14,25,26,35,36]. This choice of xs is appropriate when the wave frequency is at the same order of the 
plasma frequency. However, when the wave frequency is much smaller than the plasma frequency, a different choice of 
xs is more appropriate. Note that the choice of xs determines the observation scale of the time evolution of the waves 
and decides: (i) which phenomena are ‘visible’ by asymptotic analysis, and (ii) which phenomena can be resolved in the 
numerical discretization by specified spatial/temporal grids. In fact, there are two important parameter regimes: One is 
when ε = 1 (⇐⇒ xs =

√
3v0
ωp

, ts = 1
ωp

, φs = 1 and ψs = v0
ωp

√
12mN0

n0ε0
), then the KGZ system (1.3) describes the case that wave 

frequency is at the same order of the plasma frequency; the other one is when 0 < ε � 1, then the KGZ system (1.3) is in 
the high-plasma-frequency limit regime.

To study the dynamics of the KGZ system (1.3), the initial data is usually given as

ψ(x,0) = ψ0(x), ∂tψ(x,0) = 1

ε2
ψ1(x), φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x), x ∈Rd, (1.5)

where ψ0, ψ1, φ0 and φ1 are given real-valued functions which are independent of ε. The KGZ system (1.3) is time sym-
metric and it conserves the total energy [26,27]

E(t) :=
∫
Rd

[
ε2 (∂tψ)2 + |∇ψ |2 + 1

ε2
ψ2 + 1

2
|∇ϕ|2 + 1

2
φ2 + φψ2

]
dx

=
∫
Rd

[
1

ε2
ψ2

1 + |∇ψ0|2 + 1

ε2
ψ2

0 + 1

2
|∇ϕ0|2 + 1

2
φ2

0 + φ0ψ
2
0

]
dx ≡ E(0), t ≥ 0, (1.6)

where ϕ(x, t) is defined via �ϕ(x, t) = ∂tφ(x, t) with lim|x|→∞ϕ(x, t) = 0 for t ≥ 0 and ϕ0(x) = �−1φ1(x).

For the KGZ system (1.3) with ε = 1, i.e. O(1)-plasma-frequency regime, there are extensive analytical and numerical 
results in the literatures. For the existence and uniqueness as well as local ill-posedness in the energy space due to the 
lack of null form structure, we refer to [25,26] and references therein. For the numerical methods and comparison such as 
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the finite difference time domain (FDTD) methods and exponential-wave-integrator spectral method, we refer to [35,36,5,
38] and references therein. However, for the KGZ system (1.3) with 0 < ε � 1, i.e. high-plasma-frequency limit regime, the 
analysis and efficient computation of the KGZ system (1.3) are mathematically and numerically rather complicated issues 
[10,26]. The main difficulty is due to that the solution is highly oscillatory in time and the corresponding energy functional 
E(t) = O (ε−2) in (1.6) becomes unbounded when ε → 0.

Formally, in the high-plasma-frequency limit regime, i.e. 0 < ε � 1, similar to the analysis of the nonrelativistic limit of 
the Klein–Gordon (KG) equation [28] and the Klein–Gordon-Schrödinger (KGS) equations [9], taking the ansatz

ψ(x, t) = eit/ε2
z(x, t) + e−it/ε2

z(x, t) + o(ε), x ∈ Rd, t ≥ 0, (1.7)

where z denotes the complex conjugate of a complex-valued function z, and plugging it into (1.3) with (1.5), we can obtain 
— a semi-limiting model — the Zakharov system with wave operator

2i∂t z(x, t) + ε2∂tt z(x, t) − �z(x, t) + φ(x, t)z(x, t) = 0, (1.8a)

∂ttφ(x, t) − �φ(x, t) − 2�
(
|z(x, t)|2

)
= 0, x ∈Rd, t > 0, (1.8b)

with the well-prepared (i.e. ∂t z(x, 0) is obtained from (1.8a) by setting t = 0 and ε = 0 such that the leading oscillating term 
in the solution of (1.8) is due to the term ε2∂tt z(x, t) instead of the initial data) initial data [1,2]:⎧⎪⎨⎪⎩

z(x,0) = 1

2
[ψ0(x) − iψ1(x)] , ∂t z(x,0) = i

2
[−�z(x,0) + φ0(x)z(x,0)] ,

φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x), x ∈Rd.

(1.9)

In addition, after dropping the second term in (1.8a), we can get — the limiting model — the Zakharov system [10]

2i∂t z(x, t) − �z(x, t) + φ(x, t)z(x, t) = 0, (1.10a)

∂ttφ(x, t) − �φ(x, t) − 2�
(
|z(x, t)|2

)
= 0, x ∈Rd, t > 0, (1.10b)

with the initial data

z(x,0) = 1

2
[ψ0(x) − iψ1(x)] , φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x), x ∈Rd. (1.11)

This formal analysis as well as recent analytical results [26,27] shows that the solution (ψ, φ) of the KGZ system (1.3) with 
(1.5) propagates waves with wavelength O (ε2) in time and O (1) in space when 0 < ε � 1. To illustrate the oscillation 
in this case, Fig. 1 shows the solutions ψ(0, t), φ(0, t), ψ(x, 2) and φ(x, 2) of the KGZ system (1.3) with (1.5) and d = 1, 
ψ0(x) = e−x2/2, ψ1(x) = 3

2 ψ0(x), φ0(x) = sech(x2/2) and φ1(x) = e−x2/2 for different ε.
This highly temporal oscillatory nature in the solution makes the numerical approximation of (1.3) extremely challenging 

and costly in the high-plasma-frequency limit regime, i.e. 0 < ε � 1. Recently, different numerical methods have been 
proposed and analyzed as well as compared for the nonlinear KG equation and the KGS equations in the nonrelativistic limit 
regime in which the solutions share similar oscillatory behavior as that of the KGZ system (1.3), including the FDTD methods 
[4], exponential wave integrator Fourier pseudospectral (EWI-FP) method [4,5,9], asymptotic preserving (AP) method [16], 
stroboscopic average method (SAM) [12] and multiscale time integrator Fourier pseudospectral (MTI-FP) method [3], etc. 
Among them, the MTI-FP method is uniformly convergent (UA) for ε ∈ (0, 1] and it is the most efficient from the practical 
computation point of view, while the FDTD, EWI-FP and AP methods are not UA methods. The main aim of this paper 
is to propose and analyze a multiscale time integrator sine pseudospectral (MTI-SP) method for the KGZ system (1.3) in 
the high-plasma-frequency limit regime by adapting a multiscale decomposition by frequency to the solution at each time 
step and applying the sine pseudospectral discretization and exponential wave integrators (EWIs) for spatial and temporal 
derivatives, respectively. We will study numerically spatial and temporal accuracy for fixed 0 < ε ≤ 1 and ε-scalability 
(or ε-resolution) when 0 < ε � 1 of the proposed MTI-SP method, and compare its performance with existing numerical 
methods in the literature for the KGZ system. Then we apply the MTI-SP method to study numerically convergence rates of 
the KGZ system (1.3) to its limiting models including the Zakharov system with wave operator (1.8)–(1.9) and the Zakharov 
system (1.10)–(1.11). Finally, we apply it to simulate some very interesting dynamics of the KGZ system, including the 
stability and collision of bright solitons in one dimension (1D), parameter regimes where the solution blows up at finite 
time in 1D and the interaction of waves in two dimensions (2D).

The paper is organized as follows. In section 2, we present a multiscale decomposition by frequency (MDF) for the 
solution of the KGZ system. In section 3, we propose an MTI-SP method for discretizing the KGZ system based on the MDF. 
Numerical studies and results are given in section 4. Finally, some concluding remarks are drawn in section 5. Throughout 
the paper we denote p � q to represent that there exists a generic constant C > 0 which is independent of τ , h and ε, such 
that |p| ≤ Cq.
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Fig. 1. Profile of the solution of the KGZ system (1.3) with (1.5) and d = 1 for different ε.

2. A multiscale decomposition

Let τ = �t > 0 be the time step size, and denote time steps by tn = nτ for n = 0, 1, . . . . In this section, we present a 
multiscale decomposition for the solution of the KGZ system (1.3) on the time interval [tn, tn+1] with given initial data at 
t = tn as

ψ(x, tn) = ψn
0 (x) = O (1), ∂tψ(x, tn) = 1

ε2
ψn

1 (x) = O

(
1

ε2

)
, (2.1a)

φ(x, tn) = φn
0(x) = O (1), ∂tφ(x, tn) = φn

1(x) = O (1), x ∈ Rd. (2.1b)

Similar to the analysis of the nonrelativistic limits of the nonlinear KG equation [28,6,3] and the KGS equations [9], we take 
an ansatz as ψ(x, t) := ψ(x, tn + s) of (1.3a) on [tn, tn+1] with (2.1) as

ψ(x, tn + s) = eis/ε2
zn(x, s) + e−is/ε2

zn(x, s) + rn(x, s), x ∈Rd, 0 ≤ s ≤ τ , (2.2)

where zn(x, s) is a complex-valued function and rn(x, s) is a real-valued function, satisfying zn(x, s) = O (1), ∂szn(x, s) =
O (1), ∂sszn(x, s) = O (1), rn(x, s) = O (ε2), ∂srn(x, s) = O (1) and ∂ssrn(x, s) = O (ε−2) for x ∈ Rd , 0 ≤ s ≤ τ and 0 < ε ≤ 1. 
Differentiating (2.2) with respect to s, we have for x ∈Rd and 0 ≤ s ≤ τ
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∂sψ(x, tn + s) = eis/ε2
[
∂szn(x, s) + i

ε2
zn(x, s)

]
+ ∂srn(x, s) + e−is/ε2

[
∂szn(x, s) − i

ε2
zn(x, s)

]
. (2.3)

Plugging (2.2) into (1.3a), we get for x ∈Rd , 0 ≤ s ≤ τ and φ(x, tn + s) =: φn(x, s)

eis/ε2
[
ε2∂sszn(x, s) + 2i∂szn(x, s) − �zn(x, s) + zn(x, s)φn(x, s)

]
+ e−is/ε2

[
ε2∂sszn(x, s) − �zn(x, s)

− 2i∂szn(x, s) + zn(x, s)φn(x, s)
]
+ ε2∂ssrn(x, s) − �rn(x, s) + 1

ε2
rn(x, s) + rn(x, s)φn(x, s) = 0.

