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We study the dynamics of vortices in ideal and weakly interacting Bose-Einstein condensates using a Ritz
minimization method to solve the two-dimensional Gross-Pitaevskii equation. For different initial vortex con-
figurations we calculate the trajectories of the vortices. We find conditions under which a vortex-antivortex pair
annihilates and is created again. For the case of three vortices we show that at certain times two additional
vortices may be created, which move through the condensate and annihilate each other again. For a noninter-
acting condensate this process is periodic, whereas for small interactions the essential features persist, but the
periodicity is lost. The results are compared to exact numerical solutions of the Gross-Pitaevskii equation
confirming our analytical findings.
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I. INTRODUCTION

Quantized vortices play an important role in verifying the
superfluid properties of quantum liquids such as Bose-
Einstein condensates �BECs� or degenerate Fermi gases. In
weakly interacting alkali gases condensate states containing
a single vortex line were first created using Raman transition
phase-imprinting methods �1�. By rotating the system with a
laser spoon �2,3�, vortex lattices containing more than 100
vortices have been created �4,5�, and by using topological
phase engineering methods �6� it is even possible to create
multiply charged vortices. It is expected that more compli-
cated vortex clusters can be created in the future, e.g., with
the further development of phase-imprinting methods. Such
states would enable various opportunities, ranging from in-
vestigating the properties of random polynomials �7� to using
vortices in quantum memories �8�. All of these developments
stir a great interest in the study of states with several vorti-
ces.

Recently, there were a number of investigations on the
properties of vortices in BECs. For three-dimensional con-
densates, several studies on the dynamics of vortex lines
have been done �9,10�. The generation and dynamics of vor-
tices in a toroidal condensate have been investigated in Ref.
�11�, whereas detailed numerical studies of the optical gen-
eration of vortices in pancake-shaped condensates have been
carried out in �12�. The manipulation of vortices such as
charge conversion by external potentials has been discussed
in Ref. �13�. Further numerical studies revealed that for con-
densates with a strong nonlinearity there exist several con-
figurations of vortices which are stable �14–16�. Analytical
expressions for the angular momentum and the energy of a
vortex-antivortex configuration in a BEC have been obtained
�17� using the Thomas-Fermi approximation. For strongly
nonlinear condensates analytical solutions were derived by
splitting the wave function into a region close to the vortex
core and one far away from the vortex, where the hydrody-
namic properties of the condensate are an essential feature

�18–20�. In contrast, here we concentrate on the dynamical
properties of vortex configurations in weakly interacting con-
densates, and solutions for the whole spatial regime are ob-
tained. In a noninteracting condensate the vortices behave
similar to those created in an optical beam using holograms
�21,22�, where the time evolution in the BEC corresponds to
the spatial evolution of the laser beam. As we will show, the
interaction between the BEC atoms changes the behavior of
the vortex dynamics considerably.

In this paper, we make use of the Gross-Pitaevskii equa-
tion �GPE�, also known as the nonlinear Schrödinger equa-
tion, which is known to be a valid description of the mean-
field dynamics of a BEC at zero temperature. We consider a
harmonic trap with tight confinement along one direction,
such that the condensate is effectively two dimensional. For
the case of an ideal, i.e., noninteracting BEC, the dynamics
of the vortices is solved analytically yielding the essential
features of the time evolution. For a small interaction within
the condensate, we make use of the Ritz method in order to
get analytical estimates of the dynamics. These estimates are
compared to exact numerical solutions of the GPE using the
time-splitting spectral method �TSSP�, which is explicit, un-
conditionally stable and spectrally accurate in space. Details
of the numerical method are described in Refs. �23–25�.

This paper is organized as follows. In Sec. II we introduce
the model under investigation and define the general initial
states of the vortex configurations. In Sec. III we discuss the
dynamics of vortices in an ideal condensate as a background
for the results of Sec. IV, where a detailed investigation of
the dynamics of a single vortex, a vortex pair, a vortex di-
pole, and a vortex tripole are presented. We conclude in Sec.
V. An Appendix contains some more details on the evolution
of a vortex tripole for the noninteracting BEC.

