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• We propose a variational-difference numerical method for designing progressive-addition lenses.
• The method can be very easily understood and implemented by optical engineers.
• The method can provide satisfactory designs for optical engineers in several seconds.
• The method can be a powerful candidate tool for designing various free-form lenses.
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a b s t r a c t

We propose a variational-difference method for designing the optical free form surface of progressive-
addition lenses (PALs). The PAL, which has a front surface with three important zones including the
far-view, near-view and intermediate zones, is often used to remedy presbyopia by distributing optical
powers of the three zones progressively and smoothly. The problem for designing PALs could be viewed as
a functional minimization problem. Compared with the existing literature which solved the problem by
the B-spline finite elementmethod, the essence of the proposed variational-difference numerical method
lies inminimizing the functional directly by finite differencemethod and/or numerical quadratures rather
than in approximating the solution of the corresponding Euler–Lagrange equation to the functional. It is
very easily understood and implemented by optical engineers, and the numerical results indicate that it
can produce satisfactory designs for optical engineers in several seconds. We believe that our method can
be a powerful candidate tool for designing various specifications of PALs.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

When we reach about forty years old, the natural process of
aging begins to affect our vision, and the lens of our eyes thickens
and progressively loses its flexibility to the point where we have
trouble focusing on near points. This causes presbyopia. Therefore,
it is natural that people with presbyopia need their vision to be
corrected by wearing spectacle lenses. People can often use single-
vision lenses to correct this problem. However, although these can
enable very good vision for nearby regions, people need to take
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them off in order to have good vision for distance regions. To avoid
this inconvenience, more complicated lenses such as the bifocal
lens, trifocal lens and progressive-addition lens (PAL) have been
designed.

Bifocal lenses, which were first invented by Benjamin Franklin
in 1784 because he suffered from poor vision at that time, can
be divided into two parts, the top half for viewing at distance
and the bottom half for reading; trifocal lenses are made up of
three parts, with the addition of a part for viewing at intermediate
region. A major drawback for these two kinds of lenses is the
vision jump when the eyes move from seeing far-distance to
near-distance objects. PALs, also known as no-line bifocal lenses,
can remove the vision jump drawback. Fig. 1 shows a schematic
illustration of PALs. As shown in Fig. 1(a), a PAL has a front surface
with three different view zones, including distance-view (i.e. far-
view), near-view and intermediate zones. More precisely, a PAL
has a large far-vision area with low refractive optical power in
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(a) Three different view zones of a PAL. (b) The distribution of refractive optical power.

Fig. 1. Schematic illustration of a PAL.
the upper part and a small near-vision area with high refractive
optical power in the lower part, while an intermediate vision area
where the optical power varies progressively and smoothly is used
to connect with the upper and lower parts of the PAL. Fig. 1(b)
shows a typical distribution of refractive optical power on the
three different view zones of a PAL along the meridian line. In
general, a good PAL design requires that the optical power on the
far-view, near-view and intermediate zones be progressively and
smoothly changed according to every patient’s prescription, and
that the astigmatism on the three zones be as small as possible
simultaneously. However, the remaining parts, which are called as
blending zones shown in Fig. 1(a), also inevitably have astigmatism
because of the prescribed power distribution along the three zones.
Although the blending zones are the least frequently used by
spectacle wearers, the astigmatism will bring them a bad visual
feeling and make them uncomfortable. Therefore, a good PAL
design also needs to require that the blending zones have relatively
low astigmatism.

As early as 1907, British optometrist Owen Aves made a
prototype design for PALs [1,2]. His design idea came from the
shape of elephant’s trunk, which consisted of a conical back surface
and a cylindrical front with opposing axes in order to create a
power progression. This design was the prototype of modern PALs,
but it was not commercialized at that time. Since the invention
of the first modern design and entry into the marketplace around
the 1960s, PALs have been gradually accepted by worldwide
customers due to their ability to eliminate the vision jump line
between the far-view and near-view portions of the lens and
offer spectacle wearers a smooth transition between different
vision zones. Nowadays, PALs have gained worldwide acceptance
as the high-performance spectacle lenses used in the correction
of presbyopia and currently account for more than half of all
multi-focal lens sales. Although early progressive lens designs
have had great success in providing presbyopic patients with
more comfortable vision, lens designers seem to be approaching a
limiting state [3]. Because the visual requirements of spectacle lens
wearers vary greatly fromperson to person, it has been understood
for some time that the traditional ‘‘one-size-fits-all’’ progressive
lens design framework is no longer suitable for every progressive
lens wearer. Therefore, designers need to tailor more suitable
and specialized spectacle lenses by considering the unique visual
requirements of the individual progressive lens wearer. Thus, the
advances in design methods are becoming ever more significant
for designing the next generation PALs.

