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ABSTRACT: Precise positioning of molecular objects from one location to
another is important for nanomanipulation and is also involved in molecular
motors. Here, we study single-polymer-based positioning on the basis of the
exact solution to the realistic three-dimensional worm-like-chain (WLC) model.
The results suggest the possibility of a surprisingly accurate flyfishing-like
positioning in which tilting one end of a flexible short polymer enables
positioning of the other diffusing end to a distant location within an error of ∼1
nm. This offers a new mechanism for designing molecular positioning devices.
The flyfishing effect (and reverse process) likely plays a role in biological
molecular motors and may be used to improve speed of artificial counterparts.
To facilitate these applications, a new force−extension formula is obtained from
the exact WLC solution. This formula has an improved accuracy over the widely
used Marko−Siggia formula for stretched polymers and is valid for compressed
polymers too. The new formula is useful in analysis of single-molecule
stretching experiments and in estimating intramolecular forces of molecular motors, especially those involving both stretched
and compressed polymer components.

1. INTRODUCTION

Precise positioning of molecular objects by rationally designed
molecular devices1−4 is emerging as a new method for
nanomanipulation. Notably, a recent study1 by Funke and
Dietz finds that position resolution near Bohr radius (∼0.04 nm)
is feasible using a DNA origami device. The conventional tools
like atomic force microscopy (AFM), optical or magnetic
tweezers, and scanning tunneling microscopy are all intrusive
methods as they involve microscale tips or beads. The molecular
device-based method is nonintrusive and has found applications
in calibrating AFM,3 engineering nanocavity emission,4 and
delivering of molecules.2 The positioning devices reported to
date are all rather rigid structures made of multiple molecular
components or even bigger DNA origami. This paper reports an
exact worm-like-chain (WLC) study suggesting the possibility of
fairly accurate remote positioning (within 1 nm resolution) by a
single short and rather soft polymer.
Besides, soft oligomer-based molecular relay from one

location to another is used by track-walking bipedal molecular
motors from biology5,6 and nanotechnology.7−10 From the
perspective of first passage time,11−14 a better positioning
accuracy results in a higher rate for site-specific binding and
hence a higher speed for a motor. Intramolecular force of the
relaying oligomer is important for uphill processes within a
motor or in a crowded environment. On the basis of the exact
WLC study, we also obtain an empirical formula for the

intramolecular force of a polymer versus its end-to-end distance
that applies to stretched as well as compressed polymers. This
formula is not available before but is important for studying
molecular motors15−17 that involve stretched and compressed
states of the same polymer component.

2. RESULTS AND DISCUSSION

2.1. Single-Polymer “Flyfishing” by a Local Alignment
at One End. A prominent example of polymer-based
positioning is found in a bipedal biological motor called kinesin,
which is capable of hand-over-hand walking toward the plus end
of a linear cytoskeletal track (microtubule).When this motor has
one leg bound to the track and the other leg diffusing, fuel
binding to the track-bound leg triggers a zippering-like
alignment5 of the interleg soft peptide linker at this leg toward
the track’s plus end. This zippering effect throws forward the
diffusing leg at the linker’s other end toward the next binding site
for the walker’s hand-over-hand walking. Such a polymer
“zippering” had been suggested5 to provide a forward bias for
kinesin’s leg binding. Whether this polymer effect really
contributes to directionality of a chemical motor like kinesin is
questioned18 later, but the effect certainly improves19 speed and
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power output of motors like kinesin. In this paper, we study the
zippering-like effect not for directional rectification in a motor
but as a potentially general mechanism of polymer-based
positioning of a molecular agent (e.g., the diffusing leg of kinesin
biped) at one end of the polymer by controlling the position and
orientation of the other end. This study will be focused on the
positioning accuracy for its importance for molecular position/
delivery in wider applications beyond molecular motors. The

positioning accuracy also affects the leg binding rate and thereby
speed of bipedal motors like kinesin.
The polymer-based positioning is a fine interplay among the

conformational entropy and bending energy of the polymer.
Therefore, we prefer for this study a general and rigorous
polymer theory that counts the conformational entropy and
bending energy accurately and allows the study of positioning
mechanisms in a generic, conceptually clear way. Such a general
framework will be particularly useful in providing guidelines for

