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NUMERICAL STUDY OF QUANTIZED VORTEX INTERACTIONS
IN THE NONLINEAR SCHRÖDINGER EQUATION

ON BOUNDED DOMAINS∗

WEIZHU BAO† AND QINGLIN TANG†

Abstract. In this paper, we study numerically quantized vortex dynamics and their interactions
in the two-dimensional (2D) nonlinear Schrödinger equation (NLSE) with a dimensionless parameter
ε > 0 proportional to the size of the vortex core on bounded domains under either a Dirichlet or a
homogeneous Neumann boundary condition (BC). We begin with a review of the reduced dynamical
laws for time evolution of quantized vortex centers and show how to solve these nonlinear ordinary
differential equations numerically. Then we outline some efficient and accurate numerical methods
for discretizing the NLSE on either a rectangle or a disk under either Dirichlet or homogeneous
Neumann boundary condition. Based on these efficient and accurate numerical methods for NLSE
and the reduced dynamical laws, we simulate quantized vortex interactions of NLSE with different
ε and different initial setups including single vortex, vortex pair, vortex dipole, and vortex cluster,
compare them with those obtained from the corresponding reduced dynamical laws, and examine
the validity of the reduced dynamical laws. Finally, we investigate radiation and generation of sound
waves as well as their impact on vortex interactions in the NLSE dynamics.
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1. Introduction. Vortices are those waves that possess phase singularities (to-
pological defect) and rotational flows around the singular points. They arise in many
physical areas of different scales and in nature, ranging from liquid crystals and su-
perfluids to nonequilibrium patterns and cosmic strings [14, 37]. Quantized vortices
in two dimensions are those particle-like vortices whose centers are zeros of the order
parameter, possessing localized phase singularity with the topological charge (also
known as winding number, index, or circulation) being quantized. They have been
widely observed in many different physical systems, such as liquid Helium, type-II
superconductors, atomic gases, and nonlinear optics [1, 5, 13, 24, 31]. Quantized vor-
tices are key signatures of superconductivity and superfluidity. Their study remains
one of the most important and fundamental problems since they were predicted by
Lars Onsager in 1947 in connection with superfluid Helium.

In this paper, we consider and study numerically quantized vortex dynamics and
interactions in the two-dimensional (2D) nonlinear Schrödinger equation (NLSE), also
known as the Gross–Pitaevskii equation (GPE), which is a fundamental equation for
modeling and understanding superfluids [2, 16, 17, 19, 38]:

(1.1) i∂tψ
ε(x, t) = Δψε +

1

ε2
(1− |ψε|2)ψε, x ∈ Ω, t > 0,
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with initial condition

(1.2) ψε(x, 0) = ψε
0(x), x ∈ Ω̄,

and either a Dirichlet boundary condition (BC)

(1.3) ψε(x, t) = g(x) = eiω(x), x ∈ ∂Ω, t ≥ 0,

or a homogeneous Neumann BC

(1.4)
∂ψε(x, t)

∂n
= 0, x ∈ ∂Ω, t ≥ 0.

Here, Ω ⊂ R
2 is a simply connected and bounded domain, t is time, x = (x, y) ∈ R

2 is
the Cartesian coordinate vector, ψε := ψε(x, t) is a complex-valued function describing
the “order parameter” for a superfluid, ω is a given real-valued function, ψε

0 and g
are given smooth and complex-valued functions satisfying the compatibility condition
ψε
0(x) = g(x) for x ∈ ∂Ω, n = (n1, n2) and n⊥ = (−n2, n1) ∈ R

2 satisfying |n| =√
n2
1 + n2

2 = 1 are the outward normal and tangent vectors along ∂Ω, respectively,
and ε > 0 is a given dimensionless constant.

Denote the Gross–Pitaevskii (GP) or Ginzburg–Landau (GL) functional (“en-
ergy”) as [11, 18, 25]

(1.5) Eε(t) :=

∫
Ω

[
|∇ψε(x, t)|2 + 1

2ε2
(|ψε(x, t)|2 − 1

)2]
dx = Eε

kin(t) + Eε
int(t);

then it is easy to see that, for the NLSE (1.1) with either Dirichlet BC (1.3) or
homogeneous Neumann BC (1.4) for general domain Ω, or periodic BC when Ω is a
rectangle, the GP functional Eε(t) is conserved, i.e., Eε(t) ≡ Eε(0) for t ≥ 0.

Several analytical and numerical studies have dealt with quantized vortex states
of the NLSE (1.1) and their interactions in the whole space R2 or on bounded domains
under different scalings with regard to the distances between different vortices. Based
on a formal analysis, Fetter [15] predicted that, to the leading order, the dynamics of
vortices in the NLSE (1.1) would be governed by the same law as that in the ideal
incompressible fluid. The same prediction was then given mathematically by Neu [31]
using the method of matched asymptotics. In Neu’s work [31], he found vortex states
of the NLSE (1.1) in the whole space R2 with ε = 1 for superfluidity and conjectured
the stability of these states under NLSE dynamics as an open problem [31]. Based on
his conjecture on the stability, he obtained formally the reduced dynamical laws gov-
erning the motion of the vortex centers under the assumption that these vortices are
distinct and well-separated; i.e., the reduced dynamical laws are asymptotically valid
when the distances between vortex centers become larger and larger [31]. Under this
scaling, the vortex core size is O(1). Based on the reduced dynamical law, which is
a set of ordinary differential equations (ODEs) for the vortex centers, one can obtain
that two vortices with opposite winding numbers (vortex dipole or vortex-antivortex)
move in parallel, while they rotate along a circle if they have the same winding num-
ber (vortex pair). However, these ODEs are correct only up to the leading order.
Corrections to this leading order approximation due to radiation and/or related ques-
tions when long-time dynamics of vortices is considered still remain an important open
problem. Using the method of effective action and geometric solvability, Ovichinnikov
and Sigal confirmed Neu’s approximation and derived some leading radiative correc-
tions [34, 35] based on the assumption that the vortices are well-separated, which was
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extended by Lange and Schroers [23] to the study of the dynamics of overlapping vor-
tices. Recently, by proposing efficient and accurate numerical methods for discretizing
the NLSE in the whole space, Zhang, Bao, and Du [43, 44] compared the dynamics
of quantized vortices from the reduced dynamical laws obtained by Neu with those
from the direct numerical simulation results of the NLSE under different parameters
and/or initial setups. They solved numerically Neu’s open problem on the stability
of vortex states under the NLSE dynamics: vortices with winding number m = ±1
are dynamically stable and, respectively, |m| > 1 dynamically unstable [43, 44], which
agrees with those conclusions derived asymptotically by Ovchinnikov and Sigal [33].
In addition, they identified numerically different parameter regimes that the dynamics
and interactions of vortex centers obtained from the reduced dynamical laws agree
qualitatively and/or quantitatively as well as fail to agree with those obtained from
the NLSE dynamics [43, 44].

We remark here that Kevrekidis and his collaborators [8, 20, 28, 30, 36, 41, 42] re-
cently carried out some very interesting works on the dynamics and structure stability
of vortex clusters with several vortices in trapped Bose–Einstein condensates (BEC)
by studying the GPE with confinement potentials in the whole space R

2. Due to
the confinement potential and normalization condition, the situation there is different
from ours: (i) the profile of each single vortex is different—the density outside the
vortex core (with size at O(ε)) is uniform with value 1 up to the domain boundary
in our case (cf. Figure 1) and it is zero outside the Thomas–Fermi radius in the BEC
setup due to the harmonic confinement potential; (ii) in the strong interaction regime,
i.e., 0 < ε� 1, the density is almost 1 everywhere except the vortex core in our case,
while it is at O(

√
ε) in the BEC setup when the dimensionless interaction strength in

front of the cubic interaction is at O(1/ε2) [4]; (iii) there is no new vortex generated
from the boundary during the dynamics due to the nonzero boundary condition in our
case, while there are new vortices generated from the boundary in the BEC setup [21]
due to the harmonic trapping potential. Thus the setups there are quite different
from that in this paper.