Designing PALs is often regarded as a very complicated math-
ematical problem [4–10]. In general, the design methods can be
divided into two categories, direct methods and indirect methods.
In a direct method, such as the research work of Winthrop [4,5]
and Baudart, Ahsbahs and Miege [6], the refractive optical power
is first assigned along a line called the meridian line (shown in
Fig. 1) on the lens, then the surface on the lens is generated from
the meridian line by prescribing curves which are transverse to it.
The shapes of these curves are chosen to have the desired surface
curvature on the meridian line. However, the performance of such
design methods is often less than satisfactory because there is no
effective control over the distribution of the astigmatism. For the
indirect method, such as the method proposed by Loos et al. [7,8],
the lens design can be simplified as an optimization problem or a
functional minimization problem. In such a method, a cost func-
tion (functional), which attempts to balance between reaching the
desired distribution of refractive optical power and the unwanted
astigmatism, will be devised and beforehand given. The design ob-
jective is to minimize the cost function (functional) by numerical
methods. The indirect method is often more effective and pow-
erful, and it can be quickly implemented by powerful computer
simulations. It can also provide more precise control for the dis-
tribution of the optical power and astigmatism on the lens surface.
Therefore, it represents a powerful candidate tool for designing the
customized PALs.

In this paper, we focus on the indirect methods for designing
PALs. Based on a functional minimizationmathematical model, we
propose an efficient variational-difference numerical method for
solving the problem. Compared with the existing literature which
solved the problem by the B-spline finite element method [7,9,10],
the essence of the proposed variational-difference numerical
method lies in minimizing the functional directly by the finite
difference method rather than in approximating the solution of
the corresponding Euler–Lagrange equation to the functional. It is
very easily understood and implemented by optical engineers, and
its memory and computational costs are smaller than that of the
B-spline finite elementmethod. Our numerical results indicate that
it could produce satisfactory design results for optical engineers in
several seconds.

The rest of the paper is organized as follows. In the next sec-
tion,we briefly present amathematicalmodel based on a quadratic
functional minimization problem for designing PALs. In Section 3,
a variational-difference numerical method is proposed for solv-
ing the quadratic functional minimization problem. In Section 4,
numerical results are presented to demonstrate the high perfor-
mances of the proposed numerical method. Finally, Section 5 con-
cludes the paper with a summary and future research plans.
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2. Mathematical models

2.1. Functional minimization problem

For the design of PALs, the optical power is one of the two
crucial design parameters for optical engineers according to every
patient’s prescription. In general, the optical power of PAL is
determined by the shapes of the front and back surfaces, together
with the material properties of the lens. In ophthalmic optics, the
optical power P of a lens can be expressed in terms of [7,9,10]

P = (1 − n)Pb
+

(n − 1)P f

1 − d

1 −

1
n


P f

, (2.1)

where Pb and P f are the mean curvatures of the back and front
surfaces, respectively, d is the thickness of the lens andn represents
the refractive index of the lensmaterial. Under the assumption that
the lens is very thin, we obtain an approximate formula from (2.1)
by setting d = 0:

P = (n − 1)(P f
− Pb). (2.2)

For the PAL discussed in the paper, the back surface is chosen as
a spherical surface with constant mean curvature. Therefore, from
the formula (2.2), the progressive change for the optical power P
of a PAL would be achieved by changing the mean curvature of the
front surface smoothly and progressively. In this paper, the design
objective is to determine the shape of the front surface of the PAL.
For brevity, the optical power P is referred to as the power of the
front surface in the remainder of the paper. The optical power is
measured in diopter, which is defined as the inverse of focal length
(i.e. mean curvature) multiplied by (n − 1). Therefore, the diopter
is of unit 1/meter.

The other crucial design parameter for PALs is called as the
(surface) astigmatism or cylinder. Suppose κ1 and κ2 are the two
local principal curvatures of the front surface, then the astigmatism
of a lens is defined as

A = (n − 1)|κ1 − κ2|, (2.3)

and the unit of astigmatism is also used as diopter. We can see
that the two parameters of interest for a PAL design, optical
power and astigmatism, are only related to the sum and the
difference of the two principal curvatures, respectively. In general,
the optical power is needed to provide the appropriate corrections
for patients, while the astigmatism is an undesirable effect for a
PAL design in the paper. Because if a lens has severe astigmatism,
vision distortion will occur and the spectacle wearer will feel
uncomfortable, unless thewearer has any astigmatic defect of their
eyes.

An ideal PAL is one with the prescribed smooth progressive op-
tical power distribution andwith the zero astigmatismeverywhere
on the lens. However, in order to attain zero astigmatism on the
whole surface, the surface must be a plane or a sphere, which can-
not provide prescribed progressive power. Therefore, the two key
design factors, of reaching the desired distribution of optical power
and the undesired astigmatism, compete with each other. Follow-
ing the above observation, Loos et al. proposed a method for de-
termining the shapes of thin progressive lenses, which enables the
designers to create a large variety of different designs. Based on
their method, to design the surface of PALs, we can minimize the
following functional [7]:

J(u) =


Ω


α(x, y)


κ1 − κ2

2

2

+ β(x, y)


κ1 + κ2

2
− P0(x, y)

2

dA, (2.4)
whereΩ ⊂ R2 is a bounded domain, u := u(x, y)defines the shape
of the designed lens surface, κ1 := κ1(x, y) and κ2 := κ2(x, y)
represent the two principal curvatures of the surface, respectively,
dA represents the area element on the graph of u(x, y), and the
three functions α := α(x, y), β := β(x, y) and P0 := P0(x, y)
are previously prescribed functions in Ω . More precisely, the
prescribed function P0 is the desired distribution of optical power,
and itsmagnitude increases continuously from the far-view region
to the near-view region; the weight functions α and β control
the ratio relation between the occurrence of astigmatism and the
derivation from the prescribed power distribution function P0.

