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Summary

Since its first realization in dilute bosonic atomic gases, Bose-Einstein condensation

(BEC) has been extensively studied in both theory and experiment. It has spurred

great excitement in the atomic physics community and attracted the interest of

scientists from different fields. Recently, with the observation of quantized vortices

in rotating BEC, much attention has been focused on its dynamical phenomena

associated with superfluidity.

The main purpose of this thesis is to conduct an extensive analytical and numerical

investigation of Bose-Einstein condensation in dilute alkali gases. In both weakly

interacting regime, i.e. |βd| ¿ 1, and strongly repulsive interacting regime, i.e.

βd À 1, the asymptotic approximations up to o(1) in terms of βd are derived for

the ground state and its energy and chemical potential. A backward forward Euler

Fourier pseudospectal (BFFP) method is proposed to compute the ground state

of non-rotating or rotating BEC. Due to its spectral accuracy in space, the BFFP

method is very efficient and accurate, especially for the case of fast rotating BEC

with strongly repulsive interaction. The ground states in different potentials are

studied numerically for two dimensional (2D) and three dimensional (3D) cases.

The dynamics of BEC are also investigated analytically and numerically. Along
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Summary ix

the analytical front, we prove the conservation of the angular momentum expec-

tation when the external trapping potential is radially symmetric in 2D case, and

respectively cylindrically symmetric in 3D case. A second-order ordinary differential

equation (ODE) is derived to describe the time evolution of the condensate width as

a periodic function with/without a perturbation. Also a second-order ODE system

is found to characterize the dynamics of a stationary state with its center shifted.

By solving this ODE system, different motion patterns of the mass center are clas-

sified. On the numerical front, several high-order numerical methods are developed

to simulate the dynamics of non-rotating and rotating BEC.

We demonstrate numerically that the central vortex states with winding number

|m| = 1 are dynamically stable, while those with winding number |m| > 1 are

dynamically unstable. Under two different initial patterns, the interactions be-

tween two |m| = 1 vortices are studied, and it is found that the interactions in

non-interacting BEC, i.e. βd = 0, and in interacting BEC, i.e. βd 6= 0, are dis-

tinctly different. The dynamics of vortex lattices in an anisotropic potential are

also reported, which demonstrates the efficiency and high accuracy of our numerical

methods.

Our investigations on single-component BEC are also extended to two-component

rotating condensates, where both ground states and dynamics are studied analyti-

cally and numerically.

Based on the Ginzburg-Landau-Schrödinger equation (GLSE), the vortex dynamics

and interactions in superconductivity and superfluidity are studied asymptotically

and numerically. The reduced dynamic laws for the vortex motion are reviewed, and

under some proper initial data, they are solved analytically. On the other hand, by

directly simulating the GLSE, the vortex dynamics and interaction are investigated

numerically to compare with those from the reduced dynamic laws. Some conclusive

experimental findings are obtained, and discussions on numerical and theoretical

results are made to provide further understanding of vortex dynamics of the GLSE.
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Chapter 1
Introduction

An important consequence of quantum mechanics is that all objects appear to be

wavy for sufficiently short length scales. We cannot see this effect in our everyday

life because the wavelengths of the objects larger than an electron are too short

to be observed by the naked eyes. However, there is an exception in the case of

extreme cold. As objects are cooled very close to absolute zero, their characteristic

quantum-mechanical wavelengths become increasingly long. This tendency towards

ever-expanding wavelength ends in a dramatic phenomenon known as Bose-Einstein

condensation (BEC).

1.1 Bose-Einstein condensation

Bose-Einstein condensation (BEC) was predicted in 1924 by Einstein [56], as he re-

viewed and translated a work of Bose [26] about the statistics of photons. Therein,

Bose derived Planck’s famous black-body radiation formula on the basis of the ther-

modynamic properties of quantized massless harmonic oscillators generating a free

electromagnetic field. Einstein devoted to using Bose statistics to describe the

quanta of light, and he predicted that a phase transition should occur in a gas

of noninteracting atoms at some critical temperature. Below this critical temper-

ature, a finite fraction of the total number of particles would “condense” into the

1
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lowest-energy single-particle state, the quantum mechanical ground state. As these

condensed particles do not contribute to the entropy of the system, Einstein inter-

preted this phenomenon as a phase transition.

Figure 1.1: Images of the velocity distribution of Rubidium (Rb) atoms taken by

means of expansion method [42]. Left: just before the appearance of the Bose-

Einstein condensate; Middle: just after the appearance of the condensate; Right:

after further evaporation, leaving a sample of nearly pure condensate.

In 1995, with the development of different cooling techniques, Bose-Einstein con-

densation was first observed in vapours of 87Rb (cf. Fig. 1.1) [8] and 23Na [42].

Later, it was achieved in many alkali gases, including 7Li [27], 85Rb [40], 41K [102],

133Cs [132], spin-polarized hydrogen [65] and metastable triplet 4He [119, 46]. Over

the last few years, these systems have been the subject of an explosion of research

both experimental and theoretical. Many different fields of physics, like atomic colli-

sion, quantum optics, condensed matter physics and even astrophysics, contributed

ideas and problems to these specific systems displaying the attractiveness of BEC

for researchers.