Multiplying the above equation by e−is/ε2
and eis/ε2

, respectively, we can decompose it into a coupled system for two 
ε2-frequency waves with the unknown zn(x, s) := zn and the rest frequency waves with the unknown rn(x, s) := rn as⎧⎨⎩

2i∂szn + ε2∂sszn − �zn + znφn = 0,

ε2∂ssrn − �rn + 1

ε2
rn + rnφn = 0,

x ∈Rd, 0 ≤ s ≤ τ . (2.4)

Substituting (2.2) into (1.3b), we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ssφ

n − �φn − e2is/ε2
�
(
(zn)2

)
− e−2is/ε2

�
(
(zn)2

)
− 2eis/ε2

�
(
znrn)

− 2e−is/ε2
�
(
znrn)− �

(
2|zn|2 + |rn|2

)
= 0, x ∈Rd, 0 < s ≤ τ ,

φn(x,0) = φn
0(x), ∂sφ

n(x,0) = φn
1(x), x ∈Rd.

(2.5)

In order to find proper initial conditions for the system (2.4) coupled with (2.5), setting s = 0 in (2.2) and (2.3), noticing 
(2.1a), we obtain⎧⎨⎩

zn(x,0) + zn(x,0) + rn(x,0) = ψn
0 (x), x ∈Rd,

i

ε2

[
zn(x,0) − zn(x,0)

]+ ∂szn(x,0) + ∂szn(x,0) + ∂srn(x,0) = 1

ε2
ψn

1 (x).
(2.6)

Now we decompose the above initial data so as to: (i) equate O  
(

1
ε2

)
and O (1) terms in the second equation of (2.6), 

respectively, and (ii) be well-prepared for the first equation in (2.4) when 0 < ε � 1, i.e. ∂szn(x, 0) is determined from the 
first equation in (2.4) by setting ε = 0 and s = 0 [1–3]:{

zn(x,0) + zn(x,0) = ψn
0 (x), i

[
zn(x,0) − zn(x,0)

]= ψn
1 (x), rn(x,0) = 0, x ∈Rd,

2i∂szn(x,0) − �zn(x,0) + zn(x,0)φn(x,0) = 0, ∂srn(x,0) + ∂szn(x,0) + ∂szn(x,0) = 0.
(2.7)

Solving (2.7), we get the initial data for (2.4) as⎧⎨⎩ zn(x,0) = 1

2

[
ψn

0 (x) − iψn
1 (x)

]
, ∂szn(x,0) = i

2

[−�zn(x,0) + zn(x,0)φn
0(x)

]
,

rn(x,0) ≡ 0, ∂srn(x,0) = −∂szn(x,0) − ∂szn(x,0), x ∈Rd.

(2.8)

The above decomposition can be called as multiscale decomposition by frequency (MDF). In fact, it can also be regarded as 
to decompose slow waves at ε2-wavelength and fast waves at other wavelengths, thus it can also be called as fast–slow 
frequency decomposition. After solving the decomposed system (2.4)–(2.5) with the initial data (2.8), we get φn(x, τ ) =:
φn+1

0 (x), ∂sφ
n(x, τ ) =: φn+1

1 (x), zn(x, τ ), ∂szn(x, τ ), rn(x, τ ) and ∂srn(x, τ ) for x ∈ Rd . Then we can reconstruct the solution 
ψ to (1.3a) at t = tn+1 by setting s = τ in (2.2) and (2.3), i.e.,

ψ(x, tn+1) = eiτ/ε2
zn(x, τ ) + e−iτ/ε2

zn(x, τ ) + rn(x, τ ) =: ψn+1
0 (x), ∂tψ(x, tn+1) = 1

ε2
ψn+1

1 (x), (2.9)

with

ψn+1
1 (x) := eiτ/ε2

[
ε2∂szn(x, τ ) + izn(x, τ )

]
+ e−iτ/ε2

[
ε2∂szn(x, τ ) − izn(x, τ )

]
+ ε2∂srn(x, τ ), x ∈Rd.

In summary, the MDF proceeds as a decomposition–propagation–reconstruction flow at each time interval and thus it is 
different with the modulated Fourier expansion [13,23,32] which carries out the decomposition only at t = 0.

Let 0 < T < T ∗ with T ∗ the maximum existence time of the solution of the KGZ system (1.3) with (1.5) [26,27,30], we 
assume that its solution satisfies ψ ∈ C1

([0, T ]; H4
)
, φ ∈ C1

([0, T ]; H3
)

and

‖ψ‖L∞([0,T ];H4) + ε2 ‖∂tψ‖L∞([0,T ];H4) � 1, ‖φ‖L∞([0,T ];H3) + ‖∂tφ‖L∞([0,T ];H3) � 1.
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Similar to the MDF decomposition of the nonlinear KG equation [3] and the KGS equations [9] with the detailed proof 
omitted here for brevity, we can show that there exists a constant τ1 > 0 independent of 0 < ε ≤ 1 such that for any 
0 < τ ≤ τ1∥∥zn

∥∥
L∞([0,τ ];H2)

+ ∥∥∂szn
∥∥

L∞([0,τ ];H1)
+ ∥∥∂sszn

∥∥
L∞([0,τ ];L2)

� 1, 0 ≤ n <
T

τ
,∥∥rn

∥∥
L∞([0,τ ];H2)

+ ε2
∥∥∂srn

∥∥
L∞([0,τ ];H1)

+ ε4
∥∥∂ssrn

∥∥
L∞([0,τ ];L2)

� ε2.

3. An MTI-SP method

For the simplicity of notations and without of loss generality, we shall only present the method in 1D. Generalizations 
to higher dimensions are straightforward and the results remain valid. We truncate the whole space problem (1.3) with 
(1.5) into a finite interval 
 = (a, b) with homogeneous Dirichlet boundary conditions, where due to the fast decay of the 
solution at far field, the truncation error can be negligible by choosing a, b sufficiently large. In 1D, the problem reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2∂ttψ(x, t) − ∂xxψ(x, t) + 1

ε2
ψ(x, t) + ψ(x, t)φ(x, t) = 0, x ∈ 
, t > 0,

∂ttφ(x, t) − ∂xxφ(x, t) − ∂xx

(
ψ2(x, t)

)
= 0, x ∈ 
, t > 0,

ψ(a, t) = ψ(b, t) = 0, φ(a, t) = φ(b, t) = 0, t ≥ 0,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = 1

ε2
ψ1(x), φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x), x ∈ 
 = [a,b].

(3.1)

We remark that the boundary conditions considered here are inspired by the inherent physical nature of the system and 
they have been widely used in the literature for the simulation of the dynamics of the KGZ system (see, e.g. [26,30,36,38]
and references therein).

Consequently, for n ≥ 0, the decomposed system MDF (2.4)–(2.5) in 1D reduces to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2i∂szn + ε2∂sszn − ∂xxzn + znφn = 0, ε2∂ssrn − ∂xxrn + 1

ε2
rn + rnφn = 0,

∂ssφ
n − ∂xxφ

n − e2is/ε2
∂xx

(
(zn)2

)
− e−2is/ε2

∂xx

(
(zn)2

)
− 2eis/ε2

∂xx
(
znrn)

− 2e−is/ε2
∂xx

(
znrn)− ∂xx

(
2|zn|2 + |rn|2

)
= 0, a < x < b, 0 < s ≤ τ .

(3.2)

The initial and boundary conditions for the above system are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn(a, s) = zn(b, s) = 0, rn(a, s) = rn(b, s) = 0, φn(a, s) = φn(b, s) = 0, 0 ≤ s ≤ τ ;

zn(x,0) = 1

2

[
ψn

0 (x) − iψn
1 (x)

]
, ∂szn(x,0) = i

2

[−∂xxzn(x,0) + zn(x,0)φn
0(x)

]
, a ≤ x ≤ b,

rn(x,0) ≡ 0, ∂srn(x,0) = −∂szn(x,0) − ∂szn(x,0), φn(x,0) = φn
0(x), ∂sφ

n(x,0) = φn
1(x).

(3.3)

We now present an exponential wave integrator (EWI) sine spectral/pseudospectral discretization for the MDF (3.2) with 
(3.3), which applies the sine spectral/pseudospectral discretization to spatial derivatives followed by using some proper 
EWIs [4,19,20,22,23] for temporal discretizations in phase space.

Choose the mesh size h := �x = (b − a)/N with N a positive integer and denote grid points as x j := a + jh for j =
0, 1, . . . , N . Define

XN := span

{
sin(μl(x − a)) : x ∈ 
, μl = π l

b − a
, l = 1, . . . , N − 1

}
,

Y N :=
{

v = (v0, v1, . . . , v N)T ∈ CN+1 | v0 = v N = 0
}

, with ‖v‖l2 = h
N−1∑
j=1

|v j|2.

For a function v(x) ∈ H1
0(
) and a vector v ∈ Y N , let P N : H1

0(
) → XN be the L2-projection operator, and IN : C(
) ∩
H1

0(
) → XN or Y N → XN be the trigonometric interpolation operator [18,31], i.e.