II. THE MODEL

In this work, we consider a Bose-Einstein condensate
�BEC� in a radially symmetric trap Vt�x ,y ,z�= 1

2mb���x2
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2� with �z�� the trap frequencies in axial and

radial direction, respectively, and mb the mass of the BEC
atoms. We assume a tight confinement in axial direction such
that ��z�kBT, where kB is Boltzmann’s constant and T is
the temperature of the BEC, as well as ��z�gn0, with
n0 the density of the BEC in the center of the trap and
g the interaction strength within the BEC, given by g
=4��2as /mb, with as the s-wave scattering length. For tem-
peratures well below the critical temperature of the BEC and
the Berezinskii-Kosterlitz-Thouless transition temperature
�26,27�, a regime which is in reach of current experiments
�28,29�, phase fluctuations occur on scales which are typi-
cally larger than the size of the condensate and the dynamics
of the BEC is well described by the dimensionless 2D Gross-
Pitaevskii equation �23�

i
��

�t
= �−

1

2
� �2

�x2 +
�2

�y2� +
1

2
�x2 + y2� + ����2	� . �1�

Here, �=��x ,y , t� is the normalized wave function
of the condensate with 
���x ,y��2dxdy=1, and �
=2Nas

�2��z /� /a0 characterizes the interatomic interaction,
defined in terms of the total number of particles N in the
condensate. The above dimensionless quantities are obtained
by scaling the length by the harmonic oscillator length a0
=�� /mb�, the time by �−1, and the energy by ��.

We study the dynamics of n vortices with topological
charge qj = ±1 �j=1,2 , . . . ,n�, which are initially placed at
positions r j = �xj ,yj�. For this purpose, we first need to calcu-
late the ground state �gs�r� of the GPE and the state �q�r�
with a single vortex in the center of the trap. From this, we
extract the function pq�r�=�q�r� /�gs�r�, which describes a
vortex in the BEC background. The initial state for the vor-
tices is then approximately given by

��r,t = 0� = ��gs�r��
j=1

n

pqj
�r − r j� , �2�

where � is chosen such that the initial state is normalized to
1. Unless otherwise stated, this normalization constant will
be dropped in the following. The above approximation holds
for vortices which are not too close to the edge of the con-
densate. A physical realization of such states can be achieved
either by stirring the condensate �2,3� or, in a more con-
trolled way, by phase imprinting methods �1,6� or by using
light with orbital angular momentum �8�.

III. VORTICES IN A NONINTERACTING BEC

To get an insight into the dynamics of vortices and as a
background against the results found for the weakly interact-
ing condensate we first focus on the noninteracting case �
=0, where the GPE simplifies to a two-dimensional har-
monic oscillator. The initial state ��r , t=0� is expanded in
terms of the solutions

�n,m�r,t� =
e−iEn,mt−�x2+y2�/2

�2n+mn! m! �
Hn�x�Hm�y� �3�

of the harmonic oscillator, with the energies En,m=1+n+m,
Hn are Hermite polynomials, and integer numbers n ,m�0.

This also gives the time evolution of the vortex state. The
trajectories of the vortices are calculated by finding the zeros
of the wave function and checking if at these points the con-
densate has a nonzero winding number.

For a single vortex of topological charge q= +1 initially
located at �x1 ,0� the expansion gives the wave function

�v�x,y,t� = exp�−
x2 + y2

2
− 2it��x + iy − eitx1� . �4�

The position of the vortex evolves in time on an exact circu-
lar trajectory described by xv�t�=x1 cos�t� and yv�t�
=x1 sin�t�.

For a vortex pair, that is two vortices with identical topo-
logical charge q= +1 initially located at �xj ,yj�, where j
=1,2, the expansion into the solutions of the harmonic os-
cillator shows that the two vortices move independently from
each other on trajectories xvp,j�t�=xj cos�t�−yj sin�t� and
yvp,j�t�=xj sin�t�+yj cos�t�, which are exactly the same as for
a single vortex. Due to the conservation of the total topologi-
cal charge Q=
 jqj there are always at least two vortices
present in the condensate, since a doubly charged vortex is
unstable �30�. From the absence of additional vortices we
conclude that the total energy of the system is not large
enough to allow the spontaneous creation of a vortex-
antivortex pair.