Substituting the mean curvature H and Gauss curvature K
defined as

H := H(x, y) =
κ1 + κ2

2
,

K := K(x, y) = κ1κ2, (x, y) ∈ Ω,

(2.5)

into the functional (2.4), we can formulate the problem for
designing PALs as the following minimization problem:

(P) Min J(u) =


Ω


α(x, y)


H2(x, y) − K(x, y)


+ β(x, y) (H(x, y) − P0(x, y))2


dA. (2.6)

Suppose that in the Cartesian coordinates the surface of a lens is
given by the graph function z = u(x, y) for (x, y) ∈ Ω , then the
mean curvature H and Gauss curvature K can be given by

H =
(1 + u2

x)uyy − 2uxuyuxy + (1 + u2
y)uxx

2g3
,

K =
uxxuyy − u2

xy

g4
,

(2.7)

and the area element dA can be expressed by

dA = g dxdy, with g =


1 + u2

x + u2
y, (x, y) ∈ Ω. (2.8)

Plugging (2.7) and (2.8) into (2.6), we obtain the functional
minimization problem for designing a PAL lens.

The Euler–Lagrange equation with respect to the functional
in (2.6) is a highly nonlinear and high order partial differential
equation. Therefore, it is generally very difficult and challenging
to solve the problem (P) by direct numerical computation. In
the literatures, Wang et al. [11,9,12] adopted the linearization
approximationmethod for the Euler–Lagrange equation generated
from the variational problem (P) to design PALs. By assuming that
the designed lens surfaces are a combination of two parts (one
is a prescribed spherical background surface and the other is a
small perturbation surface with respect to the chosen spherical
surface) they simplified the Euler–Lagrange equation with respect
to the functional in (2.6) to a linear fourth-order partial differential
equation. Under the various boundary conditions including
clamped, partially clamped and natural boundary conditions, they
showed the existence and uniqueness as well as the regularity
of the solutions with respect to the linear fourth-order partial
differential equation [11]. Furthermore, by using the B-spline finite
element method, they designed a numerical algorithm for solving
the linearized problem [9].

2.2. Linearization about the background surface

Following the linearization approach proposed by Wang
et al. [11,9] for designing PALs, we assume that the surface function
u(x, y) can be divided into two parts:

u(x, y) = w(x, y) + v(x, y), (x, y) ∈ Ω, (2.9)
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where w := w(x, y) is a chosen background surface and v :=

v(x, y) represents the perturbation surface. Therefore, the func-
tional minimization problem (P) with respect to u(x, y) can be
converted to the problem with respect to the small perturbation
function v(x, y). Substituting (2.9) into (2.7) and (2.8) and fur-
ther assuming that the perturbation function v(x, y) satisfies that
|∇v| ≈ 0 and |∇

2v| is bounded from above in the domain Ω , we
can obtain the approximation expressions for H, K and g as

H ≈ H(v; w)

= H(w) +
(1 + w2

x )vyy − 2wxwyvxy + (1 + w2
y )vxx

2g3
,

(x, y) ∈ Ω, (2.10)

K ≈ K(v; w)

=
(wxx + vxx)(wyy + vyy) − (wxy + vxy)

2g4
,

g ≈ g =


1 + w2

x + w2
y .

(2.11)

Inserting (2.10) and (2.11) into (2.6), we obtain the following
functional which is an approximation to J(u) in (2.6):

I(v; w) =


Ω


(α + β)H2

− 2βP0H − αK + βP2
0

g dxdy. (2.12)

For any given background surface w(x, y), substituting (2.10)
and (2.11) into (2.12), we can easily find that the functional
I(v; w) only depends on the second-order partial derivatives of the
perturbation function v(x, y), i.e. the terms vxx, vxy, vyy, and they
are all in quadratic form. It should be noted that, for simplicity,
we can drop all the constant terms in expression (2.12) and still
denote the functional as I(v; w), then the functional I(v; w) can
be expressed by the following quadratic functional form:

I(v; w) =


Ω

F (x, y, vxx, vxy, vyy) dxdy, (2.13)

where the integrand F (x, y, vxx, vxy, vyy) is continuous for all the
arguments x, y, vxx, vxy, vyy and can be defined as

F (x, y, vxx, vxy, vyy) = a1v2
xx + a2v2

xy + a3v2
yy + a4vxxvyy

+ a5vxyvyy + a6vxxvxy + a7vxx + a8vxy + a9vyy, (2.14)

where the coefficients ai for i = 1, 2, . . . , 9 are given by

a1 =
(1 + w2

y )
2

4g5
(α + β), a2 =

w2
xw

2
yg5
(α + β) +

αg3
,

a3 =
(1 + w2

x )
2

4g5
(α + β),

a4 =
(1 + w2

x )(1 + w2
y )