Inspired by Neu’s work, many researchers have published papers on the study of
the vortex states and dynamics governed by the NLSE (1.1) on a bounded domain
Ω ⊂ R

2 with the introduction of a small dimensionless parameter 0 < ε < 1, which is
proportional to the core size of a vortex. Under this scaling, the core size of each vortex
is O(ε) and the distances between vortex centers initially are O(1). Mironescu [29]
investigated stability of the vortices in (1.1) with (1.3) and showed that for fixed
winding number m, a vortex with |m| = 1 is always dynamically stable, while for
those of winding number |m| > 1, there exists a critical εcm such that if ε > εcm,
the vortex is stable; otherwise it is unstable. Mironescu’s results were then improved
by Lin [27] using the spectrum of a linearized operator. Subsequently, Lin and Xin
[25] studied the vortex dynamics on a bounded domain with either a Dirichlet or a
Neumann BC, which was further investigated by Jerrard and Spirn [18] using different
methods. In addition, Colliander and Jerrard [11, 12] studied the vortex structures
and dynamics on a torus under a periodic BC. In these studies, the authors derived
the reduced dynamical laws which govern the dynamics of vortex centers under the
NLSE dynamics when ε → 0 with fixed initial distances between different vortex
centers. They obtained that, to the leading order, the vortices move according to the
Kirchhoff law in the bounded domain case. However, these reduced dynamical laws
cannot indicate radiation and/or sound propagations created by highly corotating
or overlapping vortices. It remains a very fascinating and fundamental problem to
understand the vortex-sound interactions [10, 32] and how the sound waves modify
the motion of vortices [16].
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Very recently, the authors designed some efficient and accurate numerical methods
for studying vortex dynamics and interactions in the GL equation on bounded do-
mains with either a Dirichlet or a Neumann BC [6]. These numerical methods can be
extended and applied to study the rich and complicated phenomena related to vortex
dynamics in the NLSE (1.1) with either Dirichlet BC (1.3) or homogeneous Neumann
BC (1.4) on bounded domains. The main goals of this paper are (i) to present efficient
and accurate numerical methods for discretizing the reduced dynamical laws and the
NLSE (1.1) on bounded domains under different BCs, (ii) to understand numerically
how the BC and radiation, as well as geometry of the domain, affect vortex dynam-
ics and interactions, (iii) to study numerically the vortex interactions in the NLSE
dynamics and/or compare them with those from the reduced dynamical laws under
different initial setups and parameter regimes, and (iv) to identify cases where the
vortex dynamics and interactions from the reduced dynamical laws agree/disagree
qualitatively and/or quantitatively with those from the NLSE dynamics.

The rest of the paper is organized as follows. In section 2, we briefly review
the reduced dynamical laws of vortex interactions under the NLSE (1.1) with either a
Dirichlet or a homogeneous Neumann BC and present numerical methods to discretize
them. In section 3, efficient and accurate numerical methods are briefly outlined for
discretizing the NLSE on bounded domains with different BCs. In section 4, numerical
results are reported for vortex interactions of the NLSE under the Dirichlet BC, and
similar results for the NLSE under the homogeneous Neumann BC are reported in
section 5. Finally, some conclusions are drawn in section 6.

2. The reduced dynamical laws and their discretization. In this section,
we review two different forms of the reduced dynamical laws for the dynamics of vortex
centers in the NLSE (1.1) with either a Dirichlet or a homogeneous Neumann BC,
show their equivalence, and present efficient numerical methods to discretize them.

We assume that, in the initial data ψε
0, there are exactly M isolated and distinct

vortices whose centers are located at x0
1 = (x01, y

0
1), x

0
2 = (x02, y

0
2), . . . , x

0
M = (x0M , y

0
M )

with winding numbers n1, n2, . . . , nM
, respectively. The winding number of each

vortex can be chosen as either 1 or −1, i.e., nj = 1 or −1 for j = 1, 2, . . . ,M . At time
t ≥ 0, the M isolated and distinct vortex centers are located at x1(t) = (x1(t), y1(t)),
x2(t) = (x2(t), y2(t)), . . . , and xM (t) = (xM (t), yM (t)). Denote

X0 := (x0
1,x

0
2, . . . ,x

0
M ), X := X(t) = (x1(t),x2(t), . . . ,xM (t)), t ≥ 0;

the renormalized energy associated with the M vortex centers is defined as [9, 24]

(2.1) W (X) :=W (X(t)) = −
∑

1≤j �=l≤M

njnl ln |xj(t)− xl(t)| , t ≥ 0.

2.1. Under the Dirichlet BC. For the NLSE (1.1) with Dirichlet BC (1.3),
when ε → 0, two different forms of the reduced dynamical laws have been obtained
in the literature for the motion of the M vortex centers.

The first, which is widely used, has been derived formally and rigorously in the
literature; see, for instance, [9, 11, 22, 26] and references therein:

(2.2) ẋj(t) = −njJ∇xj [W (X) +Wdbc(X)] , j = 1, . . . ,M, t > 0,

with initial condition

(2.3) xj(0) = x0
j , j = 1, 2, . . . ,M.
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Here, J is a 2× 2 symplectic matrix defined as

J =

(
0 1
−1 0

)
,

and the renormalized energy Wdbc(X) comes from the effect of the Dirichlet BC
associated with the M vortex centers X = X(t) and is defined as [9, 24]

Wdbc(X) = −
M∑
j=1

njR(xj ;X) +

∫
∂Ω

⎡
⎣R(x;X) +

M∑
j=1

nj ln |x− xj |
⎤
⎦ ∂n⊥ω(x)

2π
ds,

where, for any fixed X ∈ ΩM , R(x;X) is a harmonic function in x, i.e.,

(2.4) ΔR(x;X) = 0, x ∈ Ω,

with the Neumann BC

(2.5)
∂R(x;X)

∂n
= ∂n⊥ω(x)−

∂

∂n

M∑
l=1

nl ln |x− xl|, x ∈ ∂Ω.

Using an identity in [9, eq. (51), p. 84],

∇xj [W (X) +Wdbc(X)] = −2nj∇x

⎡
⎣R(x;X) +

M∑
l=1&l �=j

nl ln |x− xl|
⎤
⎦
x=xj

,

the reduced dynamical law (2.2) can be simplified, for 1 ≤ j ≤M , to

(2.6) ẋj(t) = 2J

⎡
⎣∇xR (x;X) |x=xj(t) +

M∑
l=1&l �=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

⎤
⎦ , t > 0.

The second form of the reduced dynamical law was obtained by Lin and Xin [25]
for 1 ≤ j ≤M as

(2.7) ẋj(t) = 2J

⎡
⎣J∇xH (x;X) |x=xj(t) +

M∑
l=1&l �=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

⎤
⎦ , t > 0,

where for any fixed X ∈ ΩM , H(x;X) is a harmonic function in x and satisfies the
BC

(2.8)
∂H(x;X)

∂n⊥
= ∂n⊥ω(x)−

∂

∂n

M∑
l=1

nl ln |x− xl|, x ∈ ∂Ω.

In the above two different forms of the reduced dynamical laws for the NLSE,
although the two harmonic functions R(x;X) and H(x;X) satisfy different BCs, they
are equivalent. In fact, they are both equivalent to the following reduced dynamical
law: For 1 ≤ j ≤M ,

(2.9) ẋj(t) = 2J

⎡
⎣J∇xQ (x;X) |x=xj(t) +

M∑
l=1&l �=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

⎤
⎦ , t > 0,
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where, for any fixed X ∈ ΩM , Q(x;X) is a harmonic function in x and satisfies the
Dirichlet BC

(2.10) Q(x;X) = ω(x)−
M∑
l=1

nlθ(x − xl), x ∈ ∂Ω,

with the function θ : R
2 → [0, 2π) being defined as

(2.11) cos(θ(x)) =
x

|x| , sin(θ(x)) =
y

|x| , 0 �= x = (x, y) ∈ R
2.