Figure 1.Mechanics of a worm-like-chain polymer with its one end located at the origin (x = 0, y = 0, z = 0) and the other end diffusing to reach a
location on the z axis. The probability distribution of the free end along the z axis,Q(z) =Q(0, 0, z), and the free energy F(z) = F(0, 0, z), the intrachain
force f(z) = F′(z) derived are shown. The results are for two scenarios: the end at the origin either has free orientation or is aligned at a fixed angle θwith
respect to the z direction. The polymer has a contour length lc = 10 nm and a persistence length lp = 4 nm.
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developing molecular positioning devices from scratch. Previous
theoretical studies of device/motor-relevant polymer effects
focus on specific molecular systems14,20−27 (mostly biological
motors and associated peptide systems) or are based on
approximate solution of polymer mechanics.28−30 A good
candidate for developing the general framework is the WLC
model for semiflexible polymers. On the one hand, the exact
solutions to the WLC model from the path integral scheme31,32

and the green function scheme33−38 become available recently
to allow a precise counting of the conformational entropy, which
remains difficult for other methods like atomic simulations. The

new solutions are already applied to study polymer brush36,38

and diblock copolymer melt.37 On the other hand, the WLC
model has only two parameters: contour length as a measure of
the maximum stretch of a polymer and persistence length as a
measure of the polymer’s bending rigidity. Both parameters can
be extracted by fitting experimental data, potentially making the
WLC model a realistic working model for any polymeric
building blocks of molecular devices.
In this study, we extend the method in refs 31 and 34 for

solving the WLC model in two dimensions to three dimensions
(see the Methods section) and then apply the exact solution to

Figure 2. Most probable end location and the fwhm probability vs the angle of alignment at the other end for the polymer of Figure 1. The results
(symbols) are extracted from the Q(z) = Q(0, 0, z) distributions in Figure 1.

Figure 3.Dependence of the end probability, free energy and intrachain force on persistence length forWLC polymers as for Figure 1 for the alignment
angle θ = 0. The polymers have the same contour length lc = 10 nm but different persistence length (lp). The exact solutions are shown by symbols with
the lines to guide eyes.
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study the zippering-like polymer-based positioning. Figure 1
presents the probability distribution of one free end of a three-
dimensional WLC polymer when the other end is located at the
origin of the z axis and has different orientations for its tangent:
the end at the origin either has free orientation or is aligned
toward an angle θ = 90, 45, 0° with reference to the positive z
direction to mimic the zippering effect (following a treatment of
Spakowitz and Wang in ref 34). For the free orientation and the
vertical orientation (θ = 90°), the free end has two symmetric
most probable positions at a positive and a negative z value.
When the fixed end is tilted from 90 to 45° and further 0°, the
probability peak at negative z values virtually vanishes but the
peak at the positive z value rises.
Distinct patterns are observed by examining the extent of

accuracy by which aligning the end can position the other free
end to a certain location. First, the full width at half maximum
(fwhm) of the probability peaks becomes as small as ∼2 nm for
the zero-degree alignment (Figure 2). This suggests the
possibility of positioning the free end to the most probable
location (zc) within an error of ∼1 nm for a polymer with a
contour length of 10 nm. Second, such a precise site-selective
positioning may occur for rather flexible polymers with lp/lc =
0.3−0.4, not necessarily require a rigid molecular rod (lp/lc > 1).
Indeed, the probability for locations around zc peaks at
intermediate values of persistence length (lp) for a certain
contour length (lc) (Figure 3). In addition, the fwhm becomes
largely flat when lp/lc changes from 0.3 to 1 (Figure 4). Hence, a
flexible polymer of lp/lc≈ 0.3−0.4 already accesses the regime of
precise positioning. Third, the precise positioning can be
modulated by adjusting the end alignment and polymer rigidity.
Changing the end alignment from 90° to 0° shrinks the fwhm of
the probability peaks monotonically (Figure 2) and hence
improves the positioning accuracy. The most probable location
of positioning (zc) may be modulated too by the alignment
(Figure 2) or by changing the polymer rigidity (Figure 4), which
may be done by adjusting the solution conditions like ion
concentrations, pH values, temperature, and so forth.
Hence, aligning a flexible polymer of lp/lc = 0.3−0.4 and lc =