2g5
(α + β) −

αg3
,

a5 = −
wxwy(1 + w2

x )g5
(α + β),

a6 = −
wxwy(1 + w2

y )g5
(α + β),

a7 =
(1 + w2

y )H(w)g2
(α + β) −

wyyg3
α −

1 + w2
yg2
βP0,

a8 = −
2wxwyH(w)g2

(α + β) +
2wxyg3

α +
2wxwyg2

βP0,

a9 =
(1 + w2

x )H(w)g2
(α + β) −

wxxg3
α

−
1 + w2

xg2
βP0, (x, y) ∈ Ω.
In the literature [11,9,12] and in this paper, for simplicity, the
background surface is often chosen as spherical, i.e.

w(x, y) =


R2 − x2 − y2, (x, y) ∈ Ω, (2.15)

where R is a constant to be determined. Under the spherical
background surface for w, noticing (2.7), we get

H(w) = −
1
R
, wx = −

x
(R2 − x2 − y2)1/2

,

wy = −
y

(R2 − x2 − y2)1/2
, (x, y) ∈ Ω,

wxx =
−R2

+ y2

(R2 − x2 − y2)3/2
, wxy = −

xy
(R2 − x2 − y2)3/2

,

wyy =
−R2

+ x2

(R2 − x2 − y2)3/2
.

We remark here that other kinds of background surfaces can also
be used but we omit their investigation and discussion here for
brevity.

Since the lenses in use are often circular, in practice, for design-
ing a PAL lens, the computational domain Ω is usually chosen as
a larger square containing the circular domain. When one finally
finishes the design, one can ignore the other part and keep the tar-
geted circular part as the prototype for manufacturing. Therefore,
in our theoretical design, we always choose the computational do-
main as Ω =


−

L
2 ,

L
2

2
with L as the length of the square.

Since the functional (2.13) with (2.14) is a typical quadratic
functional and it only depends on the second-order partial
derivatives with respect to the perturbation function v(x, y), thus
if a function v0(x, y) minimizes the functional I(v; w), then it is
easy to check that the function v0(x, y) + l(x, y) also minimizes
the functional I(v; w) provided that l(x, y) is a linear function on
the domain Ω , i.e. l(x, y) = c1x + c2y + c3 with c1, c2 and c3 any
three given constants. In order to ensure the uniqueness of the
minimizer to theminimization problem, wemight fix the values of
the perturbation surface v(x, y) at three points, e.g. three corners,
of the domain Ω . Therefore, for designing the surface of PALs,
we need to solve the following linearized functional minimization
problem with respect to the perturbation surface function v :=

v(x, y):

(LP)


Min I(v; w) =


Ω=


−

L
2 , L

2

2 F (x, y, vxx, vxy, vyy) dxdy,

v


−

L
2
, −

L
2


= v


−

L
2
,
L
2


= v


L
2
,
L
2


= 0,

(2.16)

where the background surfacew is chosen as a spherical surface as
(2.15).

3. Numerical algorithm

In the section, we will present a variational-difference numer-
ical method for solving the linearized functional minimization
problem (LP) by approximating the integral via trapezoid quadra-
ture rule and derivatives via finite differences.

Denote the mesh size h = 1x = 1y :=
L
N with N a given

positive integers and define

xi = −
L
2

+ i h, i = 0, 1, . . . ,N;

yj = −
L
2

+ j h, j = 0, 1, . . . ,N.

We partition the domain Ω into N2 sub-squares as Ωij = {(x, y) |

xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1} for i, j = 0, 1, . . . ,N − 1.
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(a) 0 < i < N, 0 < j < N . (b) 0 < i < N, j = N . (c) i = 0, 0 < j < N .

(d) 0 < i < N, j = 0. (e) i = N, 0 < j < N . (f) i = N, j = N .

(g) i = 0, j = N . (h) i = N, j = 0. (i) i = 0, j = 0.

Fig. 2. A schematic illustration of the stencils used to approximate the second-order partial derivatives vxx , vxy and vyy at the grid point (xi, yj) (labeled as the red point)
under nine different cases, (a): when (xi, yj) ∈ Rh; (b)–(e): when (xi, yj) ∈ S1

h ; and (f)–(i): when (xi, yj) ∈ S0 . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Denote Th as the set of all grid points, i.e. Th = {(xi, yj) | i, j =

0, 1, . . . ,N}, which is divided into the set of grid points inside
Ω , i.e. Rh = {(xi, yj) | i, j = 1, 2, . . . ,N − 1}, and the set of
grid points on the boundary of Ω , i.e. Sh = {(xi, y0) or (xi, yN) |

i = 0, 1, . . . ,N} ∪ {(x0, yj) or (xN , yj) | j = 0, 1, . . . ,N}. In
addition, Sh is further split into the set of corner points, i.e. S0

=

{(x0, y0), (x0, yN), (xN , y0), (xN , yN)}, and the set of the remaining
points on the boundary, i.e. S1

h = {(xi, y0) or (xi, yN) | i =

1, 2, . . . ,N − 1} ∪ {(x0, yj) or (xN , yj) | j = 1, 2, . . . ,N − 1}. Thus
we have Th = Rh ∪ Sh = Rh ∪ S1

h ∪ S0 and Sh = S1
h ∪ S0. Based

on this partition, we can approximate the integral in (2.16) via the
composite trapezoid rule as