Lemma 2.1. For any fixed X ∈ ΩM , we have the identity

(2.12) J∇xQ (x;X) = ∇xR (x;X) = J∇xH (x;X) , x ∈ Ω,

which immediately implies the equivalence of the three reduced dynamical laws (2.6),
(2.7), and (2.9).

Proof. For any fixed X ∈ ΩM , since Q is a harmonic function, there exists a
function ϕ1(x) such that

J∇xQ (x;X) = ∇ϕ1(x), x ∈ Ω.

Thus, ϕ1(x) satisfies the Laplace equation

(2.13) Δϕ1(x) = ∇ · (J∇xQ(x;X)) = ∂yxϕ1(x)− ∂xyϕ1(x) = 0, x ∈ Ω,

with the Neumann BC

(2.14) ∂nϕ1(x) = (J∇xQ(x;X)) · n = ∇xQ(x;X) · n⊥ = ∂n⊥Q(x;X), x ∈ ∂Ω.

Noting (2.10), we obtain for x ∈ ∂Ω

∂nϕ1(x) = ∂n⊥ω(x)−
∂

∂n⊥

M∑
l=1

nlθ(x− xl) = ∂n⊥ω(x) −
∂

∂n

M∑
l=1

nl ln |x− xl|.

Combining the above equality with (2.13), (2.4), and (2.5), we get

Δ(R(x;X)− ϕ1(x)) = 0, x ∈ Ω; ∂n (R(x;X)− ϕ1(x)) = 0, x ∈ ∂Ω.

Thus

R(x;X) = ϕ1(x) + constant, x ∈ Ω,

which immediately implies the first equality in (2.12). The second equality in (2.12)
can be proved in a similar way, but we omit it here for brevity.

2.2. Under the homogeneous Neumann BC. Similarly, for the NLSE (1.1)
with the homogeneous Neumann BC (1.4), when ε → 0, there are also two different
forms of the reduced dynamical laws for the motion of the M vortex centers.

Again, by introducing the renormalized energyWnbc, which comes from the effect
of the homogeneous Neumann BC associated with the M vortex centers X = X(t),

(2.15) Wnbc(X) = −
M∑
j=1

njR̃(xj ;X),
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where, for any fixed X ∈ ΩM , R̃(x;X) is a harmonic function in x and satisfies the
Dirichlet BC

(2.16) R̃(x;X) = −
M∑
l=1

nl ln |x− xl|, x ∈ ∂Ω,

the first form has been derived formally and rigorously by several authors in the
literature [11, 18, 22] as

(2.17) ẋj(t) = −njJ∇xj [W (X) +Wnbc(X)] , j = 1, . . . ,M, t > 0.

Using the identity

(2.18) ∇xj [W (X) +Wnbc(X)] = −2nj∇x

⎡
⎣R̃(x;X) +

M∑
l=1&l �=j

nl ln |x− xl|
⎤
⎦
xj

,

the above reduced dynamical laws collapse for 1 ≤ j ≤M as

(2.19) ẋj(t) = 2J

⎡
⎣∇xR̃ (x;X) |x=xj(t) +

M∑
l=1&l �=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

⎤
⎦ , t > 0.

Similarly, the second form of the reduced dynamical law was obtained by Lin and
Xin [25] for 1 ≤ j ≤M as

(2.20) ẋj(t) = 2J

⎡
⎣J∇xQ̃ (x;X) |x=xj(t) +

M∑
l=1&l �=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

⎤
⎦ , t > 0,

where, for any fixed X ∈ ΩM , Q̃(x;X) is a harmonic function in x and satisfies the
Neumann BC

(2.21)
∂Q̃(x;X)

∂n
= − ∂

∂n

M∑
l=1

nlθ(x− xl), x ∈ ∂Ω.

Similarly to the proof of Lemma 2.1, we can establish the equivalence of the above
two different forms of the reduced dynamical laws.

Lemma 2.2. The reduced dynamical laws (2.19) and (2.20) are equivalent.
In order to compare the solution of the reduced dynamical laws (2.6) or (2.9)

and (2.19) or (2.20) with those from the NLSE under a Dirichlet or a homogeneous
Neumann BC, respectively, the ODEs (2.6) or (2.9) and (2.19) or (2.20) are discretized
by the standard second order leap-frop method or fourth order Runge–Kutta method.
For each fixed X ∈ ΩM , when the domain Ω is a rectangle, the Laplace equation (2.4)
with BC (2.5) or (2.10) or (2.16) or (2.21) is discretized by the standard second order
finite difference method, and, respectively, when the domain Ω is a disk, they are
discretized in the θ-direction via the Fourier pseudospectral method and in the r-
direction via the finite element method (FEM) with (r, θ) the polar coordinates. For
details, we refer the reader to [6] but omit them here for brevity.
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3. Numerical methods. In this section, we outline briefly some efficient and ac-
curate numerical methods for discretizing the NLSE (1.1) in either a rectangle or a disk
with initial condition (1.2) and either a Dirichlet or a homogeneous Neumann BC. The
key ideas in our numerical methods are based on (i) applying a time-splitting method,
which has been widely used for nonlinear partial differential equations (PDEs) [40]
to decouple the nonlinearity in the NLSE [5, 7, 43], and (ii) adapting a proper finite
difference method and/or FEM to discretize a free Schrödinger equation [5, 6].

Let τ := �t > 0 be the time step size, and denote tn = nτ for n ≥ 0. For
n = 0, 1, . . . , from time t = tn to t = tn+1, the NLSE (1.1) is solved in two splitting
steps. One first solves

(3.1) i∂tψ
ε(x, t) =

1

ε2
(1− |ψε|2)ψε, x ∈ Ω, t ≥ tn,

for the time step of length τ , followed by solving

(3.2) i∂tψ
ε(x, t) = Δψε, x ∈ Ω, t ≥ tn,

for the same time step. The discretization of (3.2) will be outlined later. For t ∈
[tn, tn+1], we can easily obtain the following ODE for ρ(x, t) = |ψε(x, t)|2:
(3.3) ∂tρ(x, t) = 0, t ≥ tn, x ∈ Ω,

which implies that

(3.4) ρ(x, t) = ρ(x, tn), t ≥ tn, x ∈ Ω.

Plugging (3.4) into (3.1), we can integrate it exactly to get

(3.5) ψε(x, t) = ψε(x, tn) exp

[
− 1

ε2
(1 − |ψε(x, tn)|2)(t− tn)

]
, t ≥ tn, x ∈ Ω.

We remark here that, in practice, we always use the second order Strang splitting
[40]; that is, from time t = tn to t = tn+1, (i) evolve (3.1) for half time step τ/2 with
initial data given at t = tn; (ii) evolve (3.2) for one step τ starting with the new data;
and (iii) evolve (3.1) for half time step τ/2 again with the newer data.

When Ω = [a, b]×[c, d] is a rectangular domain, we denote hx = b−a
N and hy = d−c

L ,
with N and L being two even positive integers as the mesh sizes in the x-direction
and the y-direction, respectively. Similarly to the discretization of the gradient flow
with constant coefficient [6], when the Dirichlet BC (1.3) is used for (3.2), it can be
discretized by using the fourth order compact finite difference discretization for spatial
derivatives followed by a Crank–Nicolson finite difference (CNFD) scheme for tempo-
ral derivatives [6], and when homogeneous Neumann BC (1.4) is used for (3.2), it can
be discretized by using cosine spectral discretization for spatial derivatives followed by
integrating in time exactly [6]. The details are omitted here for brevity. Combining
the CNFD and cosine pseudospectral discretization for Dirichlet and homogeneous
Neumann BCs, respectively, with the second order Strang splitting, we can obtain
time-splitting Crank–Nicolson finite difference (TSCNFD) and time-splitting cosine
pseudospectral (TSCP) discretizations for the NLSE (1.1) on a rectangle with Dirich-
let BC (1.3) and homogeneous Neumann BC (1.4), respectively. Both TSCNFD and
TSCP discretizations are unconditionally stable, second order in time, and have mem-
ory cost O(NL) and computational cost O (NL ln(NL)) per time step. In addition,
TSCNFD is fourth order in space and TSCP is spectral order in space.
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When Ω = {x | |x| < R} := BR(0) is a disk with R > 0 a fixed constant,
similarly to the discretization of the GPE with an angular momentum rotation [3, 5,
43] and/or the gradient flow with constant coefficient [6], it is natural to adopt the
polar coordinate (r, θ) in the numerical discretization by using the standard Fourier
pseudospectral method in the θ-direction [39], FEM in the r-direction, and the Crank–
Nicolson method in time [3, 5, 43]. Again, the details are omitted here for brevity.