The dynamics changes considerably for a vortex dipole.
Assuming the q= +1 vortex is initially located at �x0 ,0� and
the q=−1 vortex at �−x0 ,0�, the trajectories are given by
yvd�t�=sin�t��x0

2−1� /x0 and xvd�t�= ±�x0
2−yvd

2 �t�. Examples
of these trajectories are shown in Fig. 1�a�. For x0�1/�2
these expressions are always real numbers indicating that the
two vortices do not annihilate each other. For x0=1 the vor-
tices remain even stationary at their initial positions. The
situation changes for x0	1/�2. In this case, the vortices
collide with each other at a time ta given by the first possible
solution of

�sin�t�� = � x0
2

x0
2 − 1

� . �5�

They annihilate each other and only reappear again at time tr,
where the second possible solution of Eq. �5� in the half-
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FIG. 1. �a� Trajectories for a vortex dipole for different initial
positions �±x0 ,0�. From inside to outside x0=0.4, 0.6, 0.8, 1, 1.2.
For x0=0.4, 0.6, the two vortices annihilate each other at certain
times and reappear again, indicated by the closed lines. For all other
cases shown, there are always two vortices present apart from times
where t= �2n+1�� /2, with n an integer number. �b� Trajectories for
the more general initial condition r1= �0.9,0.1�, r2= �−1.1,0�.
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period t� �0,�� is taken. Between those two times, there are
no vortices present in the condensate. We also did calcula-
tions with more general initial conditions for the two vorti-
ces, located at r j = �xj ,yj�, as shown in Fig. 1�b�. The whole
dynamics is still periodic with a period of 2�, and after a
time of t=� the state is given by �vd�x ,y ,��=−�vd�−x ,
−y ,0�, which means the initial state is, up to an unimportant
global phase, inflected at the origin. For the symmetric stable
case with x0=1 this might be surprising at the first glance,
but is explained by the fact that the �dimensionless� current
density j�x ,y , t�=−i��*��−���*� /2 stops at times t= �2n
+1�� /2, n=1,2 , . . ., allowing the two stationary vortices to
flip their signs.

The dynamics of a vortex tripole with two vortices of
topological charge q= +1 at locations �x0 ,0� and �−x0 ,0� and
one of charge q=−1 at �0,0� is given by

�vt�x,y,t� = e−��x2+y2�/2�−4it�x3 + iyx2 + �y2 − e2it�x0
2 − 2� − 2�x

+ iy�y2 + e2it�x0
2 + 2� − 2�� . �6�

For the special case x0=�2, we find as the zeros of the wave
function �0,0�, �−�2,0�, ��2,0�, (�2−4 cos�2t�sin�2t� ,
−�2−4 cos�2t�cos�2t�), and (−�2−4 cos�2t�sin�2t� ,
�2−4 cos�2t�cos�2t�). Although the initial state only con-
tains three vortices, during the evolution additional vortices
are created and annihilated again, so that at certain times
there is a maximum of five vortices present in the conden-
sate. The whole evolution is periodic with a period of �, a
property which will be lost for small interactions. For more
details of the vortex dynamics in the ideal case we refer to
the Appendix.

IV. VORTICES IN A WEAKLY INTERACTING BEC

The situation gets more complicated when a finite inter-
action � of the condensate is taken into account, and exact
analytical solutions are not known. In order to calculate the
dynamics of the vortices we therefore proceed using the Ritz
minimization method �31�. For small interactions �
1 we
assume that the Gaussian shape of the condensate is not
changed, but only broadened. For the solutions of the Gross-
Pitaevskii equation we make the ansatz

�n,m,��r,t� =
e−i�n,mt−��x2+y2�/2�2�

�2n+mn! m! ��2
Hn�x/��Hm�y/�� , �7�

where the functions are normalized to 1 and � is a constant
which takes the broadening into account. This constant is
derived by minimizing the Gross-Pitaevskii energy func-
tional �30�

E��� = N� dr
1

2
����2 +

1

2
r2���2 +

�

2
���4 �8�

with respect to �, where �=�0,0,��r ,0� and the energy is
given in units of ��. The minimum is found for �2

=���+2�� /2�. The constants �n,m are derived by putting
the ansatz into the GPE �1�, multiplying by �* and integrat-
ing over space, i.e.,

�n,m =� dr
1

2
���n,m,��2 +

1

2
r2��n,m,��2 + ���n,m,��4. �9�

The wave functions �n,m,��r , t� are then used to expand the
vortex state, which is given by the functions describing the
vortices multiplied by �0,0,� and a normalization factor. This
factor is, as in the preceding sections, dropped unless other-
wise stated.