10 nm at one end positions the other free end to a most probable
position of zc ≈ 8 nm within an error of ∼1 nm along the path
parallel to the alignment. Such a surprisingly precise positioning
to a unique, remote location (relative to the length of the
polymer) is achieved by controlling the flexible polymer at one
end, essentially resembling the art of flyfishing but at molecular
level. The speed of a bipedal nanomotor is largely decided by the
position-selective binding of its legs, which is in turn affected by

the mechanics of the interleg polymer linker. Fine-tuning a
nanomotor into the regime of molecular “flyfishing” may
improve the motor’s speed by accelerating forward binding of
its legs: from the free or vertical orientation to zero-degree
orientation, the fwhm drops by a factor of∼2 (Figure 2) and two
most probable positions merge into one. This amounts to a drop
of a factor of ∼4 for the search volume of a diffusing leg at the
linker’s free end. A rough estimation for the first passage
time11−14 suggests more than twofold increase in the leg’s
forward binding rate by the flyfishing. The single-polymer
flyfishing likely plays a role in biological nanomotors. This is
consistent with the observation of zippering in biomotor kinesin,
which is the smallest bipedal motor found in biology but has a
rather high speed39 of a few micrometers per second.

2.2. Reverse Detachment by Intrachain Force and a
New Force−Extension Formula. If the polymer’s free end is
captured at the most probable location, for example, via a
binding agent there or equivalently an attractive binding
potential, the polymer’s both ends are bound and the polymer
enters the state with the lowest free energy and the lowest
intrachain force (Figure 1, bottom panels). When the
orientation control at the previously fixed end is removed,
both ends remain to be fixed in location but become free for
orientation. Then, the polymer enters a state with elevated free
energy and higher intrapolymer force (Figure 1, top panels).
Similar intrachain forces occur in the interleg linkers of bipedal
biomotors in a two-leg bound state on their tracks and have been
suggested to be a cause24,40,41 for leg dissociation in biomotors
(i.e., reverse process of the flyfishing-enabled leg binding). The
leg dissociation induced purely by an intrachain force in the
interleg polymer linker has also been successfully implemented
in artificial DNA bipedal nanomotor15−17 not only for a
stretched linker but also for a compressed one. However, the
widely used force−extension formula for polymers, including
theMarko−Siggia formula and later improvements,42 apply only
to stretched polymers which have an end-to-end distance larger
than the thermodynamically most probable extension. To
facilitate molecular motor studies, we use the exact solution to
three-dimensionWLC polymers to produce an empirical force−
extension formula that is conveniently usable for both stretched
and compressed polymers.
The intrachain force of a polymer depends on the end-to-end

distance as well as the polymer’s persistence length and contour
length. We obtain an analytical formula capturing these
dependencies by fitting the force−extension results from the
exact WLC solution for 0 ≤ z < lc

Figure 4.Most probable end location and the fwhm probability vs persistence length for WLC polymers. The results for the scenarios of the end at the
origin having free orientation or being aligned parallel to the z axis (θ = 0) are shown. The polymers have the same contour length (lc = 10 nm) but
different persistence length (lp). The results (symbols) are extracted from the Q(z) distributions as in Figure 1. In the left panel, a fitting is also shown
for the results for one scenario (the nonlinear part for lp > 2.5 nm is fitted by a polynomial function for spline interpolation, and the part for lower lp is
fitted by a linear line).
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the second term of eq 1 vanishes and the first term decays to the
Marko−Siggia formula. For short chains with small β values,
namely, rod-like polymers near the other limit β = lc/lp → 0, the
new formula captures the exact WLC solution better than the
Marko−Siggia formula for stretched polymers (Figure 5,
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exact WLC solution for compressed polymers (Figure 5,
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yields a force that changes its sign when the end-to-end
extension drops beyond a threshold (approximately z/lc≈ 0.83).
This is a typical behavior for rigid rods under a compressing or
stretching force. As can be seen clearly in Figure 5, the rod-like
behavior and the entropy-dominated behavior are both captured
by the exact WLC result as well as by eq 1.
Being valid for both long and short polymers, the new force−

extension formula of eq 1 is useful not only for nanomotor
studies but also for interpreting single-molecule mechanical

experiments, which had motivated Marko−Siggia formula. The
formula applies not only to stretched polymers but also to
compressed polymers that have an end-to-end distance smaller
than the most probable extension.
For a polymer of a certain contour length, changing its end-to-

end distance and persistence length switches the polymer
between the stretched and compressed regimes, resulting in
different directions and magnitudes of the intrachain force.
Quantitative details of these patterns from the exact solution are
well captured by the new formula (Figures 5, and 3, lowest
panels). The new force−extension formula (eq 1) also yields the
most probable end-to-end distance, which occurs at zero
intrachain force and matches the exact WLC result (Figure 4,
left panel).