(P N v)(x) =
N−1∑

v̂l sin(μl(x − a)), (IN v)(x) =
N−1∑

ṽl sin(μl(x − a)), (3.4)

l=1 l=1



276 W. Bao, X. Zhao / Journal of Computational Physics 327 (2016) 270–293
where v̂l and ṽl are the sine and discrete sine transform coefficients of the function v(x) and vector v (with v j = v(x j) for 
j = 0, 1, . . . , N when they are involved), respectively, defined as

v̂l = 2

b − a

b∫
a

v(x) sin(μl(x − a))dx, ṽl = 2

N

N−1∑
j=1

v j sin(μl(x j − a)). (3.5)

Then a sine spectral method for discretizing (3.2) reads:
Find zn

N := zn
N (x, s), rn

N := rn
N (x, s), φn

N := φn
N(x, s) ∈ XN for 0 ≤ s ≤ τ , i.e.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zn
N(x, s) =

N−1∑
l=1

(̂zn
N)l(s) sin(μl(x − a)), rn

N(x, s) =
N−1∑
l=1

(̂rn
N)l(s) sin(μl(x − a)),

φn
N(x, s) =

N−1∑
l=1

(̂φn
N)l(s) sin(μl(x − a)), a ≤ x ≤ b,

(3.6)

such that⎧⎪⎨⎪⎩
ε2∂sszn

N + 2i∂szn
N − ∂xxzn

N + P N
(
zn

Nφn
N

)= 0, a < x < b, 0 < s < τ,

ε2∂ssrn
N − ∂xxrn

N + 1

ε2
rn

N + P N(rn
Nφn

N) = 0, ∂ssφ
n
N − ∂xxφ

n
N − ∂xx P N f n

N(x, s) = 0,
(3.7)

where

f n
N(x, s) :=e2is/ε2 (

zn
N

)2 + e−2is/ε2
(

zn
N

)2 + 2eis/ε2 (
zn

Nrn
N

)+ 2e−is/ε2
(

zn
Nrn

N

)
+ 2|zn

N |2 + (rn
N)2, a < x < b, 0 < s < τ. (3.8)

Substituting (3.6) into (3.7) and noticing the orthogonality of {sin(μl(x − a))}N−1
l=1 , we get⎧⎪⎪⎨⎪⎪⎩

ε2(̂zn
N)

′′
l (s) + 2i(̂zn

N)
′
l (s) + μ2

l (̂zn
N)l(s) + ̂(zn

Nφn
N)l(s) = 0, 0 < s ≤ τ , 1 ≤ l ≤ N − 1,

ε2(̂rn
N)

′′
l (s) +

(
μ2

l + 1

ε2

)
(̂rn

N)l(s) + (̂rn
Nφn

N)l(s) = 0, (̂φn
N)

′′
l (s) + μ2

l (̂φn
N)l(s) + μ2

l (̂ f n
N)l(s) = 0.

(3.9)

In order to apply the EWIs to integrate (3.9) in time, for each fixed 1 ≤ l ≤ N − 1, we rewrite (3.9) by using the variation-
of-constant formulas⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(̂zn
N)l(s) = al(s)(̂zn

N)l(0) + ε2bl(s)(̂zn
N)

′
l (0) −

s∫
0

bl(s − θ) ̂(zn
Nφn

N)l(θ)dθ,

(̂rn
N)l(s) = sin(ωls)

ωl
(̂rn

N)
′
l(0) −

s∫
0

sin (ωl(s − θ))

ε2ωl
(̂rn

Nφn
N)l(θ)dθ, 0 ≤ s ≤ τ ,

(̂φn
N)l(s) = cos(μls)(̂φ

n
N)l(0) + sin(μls)

μl
(̂φn

N)
′
l (0) − μl

s∫
0

sin (μl(s − θ)) (̂ f n
N)l(θ)dθ,

(3.10)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
al(s) := λ+

l eisλ−
l − λ−

l eisλ+
l

λ+
l − λ−

l

, bl(s) := i
eisλ+

l − eisλ−
l

ε2(λ−
l − λ+

l )
, 0 ≤ s ≤ τ ,

λ±
l = − 1

ε2

(
1 ±

√
1 + μ2

l ε
2

)
, ωl =

√
1 + μ2

l ε
2

ε2
.

(3.11)

Differentiating (3.10) with respect to s, we obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(̂zn
N)

′
l (s) = a′

l(s)(̂zn
N)l(0) + ε2b′

l(s)(̂zn
N)

′
l (0) −

s∫
0

b′
l(s − θ) ̂(zn

Nφn
N)l(θ)dθ,

(̂rn
N)

′
l(s) = cos(ωl s)(̂r

n
N)

′
l(0) −

s∫
0

cos (ωl(s − θ))

ε2
(̂rn

Nφn
N)l(θ)dθ, 0 ≤ s ≤ τ ,

(̂φn
N)

′
l (s) = −μl sin(μls)(̂φ

n
N)l(0) + cos(μl s)(̂φ

n
N)

′
l (0) − μ2

l

s∫
0

cos (μl(s − θ)) (̂ f n
N)l(θ)dθ,

(3.12)

where

a′
l(s) = iλ+

l λ−
l

eisλ−
l − eisλ+

l

λ+
l − λ−

l

, b′
l(s) = λ+

l eisλ+
l − λ−

l eisλ−
l

ε2(λ+
l − λ−

l )
, 0 ≤ s ≤ τ .

Taking s = τ in (3.10) and (3.12), and using (3.8), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(̂zn
N)l(τ ) = al(τ )(̂zn

N)l(0) + ε2bl(τ )(̂zn
N)

′
l (0) −

τ∫
0

bl(τ − θ) ̂(zn
Nφn

N)l(θ)dθ,

(̂zn
N)

′
l (τ ) = a′

l(τ )(̂zn
N)l(0) + ε2b′

l(τ )(̂zn
N)

′
l (0) −

τ∫
0

b′
l(τ − θ) ̂(zn

Nφn
N)l(θ)dθ,

(̂rn
N)l(τ ) = sin(ωlτ )

ωl
(̂rn

N)
′
l(0) −

τ∫
0

sin (ωl(τ − θ))

ε2ωl
(̂rn

Nφn
N)l(θ)dθ,

(̂rn
N)

′
l(τ ) = cos(ωlτ )(̂rn

N)
′
l(0) −

τ∫
0

cos (ωl(τ − θ))

ε2
(̂rn

Nφn
N)l(θ)dθ,

(̂φn
N)l(τ ) = cos(μlτ )(̂φn

N)l(0) + sin(μlτ )

μl
(̂φn

N)
′
l (0) − (̂F n

N)l,

(̂φn
N)

′
l (τ ) = −μl sin(μlτ )(̂φn

N)l(0) + cos(μlτ )(̂φn
N)

′
l (0) − (̂ Ḟ n

N)l,

(3.13)

where

(̂F n
N)l =μl

τ∫
0

sin (μl(τ − θ))

[
e2iθ/ε2 ̂((zn

N)2
)

l(θ) + e−2iθ/ε2 ̂(
(zn

N)2
)

l
(θ) + (̂gn

N)l(θ)

]
dθ, (3.14a)

(̂ Ḟ n
N)l =μ2

l

τ∫
0

cos (μl(τ − θ))

[
e2iθ/ε2 ̂((zn

N)2
)

l(θ) + e−2iθ/ε2 ̂(
(zn

N)2
)

l
(θ) + (̂gn

N)l(θ)

]
dθ, (3.14b)

with

gn
N(x, θ) := 2eiθ/ε2 (

zn
Nrn

N

)+ 2e−iθ/ε2
(

zn
Nrn

N

)
+ 2|zn

N |2 + (rn
N)2.

Approximating the integrals in (3.13) and (3.14) either by the Gautschi’s type quadrature [6,17,22,23] or by the single step 
trapezoidal rule [6,15,23], e.g. via the standard single step trapezoidal rule to the integrals involving rn in (3.13) and gn

N

in (3.14) and via the Gautschi’s type quadrature to the rest, noting (̂rn
Nφn

N)l(0) = 0 for 1 ≤ l ≤ N − 1 due to the initial data 
rn(x, 0) ≡ 0 for a ≤ x ≤ b in (3.3), we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(̂zn
N)l(τ ) ≈ al(τ )(̂zn

N)l(0) + ε2bl(τ )(̂zn
N)

′
l (0) − cl

̂(zn
Nφn

N)l(0) − dl
̂(zn

Nφn
N)

′
l(0),

(̂zn
N)

′
l (τ ) ≈ a′

l(τ )(̂zn
N)l(0) + ε2b′

l(τ )(̂zn
N)

′
l (0) − ċl

̂(zn
Nφn

N)l(0) − ḋl
̂(zn

Nφn
N)

′
l(0),

(̂rn
N)l(τ ) ≈ sin(ωlτ )

ωl
(̂rn

N)
′
l(0), (̂rn

N)
′
l(τ ) ≈ cos(ωlτ )(̂rn

N)
′
l(0) − τ

2ε2
(̂rn

Nφn
N)l(τ ),

(̂F n
N)l ≈ pl

̂((zn
N)2

)
l(0) + ql

̂((zn
N)2

)′
l(0) + pl

̂(
(zn

N)2
)

l
(0) + ql

̂(
(zn

N)2
)′

l
(0) + τμl sin(μlτ )

(̂|zn
N |2)l(0),

(̂ Ḟ n
N)l ≈ ṗl

̂((zn
N)2

)
l(0) + q̇l

̂((zn
N)2

)′
l(0) + ṗl

̂(
(zn

N)2
)

l
(0) + q̇l

̂(
(zn

N)2
)′

l
(0) + τμ2

l

[
cos(μlτ )

(̂|zn
N |2)l(0)

+ (̂|zn
N |2)l(τ ) + 1

2
(̂|rn

N |2)l(τ ) +
(

eiτ/ε2 (̂
zn

Nrn
N

)
l(τ ) + e−iτ/ε2

(̂
zn

Nrn
N

)
l
(τ )

)]
,

(3.15)

where Re{z} denotes the real part of z and (their detailed explicit formulas are shown in Appendix A)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cl =
τ∫

0

bl(τ − θ)dθ, pl = μl

τ∫
0

sin (μl(τ − θ)) e2iθ/ε2
dθ, dl =

τ∫
0

bl(τ − θ)θ dθ,

ql = μl

τ∫
0

sin (μl(τ − θ)) e2iθ/ε2
θ dθ, ċl =

τ∫
0

b′
l(τ − θ)dθ, ḋl =

τ∫
0

b′
l(τ − θ)θ dθ,

ṗl = μ2
l

τ∫
0

cos (μl(τ − θ)) e2iθ/ε2
dθ, q̇l = μ2

l

τ∫
0

cos (μl(τ − θ)) e2iθ/ε2
θ dθ.