We have further assumed that the shape of the vortices
does not change due to the increased interaction. Normally,
in a strongly nonlinear condensate the size of a vortex is
given by the coherence length 
, for which we find �in scaled
units� 
2=�� /4�. However, for our trapped weakly interact-
ing condensate this length scale is no longer useful, which
gets especially apparent for a vanishing interaction �→0,
leading to 
→�. Instead by using numerical calculations we
find that the vortices are still well described by the functions
pq derived for �=0. This is illustrated in Figs. 2�a� and 2�c�,
where the trajectories for a vortex dipole with the analytical
pq for �=0 are compared to those with numerically found pq
for �=1. The difference between the trajectories is negli-
gible. In Figs. 2�b� and 2�d� we compare the vortex trajecto-
ries for the factor pq found for �=1 and �=2. Again, the
trajectories are almost identical. This shows that a small per-
turbation in the shape of the vortices leaves the trajectories
essentially unaffected as long as an initial condition de-
scribed by Eq. �2� is used. We note that Eq. �2� only de-
scribes initially factorized vortices, which are not necessarily
preferred as the initial states with a given number of vortices.
Alternative states can be considered, and it has been shown
that the dynamics for globally linked, that means nonfactor-
ized, vortices can behave significantly different from the dy-
namics of factorized ones �32�. However, a full characteriza-
tion of such states is beyond the scope of this paper and we
therefore restrict our considerations to initial states described
by Eq. �2�.
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FIG. 2. �Color online� Comparison of vortex trajectories for
different initial states for a vortex dipole with initial x0=1 ��a� and
�b�� and x0=0.5 ��c� and �d��. For x	0 the trajectories for a vortex
dipole with initial pq for �=1 is shown, whereas for x�0 the tra-
jectories with initial pq for �=0 ��a� and �c�� and �=2 ��b� and �d��
are plotted. All trajectories are mirror symmetric to the axis where
x=0 �dashed line�. The vortices were evolved for a time interval
�0,20� and a condensate with �=1.
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A. Single vortex

For a single vortex initially located at �x0 ,0� the expan-
sion into the solutions �n,m,� yields

�v�x,y,t� = e−��i�7�+16��t�/4�2���+2��−��x2+y2�/2�2�

��x − e�i��+8��t�/4�2���+2�x0 + iy� , �10�

which immediately leads to the trajectory

xv�t� = x0 cos� �� + 8��t
4�2��� + 2�

� , �11�

yv�t� = x0 sin� �� + 8��t
4�2��� + 2�

� . �12�

The vortex again moves on an exact circular line, however
the time it needs to complete one circle is increased com-
pared to the interaction-free case. To be more specific, the
precession frequency is given by

�p =
�� + 8��

4�2��� + 2�
. �13�

A comparison with numerical results shown in Fig. 3�a� il-
lustrates that the analytical result describes the trend of a
decreasing precession frequency well, however, the numeri-
cal results show a clear dependence on the distance x0 of the
vortex to the center of the trap, which is missing in the ana-
lytical formula. For small interaction � the behavior of the
precession frequency can be assumed to be linear with � and
follow the curve �p=1+c�x0��. For the analytical formula
we get cana�x0�=−1/8��−0.04, whereas the results from the
numerics are shown in Fig. 3�b�. A trend towards the analyti-
cal value is visible with increasing x0. However, measuring
the frequency for x0�2 will become increasingly difficult
due to the dilute condensate density for large distances.

B. Vortex pair

Let us assume that at time t=0 the two vortices with
topological charge qj = +1 are located at �−x0 ,0� and �x0 ,0�.
The time evolution of the BEC wave function is given by

�vp = e−��i�137�+384��t�/64�2���+2��−��x2+y2�/2�2�

��x2 + 2ie�5i�t�/64�2���+2�yx

− e�i�41�+256��t�/64�2���+2�x0
2 − y2� . �14�

We see that the factor describing the two vortices in general
cannot be factorized as in the interaction-free case, indicating
that the two vortices influence each other. This also becomes
evident when investigating the trajectories of the two vorti-
ces. They no longer move on exact circular lines, but rather
on deformed ones as shown in Fig. 4. The deviation from the
exact circular line gets larger for higher interaction strength
�.