4. Numerical results under Dirichlet BC. In this section, we report numer-
ical results for vortex interactions of the NLSE (1.1) under Dirichlet BC (1.3) and
compare them with those obtained from the reduced dynamical laws (2.6) with (2.3).
We study how the dimensionless parameter ε, initial setup, boundary value, and ge-
ometry of the domain Ω affect the dynamics and interactions of vortices. For a given
bounded domain Ω, the NLSE (1.1) is unchanged by the rescaling x → dx, t → d2t,
and ε → dε with d the diameter of Ω. Thus without lose of generality, hereafter,
without specification, we always assume that the diameter of Ω is O(1). The initial
condition ψε

0 in (1.2) is chosen as

(4.1) ψε
0(x) = ψε

0(x, y) = eih(x)
M∏
j=1

φεnj
(x − x0

j), x = (x, y) ∈ Ω̄,

where M > 0 is the total number of vortices in the initial data, h(x) is a real-valued
harmonic function corresponding to phase in-painting at t = 0, θ(x) is defined in
(2.11), and for j = 1, 2, . . . ,M , nj = 1 or −1, and x0

j = (x0j , y
0
j ) ∈ Ω are the winding

number and initial location of the jth vortex, respectively. In addition,

φεnj
(x) = fε(|x|) einjθ(x), x = (x, y) ∈ Ω.

Here, f ε(r) is chosen as

(4.2) f ε(r) =

{
1, r ≥ R0 = 0.25,
f ε
v(r), 0 ≤ r ≤ R0,

where f ε
v is the solution of the following problem:

[
1

r

d

dr

(
r
d

dr

)
− 1

r2
+

1

ε2
(
1− (f ε

v(r))
2
)]
f ε
v(r) = 0, 0 < r < R0,

with the Dirichlet BC

f ε
v(r = 0) = 0, f ε

v(r = R0) = 1.

The solution fε
v of the above problem is computed numerically, and we depict the

function fε(r) in Figure 1 with different ε. Thus in the initial data (4.1), there are
exactly M distinct vortices with core size at O(ε) under a phase in-painting h(x).
The function g in the Dirichlet BC (1.3) is chosen as

(4.3) g(x) = ei(h(x)+
∑M

j=1 njθ(x−x0
j)), x ∈ ∂Ω,

so that it is compatible with ψε
0 at t = 0.
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Fig. 1. Plot of the function fε(r) in (4.2) with different ε.

In addition, in the following sections, we mainly consider the following six different
modes of the phase in-painting h(x):

• Mode 0: h(x) = 0. Mode 1: h(x) = x+ y.
• Mode 2: h(x) = x− y. Mode 3: h(x) = x2 − y2.
• Mode 4: h(x) = x2 − y2 + 2xy. Mode 5: h(x) = x2 − y2 − 2xy.

To simplify our presentation, for j = 1, 2, . . . ,M , hereafter we let xε
j(t) and

xr
j(t) be the jth vortex center in the NLSE dynamics and the corresponding reduced

dynamical laws, respectively, and denote dεj(t) = |xε
j(t) − xr

j(t)| as their difference.
Furthermore, in the presentation of the figures, the initial location of a vortex with
winding number +1, −1 and the location where two vortices merge are marked as
“+”, “◦”, and “�”, respectively. Finally, in our computations, if not specified, we
take Ω = [−1, 1]2 in (1.1), mesh sizes hx = hy = ε

10 , and time step τ = 10−6. The
NLSE (1.1) with (1.3), (1.2), and (4.1) is solved by the method TSCNFD presented
in section 3.

4.1. Single vortex. Here we present numerical results of the motion of a single
quantized vortex in the NLSE (1.1) dynamics and the corresponding reduced dynam-
ics; i.e., we take M = 1, n1 = 1 in (4.1). To study how the initial phase shift h(x)
and initial location of the vortex x0

1 affect the motion of the vortex and to understand
the validity of the reduced dynamical law, we consider the following 11 cases:

• Cases I–III: x0
1 = (0, 0), and h(x) is chosen as Mode 1, 2, and 3, respectively.

• Cases IV–VIII: x0
1 = (0.1, 0), and h(x) is chosen as Mode 1, 2, 3, 4, and 5,

respectively.
• Cases IX–XI: x0

1 = (0.1, 0.1), and h(x) is chosen as Mode 3, 4, and 5, respec-
tively.

Moreover, to study the effect of domain geometry, we consider Ω of three types: Type
I, a square Ω = [−1, 1]2; Type II, a rectangle Ω = [−1, 1] × [−0.65, 0.65]; and Type
III, a unit disk Ω = B1(0). Thus we also study the following four additional cases:

• Cases XII–XIII: x0
1 = (0, 0), h(x) = x + y, and Ω is chosen as Type II and

III, respectively.
• Cases XIV–XV: x0

1 = (0.1, 0), h(x) = x2 − y2, and Ω is chosen as Type II
and III, respectively.

Figure 2 depicts the trajectory of the vortex center when ε = 1
40 in (1.1) for Cases

I–VI and dε1 with different ε for Cases I, V, and VI. Figure 3 shows the trajectory of
the vortex center when ε = 1

64 in (1.1) for Cases VI–XI, while Figure 4 shows that for
Cases XII–XVII when ε = 1

32 in (1.1). From Figures 2–4 and additional numerical
experiments (not shown here for brevity), we can draw the following conclusions:
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Fig. 2. Trajectory of the vortex center in NLSE under Dirichlet BC when ε = 1
40

for Cases
I–VI (from left to right and then from top to bottom in the top two rows), and dε1 for different ε for
Cases I, V, and VI (from left to right in bottom row) in section 4.1.
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Fig. 3. Trajectory of the vortex center in NLSE dynamics under Dirichlet BC when ε = 1
64

(solid line) and from the reduced dynamical laws (dashed line) for Cases VI–XI (from left to right
and then from top to bottom) in section 4.1.

(i) When h(x) ≡ 0, the vortex center does not move, and this is similar to the
case in the whole space.

(ii) When h(x) = (x + by)(x − y
b ) with b �= 0, the vortex does not move if

x0
1 = (0, 0), while it does move if x0

1 �= (0, 0) (cf. Figure 2, Cases III and VI for b = 1).



422 WEIZHU BAO AND QINGLIN TANG

−1 0 1
−0.65

0

0.65

x

y

−1 0 1
−1

0

1

x

y

−1 0 1
−0.65

0

0.65

x

y

−1 0 1
−1

0

1

x

y

Fig. 4. Trajectory of the vortex center in the NLSE under the Dirichlet BC when ε = 1
40

for
Cases I, XII, XIII, VI, XIV, and XV (from left to right and then from top to bottom) in section 4.1.

(iii) When h(x) �= 0 and h(x) �= (x + by)(x − y
b ) with b �= 0, in general, the

vortex center does move. For the NLSE dynamics, there exists a critical value εc
depending on h(x), x0

1, and Ω such that if ε < εc, the vortex will move periodically
in a closed loop (cf. Figure 2); otherwise its trajectory will not be a closed loop. This
differs significantly from the situation in the reduced dynamics, where the trajectory
is always periodic (cf. Figure 3, dashed line). Thus the reduced dynamical laws fail
qualitatively when ε > εc. It should be an interesting problem to find out how this
critical value depends on h(x), x0

1, and the geometry of Ω.
(iv) In general, the initial location, the geometry of the domain, and the boundary

value will all affect the motion of the vortex (cf. Figure 4).
(v) When ε → 0, the dynamics of the vortex center under the NLSE dynamics

converges uniformly in time to that of the vortex center under the reduced dynamics
(cf. Figure 2, bottom row). This verifies numerically the validation of the reduced
dynamical laws.