3. CONCLUSIONS

In summary, a precise, flyfishing-like control is possible in which
tilting one end of a flexible polymer enables positioning of the
other diffusing end to a remote location within an error of ∼1
nm. The location and accuracy of this single-polymer flyfishing
can be modulated by adjusting the tilting angle and the chain
rigidity. The single-polymer flyfishing likely plays a role in
biological nanomotors and might be used in artificial nano-
motors (for speed improvement) and in molecular devices for
precise positioning of molecular objects. To facilitate these
applications, a new force−extension formula is obtained from
the exact solution to the realistic three-dimensionalWLCmodel.
The new formula has an improved accuracy over the widely used
Marko−Siggia formula for stretched polymers, and also is valid
for compressed polymers. Thus, the new force−extension
formula is useful in analysis of single-molecule stretching
experiments and in estimating the intramolecular force of
molecular motors, especially those involving both stretched and
compressed polymer components.

Figure 5.New approximate formula for the force−extension relation ofWLC polymers. The force−extension relation from the exact solutions in three
dimensions for a lc = 10 nm polymer in comparison with the predictions by the new formula (eq 1) and the Marko−Siggia formula are shown. Both
ends of the polymer have free orientation.
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4. METHODS

The simplest model for describing semiflexible polymers
without self-avoidance is the so-called WLC model.44 In this
model, the polymer is modeled as a continuous curvea
configuration Cthat can be specified by a d-dimensional (d >
1) curve x(s) (0 ≤ s ≤ lc), with s the arc-length parameterization
of the curve and lc is the contour length of the polymer. The unit
tangent vector to the chain at s is denoted as t(s) = dx(s)/ds(|
t(s)|2 = t(s)·t(s) = 1), and the curvature of the polymer at s is
given by κ(s) = |dt(s)/ds|. For the simplicity of notations, we
suppose that one end of the polymer is tethered to the origin,
that is, x(0) = 0, and the other end x(lc) = r is tagged. As the
polymer configuration changes with thermal agitation, the
location r of its tagged end fluctuates. The quantity we want to
compute is Q(r), which is the probability distribution for the
location r of the tagged end, and the free energy F(r) which is
defined as the change inQ(r) if the tagged end is pulled from r to
r + dr. Thus, Q(r) is directly related to the force−extension
relation of the polymer, that is, intrachain force f(r).
4.1. Probability Distribution Q(r). Different analytical,

asymptotic, and numerical methods have been proposed in the
literature31,34 for solving the WLC model. Here, we extend the
method for solving the WLC model for a two-dimensional
case31 to a full three-dimensional case. For a given three-
dimensional curve C: x(s) (0 ≤ s ≤ lc) of a polymer, we have

∫=r t s s( ) d
l

0
c and the bending energy of the polymer is

∫= | |E C A t s s s( ) /2 d ( )/d d
l

0
2c with A the bending modulus. To

computeQ(r), we need to sum over all polymer configurationsC
which end at r, with a Boltzmann weight or the partition function
according to the Boltzmann’s law

∑= −Z e
C

E C k T( )/ B

(2)

where kB is the Boltzmann constant andT is temperature. This is
a standard counting problem in statistical mechanics and can be
naturally addressed in the language of path integration by
considering the Brownian motion in the space of the tangent
vectors t(s) (0 ≤ s ≤ lc). The advantage of this approach is that
the tangent vectors form a unit sphere and thus the problem
reduces to studying Brownian motion on the unit sphere, which
can be handled by the standard operator techniques familiar
from quantum mechanics.
Denote tA = t(0) and tB = t(lc) as the two unit tangent vectors

at the two ends of the configuration C, respectively, of the
polymer, and let lp = A/kBT be the persistence length of the
polymer and denote the dimensionless parameter β = lc/lp.
Then, Q(r) with tA and tB two given unit vectors for the
configuration C can be expressed by the path integral
representation31,34

∫
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where δ3() is the Dirac function in three dimensions and N is a
normalization constant such that all polymer configurations C
which end at r with different tA and tB are counted. We remark
here that Q(r) = 0 when |r| > lc. To find Q(r), we define its
generating function P̃(k) through the Laplace transform

∫⃑ ⃑̃ = ⃑ ⃑ ∈·⃑ ⃑P k
N

r Q r k C( )
1

d e ( ),
R

k r l/ 3
3

p

(4)

From eqs 3, 4 and the inverse Laplace transform, using the
change of variable k = −iu/β with = −i 1 , we get

∫ ⃑ ⃑
π
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l
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Plugging eqs 3 into 4 and using the change of variable s = ilpτ
and denoting t(̃τ) = t(s) = t(ilpτ), we obtain