I(v; w) =

N−1
i=0

N−1
j=0


Ωij

F (x, y, vxx, vxy, vyy) dxdy

≈

N−1
i=0

N−1
j=0

h2

4


Fi,j + Fi,j+1 + Fi+1,j + Fi+1,j+1


= h2

 
(xi,yj)∈Rh

Fi,j +
1
2


(xi,yj)∈S1

h

Fi,j
+
1
4


(xi,yj)∈S0

Fi,j

 , (3.1)

where

Fi,j = F

xi, yj, vxx


xi, yj


, vxy


xi, yj


, vyy


xi, yj


,

i, j = 0, 1, . . . ,N. (3.2)

In order to further discretize (3.1), we approximate the
derivatives in (3.2) via finite differences. Let vi,j be the numerical
approximation of v(xi, yj) for i, j = 0, 1, . . . ,N and denote the
vector V = {vi,j | i, j = 0, 1, . . . ,N}. Introduce the following
standard finite difference operators (see Fig. 2(a)–(i)):

δ2
xvi,j =

1
h2


vi−1,j − 2vi,j + vi+1,j, i = 1, 2, . . . ,N − 1,
v0,j − 2v1,j + v2,j, i = 0,
vN,j − 2vN−1,j + vN−2,j, i = N,

j = 0, 1, . . . ,N, (3.3)

δ2
yvi,j =

1
h2


vi,j−1 − 2vi,j + vi,j+1, j = 1, 2, . . . ,N − 1,
vi,0 − 2vi,1 + vi,2, j = 0,
vi,N − 2vi,N−1 + vi,N−2, j = N,

i = 0, 1, . . . ,N, (3.4)
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δxyvi,j =
1

4h2



vi−1,j−1 − vi−1,j+1 − vi+1,j−1 + vi+1,j+1,
i, j = 1, 2, . . . ,N − 1,

v0,j−1 − v0,j+1 − v2,j−1 + v2,j+1,
i = 0, j = 1, 2, . . . ,N − 1,

vN−2,j−1 − vN−2,j+1 − vN,j−1 + vN,j+1,
i = N, j = 1, 2, . . . ,N − 1,

vi−1,0 − vi−1,2 − vi+1,0 + vi+1,2,
j = 0, i = 1, 2, . . . ,N − 1,

vi−1,N−2 − vi−1,N − vi+1,N−2 + vi+1,N ,
j = N, i = 1, 2, . . . ,N − 1,

v0,0 − v0,2 − v2,0 + v2,2,
i = 0, j = 0,

v0,N−2 − v0,N − v2,N−2 + v2,N ,
i = 0, j = N,

vN−2,0 − vN−2,2 − vN,0 + vN,2,
i = N, j = 0,

vN−2,N−2 − vN−2,N − vN,N−2 + vN,N ,
i = N, j = N.

(3.5)

Then the second-order derivatives at the grid points can be
approximated as

vxx

xi, yj


= δ2

xvi,j +


O(h2), (xi, yj) ∈ Rh,
O(h), (xi, yj) ∈ Sh,

≈ δ2
xvi,j, (3.6)

vyy

xi, yj


= δ2

yvi,j +


O(h2), (xi, yj) ∈ Rh,
O(h), (xi, yj) ∈ Sh,

≈ δ2
yvi,j,

i, j = 0, 1, . . . ,N, (3.7)

vxy

xi, yj


= δxyvi,j +


O(h2), (xi, yj) ∈ Rh,
O(h), (xi, yj) ∈ Sh,

≈ δxyvi,j. (3.8)

Plugging (3.6)–(3.8) into (3.1), we obtain an approximation to
the functional I(v; w) as

I(v; w) ≈ h2

 
(xi,yj)∈Rh

F h
i,j +

1
2


(xi,yj)∈S1

h

F h
i,j +

1
4


(xi,yj)∈S0

F h
i,j


:= Ih(V), (3.9)

where

F h
i,j = F


xi, yj, δ2

xvi,j, δxyvi,j, δ
2
yvi,j


, i, j = 0, 1, . . . ,N. (3.10)

Thus the linearized functional minimization problem (2.16) can be
approximated by the following finite-dimensional minimization
problem:

(LPh)



Min Ih(V) = h2

 
(xi,yj)∈Rh

F h
i,j +

1
2


(xi,yj)∈S1

h

F h
i,j

+
1
4


(xi,yj)∈S0

F h
i,j

 ,

V ∈ R(N+1)2 satisfying v0,0 = v0,N = vN,N = 0.