4.2. Vortex pair. Here we present numerical results of the interactions of a
vortex pair under the NLSE (1.1) dynamics and its corresponding reduced dynamical
laws; i.e., we take M = 2, n1 = n2 = 1, x0

2 = −x0
1 = (d0, 0) with 0 < d0 < 1 (i.e., the

two vortices are initially located symmetrically on the x-axis), h(x) ≡ 0 in (4.1), and
ε = 1

40 in (1.1). Figure 5 depicts the trajectory of the vortex pair and time evolution
of Eε(t), Eε

kin(t), x
ε
1(t), x

ε
2(t), and d

ε
1(t) for different d0.

From Figure 5 and additional numerical results (not shown here for brevity), we
can draw the following conclusions for the interaction of a vortex pair under NLSE
dynamics (1.1) with a Dirichlet BC:

(i) The total energy is conserved numerically very well during the dynamics.
(ii) The initial locations of the two vortices affect significantly the motion of the

vortex pair. If the vortex pair is symmetric initially, then they move periodically and
their trajectories are symmetric, i.e., xε

1(t) = −xε
2(t) for t ≥ 0. Furthermore, for both

the reduced dynamical law and NLSE dynamics, there exist critical values, say drc
and dεc, respectively, such that if d0 < drc (or d0 < dεc in the NLSE dynamics), the two
vortices will rotate with each other and move along a circle-like trajectory; otherwise,
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Fig. 5. Trajectory of the vortex pair (left column), time evolution of xε
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kin(t) (third column), and dε1(t) (last column) for d0 = 0.1 (top row) and
d0 = 0.5 (bottom row) in section 4.2.
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Fig. 6. Critical value dεc for the interaction of a vortex pair of the NLSE (1.1) under the
Dirichlet BC with h(x) = 0 in (4.1) for different ε in section 4.2.

they will move along a crescent-like trajectory (cf. Figure 5). We find numerically the
critical values drc ≈ 0.4923 and dεc for 0 < ε < 1, which are depicted in Figure 6. From
these values, we obtain numerically the following relation for drc and dεc:

dεc = drc + 2.11ε2.08, 0 < ε < 1.

(iii) For any fixed d0, the dynamics of the two vortex centers under the NLSE
dynamics converges uniformly in time to that of the two vortex centers under the
reduced dynamical laws (cf. Figure 5) when ε→ 0. However, for fixed ε, the reduced
dynamical law fails qualitatively to describe the motion of vortices if drc < d0 < dεc.

4.3. Vortex dipole. Here we present numerical results of the interactions of a
vortex dipole under the NLSE (1.1) dynamics and its corresponding reduced dynam-
ical laws; i.e., we take M = 2, h(x) ≡ 0, n1 = −n2 = −1, x0

2 = −x0
1 = (d0, 0) in (4.1)

with d0 = 0.5, and ε = 1
25 in (1.1). Figure 7 depicts contour plots of |ψε(x, t)| at

different times, trajectory of the vortex dipole, and time evolution of xε
1(t), x

ε
2(t), and

dε1(t). From Figure 7 and additional numerical results (not shown here for brevity),
we can draw the following conclusions:

(i) The total energy is conserved numerically very well during the dynamics.
(ii) The vortex dipole under the NLSE dynamics moves upward symmetrically

with respect to the y-axis, and finally the two vortices in the vortex dipole merge with
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second plot), and time evolution of xε
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the dynamics of a vortex dipole in section 4.3.

each other and they are annihilated somewhere near the top boundary simultaneously.
The distance between the merging place and the boundary is O(ε) when ε is small.
After merging, new waves will be created and reflected by the top boundary. The new
waves will then move back into the domain and be reflected back into the domain again
when they hit the left, right, and bottom boundaries (cf. Figure 7). Moreover, the
two vortices in the vortex dipole in the NLSE dynamics will always merge in some
place near the top boundary for all d0 (cf. Figure 7, bottom left). However, in the
reduced dynamics, the two vortices never merge inside Ω (cf. Figure 7 bottom, second
plot). Hence, the reduced dynamical law fails qualitatively when the vortex dipole is
near the boundary.

(iii) When ε→ 0, the dynamics of the two vortex centers under the NLSE dynam-
ics converges uniformly to that of the two vortex centers under the reduced dynamical
laws (cf. Figure 7) before the two vortices merge with each other or are near the bound-
ary. Again, this verifies numerically the validation of the reduced dynamical laws in
this case. In fact, based on our extensive numerical experiments, the motion of the
two vortex centers from the reduced dynamical laws agrees with that of the two vor-
tices from the NLSE dynamics qualitatively when 0 < ε < 1 and quantitatively when
0 < ε� 1 when the two vortices are not too close to the boundary.

4.4. Vortex cluster. Here we present numerical studies on the dynamics of
vortex clusters in the NLSE (1.1) with Dirichlet BC (1.3); i.e., we choose the initial
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Fig. 8. Trajectory of the vortex xε
1 (solid line), xε

2 (dashed-dotted line), and xε
3 (dashed line)

(first and third rows) and their corresponding time evolution (second and fourth rows) for Case
I (top two rows) and Case II (bottom two rows) for small time (left column), intermediate time
(middle column), and large time (right column) with ε = 1

40
and d0 = 0.25 in section 4.4.

data (1.2) as (4.1) and study the following four cases:
Case I. M = 3, n1 = n2 = n3 = 1, x0

1 = −x0
3 = (d0, 0), and x0

2 = (0, 0).
Case II. M = 3, n1 = −n2 = n3 = 1, x0

1 = −x0
3 = (d0, 0), and x0

2 = (0, 0).
Case III. M = 4, n1 = n2 = −n3 = −n4 = 1, x0

1 = −x0
2 = (d1, 0), and

x0
3 = −x0

4 = (0, d2) with 0 < d1, d2 < 1.
Case IV. Ω = B5(0), M = 9, n1 = n2 = · · · = n9 = 1, and the nine vortex centers

are initially located on the 3×3 uniform mesh points for the rectangle [−d0, d0]2 with
0 < d0 < 1.

Figure 8 depicts the trajectory and time evolution of xε
1(t), x

ε
2(t), and xε

3(t) in the
NLSE dynamics for Cases I and II. Figure 9 shows contour plots of |ψε| at different
times in the NLSE dynamics for Case III, and Figure 10 depicts contour plots of
−|ψε|, as well as slice plots of |ψε(x, 0, t)|, showing sound wave propagation of the
NLSE dynamics in Case IV. Based on Figures 8–10 and additional computations (not
shown here for brevity), we can draw the following conclusions:

(i) For Case I, the middle vortex (initially at the origin) will not move, while the
other two vortices rotate clockwise around the origin for some time. This dynamics
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Fig. 9. Contour plots of |ψε(x, t)| with ε = 1
16

at different times for the NLSE dynamics of a
vortex cluster in Case III with different initial locations: d1 = d2 = 0.25 (top two rows); d1 = 0.55,
d2 = 0.25 (middle two rows); d1 = 0.25, d2 = 0.55 (bottom two rows) in section 4.4.
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8
in section 4.4.

agrees very well with the NLSE dynamics in the whole plane [43, 44]. After some time,
the above symmetric structure is broken due to boundary effect and numerical errors;
i.e., the middle vortex will begin to move toward one of the other two vortices and
form a pair of vortices, then the two vortices in the pair will rotate with each other
and the vortex pair will rotate with the leftover single vortex for a while. Then this
pair will separate and one of them will form a new vortex pair with the single vortex,
while the other becomes a new single vortex rotating with them. This process will
be repeated tautologically like three dancers exchanging their partners alternatively.
The dynamical pattern after the symmetric structure breaking depends highly on the
mesh size and time step chosen.