(3.16)

Inserting (3.15) into (3.6) with setting s = τ , and noticing (2.9), we immediately obtain a multiscale time integrator sine 
spectral method based on the MDF (3.2) for the problem (3.1).

In practice, the integrals for computing the sine transform coefficients in (3.5), (3.10) and (3.12) are usually approximated 
by the numerical quadratures [4,5,21,31] given in (3.5). Let ψn

j , ψ̇n
j , φn

j and φ̇n
j be approximations of ψ(x j, tn), ∂tψ(x j, tn), 

φ(x j, tn) and ∂tφ(x j, tn), respectively; zn+1
j , żn+1

j , rn+1
j and ṙn+1

j be approximations of zn(x j, τ ), ∂szn(x j, τ ), rn(x j, τ ) and 

∂srn(x j, τ ), respectively, for j = 0, 1, . . . , N . Choosing ψ0
j = ψ0(x j), ψ̇0

j = 1

ε2
ψ1(x j), φ0

j = φ0(x j) and φ̇0
j = φ1(x j) for 0 ≤ j ≤

N , then a multiscale time integrator sine pseudospectral (MTI-SP) discretization for the problem (3.1) reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn+1
j = 2Re

{
eiτ/ε2

zn+1
j

}
+ rn+1

j , ψ̇n+1
j = 2Re

{
eiτ/ε2

(
żn+1

j + i

ε2
zn+1

j

)}
+ ṙn+1

j ,

φn+1
j =

N−1∑
l=1

(̃φn+1)l sin(μl(x j − a)), φ̇n+1
j =

N−1∑
l=1

(̃φ̇n+1)l sin(μl(x j − a)),

zn+1
j =

N−1∑
l=1

(̃zn+1)l sin(μl(x j − a)), rn+1
j =

N−1∑
l=1

(̃rn+1)l sin(μl(x j − a)),

żn+1
j =

N−1∑
l=1

(̃żn+1)l sin(μl(x j − a)), ṙn+1
j =

N−1∑
l=1

(̃ṙn+1)l sin(μl(x j − a)), 0 ≤ j ≤ N, n ≥ 0,

(3.17)

where

(̃zn+1)l = al(τ )(̃z0)l + ε2bl(τ )(̃ż0)l − cl (̃z0φn)l − dl (̃ż0φn)l − dl (̃z0φ̇n)l, (3.18a)

(̃żn+1)l = a′
l(τ )(̃z0)l + ε2b′

l(τ )(̃ż0)l − ċl (̃z0φn)l − ḋl (̃ż0φn)l − ḋl (̃z0φ̇n)l, (3.18b)

(̃rn+1)l = sin(ωlτ )

ωl
(̃ṙ0)l, (̃ṙn+1)l = cos(ωlτ )(̃ṙ0)l − τ

2ε2
˜(rn+1φn+1)l, 1 ≤ l ≤ N − 1, (3.18c)

(̃φn+1)l = cos(μlτ )(̃φn)l +
sin(μlτ )

μl
(̃φ̇n)l − (̃Fn)l, (̃φ̇n+1)l = −μl sin(μlτ )(̃φn)l + cos(μlτ )(̃φ̇n)l − (̃Ḟn)l,

(3.18d)
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with (̃
z0
)

l = 1

2

[
(̃ψn)l − iε2(̃ψ̇n

)
l

]
,

(̃
ż0
)

l = i

2

[
1

τ
sin

(
μ2

l τ
)

(̃z0)l +
(̃
z0φn

)
l

]
, (3.19a)

(̃
ṙ0
)

l = −2Re
{(̃

ż0
)

l

}
, (̃Fn)l = 2Re

{
pl
(̃
(z0)2

)
l + 2ql

(̃
z0 ż0

)
l

}
+ τμl sin(μlτ )

(̃|z0|2)l, (3.19b)

(̃
Ḟn
)

l = 2Re

{
ṗl
(̃
(z0)2

)
l + 2q̇l

(̃
z0 ż0

)
l

}
+ τμ2

l

[
eiτ/ε2 ˜(zn+1rn+1)l + e−iτ/ε2 ˜(

zn+1rn+1
)

l

]

+ τμ2
l

[
cos(μlτ )

(̃|z0|2)l + ˜(|zn+1|2)l +
1

2
˜(|rn+1|2)l

]
, 1 ≤ l ≤ N − 1. (3.19c)

This MTI-SP method for the KGZ system (3.1) (or (1.3) with (1.5)) is explicit, accurate, easy to be implemented and very 
efficient due to the fast discrete sine transform. The memory cost is O (N) and the computational cost per time step is 
O (N log N).

Remark 3.1. Instead of discretizing the initial velocity ∂szn(x, 0) from (3.3) in the Fourier space as (̃zn)
′
l(0) = i

2
[μ2

l (̃zn)l(0) +
(̃znφn)l(0)] which will result a second order decreasing in the spatial accuracy, we change to the modified coefficients given 
in (3.19a) as filters where the accuracy is now controlled by the time step τ [3]. There are other possible choices of the 
filters.

Remark 3.2. We remark here that the proposed MTI-SP method for the KGZ system (1.3) can be extended to solve the 
generalized KGZ system with pure power nonlinearities [24,34]

ε2∂ttψ(x, t) − �ψ(x, t) + 1

ε2
ψ(x, t) + pφ(x, t)ψ2p−1(x, t) + λψ2q(x, t)ψ(x, t) = 0, (3.20a)

∂ttφ(x, t) − �φ(x, t) − �
(
ψ2p(x, t)

)
= 0, x ∈Rd, (3.20b)

where p ∈ N, q ∈ N and λ ∈ R. The extension of the EWI-SP to solve (3.20b) is straightforward. To integrate the power 
nonlinearity in (3.20a), the MTI-SP which could provide a uniform error bound for 0 < ε ≤ 1, can be designed by following 
the way used in [3]. Also, our method can be easily extended to the cases when the homogeneous Dirichlet boundary 
condition is replaced by the homogeneous Neumann or periodic boundary condition in order to deal with special physical 
situations such as the dark solitons [34], via replacing the discrete sine transform in the MTI-SP method by the discrete 
cosine or Fourier transform.

Remark 3.3. When the initial data ψ0(x) and ψ1(x) in (1.5) are taken as complex-valued functions, the component ψ(x, t)
in the KGZ system (1.3a) is complex-valued, which has been widely considered in the literatures on mathematical analysis 
and solitary wave prorogations of the KGZ system [10,24,26,35,34]. In this case, for n ≥ 0, we modify the ansatz (2.2) to 
[3,9]

ψ(x, tn + s) = eis/ε2
zn+(x, s) + e−is/ε2

zn−(x, s) + rn(x, s), x ∈ Rd, 0 ≤ s ≤ τ ,

where zn± are two different complex-valued functions. Similar to the nonlinear KG equation [3], we can obtain a MDF for 
the KGZ system where the first equation in (2.4) will be replaced by a system of two coupled equations with unknowns zn± . 
Then the MTI-SP method can be designed straightforward.

4. Numerical results

In this section, we present numerical results of the MTI-SP method including spatial/temporal accuracy, ε-scalability 
when 0 < ε � 1, and its applications to study numerically convergence rates of the KGZ system to its limiting models when 
ε → 0, interactions of solitons in 1D, parameter regimes of finite time blow-up in 1D and wave interactions in 2D.