C. Vortex dipole

For symmetric initial conditions, i.e., a negative vortex
initially at position �−x0 ,0� and a positive one at position
�x0 ,0�, the wave function for a vortex dipole is expanded in
terms of �n,m,� yielding

�vd�r,t� = e��−3i�115�+256��t�/64�2���+2��−��x2+y2�/2�2�

Ã„2ie�i�233�+512��t�/64�2���+2�x0y

+ e�i�249�+640��t�/64�2���+2��� − x0��� + x0�

+ e�i�13�+24��t�/4�2���+2��− �2 + x2 + y2�… . �15�

As for the vortex pair the dynamics of the BEC is no
longer periodic due to the interaction, but acquires a more
complicated time dependence. As an example, the trajecto-
ries for �=1, a time interval of t� �0,20�, and several initial
positions �±x0 ,0� are shown in Fig. 5. The simple trajectories
from the noninteracting case are changed to complicated
structures, which have lost their periodicity.

Comparison between analytical results using Eq. �15� and
numerics shows that especially for small times and interme-
diate distances 2x0�2 both trajectories agree quite well,
however for certain times the analytical results predict vorti-
ces at positions where there should be no vortices according
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FIG. 3. �Color online� �a� Precession frequency of a single vor-
tex versus the interaction strength �. Stars show �p for a different
initial distance of the vortex from the center, namely �from bottom
to top� x0=0.1, 0.5, 1.0, 1.5, 2.0. The circles show the analytical
result given in Eq. �13�, lines are guides to the eye. �b� The coeffi-
cients c�x0� for different x0, see text.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

FIG. 4. Trajectories of a vortex pair deduced from the analytical
formula Eq. �14� for �=2, x0=1.2, and a time interval of t
� �0,20�. The trajectories are no longer exact circular lines, indi-
cating that both vortices influence each other.
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to numerics. The differences between analytics and numerics
get larger for increasing interaction �. Our numerical calcu-
lations furthermore suggest that even for distances 2x0�2
there exist times for which the two vortices annihilate each
other and reappear again, so, for example, at 2x0=3 and a
time around t=18. This is in contrast to the noninteracting
case, where the evolution was strictly periodic and an anni-
hilation of the vortices not possible if their initial distance
was 2x0�2/�2.

D. Vortex tripole

For a vortex tripole as introduced in Sec. III the wave
function describing the time evolution is given by

�vt�x,y,t� = e−��871i�t�/128�2���+2��−���20i�2�t�2/��+2��+x2+y2�/2�2�

��e�3i�369�+1024��t�/256�2���+2���2�x + iy�

− 2ix�x − iy�y� + e�3i�361�+1024��t�/256�2���+2�

��3�2�x + iy� − 2�x3 + iy3��

− 2e�i�647�+2048��t�/128�2���+2��2�2�x + iy�

− �x − iy�x0
2�� . �16�

As for the noninteracting case, there always exists a vortex in
the center of the condensate, however we were not able to
identify any initial condition where more than the central
vortex are stationary. This is consistent with the results re-
ported in Ref. �16�. There it was shown that a stable vortex
tripole, i.e., a configuration of exactly three stationary vorti-
ces, only exists for interactions ��1, where our ansatz is no
longer valid.

The zeros of the wave function Eq. �16� are found nu-
merically for different initial positions of the vortices. For
short times t
10, the time evolution of the trajectories is
quasiperiodic, however this quasiperiodicity is more and
more washed out for longer times. This gets also apparent

when the number of vortices during time is considered. As
shown in Fig. 6�a�, the number of vortices oscillates for t

10 between 3 and 5 for an initial configuration with x0
=1.5. For later times, however, there are intervals in which
the condensate only exhibits one vortex.

In Fig. 6�b� we show the average number of vortices �N�
in the condensate during the time interval �0,20� versus the
initial positions x0. The results derived from the numerical
evolution of the GPE agree quite well with the ones from the
analytical formula Eq. �16�. We observe that for x0�1.5 the
average number of vortices �N� increases with increasing x0,
and reaches a pronounced maximum at x0�1.5. For larger x0
the average vortex number decreases again to reach a con-
stant value of 3 for x0�2. This indicates that for such large
distances the energy within the condensate is too low to
spontaneously create additional vortices. This behavior is
qualitatively similar to the noninteracting case as also indi-
cated in Fig. 6�b�, where the interacting case tends to exhibit
a higher average vortex number.