(ii) For Case II, similarly to Case I, the middle vortex (initially at the origin) will
not move, while the other two vortices rotate counterclockwise around the origin for
some time. This dynamics agrees very well with the NLSE dynamics in the whole
plane [43, 44]. After some time, again the above symmetric structure is broken due
to boundary effect and numerical errors; i.e., the middle vortex will begin to move
toward one of the other two vortices and form a vortex dipole which will move nearly
parallel to the boundary and merge near the boundary. Sound waves will be created
and reflected back into the domain and will drive the leftover vortex in the domain
to move (cf. Figure 8). Again the dynamical pattern after the symmetric structure
breaking depends highly on the mesh size and time step chosen. From section 4.1, we
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know that a single vortex in the NLSE with h(x) = 0 does not move, and hence this
example illustrates clearly the vortex-sound interactions which cannot be predicted
by the reduced dynamical laws since they are valid only before annihilation and when
ε is very small.

(iii) For Case III, the four vortices form two vortex dipoles when t is small. Then
the two dipoles move outward in opposite directions, and finally the two vortices in
each vortex dipole merge and are annihilated at some place near the boundary. If
d1 = d2, the two vortex dipoles move symmetrically with respect to the line y = x and
the two vortices in each dipole merge some place near the top-right and bottom-left
corners, respectively; if d1 > d2, they move to the top boundary and the bottom
boundary, respectively, and again the two vortices in each dipole merge with each
other when they are close to the boundary; and if d1 < d2, they move to the left
boundary and the right boundary, respectively, and again the two vortices in each
dipole merge with each other when they are close to the boundary. New waves are
created after the two vortices in each dipole merge with each other and are reflected
back into the domain when they hit the boundary (cf. Figure 9).

(iv) For Case IV, vortex (initially at the origin) does not move due to symmetry,
while the other eight vortices rotate clockwise and move along two circular trajectories
(cf. Figure 10). During the dynamics, sound waves are generated and they propagate
outward, and are reflected back into the domain when they hit the boundary. The
distances between the one centered at the origin and the other eight vortices increase
when sound waves are radiated outward; on the other hand, they decrease and be-
come even smaller than their initial distances when sound waves are reflected by the
boundary and move back into the domain (cf. Figure 10). This example clearly shows
the impact of sound waves on the dynamics of vortices.

Similarly to the case in BEC setups [20, 28, 36, 42], the symmetric structure near
t = 0 in Cases I and II for three vortices is dynamically unstable; i.e., symmetric
structure breaking will happen very quickly if we perturb the location of either the
central vortex or one of the side vortices a little bit. To show this, we perturb the
initial locations of some vortices in Case I to the following:

Type I. Asymmetric perturbation: x0
2 from (0, 0) → (δ, 0) with δ > 0.

Type II. Asymmetric perturbation: x0
1 from (d0, 0) → (d0 − δ, 0) with δ > 0.

Type III. Symmetric perturbation: x0
1 from (d0, 0) → (d0 − δ, 0) and x0

3 from
(−d0, 0) → (−d0 + δ, 0) with δ > 0.

Figure 11 depicts the trajectory of xε
1(t), x

ε
2(t), and xε

3(t) as well as d
ε
2(t) := |xε

2(t)|
for the above three perturbations. From this figure and additional computations
(not shown here for brevity), we see that the symmetric structure is dynamically
stable under a symmetric perturbation, and it is dynamically unstable under a small
asymmetric perturbation. For more stability analysis of vortex clusters, we refer the
reader to [8, 20, 28, 30, 36, 41, 42] and references therein.

4.5. Radiation and sound wave. Here we study numerically how the radiation
and sound waves affect the dynamics of quantized vortices in the NLSE dynamics
under the Dirichlet BC. To this end, we consider two types of perturbation.

Type I: Perturbation on the initial data; i.e., we take the initial data (1.2) as

(4.4) ψε(x, 0) = ψδ,ε
0 (x) = ψε

0(x) + δe−10((|x|−0.08)2+y2), x = (x, y) ∈ Ω,

where ψε
0 is given as in (4.1) with h(x) ≡ 0, M = 2, n1 = n2 = 1, and x0

1 = −x0
2 =

(0.1, 0); i.e., we perturb the initial data for studying the interactions of a vortex pair
by a Gaussian function with amplitude δ. Then we take δ = ε and let ε go to 0 and
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Fig. 11. Trajectory of the vortex centers xε
1(t) (dashed line), xε

2(t) (solid line), and xε
3(t)

(dashed-dotted line) with δ = 0.0005 (top row) and time evolution of the distance of xε
2 to the origin,

i.e., |xε
2(t)| for different δ (bottom row) under the NLSE dynamics with ε = 1

40
and d0 = 0.25

for perturbation Type I (first column), Type II (second column), and Type III (third column) in
section 4.4.
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Fig. 12. Time evolution of dδ,ε1 (t) for nonperturbed initial data (left) and perturbed initial data
(right) in section 4.5.

solve the NLSE (1.1) with initial condition (4.4) for the vortex centers xδ,ε
1 (t) and

xδ,ε
2 (t) and compare them with those from the reduced dynamical law. We denote

dδ,εj (t) = |xδ,εj (t)− xrj (t)| for j = 1, 2 as the error. Figure 12 depicts time evolution of

dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the case when δ = 0, i.e.,
no perturbation. From this figure, we can see that the dynamics of the two vortex
centers under the NLSE dynamics converges to that of the two vortex centers obtained
from the reduced dynamical law when ε→ 0 without perturbation (cf. Figure 12, left).
On the contrary, the two vortex centers under the NLSE dynamics do not converge to
those obtained from the reduced dynamical law when ε→ 0 with small perturbation
(cf. Figure 12, right). This clearly demonstrates radiation and sound wave effects on
vortices in the NLSE dynamics with the Dirichlet BC.

Type II: Perturbation by an external potential; i.e., we replace the uniform
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Fig. 13. Surface plots of −|ψε(x, t)| (left) and slice plots of |ψε(x, 0, t)| (right) at different times
showing sound wave propagation under the NLSE dynamics in a disk with ε = 1

4
and a perturbation

in the potential in section 4.5.

potential in (1.1) by a nonuniform potential and solve the NLSE

(4.5) i∂tψ
ε(x, t) = Δψε +

1

ε2
(1 −W (x, t)− |ψε|2)ψε, x ∈ Ω, t > 0,

with

(4.6) W (x, t) =

{ − sin(2t)2, t ∈ [0, 0.5],
0, t > 0.5,

x ∈ Ω.

The initial data is chosen as (4.1) with M = 1, n1 = 1, x0
1 = (0, 0), Ω = B5(0), and

ε = 1
4 . In fact, the perturbation is introduced when t ∈ [0, 0.5] and is removed after

t = 0.5. Figure 13 illustrates surface plots of −|ψε| and slice plots of ψε(x, 0, t) at
different times showing sound wave propagation. From Figure 13, we can see that
the perturbed vortex configuration rotates and radiates sound waves. This agrees
well with some former prediction in the whole plane, for example, in Lange and
Schroers [23] for the case M = 2. The waves will be reflected back into the domain
when they hit the boundary and then be absorbed by the vortex core. Then the
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Fig. 14. Trajectory of the vortex center when ε = 1
32

and time evolution of dε1 for different ε for

the motion of a single vortex in NLSE under the homogeneous Neumann BC with x0
1 = (0.35, 0.4)

(left two figures) or x0
1 = (0, 0.2) (right two figures) in (5.1) in section 5.1.

vortex core will radiate new waves and the process is repeated tautologically. This
process explicitly illustrates the radiation in the NLSE dynamics.