4.1. Spatial/temporal accuracy and ε-scalability

In order to do so, we take d = 1 in (1.3) and choose the initial data in (1.5) as

ψ0(x) = e− x2
2 , ψ1(x) = 3

ψ0(x), φ0(x) = sech(x2), φ1(x) = 0, x ∈R. (4.1)

2
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Table 1
Spatial errors of the MTI-SP for the KGZ with (4.1) under τ = 5 × 10−6 for different ε and h.

eφ(T = 1) h0 = 2 h0/2 h0/4 h0/8 h0/16

ε0 = 0.5 5.43E–1 3.84E–2 7.85E–4 1.53E–7 8.36E–12
ε0/2 5.70E–1 3.79E–2 2.00E–3 1.49E–7 7.51E–12
ε0/22 5.85E–1 3.72E–2 2.10E–3 8.49E–8 7.53E–12
ε0/23 5.90E–1 3.69E–2 2.10E–3 8.14E–8 7.39E–12
ε0/24 5.91E–1 3.68E–2 2.10E–3 8.05E–8 7.44E–12
ε0/25 5.91E–1 3.67E–2 2.10E–3 8.02E–8 7.43E–12
ε0/27 5.91E–1 3.68E–2 2.10E–3 8.01E–8 7.40E–12
ε0/29 5.91E–1 3.68E–2 2.10E–3 8.01E–8 7.46E–12
ε0/211 5.91E–1 3.68E–2 2.10E–3 8.01E–8 7.54E–12
ε0/213 5.91E–1 3.68E–2 2.10E–3 8.01E–8 7.42E–12

eψ (T = 1) h0 = 2 h0/2 h0/4 h0/8 h0/16

ε0 = 0.5 4.22E–1 1.07E–1 2.40E–3 9.23E–8 5.77E–11
ε0/2 5.34E–1 1.29E–1 2.10E–3 2.13E–7 3.68E–11
ε0/22 5.03E–1 2.25E–1 1.90E–3 2.20E–7 3.36E–11
ε0/23 3.71E–1 2.17E–1 2.10E–3 4.27E–7 3.94E–11
ε0/24 4.94E–1 1.03E–1 7.70E–4 1.62E–7 4.21E–11
ε0/25 2.92E–1 7.52E–2 1.00E–3 4.06E–7 4.62E–11
ε0/27 2.38E–1 9.20E–2 1.20E–3 3.58E–7 4.99E–11
ε0/29 6.17E–1 1.87E–1 1.80E–3 1.72E–7 3.90E–11
ε0/211 1.95E–1 1.14E–1 1.40E–3 3.70E–7 3.91E–11
ε0/213 4.28E–1 2.33E–1 2.50E–3 3.72E–7 4.71E–11

The problem is solved numerically by the MTI-SP method on a bounded interval 
 = [−16, 16], i.e. b = −a = 16, which is 
large enough to guarantee that the zero boundary condition does not introduce a significant truncation error relative to the 
original problem. To quantify the error, we introduce the error functions:

eψ(T ) :=
∥∥∥ψ(·, T ) − IN(ψM)

∥∥∥
H2

, e∞
ψ (T ) := max

0<ε≤1

{
eψ(T )

}
, (4.2a)

eφ(T ) :=
∥∥∥φ(·, T ) − IN(φM)

∥∥∥
H1

, e∞
φ (T ) := max

0<ε≤1

{
eφ(T )

}
, (4.2b)

where ψM = (ψM
0 , ψM

1 , . . . , ψM
N )T and φM = (φM

0 , φM
1 , . . . , φM

N )T are obtained numerically from the MTI-SP (3.17)–(3.19)
with T = Mτ . The reason why here we choose the energy space H2 × H1 rather than the natural H1 × L2 for the errors 
is because an H2-estimate is needed for an optimal error estimate of the nonlinear KG equation [3]. Since the analytical 
solution to this problem is not available, so the ‘reference’ solution is obtained numerically by the MTI-SP (3.17)–(3.19)
with a very fine mesh h = 1/32 and a very small time step τ = 5 × 10−6. Table 1 shows the spatial error of the MTI-SP 
method at T = 1 under different ε and h with the time step τ = 5 × 10−6 such that the discretization error in time is 
negligible. Tables 2 and 3 show the temporal error of the MTI-SP method for components φ and ψ , respectively, at T = 1
under different ε and τ with a small mesh size h = 1/8 such that the discretization error in space is negligible.

From Tables 1–3, we can draw the following observations:
(i) The MTI-SP method is spectrally accurate in space, which is uniformly for 0 < ε ≤ 1 (cf. Table 1).
(ii) The MTI-SP method converges uniformly for ε ∈ (0, 1] at linear convergence rate in time (cf. last row in Tables 2

and 3). In addition, for each fixed ε ∈ (0, 1], it converges quadratically in time when either 0 < τ � ε2 (cf. each row in 
the upper triangle above the diagonal labeled with bold letters of Tables 2 and 3) or 0 < ε � τ (cf. each row in the lower 
triangle below the diagonal labeled with italic letters of Tables 2 and 3).

(iii) The numerical results indicate the following error bounds of the MTI-SP method for the KGZ system (1.3) with 
ε ∈ (0, 1]

eψ(tn) + eφ(tn)� hm0 + τ 2

ε2
, eψ(tn) + eφ(tn) � hm0 + τ 2 + ε2, 0 ≤ n ≤ T

τ
, (4.3)

which immediately imply the following uniform error bound

eψ(tn) + eφ(tn)� hm0 + min

{
τ 2

ε2
, τ 2 + ε2

}
� hm0 + τ , 0 ≤ n ≤ T

τ
,

with m0 > 0 depending on the regularity of the solution. Rigorous mathematical justification for the above error estimates 
of the MTI-SP method is on-going. In fact, the above error bounds of the MTI-SP method have been established for the 
nonlinear KG equation [3] and the KGS equations [9].

(iv) The mesh strategy (or ε-scalability) of the MTI-SP method for the KGZ system (1.3) in the high-plasma-frequency 
limit regime, i.e. 0 < ε � 1, is τ = O (1) and h = O (1).
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Table 2
Temporal errors eφ(T = 1) of the MTI-SP for the KGZ with (4.1) under h = 1/8 for different ε and τ .

eφ(T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210 τ0/212

ε0 = 0.5 1.41E–1 1.16E–2 6.85E–4 4.19E–5 2.60E–6 1.60E–7 7.37E–9
Rate — 1.80 2.04 2.02 2.00 2.01 2.21

ε0/2 4.08E–2 2.92E–2 2.10E–3 1.22E–4 7.51E–6 4.60E–7 2.14E–8
Rate — 0.24 1.90 2.05 2.01 2.01 2.21

ε0/22 3.81E–2 1.55E–2 6.80E–3 4.63E–4 2.75E–5 1.66E–6 7.77E–8
Rate — 0.65 0.59 1.94 2.04 2.02 2.21

ε0/23 5.25E–2 4.40E–3 6.70E–3 1.70E–3 1.12E–4 6.58E–6 3.03E–7
Rate — 1.79 −0.30 0.99 1.96 2.05 2.21

ε0/24 5.29E–2 2.60E–3 1.80E–3 1.90E–3 4.12E–4 2.75E–5 1.23E–6
Rate — 2.17 0.26 −0.04 1.10 1.95 2.24

ε0/25 5.31E–2 3.00E–3 1.22E–4 4.92E–4 4.86E–4 1.01E–4 5.19E–6
Rate — 2.07 2.31 −1.01 0.01 1.13 2.14

ε0/27 5.38E–2 3.40E–3 1.95E–4 2.53E–5 2.59E–5 4.05E–5 3.95E–5
Rate — 1.99 2.06 1.47 −0.02 −0.32 0.02

ε0/29 5.39E–2 3.40E–3 2.10E–4 1.21E–5 1.09E–6 9.34E–7 3.38E–7
Rate — 1.99 2.01 2.06 1.73 0.11 0.73

ε0/211 5.39E–2 3.40E–3 2.11E–4 1.31E–5 7.14E–7 8.43E–8 3.33E–8
Rate — 1.99 2.00 2.00 2.10 1.54 0.67

ε0/213 5.39E–2 3.40E–3 2.11E–4 1.31E–5 8.24E–7 5.75E–8 2.42E–9
Rate — 1.99 2.01 2.00 2.00 1.92 2.28

ε0/215 5.42E–2 3.40E–3 2.14E–4 1.33E–5 8.32E–7 5.13E–8 2.47E–9
Rate — 2.00 1.99 2.00 2.00 2.01 2.18

e∞
φ (T = 1) 1.41E–1 2.92E–2 6.80E–3 1.90E–3 4.86E–4 1.01E–4 3.95E–5

Rate — 1.13 1.05 0.92 0.98 1.13 0.68

Table 3
Temporal errors eψ (T = 1) of the MTI-SP for the KGZ with (4.1) under h = 1/8 for different ε and τ .

eψ (T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210 τ0/212

ε0 = 0.5 4.52E–2 4.10E–3 2.62E–4 1.63E–5 1.02E–6 6.26E–8 2.86E–9
Rate — 1.73 1.99 2.00 2.00 2.01 2.22

ε0/2 6.66E–2 1.28E–2 1.10E–3 6.74E–5 4.20E–6 2.58E–7 1.20E–8
Rate — 1.19 1.77 2.01 2.00 2.01 2.21

ε0/22 6.35E–2 1.66E–2 4.00E–3 3.18E–4 1.99E–5 1.22E–6 5.71E–8
Rate — 0.97 1.03 1.83 2.00 2.01 2.20

ε0/23 5.88E–2 7.80E–3 5.00E–3 9.82E–4 7.73E–5 4.77E–6 2.23E–7
Rate — 1.46 0.32 1.17 1.83 2.01 2.20

ε0/24 6.66E–2 4.30E–3 1.30E–3 1.20E–3 2.11E–4 1.64E–5 7.80E–7
Rate — 1.98 0.86 0.06 1.25 1.84 2.19

ε0/25 6.34E–2 4.10E–3 3.61E–4 2.95E–4 2.95E–4 4.85E–5 2.92E–6
Rate — 1.98 1.75 0.15 0.00 1.30 2.02

ε0/27 6.21E–2 3.90E–3 2.51E–4 3.19E–5 1.48E–5 1.98E–5 1.98E–5
Rate — 1.99 1.98 1.49 0.55 −0.21 0.00

ε0/29 6.80E–2 4.10E–3 2.56E–4 1.65E–5 1.32E–6 7.10E–7 2.15E–7
Rate — 2.02 2.00 1.98 1.82 0.45 0.86

ε0/211 6.11E–2 3.80E–3 2.39E–4 1.50E–5 9.95E–7 1.30E–7 4.70E–8
Rate — 2.00 1.99 2.00 1.96 1.47 0.73

ε0/213 6.11E–2 3.80E–3 2.38E–4 1.49E–5 9.27E–7 5.70E–8 7.76E–9
Rate — 2.00 2.00 2.00 2.00 2.01 1.45

ε0/215 8.04E–2 4.90E–3 3.01E–4 1.87E–5 1.08E–6 7.01E–8 6.32E–9
Rate — 2.01 2.01 2.00 2.05 1.97 1.74

e∞
ψ (T = 1) 6.66E–2 1.66E–2 5.00E–3 1.20E–3 2.95E–4 4.85E–5 1.98E–5

Rate — 1.00 0.87 1.02 1.01 1.30 0.65
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Fig. 2. Time evolution of ηzw(t) and ηz(t) with the smooth data (4.4) for different ε.