(3.11)

Since the functional Ih(V) is a quadratic form of the vector V, thus
the minimization problem (3.11) admits a minimizer which is also
a solution of the following linear system:

∂ Ih(V)

∂vi,j
= 0, i, j = 0, 1, . . . ,N. (3.12)

Inserting the constraints v0,0 = v0,N = vN,N = 0 into the
linear system (3.12), we obtain a linear system with (N + 1)2 − 3
unknowns for finding the vector V, whose coefficient matrix is
sparse and symmetric, thus it can be solved very efficiently. We
remark here that, if the perturbation surface v is smooth, then
the above discretization is the second-order approximation for the
linearized functional. In fact, by denoting

Ih(v; w) := h2

 
(xi,yj)∈Rh

F̂ h
i,j +

1
2


(xi,yj)∈S1

h

F̂ h
i,j

+
1
4


(xi,yj)∈S0

F̂ h
i,j

 , (3.13)

with

F̂ h
i,j = F


xi, yj, δ2

xv(xi, yj), δxyv(xi, yj), δ2
yv(xi, yj)


,

i, j = 0, 1, . . . ,N, (3.14)

noticing (3.1), (2.14), (3.2) and (3.6)–(3.8), using the triangle
inequality, we have

|I(v; w) − Ih(v; w)| ≤

N−1
i=0

N−1
j=0




Ωij

F (x, y, vxx, vxy, vyy)dxdy

−
h2

4


Fi,j + Fi,j+1 + Fi+1,j + Fi+1,j+1

 
+ h2

 
(xi,yj)∈Rh

Fi,j − F̂ h
i,j

 +
1
2


(xi,yj)∈S1

h

Fi,j − F̂ h
i,j


+

1
4


(xi,yj)∈S0

Fi,j − F̂ h
i,j


≤

N−1
i=0

N−1
j=0

C1h4
+ h2

 
(xi,yj)∈Rh

C2h2

+
1
2


(xi,yj)∈S1

h

C3h +
1
4


(xi,yj)∈S0

C4h


≤ C1h4N2

+ h2 
C2h2(N − 1)2 + 2C3h(N − 1) + C4h


≤ Ch2, (3.15)

where C1, C2, C3, C4 and C are positive constants depending on
the function v and the coefficients ai in (2.14), but they are
independent of themesh size h.We assumehere that the integrand
function F (x, y, vxx, vxy, vyy) is C2-continuous for (x, y) ∈ Ω .

4. Results and discussion

In this section, we present several simulation results using the
variational-difference method proposed above to demonstrate its
high performance. Because in practice PALs are often designed on
a circular region with the diameter of about 80 mm, we use the
computational domain Ω = [−40, 40]2 containing the circular
domain with the length unit mm. The grid numbers N along the
x and y directions were chosen to be 80 except where noted. The
convergence was checked by continuously reducing the grid sizes.
The computational time for each simulation under the grid number
N = 80 was several seconds on a laptop with a CPU Intel Core
i5-3317U 1.7 GHz. For all simulations presented in the paper, we
chose the refractive index n = 1.53.

We discuss how to assign the three previously given func-
tions involved in the design functional: the weight functions
α(x, y), β(x, y), and the prescribed optical power (i.e. mean curva-
ture) distribution P0(x, y). Following the procedure used by Loos
et al. [7] and Wang et al. [9], we can divide the computational
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Fig. 3. A partition of seven subregions of the computational domain Ω . (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 1
The PAL designs under two different patient’s prescriptions (unit: diopter, 1/m).

Cases Myopia Presbyopia PAL Prescription
(BASE)

PAL Prescription
(ADD)

Back
surface

A −2.00 2.00 5.00 2.00 7.00
B −1.50 2.00 3.00 2.00 4.50

square domain Ω into seven subregions. Fig. 3 shows an example
of the partition of seven subregions in Ω . As shown in Fig. 3, the
large red subregion is used for distance-view, the small blue sub-
region is used for near-view, and the green subregion connecting
the two is used for intermediate-view. The rest of the subregions
inΩ belong to the blending zones, and we divide them into four in
order to easily assign them the values of the weight functions and
the prescribed mean curvature function.

First, we discuss how to assign the weight functions α(x, y)
and β(x, y). Based on the importance of the subregion to the PAL
design, we assign a constant value to each subregion for theweight
functions α(x, y) and β(x, y). In a progressive lens design, the
values of weight functions α(x, y) and β(x, y) should be weighted
the most in the distance-view, near-view and intermediate-view
subregions. Therefore, we put more weight in these subregions
and less weight in the other four blending subregions. Meanwhile,
because the practically used domain of the progressive lens design
is a circular domain centered at the origin of Ω with a radius of
30 mm (denoted as the domain D), if a point belongs to the above
seven subregions but is outside the domain D , we forcefully put
the least weight on it. On the other hand, we noticed that the
smoothness of the solution depends on that of α(x, y), β(x, y) and
P0(x, y) in the simulations. Therefore, we used the convolution or
average methods to smooth these discrete data. Fig. 4 shows the
surface plots about the weight functions α(x, y) and β(x, y) used
in the simulations of the paper.

The assignment of the optical power (or mean curvature)
distribution P0(x, y) must rely on every spectacle wearer’s
individual prescription. In general, there are two parameters for
the power distribution: BASE power and ADD power. The BASE
power is often defined as the power of the far-view region, and
the ADD power is defined as the difference between the far-view
and near-view regions. So the power of the near-view region is
BASE+ADD. The BASE power and ADD power both have the unit
of diopter. To remedy a patient who suffers from both presbyopia
Table 2
L2 norm of the error and convergence rate for the perturbation function v(x, y)
under the two cases with different grid numbers. The numerical results were
obtained under the spherical background surfaces with the radii of R = 90 mm
for Case A and R = 137 mm for Case B.