Remark 4.1. Based on this example and other numerical results (not shown here
for brevity), we can conclude that the vortex with winding number m = ±1 is dynam-
ically stable under the NLSE dynamics in a bounded domain with a perturbation in
the initial data and/or external potential. Meanwhile, we also found numerically that
the vortex with winding number m = 2 and ε = 1

32 is also dynamically stable under
a perturbation in the external potential. Actually, Mironescu [29] indicated that for
a vortex with winding number |m| > 1, there exists a critical value εcm such that if
ε < εcm, the vortex is unstable; otherwise the vortex is stable. It was also numerically
observed that a vortex with |m| > 1 is unstable under a perturbation in the potential
but stable under a perturbation in the initial data in the whole plane case [43]. Hence,
it would be an interesting problem to investigate numerically how the stability of a
vortex depends on its winding number, value of ε, and strength and/or type of the
perturbation under the NLSE dynamics on bounded domains.

5. Numerical results under Neumann BC. In this section, we report numer-
ical results for vortex interactions of the NLSE (1.1) under the homogeneous Neumann
BC (1.4) and compare them with those obtained from the reduced dynamical laws
(2.19) with (2.3). The initial condition ψε

0 in (1.2) is chosen as

(5.1) ψε
0(x) = ψε

0(x, y) = eihn(x)
M∏
j=1

φεnj
(x− x0

j ), x = (x, y) ∈ Ω̄,

where hn(x) is a harmonic function satisfying the Neumann BC

∂

∂n
hn(x) = − ∂

∂n

M∑
l=1

nlθ(x− x0
l ), x ∈ ∂Ω.

In fact, the choice of hn(x) is such that ψε
0 satisfies the homogeneous Neumann BC

(1.4). The NLSE (1.1) with (1.4), (1.2), and (5.1) is solved by the TSCP method
presented in section 3.

5.1. Single vortex. Here we present numerical results of the motion of a single
quantized vortex under the NLSE (1.1) dynamics and its corresponding reduced dy-
namical laws, i.e., we take M = 1 and n1 = 1 in (5.1). Figure 14 depicts trajectory
of the vortex center for different x0

1 in (5.1) when ε = 1
32 in (1.1) and dε1 for different

ε. From Figure 14 and additional numerical results (not shown here for brevity), we
can see the following:
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Fig. 15. Trajectory of the vortex pair (left), time evolution of Eε and Eε
kin (second figure), xε

1(t)
and xε

2(t) (third figure), and dε1(t) (right) in the NLSE dynamics under homogeneous Neumann BC

with ε = 1
32

and d0 = 0.5 in section 5.2.

(i) If x0
1 = (0, 0), the vortex will not move for all times; otherwise, the vortex will

move, and its initial location x0
1 does not affect its motion qualitatively. Actually, it

moves periodically in a circle-like trajectory centered at the origin when |x0
1| is small,

and, respectively, a square-like trajectory when |x0
1| = O(1), which clearly shows the

effect of the boundary. This is quite different from the situation in bounded domains
with the Dirichlet BC where the motion of a single vortex depends significantly on
its initial location for some h(x). It is also quite different from the situation in the
whole space where a single vortex does not move at all under the initial condition
(5.1) when Ω = R

2.
(ii) As ε → 0, the dynamics of the vortex center under the NLSE dynamics

converges uniformly in time to that of the vortex center under the reduced dynamical
laws. In fact, based on our extensive numerical experiments, the motion of the vortex
center from the reduced dynamical laws agrees with that of the vortex centers from
the NLSE dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε� 1.

5.2. Vortex pair. Here we present numerical results of the interactions of a
vortex pair under the NLSE (1.1) dynamics and its corresponding reduced dynamical
laws; i.e., we take M = 2, n1 = n2 = 1, and x0

2 = −x0
1 = (d0, 0) with 0 < d0 < 1

in (5.1). Figure 15 depicts the trajectory of the vortex pair, time evolution of Eε(t),
Eε
kin(t), x

ε
1(t), x

ε
2(t), and d

ε
1(t) when ε =

1
32 in (1.1) and d0 = 0.5 in (5.1).

From Figure 15 and additional numerical results (not shown here for brevity),
we can draw the following conclusions for the interactions of a vortex pair under the
NLSE dynamics (1.1) with the homogeneous Neumann BC:

(i) The total energy is conserved numerically very well during the dynamics.
(ii) The two vortices in the vortex pair move periodically along a circle-like trajec-

tory centered at the origin when d0 is small, and, respectively, a square-like trajectory
when d0 = O(1), which clearly show the effect of the boundary. In addition, the tra-
jectories are symmetric.

(iii) When ε → 0, the dynamics of the two vortex centers under the NLSE dy-
namics converges uniformly in time to that of two vortex centers under the reduced
dynamical laws. This verifies numerically the validation of the reduced dynamical
laws in this case. In fact, based on our extensive numerical experiments, the motion
of the two vortex centers from the reduced dynamical laws agrees with with that of
the two vortex centers from the NLSE dynamics qualitatively when 0 < ε < 1 and
quantitatively when 0 < ε� 1.

5.3. Vortex dipole. Here we present numerical results of the interactions of a
vortex dipole under the NLSE (1.1) dynamics and its corresponding reduced dynam-
ical laws; i.e., we take M = 2, n1 = −n2 = −1, x0

2 = −x0
1 = (d0, 0) with different d0,



QUANTIZED VORTEX IN NLSE ON BOUNDED DOMAINS 433

−1 0 1
−1

0

1

x

y

0 1 2
−1

1

t

x 1ε  o
r 

x 2ε

0 1 2
−1

1

t
y 1ε  o

r 
y 2ε

−1 0 1
−1

0

1

x

y

0 1 2
−1

1

t

x 1ε  o
r 

x 2ε

0 1 2
−1

1

t

y 1ε  o
r 

y 2ε

−1 0 1
−1

0

1

x

y

0 0.65 1.3
−1

1

t

x 1ε  o
r 

x 2ε

0 0.65 1.3
−1

1

t

y 1ε  o
r 

y 2ε

0 1 2
0

0.09

0.18

t

d 1ε

 

 

0 1 2
0

0.07

0.14

t

d 1ε

 

 

ε=1/10

ε=1/20

ε=1/40

ε=1/16

ε=1/25

ε=1/32

Fig. 16. Trajectory and time evolution of xε
1(t) and xε

2(t) for d0 = 0.25 (top left two figures),
d0 = 0.7 (top right two figures), and d0 = 0.1 (bottom left two figures), and time evolution of dε1(t)
for d0 = 0.25 and d0 = 0.7 (bottom right two figures) in section 5.3.

and ε = 1
32 in (1.1). Figure 16 depicts the trajectory of the vortex dipole, and time

evolution of xε
1(t), x

ε
2(t), and d

ε
1(t).

From Figure 16 and additional numerical results (not shown here for brevity), we
can draw the following conclusions for the interactions of a vortex dipole under the
NLSE dynamics (1.1) with the homogeneous Neumann BC:

(i) The total energy is conserved numerically very well during the dynamics.
(ii) The pattern of the motion of the two vortices depends on their initial locations.
(iii) The two vortices will move symmetrically (and periodically if they are well

separated) with respect to the y-axis. Moreover, there exists a critical value drc = dεc =
dc for 0 < ε < 1, which is found numerically as dc = 0.5, such that if initially d0 < dc,
the two vortices will move first upward toward the top boundary, then turn outward to
the side boundary, and finally move counterclockwise and clockwise, respectively (cf.
Figure 16). While if d0 > dc, then they will move first downward toward the bottom
boundary, then turn inward to the domain, and finally move counterclockwise and
clockwise, respectively (cf. Figure 16). Certainly, when d0 = 0.5, the vortex dipole
does not move due to symmetry.

(iv) For fixed 0 < ε < 1, there exists another critical value d̂εc satisfying limε→0 d̂
ε
c =

0 such that if d0 < d̂εc, the two vortices in the dipole under the NLSE dynamics will
merge at a finite time Tc depending on ε and d0 (cf. Figure 16). However, the two
vortices in the dipole from the reduced dynamical laws never merge at finite time.
Hence, the reduced dynamical laws fail qualitatively if 0 < d0 < d̂ε0.