4.2. Convergence rates of the KGZ system to its limiting models when ε → 0

In order to do so, we take d = 1 in (1.3) and choose the initial data in (1.5) as either the smooth data

ψ0(x) = sin
( x

2

)
e−x2

, ψ1(x) = 1

2
e−√

2x2
, φ0(x) = sech(x2), φ1(x) = cos

( x

3

)
e−x2

, x ∈R, (4.4)

or the nonsmooth data with m = 2, 1

ψ0(x) = xm|x|
2

e−x2
, ψ1(x) = 1

2
e−√

2x2
, φ0(x) = xm|x|sech(x2), φ1(x) = cos

( x

3

)
e−x2

, x ∈R. (4.5)

Let (ψ, φ) be the solution of the KGZ system (1.3) with either (4.4) or (4.5) which is obtained numerically by the MTI-SP 
method (3.17)–(3.19) on a bounded interval 
 = [−128, 128] with a very fine mesh h = 1/32 and a very small time step 
τ = 10−4. Similarly, let (zzw, φzw) be the solution of the Zakharov system with wave operator (1.8) with d = 1 and (1.9), 
which is obtained numerically on the bounded interval 
 by the EWI-SP method proposed in [2] with a very fine mesh 
h = 1/128 and a very small time step τ = 10−4; and (zz, φz) be the solution of the Zakharov system (1.10) with d = 1
and (1.11), which is obtained numerically on the bounded interval 
 by the time-splitting exponential wave integrator sine 
pseudospectral (TS-EWI-SP) method in [7,8] with a very fine mesh size h = 1/128 and a very small time step τ = 10−4. 
Denote

ψzw(x, t) = eit/ε2
zzw(x, t) + e−it/ε2

zzw(x, t), ψz(x, t) = eit/ε2
zz(x, t) + e−it/ε2

zz(x, t), x ∈ R, t ≥ 0,

and define the error functions as

ηzw(t) := ‖ψ(·, t) − ψzw(·, t)‖H1 + ‖φ(·, t) − φzw(·, t)‖L2 , ηz(t) := ‖ψ(·, t) − ψz(·, t)‖H1 + ‖φ(·, t) − φz(·, t)‖L2 .

Figs. 2 and 3 depict ηzw(t) and ηz(t) with the smooth data (4.4) and the nonsmooth data (4.5) with m = 2, 1, respectively, 
for different ε.

From Figs. 2 and 3, we can draw the following conclusions:
(i) The solution of the KGZ system (1.3) with (1.5) converges to that of its semi-limiting model, i.e. the Zakharov system 

with wave operator (1.8) with (1.9) quadratically in ε (and uniformly in time) provided that the initial data in (1.5) is smooth 
or at least satisfies ψ0, ψ1, φ0 and φ1 ∈ H2(Rd), i.e.
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Fig. 3. Time evolution of ηzw(t) and ηz(t) with the nonsmooth data (4.5) under m = 2,1 for different ε.

‖ψ(·, t) − ψzw(·, t)‖H1(
) + ‖φ(·, t) − φzw(·, t)‖L2(
) ≤ C0ε
2, t ≥ 0,

where the constant C0 > 0 is independent of ε and time t ≥ 0.
(ii) The solution of the KGZ system (1.3) with (1.5) converges to that of its limiting model, i.e. the Zakharov system (1.10)

with (1.11) quadratically in ε (in general, not uniformly in time) provided that the initial data in (1.5) is smooth or at least 
satisfies ψ0, ψ1, φ0 and φ1 ∈ H3(Rd), i.e.

‖ψ(·, t) − ψz(·, t)‖H1(
) + ‖φ(·, t) − φz(·, t)‖L2(
) ≤ (C1 + C2T )ε2, 0 ≤ t ≤ T ,

where C1 and C2 are two positive constants which are independent of ε and T . On the contrary, if the regularity of the 
initial data is weaker, e.g. ψ0, ψ1, φ0 and φ1 ∈ H2(Rd), then the convergence rate reduces to linear rate, i.e.
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‖ψ(·, t) − ψz(·, t)‖H1(
) + ‖φ(·, t) − φz(·, t)‖L2(
) ≤ (C3 + C4T )ε, 0 ≤ t ≤ T ,

where C3 and C4 are two positive constants which are independent of ε and T . Again, rigorous mathematical justification 
for these numerical observations is on-going.

4.3. Soliton solutions and their stability and interactions

It is well-known that the KGZ system (1.3) in 1D admits the bright soliton solution as [34]

ψ s(x, t;α,k) = α sech(B(x − vt))ei(ωt−kx), φs(x, t;α,k) = A sech2(B(x − vt)), x ∈R, t > 0, (4.6)

where the coefficients A, B, ω, v ∈R satisfy

A = ε4ω2α2

k2 − ε4ω2
, v = k

ε2ω
, B = ω

√
1 + ε2k2 − ε4ω2

ε2ω2 − k2
, (4.7a)

2ε4ω4 +
(
ε2α2 − 2k2 − 2k2ε2 − 2

)
ω2 + 2k4ε−2 + 2k2ε−4 = 0, (4.7b)

with α, k ∈R two free parameters. Equation (4.7b) has roots

ω = 1

2ε2

√
−σ ±

√
σ 2 − 16(k4ε2 + k2) with σ = ε2α2 − 2k2 − 2k2ε2 − 2. (4.8)

By assuming the two constants |α| � 1 and k = O (1) for ε ∈ (0, 1], noticing (4.8) and (4.7a), we get

ωε2 =
√

k2 + 1 ± |1 − k2|
2

+ o(1), Bε =
√

1 − k2 ∓ |1 − k2|
2

+ o(1), 0 < ε � 1. (4.9)

In order to find soliton solutions with wavelength at O (1) in space, i.e. B = O (1), for ε ∈ (0, 1], noticing (4.9), we have 
k = ±1. Without loss of generality, we only consider the case of k = 1. Under this choice, combining (4.7) and (4.8), we can 
derive a sufficient condition for the existence of the soliton for all ε ∈ (0, 1],

0 < |α| ≤
√

2ε

1 + √
1 + ε2

, 0 < ε ≤ 1.

For the simplicity of notations, we take α = δε with δ ∈ R a constant independent of ε and satisfying |δ| ≤
√

2

1 + √
2

. Plugging 

k = 1 and α = δε into (4.7) and (4.8), when 0 < ε � 1 we have

ω = ε−2 + 1 ± √
1 − 2δ2

4
+ o(1) = O (ε−2), B =

√
1 ∓ √

1 − 2δ2

2
+ o(1) = O (1), A = O (1), v = O (1).

From now on, we take

ω = 1

2ε2

√
−σ −

√
σ 2 − 16(k4ε2 + k2) . (4.10)

Thus, for proper given α = δε and k with ε > 0 and δ > 0, we can find ω from (4.10) and A, v and B from (4.7a) and thus 
we can obtain a soliton solution (4.6) of the KGZ system (1.3) in 1D.

Here we adapt the soliton solution to test again the spatial/temporal accuracy and ε-scalability of the proposed MTI-SP 
method. In order to do so, we take d = 1 in (1.3) and choose the initial data in (1.5) as

ψ0(x) = ψ s(x,0;α,k), ψ1(x) = ε2∂tψ
s(x,0;α,k), φ0(x) = φs(x,0;α,k), φ1(x) = ∂tφ

s(x,0;α,k), (4.11)

where α = ε√
3

and k = 1. It is easy to see that the solution of the KGZ system (1.3) with d = 1 and (4.11) satisfies ψ = O (ε), 

∂tψ = O (ε−1) and φ = O (1) when 0 < ε � 1, and thus this example is quite different with the example in §4.1. In fact, the 
initial data in (4.11) and (1.5) (or (4.1)) for the KGZ system (1.3) are quite different in at least two aspects: (i) the energy 
in (1.6) is unbounded, i.e. E(t) = O (ε−2) for 0 < ε � 1 for the initial data (1.5), while it is bounded, i.e. E(t) = O (1) for 
0 < ε ≤ 1 for the initial data (4.11); and (ii) the solution ψ = O (1) for the initial data (1.5), while it is small, i.e. ψ = O (ε)

for the initial data (4.11). Thus the initial data (1.5) is usually referred as large initial data or energy unbounded initial data 
when ε → 0+ , and respectively, the initial data (4.11) is usually referred as small initial data or energy bounded initial data. 
The problem is solved numerically on 
 = [−16, 16] by either the MTI-SP method (3.17)–(3.19) or the EWI-SP method 
proposed in [5]. Here we adapt the relative error
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Table 4
Temporal errors ηφ(T = 1) of the MTI-SP for the KGZ with (4.11) under h = 1/8 for different ε and τ .