V. CONCLUSION

In the present paper we have investigated the dynamics of
vortices in two-dimensional Bose-Einstein condensates. We
have solved the Gross-Pitaevskii equation analytically for
ideal condensates and have used the Ritz minimization
method in order to calculate the dynamics for small interac-
tions. The latter results were compared to exact numerical
solutions of the condensate dynamics.

For an ideal condensate we have shown that two vortices
with the same topological charge �q � =1 do not influence
each other and behave like two independent, single vortices.
This changes as soon as the interaction within the condensate
is taken into account. The two vortices no longer move on
exact circular lines, but rather on a distorted circular path.

For the case of a vortex dipole, that is two vortices with
opposite topological charge in the condensate, we found that
for certain initial conditions in an ideal condensate the two
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FIG. 5. �Color online� Trajectories of the two vortices in a vor-
tex dipole for �a� x0=0.6, �b� x0=0.8, �c� x0=1, and �d� x0=1.2.
Analytical results calculated with Eq. �15� are only shown for x
	0, whereas numerical results are only shown for x�0. Both re-
sults are mirror symmetric with respect to the axis where x=0
�dashed line�. The interaction is chosen as �=1, and the time inter-
val for which the trajectories are shown is given by 0
 t
20.
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FIG. 6. �Color online� �a� Number of vortices N present in the
BEC vs time, with initially x0=1.5. �b� Average number of vortices
�N� present in the BEC during the time interval �0,20� for different
initial x0. The solid line shows the results derived from the analyti-
cal expression, Eq. �16�, whereas the pluses show numerical results.
In all cases we have chosen �=1, apart from the dashed line, which
shows the results for �=0.
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vortices will collide, thereby annihilating each other, and re-
appear again, whereas they are always separated if the initial
distance is large enough. The trajectories change consider-
ably in an interacting condensate, and a large initial distance
will no longer guarantee that the two vortices do not annihi-
late each other at some times.

We also investigated the case where initially there are
three vortices in the BEC, a so-called vortex tripole. In con-
trast to the case of only two vortices present at the beginning
we found that for an ideal condensate during the time evo-
lution additional vortices were created and annihilated, al-
lowing for a maximum of five vortices in the condensate.
Our numerical results showed that this behavior also per-
sisted in an interacting condensate.
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APPENDIX: DETAILS OF THE VORTEX TRIPOLE
DYNAMICS FOR THE IDEAL BEC

The expressions given for the vortex trajectories in Sec.
III do not include information on the topological charge of
the respective vortices. Closer investigations show that the
vortices described by a single trajectory can indeed flip their
signs. To be more precise, we assume that at t=0 the central
vortex has a negative charge. At times t	� /6, there are only
three vortices present in the BEC, which do not move. For
t=� /6, two new vortices of equal charge q=−1 arise in the
center of the BEC flipping the charge of the central vortex in
order to keep the total topological charge Q constant. The
two new vortices start to move out of the center towards the
two stationary vortices. When the two new vortices cross the
two stationary ones at t=� /4, their charges are flipped as
well, such that the moving vortices have now a positive
charge and the stationary ones a negative one. After the flip,

the nonstationary vortices move around the three stationary
vortices as indicated in Fig. 7�a�, cross the two vortices out-
side the center again and flipping their charge at t=3� /4,
and finally annihilate at the center at a time t=5� /6, such
that the original configuration for t=0 is achieved again. This
is repeated periodically, with a period of �. Investigating the
phase of the condensate at the times t=� /4 and 3� /4, where
the moving vortices cross the stationary ones at �±�2,0�,
shows that for these times there is only one vortex present in
the condensate, namely the central one. A density plot of the
system for a time t=0.2� is shown in Fig. 7�b�. The addi-
tional vortices are created in a region of low density, where
the energetic cost is lowest. However, this low density makes
the measurement of the vortices more difficult.

For the case x0��2 we find a similar behavior of the
vortices. For x0�2 there will always be three vortices in the
condensate. For smaller values, additional vortices can be
created, and for x0	�2 we find that for certain time intervals
�i.e., not only for single points in time� there is only one
vortex present in the condensate. Due to the conservation of
the total topological charge this is the minimum number of
vortices present. Calculating the roots of Eq. �6� shows that
the maximum number of vortices is five.
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