(v) For fixed d0, when ε→ 0, the dynamics of the two vortex centers in the NLSE
dynamics converges uniformly in time to that of the two vortex centers in the reduced
dynamical laws before the two vortices merge with each other (cf. Figure 16), which
verifies numerically the validation of the reduced dynamical laws in this case. In fact,
based on our extensive numerical experiments, the motion of the two vortex centers
from the reduced dynamical laws agrees with that of the two vortex centers in the
NLSE dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε� 1.

5.4. Vortex cluster. Here we present numerical studies on the dynamics of
vortex clusters in the NLSE (1.1) with homogeneous Neumann BC; i.e., we choose
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Fig. 17. Trajectory of the vortex xε
1 (solid line), xε

2 (dashed-dotted line), and xε
3 (dashed line)

and their corresponding time evolution for Case I during small time (left column), intermediate
time (middle column), and large time (right column) with ε = 1

40
and d0 = 0.25 in section 5.4.

the initial data (1.2) as (5.1) and study the following four cases:
Case I. M = 3, n1 = n2 = n3 = 1, x0

1 = −x0
3 = (d0, 0), and x0

2 = (0, 0).
Case II. M = 4, n1 = n2 = n3 = n4 = 1, x0

1 = −x0
2 = (d1, 0), and x0

3 = −x0
4 =

(d2, 0) with 0 < d1 �= d2 < 1.
Case III. M = 4, n1 = n2 = −n3 = −n4 = 1, x0

1 = −x0
2 = (d1, 0), and

x0
3 = −x0

4 = (0, d2) with 0 < d1, d2 < 1.
Case IV. M = 9, n1 = · · · = n9 = 1, and the vortex centers are initially located

on the 3× 3 uniform mesh points for the rectangle [−d0, d0]2 with 0 < d0 < 1.
Figure 17 shows trajectory and time evolution of xε

1(t), x
ε
2(t), and xε

3(t) in the
NLSE dynamics for Case I. Figure 18 depicts contour plots of |ψε| at different times
in NLSE dynamics for Cases II and III, and Figure 19 shows contour plots of −|ψε|
and slice plots of |ψ(0, y, t)| in NLSE dynamics for Case IV showing sound wave
propagation. Based on Figures 17–19 and additional results (not shown here for
brevity), we can draw the following conclusions:

(i) For Case I, the dynamics of the vortices is quite similar to that of the vortices
under the Dirichlet BC in section 4.4 and that of the vortices in the trapped BEC
[8, 30, 41]. The middle vortex (initially at the origin) will not move, while the other
two vortices rotate clockwise around the origin for some time. This dynamics agrees
very well with the NLSE dynamics in the whole plane [43, 44]. After some time, the
above symmetric structure is broken due to boundary effect and numerical errors;
i.e., the middle vortex will begin to move toward one of the other two vortices and
form a pair of vortices, then the two vortices in the pair will rotate with each other
and the vortex pair will rotate with the leftover single vortex for a while. Then this
pair will separate and one of them will form a new vortex pair with the single vortex,
leaving the other to be a new single vortex rotating with the new vortex pair. This
process will be repeated tautologically like three dancers exchanging their partners
alternatively. In fact, the dynamical pattern after the symmetric structure breaking
depends highly on the mesh size and time step.

(ii) For Case II, the four vortices form as two vortex pairs when t is small. These
two pairs rotate with each other clockwise; meanwhile, the two vortices in each pair
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Fig. 18. Contour plots of |ψε(x, t)| with ε = 1
16

at different times for the NLSE dynamics of a
vortex cluster for Case II with d1 = 0.6, d2 = 0.3 (top two rows) and Case III with d1 = d2 = 0.3
(bottom two rows) in section 5.4.

also rotate with each other clockwise, and radiations and sound waves are emitted.
The sound waves propagate outward and are reflected back into the domain when
they hit the boundary, which push the two vortex pairs closer. When the two vortex
pairs get close enough, the two vortices with the smallest distance among the four
form a new vortex pair and leave the remaining two as single vortices. The vortex pair
rotates around the origin. This process is iteratively repeated during the dynamics
(cf. Figure 18, top two rows).

(iii) For Case III, when t is small, the four vortices form two vortex dipoles
and move symmetrically with respect to the line y = −x toward the top right and
bottom left corners, respectively. Meanwhile, the two vortices in each dipole move
symmetrically with respect to the line y = x. After a while, and when the two dipoles
arrive at some place near the corners, the two vortices in each dipole split from each
other and reformulate two different dipoles. After this, the two vortices in each dipole
move symmetrically with respect to the line y = −x, and the two new dipoles then
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Fig. 19. Contour plots of −|ψε(x, t)| (left) and slice plots of |ψε(0, y, t)| (right) at different
times under the NLSE dynamics of a vortex cluster in Case IV with d0 = 0.15 and ε = 1

40
showing

sound wave propagation in section 5.4.

move symmetrically with respect to the line y = x toward their initial locations. This
process is then repeated periodically (cf. Figure 18, bottom two rows).

(iv) For Case IV, the vortex initially centered at the origin does not move due to
symmetry, and the other eight vortices rotate clockwise and move along two circle-
like trajectories (cf. Figure 19). During the dynamics, sound waves are generated
and propagate outward. Some of the sound waves will exit out of the domain, while
others are reflected back into the domain when they hit the boundary. The distances
between the one located at the origin and the other eight vortices become larger when
the sound waves are radiated outward, while they decrease when the sound waves are
reflected from the boundary and move back into the domain (cf. Figure 19).

Again, similarly to the case in BEC setups [20, 28, 36, 42], the symmetric structure
near t = 0 in Case I for three vortices is dynamically unstable, i.e., symmetric structure
breaking will happen very quickly if we perturb the location of either the central vortex
or one of the side vortices a little bit.

5.5. Radiation and sound wave. Here we study numerically how the radiation
and sound waves affect the dynamics of quantized vortices in the NLSE dynamics
under the homogeneous Neumann BC. To this end, we take the initial data (1.2) as
(4.4) with ψε

0 chosen as (5.1) with M = 2, n1 = n2 = 1, and x0
1 = −x0

2 = (0.1, 0);
i.e., we perturb the initial data for studying the interactions of a vortex pair by a
Gaussian function with amplitude δ. Then we take δ = ε, let ε go to 0, and solve
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Fig. 20. Time evolution of dδ,ε1 (t) for nonperturbed initial data (left) and perturbed initial data
(right) in section 5.5.

the NLSE (1.1) with the initial condition (4.4) for the vortex centers xδ,ε
1 (t) and

xδ,ε
2 (t), and compare them with those from the reduced dynamical law. We denote

dδ,εj (t) = |xδ,εj (t)− xrj (t)| for j = 1, 2 as the error. Figure 20 depicts time evolution of

dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the case when δ = 0, i.e.,
no perturbation. From this figure, we can see that the dynamics of the two vortex
centers under the NLSE dynamics converges to that of the two vortex centers obtained
from the reduced dynamical law when ε→ 0 without perturbation (cf. Figure 20, left).
On the contrary, the two vortex centers under the NLSE dynamics do not converge to
those obtained from the reduced dynamical law when ε→ 0 with small perturbation
(cf. Figure 20, right). This clearly demonstrates the radiation and sound wave effect
on vortices under the NLSE dynamics with the homogeneous Neumann BC.

6. Conclusion. We studied numerically quantized vortex dynamics and their
interactions in the nonlinear Schrödinger equation (NLSE) or the Gross–Pitaevskii
equation (GPE) with a dimensionless parameter 0 < ε < 1 on bounded domains
under either a Dirichlet or a homogeneous Neumann BC for superfluidity. Based
on our extensive numerical results, we have (i) verified that the dynamics of vortex
centers under the NLSE dynamics converges that of the vortex centers in the reduced
dynamical laws when ε → 0 before the vortices collide and/or move too close to
the boundary; (ii) identified parameter regimes that the motion of vortices in the
reduced dynamical laws agree/disagree quantitatively and/or qualitatively with from
that of vortices in the NLSE dynamics; and (iii) observed clearly radiation and sound
wave effects on quantized vortex interactions under the NLSE dynamics on bounded
domains.
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