ηφ(T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210 τ0/212

ε0 = 0.5 3.80E–3 1.89E–4 1.07E–5 6.59E–7 4.10E–8 2.58E–9 1.56E–10
Rate — 2.16 2.06 2.01 2.00 2.00 2.02

ε0/2 2.95E–4 1.21E–4 4.24E–6 2.01E–7 1.17E–8 7.15E–10 3.77E–11
Rate — — 2.41 2.20 2.05 2.02 2.12

ε0/22 5.64E–5 1.16E–5 6.45E–6 2.03E–7 8.74E–9 4.89E–10 3.59E–11
Rate — — — 2.49 2.27 2.08 1.881

ε0/23 1.28E–5 1.40E–6 6.18E–7 3.87E–7 1.19E–8 4.99E–10 3.64E–11
Rate — — — — 2.51 2.28 1.89

ε0/24 3.12E–6 2.20E–7 6.25E–8 3.70E–8 2.40E–8 7.33E–10 3.91E–11
Rate — — — — — 2.52 2.11

ε0/25 7.73E–7 4.87E–8 6.23E–9 3.61E–9 2.29E–9 1.50E–9 5.19E–11
Rate — — — — — — 2.42

ε0/27 4.83E–8 2.93E–9 1.81E–10 3.64E–11 3.03E–11 2.81E–11 2.65E–11
Rate — — — — — — —

ε0/29 3.04E–9 2.08E–10 5.49E–11 4.92E–11 4.89E–11 4.89E–11 4.90E–11
Rate — — — — — — —

ε0/211 8.79E–10 7.61E–10 7.53E–10 7.53E–10 7.53E–10 7.53E–10 7.53E–10
Rate — — — — — — —

η∞
φ (T = 1) 3.80E–3 1.89E–4 1.07E–5 6.59E–7 4.10E–8 2.58E–9 1.56E–10

Rate — 2.16 2.06 2.01 2.00 2.00 2.02

Table 5
Temporal errors ηψ(T = 1) of the MTI-SP for the KGZ with (4.11) under h = 1/8 for different ε and τ .

ηψ(T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210 τ0/212

ε0 = 0.5 3.78E–2 1.60E–3 8.90E–5 5.44E–6 3.38E–7 2.10E–8 1.82E–9
Rate — 2.28 2.08 2.02 2.00 2.00 1.77

ε0/2 2.62E–2 3.60E–3 2.13E–4 1.32E–5 8.22E–7 5.09E–8 3.24E–9
Rate — 1.43 2.03 2.00 2.00 2.00 1.99

ε0/22 1.92E–2 4.10E–3 7.48E–4 4.86E–5 3.04E–6 1.87E–7 8.78E–9
Rate — 1.11 1.23 1.97 2.00 2.01 2.20

ε0/23 1.74E–2 1.80E–3 8.80E–4 1.81E–4 1.19E–5 7.36E–7 3.45E–8
Rate — 1.63 0.52 1.14 1.96 2.01 2.20

ε0/24 1.73E–2 1.10E–3 2.65E–4 2.17E–4 4.48E–5 2.92E–6 1.38E–7
Rate — 1.99 1.03 0.14 1.14 1.97 2.20

ε0/25 1.73E–2 1.10E–3 8.49E–5 5.66E–5 5.48E–5 1.10E–5 5.48E–7
Rate — 1.99 1.85 0.29 0.02 1.16 2.16

ε0/27 1.72E–2 1.10E–3 6.76E–5 7.24E–6 4.16E–6 4.40E–6 4.14E–6
Rate — 1.99 2.01 1.61 2.01 −0.04 0.04

ε0/29 1.72E–2 1.10E–3 6.61E–5 4.27E–6 3.82E–7 1.20E–7 3.56E–8
Rate — 1.99 2.01 1.98 1.74 0.84 0.87

ε0/211 2.06E–2 1.30E–3 7.87E–5 4.92E–6 3.16E–7 3.12E–8 1.07E–8
Rate — 1.99 2.02 2.00 1.98 1.67 0.77

ε0/213 7.30E–3 4.51E–4 3.03E–5 2.01E–6 1.28E–7 1.14E–8 3.17E–9
Rate — 2.01 1.95 1.96 1.99 1.74 0.92

η∞
ψ (T = 1) 3.78E–2 4.10E–3 8.80E–4 2.17E–4 5.48E–5 1.10E–5 4.14E–6

Rate — 1.60 1.10 1.01 0.99 1.12 0.71

ηψ(T ) = eψ(T )

‖ψ(·, T )‖H2
, ηφ(T ) = eφ(T )

‖φ(·, T )‖H1
, η∞

ψ (T ) = e∞
ψ (T )

‖ψ(·, T )‖H2
, η∞

φ (T ) = e∞
φ (T )

‖φ(·, T )‖H1
,

instead of the absolute errors in (4.2) to compare different numerical methods. Tables 4 and 5 show the temporal errors 
ηφ(T = 1) and ηψ(T = 1), respectively, of the MTI-SP method (3.17)–(3.19), while for comparison Table 6 depicts the tem-
poral errors of the EWI-SP method proposed in [5] for the KGZ system (1.3).

From Tables 4–6, we can draw the same conclusions as in §4.1 for the MTI-SP method in term of approximation of ψ
in the KGZ system (cf. Table 5); on the contrary, the EWI-SP method doesn’t converge uniformly in the approximation of ψ
when 0 < ε � 1 (cf. Table 6). Due to that ψ = O (ε) for ε ∈ (0, 1], both the MTI-SP and EWI-SP methods converge uniformly 
and optimally at quadratical convergence rate in the approximation of φ (cf. Tables 4 and 6). From this comparison, the 
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Table 6
Temporal errors of the EWI-SP for the KGZ with (4.11) under h = 1/8 for different ε and τ .

ηφ(T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 0.5 2.50E–3 1.16E–04 7.15E–6 4.47E–7 2.79E–8 1.81E–9
Rate — 2.22 2.01 2.00 2.00 1.97

ε0/2 7.00E–3 1.34E–04 7.69E–6 4.78E–7 2.99E–8 1.95E–9
Rate — 2.85 2.06 2.00 2.00 1.97

ε0/22 5.65E–4 2.10E–03 3.75E–5 2.19E–6 1.37E–7 8.55E–9
Rate — — 2.90 2.05 2.00 2.00

ε0/23 1.49E–4 1.52E–04 4.98E–4 9.98E–6 5.83E–7 3.63E–8
Rate — — — 2.82 2.05 2.00

ε0/24 4.01E–5 3.85E–05 3.86E–5 1.41E–4 2.54E–6 1.48E–7
Rate — — — — 2.89 2.05

ε0/25 9.87E–6 1.01E–05 9.68E–6 9.69E–6 3.92E–5 6.36E–7
Rate — — — — — 2.97

ε0/26 2.46E–6 2.45E–6 2.53E–6 2.42E–6 2.43E–6 1.01E–5
Rate — — — — — —

ηψ (T = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 0.5 9.60E–2 4.70E–3 2.92E–4 1.96E–5 1.14E–6 6.90E–8
Rate — 2.17 2.01 1.95 2.06 2.02

ε0/2 1.69E+0 5.31E–2 3.10E–3 1.93E–4 1.19E–5 7.28E–7
Rate — 2.50 2.05 2.00 2.01 2.01

ε0/22 7.10E–1 1.98E+0 4.70E–2 2.70E–3 1.76E–4 1.05E–5
Rate — −0.74 2.70 2.06 1.97 2.03

ε0/23 7.39E–1 7.43E–1 3.52E+0 4.57E–2 2.70E–3 1.64E–4
Rate — 0.00 −1.12 3.13 2.04 2.02

ε0/24 7.79E–1 7.50E–1 7.52E–1 6.68E+0 4.53E–2 2.60E–3
Rate — 0.03 0.00 −1.58 3.60 2.06

ε0/25 7.60E–1 7.87E–1 7.53E–1 7.55E–1 9.85E+0 4.46E–2
Rate — −0.03 0.30 0.00 −1.85 3.89

ε0/26 7.70E–1 7.62E–1 7.90E–1 7.53E–1 7.55E–1 1.14E+1
Rate — 0.01 −0.03 0.03 0.00 −1.96

MTI-SP method performs much better than the EWI-SP method, especially in the high-plasma-frequency limit regime. In 
fact, under the assumption that ψ = O (ε), ∂tψ = O (ε−1) and φ = O (1) for ε ∈ (0, 1], our numerical results suggest the 
following error bounds of the MTI-SP method for the KGZ system (1.3) with ε ∈ (0, 1]

ηψ(tn) � hm0 + τ 2

ε2
, ηψ(tn) � hm0 + τ 2 + ε2, ηφ(tn) � hm0 + min{ε2, τ 2}, 0 ≤ n ≤ T

τ
, (4.12)

which immediately imply the following uniform error bound

ηψ(tn) � hm0 + min

{
τ 2

ε2
, τ 2 + ε2

}
� hm0 + τ , ηφ(tn) � hm0 + min{ε2, τ 2}, 0 ≤ n ≤ T

τ
,

with m0 > 0 depending on the regularity of the solution; and the following error bounds of the EWI-SP method for the KGZ 
system (1.3) with ε ∈ (0, 1]

ηψ(tn) � hm0 + τ 2

ε4
, ηφ(tn)� hm0 + min{ε2, τ 2}, 0 ≤ n ≤ T

τ
. (4.13)

Again, rigorous mathematical justification for the above error estimates of the MTI-SP and EWI-SP methods is on-going.
Now we apply the MTI-SP method to study numerically the orbital stability of the soliton solution (4.6) of the KGZ system 

(1.3) in 1D for different ε ∈ (0, 1]. In order to do so, we take d = 1 in (1.3) and choose the initial data in (1.5) as⎧⎨⎩ψ0(x) = ψ s(x,0;α,k) + ξε(1 + 0.5i)e−(x+1)2
, φ0(x) = φs(x,0;α,k) + ξe−(x−1)2

, x ∈R,

ψ1(x) = ε2∂tψ
s(x,0;α,k) + ξε(1 + 0.5i)e−(x+1)2

, φ1(x) = ∂tφ
s(x,0;α,k) + ξe−(x−1)2

,

(4.14)

where ξ > 0 is a parameter to measure the amplitude of the perturbation to the soliton solution at t = 0. Again, the KGZ 
system (1.3) with d = 1 and (4.14) is solved numerically on 
 = [−16, 16] by the MTI-SP method (3.17)–(3.19) with a very 
fine mesh h = 1/16 and a very small time step τ = 10−5. Fig. 4 shows the time evolution of the error
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Fig. 4. Time evolution of ηψ(t) + ηφ(t) for the stability of the soliton solution for different ξ and ε.