Grid numbers Case A Convergence
rate

Case B Convergence
rate

(80, 80)–(160, 160) 5.551e−02 5.033e−02
(160, 160)–(320, 320) 1.384e−02 2.004 1.245e−02 2.015
(320, 320)–(640, 640) 3.520e−03 1.976 3.147e−03 1.984
(640, 640)–(1280, 1280) 8.853e−04 1.991 7.939e−04 1.987

and myopia, the PAL should be a relevant combination of the front
and back surfaces. For example, if a patient suffers from myopia
with−2.00 diopter and presbyopiawith 2.00 diopter, a PALmay be
designed with a combination of the back surface with 7.00 diopter
and the front surface with 5.00 diopter BASE and 2.00 diopter ADD.
The combination criterion is that ADD power must be equal to the
presbyopia, and BASE power can be determined by the myopia
and the back spherical surface power. We performed numerical
simulations of two kinds of prescriptions for designing the free-
form front surface of a PAL (shown by Table 1). Taking Case A for
example, we assigned themean curvaturewith unit of 1/mmof the
far-view region (the red region shown in Fig. 3) as −

BASE
1000(n−1) =

−0.00943 (note that a spherical surface was assumed here to have
a negative mean curvature); the mean curvature of the near-view
region (the blue region shown in Fig. 3) was given as −

BASE+ADD
1000(n−1) =

−0.0132; a smooth function was assigned to connect with the
above two parts in the green region shown in Fig. 3, and the mean
curvatures of the other four regionswere assigned as the average of
themean curvatures of the far-view and near-view regions. Then a
smoothmethodwas applied to smooth these discrete data. Fig. 5 is
the prescribed mean curvature distribution P0(x, y) for Case A and
Case B used in the simulations of the paper.

To check the accuracy and convergence rate of the proposed
variational-difference method, we performed various numerical
simulations for the linearized functional minimization problem
(LP) under different grid numbers. Table 2 shows the L2 norm
of the error and convergence rate for the perturbation function
v(x, y) under the two cases with the grid numbers N = 80, 160,
320, 640 and 1280. The numerical results were obtained under the
spherical background surfaces with the radii of R = 90 mm for
Case A and R = 137 mm for Case B, and the controlled parameters
α(x, y), β(x, y) and P0(x, y) involved in the computations were as
presented above. The L2 norm of the error was calculated by the
following expression:

EN =


N−1
i=0

N−1
j=0


VN
i,j − V2N

2i,2j

2
h2

1/2

, (4.1)

where VN and V2N are the numerical solutions of (LPh) (3.11) with
N+1 and 2N+1 grid points in each direction, respectively, and the
convergence rate was calculated by log2(EN/E2N). The numerical
results shown by Table 2 indicate that the convergence rate for
the perturbation function v(x, y) is of second-order accuracy in
the sense of the L2 norm. Compared with the B-spline finite
element method [9], although the accuracy is almost the same, the
memory usage and computational cost for our proposed method
are smaller, because there is no need to compute the numerical
quadrature at each element and it is much easier to assemble the
stiffnessmatrix. The biggest advantage of the proposed variational-
difference approach is that it is more straightforward and its
computational process is much easier.

For the simulations, there is another important issue—how to
choose the optimal radius R of spherical background surfaces.
For each value of R, we can solve the corresponding quadratic
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(a) α(x, y). (b) β(x, y).

Fig. 4. Surface plots about the weight functions α(x, y) and β(x, y).
(a) Case A. (b) Case B.

Fig. 5. Surface plots about the prescribed mean curvature distribution P0(x, y) for the two cases shown in Table 1, unit: 1/mm.
functional minimization problem (LP) in (2.16) to get the solution
vR(x, y). Fig. 6 shows the numerical results for the perturbation
surface vR(x, y) with respect to the four different radii of spherical
background surfaces R = 106, 98, 90, 80 under Case A. As shown
in Fig. 6, when the radius reduces from 106 mm to 80 mm, the
shape of computed perturbation surface vR(x, y) gradually changes
from hump to valley structures (similar behavior of the shape
change as R decreases can be also observed under Case B, not
shown here). We note that the shapes of vR(x, y), when R =

106 mm and R = 98 mm (shown by Fig. 6(a)–(b)), are very
similar to the numerical result produced byWang et al. in [9] using
the B-spline finite element method under the natural boundary
condition, which shows that the two methods produce almost the
same numerical results. Whenwe have the solution of vR(x, y), the
designed surface of PAL can be given by uR(x, y) = vR(x, y) +
R2 − x2 − y2. By this definition of uR, we can define a weight

function Idisc to determine the optimal spherical background
surface:

Idisc =


D


α(x, y)


H2

R (x, y) − KR(x, y)