∫⃑ τ̃ = [ ̃ ⃑ ]
⃑τ τ τ

⃑

⃑
∫ [ ̃ ⃑ τ + · ̃ ⃑ ]− β
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In this equation, if τ and (dt/̃dτ)2/2 + k·t ̃ are viewed as time
and Lagrangian, respectively, then it can be interpreted as the
path integral representation for the kernel of a quantum particle
on the unit sphere at inverse temperature β. Thus, we can
express P̃(k) for k = (k1, k2, k3)

T ∈ C3 as the quantum amplitude
to go from an initial tangent vector state tB to the final tangent
vector state tA in the imaginary time with length β in the
presence of an external potential−k1 sin θ cos φ − k2 sin θ sin φ
− k3 cos θ with (θ, φ) the spherical coordinates of the unit
sphere. Therefore, eq 6 can be written as a “vacuum persistence
amplitude”

⃑̃ = ⟨ | | ⟩ = ⟨ | | ⟩β β− − −⃑ ⃑P k g g g g( ) e eH H
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B A B

k k
(7)

where

θ ϕ θ ϕ θ= − ∇ − − −

≔ − − −

⃑H k k k

H k H k H k H

1
2

sin cos sin sin cosk
2

1 2 3

0 1 1 2 2 3 3

(8)

is the corresponding Hamiltonian with
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In addition, gA := gA(θ, φ), gB := gB(θ, φ) are the distribution
functions of the unit vectors tA and tB over the unit sphere,
respectively.
Let Yl

m := Yl
m(θ,φ) (l≥ 0 and |m|≤ l) be the standard spherical

harmonic functions, then we have
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where L is an integer chosen numerically for the truncation, U
and V are two column vectors with components ⟨gA|Yl

m⟩ ≔
∫ 0
π∫ 0

2πgA(θ, φ)Yl
m(θ, φ) sin θ dφ dθ (|m| ≤ l and 0 ≤ l ≤ L) and

⟨Yl
m|gA⟩ (|m|≤ l and 0≤ l≤ L), respectively. Here, for example, if

the end A of the polymer is aligned at a fixed unit direction, that
is, tA = (sin θA cos φA, sin θA sin φA, cos θA) with θA and φA two
fixed angles, then gA(θ, φ) = δ(cos θ − cos θA)δ(φ − φA); if the
end B of the polymer is free, that is, tB is uniformly distributed on
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the sphere, then gB(θ, φ) = 1/4π. G is a matrix with entries ⟨Yl′
m′|
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m⟩ (|m|, |m′| ≤ l and 0 ≤ l, l′ ≤ L). By using the
properties of the standard spherical harmonic Yl
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Figure 6. Probability distributionQ(x, y, z) at different y planes for the diffusing end of aWLC polymer with its other end fixed at the origin of the x, y, z
axes and aligned in parallel to the z axis. The polymer is characterized by different values of β = lc/lp. The x, y, z values shown in the figure are in unit of lc.
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In practical computations, we choose the integer L large
enough such that the truncation error in eq 10 can be negligible
and choose the distribution functions gA(θ, φ) and gB(θ, φ) for
the two unit vectors tA and tB, respectively, based on the
assumption of the chain, for example, both end free or one end
free, the other end fixed, and so forth. Then, we can compute the
matrix G and the two vectorsU and L in eq 10. Then, the matrix
exponential e−βG is computed numerically via the Pad́e
approximation and P̃(k) can be evaluated by matrix multi-
plication. Finally, Q(r) is obtained from P̃(k) through eqs 4 and
5. To check the method and our code as well as to compare it
with existing results, we consider a WLC polymer with one end
located at the origin and aligned toward the z direction, that is, tA
= (0, 0, 1)T and the other end free. After we compute Q(r), we
display the distribution in the x−z plane for different y values
(Figure 6). The results agree very well with those obtained in ref
34 by a different method.
4.2. Free Energy F(r) and Intrachain Force f(r). On the

basis of the probability distribution functionQ(r), we can derive
the thermodynamic quantities such as the free energy F(r) and
the intrachain force f(r). In fact, the free energy of the ensemble
F(r) can be computed as

⃑ = − ⃑ | |⃑ <F r k T Q r r l( ) ln ( ),B c (11)

To keep the free end staying at the position r, a force must be
applied, that is, intrachain force f(r) which can be computed as

⎯⇀
⃑ = ∇ ⃑ | |⃑ <f r F r r l( ) ( ), c (12)
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