ηψ(t) + ηφ(t) = ‖ψ(·, t) − ψ s(·, t)‖H2

‖ψ s(·, t)‖H2
+ ‖φ(·, t) − φs(·, t)‖H1

‖φs(·, t)‖H1
, t ≥ 0,

for different ξ and ε. From Fig. 4, we can conclude numerically that the soliton solution (4.6) of the KGZ system (1.3) in 1D 
is dynamically stable for short time and orbitally stable for long time, even in the high-plasma-frequency limit regime.

Next we apply the MTI-SP method to study numerically the interaction of the soliton solutions (4.6) of the KGZ system 
(1.3) in 1D for different ε ∈ (0, 1]. In order to do so, we take d = 1 in (1.3) and choose the initial data in (1.5) as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ0(x) = ψ s(x + x0,0;α1,k1) + ψ s(x − x0,0;α2,−k2),

ψ1(x) = ε2∂tψ
s(x + x0,0;α1,k1) + ε2∂tψ

s(x − x0,0;α2,−k2),

φ0(x) = φs(x + x0,0;α1,k1) + φs(x − x0,0;α2,−k2), x ∈R,

φ1(x) = ∂tφ
s(x + x0,0;α1,k1) + ∂tφ

s(x − x0,0;α2,−k2),

(4.15)

where we take x0 = 12, k1 = k2 = 1 and α j = δ jε satisfying 0 < δ j ≤
√

2

1 + √
2

:= δ(0) ≈ 0.5858 for j = 1, 2. Three cases will 

be considered: Case I. δ1 = δ2 = 1√
3

; Case II. δ1 = 1√
10

and δ2 = 1√
3

; and Case III. δ1 = 1√
2.92

and δ2 = 1√
3

. The problems 

are solved numerically on 
 = [−32, 32] by the MTI-SP method (3.17)–(3.19) with a very fine mesh h = 1/16 and a very 
small time step τ = 10−4. Fig. 5 shows the dynamics of |ψ(x, t)| and φ(x, t) of the collision between two solitons with the 
same energy, i.e. Case I for different ε; and Fig. 6 depicts similar results for Case II, i.e. with different energy. In addition, 
Fig. 7 plots the time evolution of ‖ψ(·, t)‖L∞ and ‖φ(·, t)‖L∞ in Cases I and III for different ε to demonstrate finite time 
blow-up under certain parameter setups.

From Figs. 5–7, we can draw the following conclusions:
(i) For any fixed 0 < δ1 = δ2 := δ < δ(0) such that α1 = α2 = δε in (4.15), there exists a critical εc(δ) > 0 such that, when 

ε > εc(δ) finite time blow-up happens after the collision of the two solitons, and on the contrary, when 0 < ε < εc(δ) finite 
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Fig. 5. Contour plots of |ψ(x, t)| (left column) and φ(x, t) (right column) of the collision between two solitons with the same energy in Case I for different ε.

time blow-up doesn’t happen after the collision. Fig. 8 displays the dependence of εc(δ) vs 0 < δ ≤ δ(0) and the blow-up 
time t = Tb for different ε and δ. This implies that εc(δ) almost does not depend on 0 < δ < δ(0); and for any fixed ε > εc(δ), 
the blow-up time Tb decreases when δ increases; for any fixed 0 < δ < δ(0) , the blow-up time Tb decreases when ε > εc(δ)

increases. Based on our additional numerical results not shown here for brevity, we also find that when |δ1 − δ2| is large 
enough, there exists no finite time blow-up for ε ∈ (0, 1] (cf. Fig. 6).

(ii) After the collision of the two solitons, sound and other waves are generated, which demonstrate that the KGZ system 
(1.3) in 1D is not an integrable system. In addition, for fixed 0 < δ1 < δ(0) and 0 < δ2 < δ(0) , when 0 < ε ≤ 1 is small enough; 
or for fixed ε ∈ (0, 1], when |δ1 − δ2| is large enough, the collision of the two solitons is quite elastic (cf. Figs. 5 (bottom 
two rows) and 6).
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Fig. 6. Contour plots of |ψ(x, t)| (left column) and φ(x, t) (right column) of the collision between two solitons with different energy in Case II for different ε.

4.4. Application to wave interactions in 2D

In order to do so, we take d = 2 in (1.3) and choose the initial data in (1.5) as{
ψ0(x, y) = exp (−(x + 2)2 − y2) + exp (−(x − 2)2 − y2), ψ1(x, y) = exp (−x2 − y2),

φ0(x, y) = sech(x2 + (y + 2)2) + sech(x2 + (y − 2)2), φ1(x, y) = sech(x2 + y2), (x, y) ∈R2.
(4.16)

The problem is solved numerically on 
 = [−32, 32]2 by the MTI-SP method (3.17)–(3.19) with a very fine mesh h = 1/16
and a very small time step τ = 10−4. Fig. 9 shows contour plots of the solution for different t and 0 < ε ≤ 1. From this 
result, we can see that the MTI-SP method can be used to efficiently and accurately simulate wave dynamics and interaction 
of the KGZ system (1.3) in high dimensions.

5. Conclusions

A multiscale time integrator sine pseudospectral (MTI-SP) method was proposed for solving the Klein–Gordon–Zakharov 
(KGZ) system with a dimensionless parameter 0 < ε ≤ 1 which is inversely proportional to the plasma frequency. The 
solution of the KGZ system is highly oscillatory in time in the high-plasma-frequency limit regime, i.e. 0 < ε � 1. The key 
ideas for designing the MTI-SP method were based on (i) carrying out a multiscale decomposition by frequency at each 
time step with proper choice of transmission conditions between time steps, and (ii) adapting the sine spectral method 
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Fig. 7. Time evolution of ‖ψ(·, t)‖L∞ (left column) and ‖φ(·, t)‖L∞ (right column) of the collision between two solitons in Case I (top three rows) and 
Case III (bottom three rows) for different ε.
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Fig. 8. The phase diagram (top row) on finite time blow-up after collisions between two solitons with the same energy in $4.3 for different ε and δ; and 
the blow-up time Tb vs δ for ε = 1 (bottom left) and vs ε for δ = 0.5858 (bottom right).

for spatial discretization and the exponential wave integrators (EWIs) for integrating second-order highly oscillating ODEs 
in phase space. Extensive numerical results demonstrated that the MTI-SP method converges uniformly and optimally in 
space with spectral convergence rate if the solution is smooth, and uniformly in time with linear convergence rate for 
ε ∈ (0, 1] and optimally with quadratic convergence rate in the regimes when either ε = O (1) or 0 < ε ≤ τ . Comparisons 
with the existing EWI-SP method proposed in [5] were carried out to show the advantage of the MTI-SP method, especially 
in the high-plasma-frequency limit regime. Finally, we applied the MTI-SP to study convergence rates of the solution of the 
KGZ system to those of its limiting models in the high-plasma-frequency limit regime, stability and interactions of soliton 
solutions of the KGZ system in 1D with different parameter regimes, and wave dynamics and interaction of the KGZ system 
in 2D. Our numerical results identified explicitly certain initial data and parameter regimes such that the KGZ system in 1D 
will blow up at finite time.
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Appendix A. Explicit formulas for the coefficients used in (3.16) for the MTI-SP method

For the coefficients in (3.16) used in the MTI-SP method, after a detailed computation, we have

cl = λ−
l eiτλ+

l − λ+
l eiτλ−

l + λ+
l − λ−

l

ε2(λ−
l − λ+

l )λ+
l λ−

l

, pl =
ε2μl

[
ε2μle

2iτ
ε − ε2μl cos(μlτ ) − 2i sin(μlτ )

]
ε4μ2

l − 4
,

ql =
ε4μl

[
4iε2μl cos(μlτ ) + μle

2iτ
ε (τε4μ2

l − 4τ − 4iε2) − (4 + ε2μ2
l ) sin(μlτ )

]
(ε4μ2

l − 4)2
,

dl = i
(λ−

l )2eiτλ+
l − (λ+

l )2eiτλ−
l + iτλ+

l λ−
l (λ+

l − λ−
l ) + (λ+

l )2 − (λ−
l )2

ε2(λ+
l − λ−

l )(λ+
l λ−

l )2
, 1 ≤ l ≤ N − 1,
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Fig. 9. Contour plots of the solution of the KGZ (1.3) in 2D with (4.16) at different t for ε = 1 (first two rows), ε = 0.1 (second two rows) and ε = 0.01 (last 
two rows).
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ċl = i
eiτλ+

l − eiτλ−
l

ε2(λ−
l − λ+

l )
, ḋl = cl, ṗl =

ε2μ2
l

[
2ie

2iτ
ε − 2i cos(μlτ ) + ε2μl sin(μlτ )

]
ε4μ2

l − 4
,

q̇l =
μ4

l

[
ε2e

2iτ
ε (4ε4 − 8iτ + ε6μ2

l + 2iτε4μ2
l ) − ε4(4 + ε4μ2

l ) cos(μlτ ) − 4iε6μl sin(μlτ )
]

(ε4μ2
l − 4)2

.
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