+ β(x, y) (HR(x, y) − P0(x, y))2

dA, (4.2)

where the mean curvature HR and Gauss curvature KR are
calculated by the solution of uR, and D is chosen as a circular
domain centered at the origin of Ω with the radius of 30 mm.
It should be noted that, since the produced solution by the
variational-difference method is the values on the discrete points,
in order to calculate the first and second derivatives with regard
to computing the quantities such as curvatures, power and
astigmatism, we made use of these computed discrete values and
fitted them as a smooth surface by tensor product B-splines of
degree 5, and then calculated the derivatives on the interpolated
surfaces. Fig. 7 shows the weight function Idisc as a function of
the radius R under Case A and Case B. From the figure, we can
clearly observe that there exists a critical value Rc at which the
weight function Idisc attains the minimal value. In the following
simulations, we chose the radii of spherical background surfaces
as the optimal radius Rc given by Fig. 7. For Case A, the optimal
radius Rc is equal to 90 mm; and for Case B, it is 137 mm.

By using the above optimal radius for the spherical background
surface, we presented the numerical results for the surface of
designed PALs under Case A and Case B shown by Figs. 8–10.
Fig. 8 gives surface plots for the finally designed PAL surfaces
under the two cases, and the designed surfaces are respectively
very close to a spherical surface, which is consistent with the
assumption in the paper. Figs. 9 and 10 both show the distribution
for the power and astigmatism functions under the two cases,
which are calculated by using the computed surfaces of PAL. The
middle dashed circle in Fig. 9 gives the circular domain of radius
smaller than 30 mm, i.e. D mentioned above, which is the area
practically used for a spectacle lens. As shown by Figs. 9 and 10,
we can clearly see that the required ADD power of 2.0 diopter
is reached for both the two cases, the power function changes
progressively and smoothly, and also there is a clear ‘‘corridor’’
which connects with the far-view and near-view regions. On
the other hand, the astigmatism also changes smoothly and the
maximum astigmatism gets effectively controlled within less than
1.6 diopter, which is smaller than the prescribed ADD power of 2.0
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(a) R = 106. (b) R = 98.

(c) R = 90. (d) R = 80.

Fig. 6. Numerical results for the perturbation surface vR(x, y) with respect to four different spherical background surfaces under Case A, unit: mm.
(a) Case A. (b) Case B.

Fig. 7. The weight function Idisc as a function of the radius of spherical background surface R for the two cases.
diopter. These designs are better than typical PAL designs, which
generally have the same maximum astigmatism and ADD power.
The above numerical results demonstrated the efficiency and high
performance as well as the simplicity for implementation of our
proposed method.

5. Conclusions

In the paper, we have proposed a variational-differencemethod
for designing the optical free form surface of PAL. The PAL, which
has a front surface with three important zones including the
far-view, near-view and intermediate zones, is often used to
remedy presbyopia by distributing optical powers of the three
zones progressively and smoothly. Based on the controls be-
tween the refractive optical power deviating from the prescribed
power distribution and the unwanted astigmatism, a functional
minimization mathematical model was presented. By assum-
ing that the front surface of PALs is a perturbed one around a
spherical background surface, we linearized and simplified the
mathematical model to a quadratical functional minimization
problem. A variational-difference numericalmethodwas proposed
for solving the quadratical functional minimization problem. Com-
pared with the existing literature which solves the problem by
the B-spline finite element method, the essence of the proposed
variational-difference numerical method lies in minimizing the
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(a) Case A. (b) Case B.

Fig. 8. Surface plots for the numerical results of designed PAL surfaces under the two cases, unit: mm.
(a) Case A: Power. (b) Case A: Astigmatism.

(c) Case B: Power. (d) Case B: Astigmatism.

Fig. 9. Contour plots for the power and astigmatism distributions under the two cases, unit: diopter.
functional directly by the finite difference method rather than in
approximating the solution of the corresponding Euler–Lagrange
equation to the functional. It is very easily understood and imple-
mented by optical engineers, and its memory and computational
cost are smaller than that of the B-spline finite element method.
Our extensive numerical results indicate that it can produce satis-
factory designs for optical engineers in several seconds.We believe
that our method could be a powerful candidate tool for designing
various specifications of PALs.

In the present model, we used the perturbed background sur-
face as a spherical surface and linearized the functional minimiza-
tion problem (P) in (2.6) to a quadratic functional minimization
problem (LP) in (2.16). So are there any better background sur-
faces, under whichwemight linearize the problem and obtain bet-
ter design results? Future extensions may include the revolution
surface and other surfaces as the background surfaces. On the other
hand, we assumed that the back surface of the PAL is spherical in
the paper and discussed how to design the free-form front sur-
face. As a matter of fact, the coupling of the appropriately con-
structed design for both the back and front surfaces may produce
more powerful and effective PALs, and this will be the trend for the
design of new generation customized PALs. In future work, we will
consider the design of both the back and front surfaces simultane-
ously, and incorporatemore complicated design objectives, such as
prescribed astigmatism, prism and many others, into the models.
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(a) Case A: Power distribution. (b) Case A: Astigmatism distribution.

(c) Case B: Power distribution. (d) Case B: Astigmatism distribution.

Fig. 10. Numerical results about the power and astigmatism distributions under the two cases, unit: diopter.
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