To appreciate the remarkable new development in this growing field, one should

understand the basic properties of BEC in a dilute atomic gas. The most striking

feature of BEC is that the wave-like behavior of matter is exhibited on a macro-

scopic scale due to the condensation of a large number of identical atoms into the

same quantum state. This is counter intuitive to our daily experience of world where
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objects are distinguishable and behave like particles that follow classical trajecto-

ries described by Newton’s second laws for motion. Another intriguing property of

Bose-condensed system is the unrestricted flow of particles in the sample, such as

persistent currents in superfluid helium that flow without observable viscosity, and

electric currents in superconductors that flow without observable resistance. These

properties of Bose-condensed systems occur because the macroscopic occupation of

a quantized mode, such as a vortex which is a localized phase singularity with inte-

ger topological charge, can provide a stabilizing mechanism. The recent observation

of vortices in fast rotating Bose-Einstein condensation has opened the door to the

study of superfluidity in these systems [123, 28].

In a dilute atomic gas, the interactions between particles are very weak so that the

wave-like condensate dominates the system and collisions can be treated perturba-

tively. In this case, one can sum the interaction of all of the particles on a single

particle to give an average effect. This approach is called as mean-field theory and

with suitable approximations, it gives rise to the Gross-Pitaevskii equation (GPE)

that describes the time evolution of the condensate, in which the effect of interac-

tions leads to a density dependent effective potential that makes the dynamics of the

condensate nonlinearity. This simple description does not include the fluctuations

due to collisions, but just treats their averaged effect.

1.2 Contemporary studies

There has been a series of recent studies which deal with the numerical solution

of the time-dependent Gross-Pitaevskii equation (GPE) for time evolution of the

condensate and time-independent GPE for stationary states, especially for ground

states. In this section, we summarize the main numerical methods and results in

the study of BEC and its relative fields.

To compute the ground state of non-rotating BEC, there have been a lot of methods.
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Ruprecht et al. [122] presented a Crank-Nicolson finite difference (CNFD) method,

and also used it to simulate the time evolution of BEC. Edwards and Burnett [54]

developed a Runge-Kutta type (RKFD) method and applied it to solve one dimen-

sional (1D) ground states and three dimensional (3D) ground states with spherical

symmetry. Later, Adhikari [1] used this approach to compute two dimensional (2D)

ground states with radial symmetry. Bao and Tang [22] proposed a method by di-

rectly minimizing the energy functional via finite element approximation. Recently,

Bao and Du [13] introduced a continuous normalized gradient flow with diminishing

energy, and proposed two methods: backward Euler finite difference (BEFD) method

and time-splitting sine-pseudospectral (TSSP) method, to discretize it. Chang et al.

[33, 34] also proposed a Gauss-Seidel-type method to compute the energy state of

multi-component BEC. Other approaches include a direct inversion in the iterated

subspace (DIIS) [127], an explicit imaginary-time algorithm [32, 37] and a simple

analytical type method [45].

Basically, the methods for computing the ground state of non-rotating BEC can be

classified into two groups: pseudospectral method, e.g. TSSP method, and finite

difference method, e.g. CNFD, RKFD and BEFD method. Each method has its

own advantages and disadvantages: i) The TSSP method is explicit, conditionally

stable and of spectral accuracy in space. It is energy diminishing when time step

satisfies a constraint. However, the time-splitting error does not vanish at steady

states, and thus the time step must be chosen very small to get the ground state in

high accuracy, which makes the total computational time very large. ii) Among all

finite difference methods, the most popular one is the BEFD method. It is implicit,

unconditionally stable and energy diminishing for any time step, and thus the time

step can be chosen very large in practical computation. However, it is only of

second-order accuracy in space. When high accuracy is required or the solution has

multiscale structures, much more grid points must be taken so as to get a reasonable

solution. Therefore, the memory requirement is a big burden in this case. iii) Other

finite difference or finite element methods are usually of low-order accuracy in space
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and in many cases they have a very severe constraint for time step due to stability

or energy diminishing requirement. On the other hand, for rotating BEC, currently

the numerical methods are very limited, and the available methods are all low-order

finite difference methods [130, 4, 5, 23].

In order to study the dynamics of BEC, especially in the strongly repulsive inter-

acting regime, an efficient and accurate numerical method is one of the key issues,

which should preserve the analytical properties of the time-dependent GPE. So far,

the methods for computing the dynamics of non-rotating BEC are mainly grouped

into twofold. One is the finite difference method, e.g. Crank-Nicolson finite differ-

ence (CNDF) method [122], explicit finite difference method [32] and alternating

direction implicit (ADI) method [129]. Generally, this type of method has second

or fourth order accuracy in space. The other one is the pseudospectral method

with spectral accuracy in space, such as time-splitting spectral method [16, 21] and

Runge-Kutta pseudospectral method [2, 104]. It has been demonstrated that the

pseudospctral methods are much better than the finite difference methods; thus they

were applied to study collapse and explosion of BEC in three dimension [17] and

dynamics of multi-component BEC [11], which are very challenging problems in nu-

merical simulations of BEC. However, due to the appearance of the rotational term,

these high-order accuracy pseudospectral methods [16, 21] cannot be directly used

to compute the dynamics of rotating BEC. Currently, the numerical methods used

in the physics literature for studying dynamics of rotating BEC still remain limited,

and the available ones are usually low-order finite difference methods [84, 131]. But

in fast rotating BEC with strongly repulsive interaction, a large number of vortices

would appear in the condensate, and the numerical description of them needs high

resolution; thus the low-order accuracy methods have difficulty in this case.

Vortices are a characteristic feature of a superfluid; it is only their presence which

permits circulation of the fluid, or allows two flows with different velocities to join.
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There have been numerous investigations about the properties of vortices in con-

densates. For non-rotating condensation, Edwards et al. [55] calculated vortex and

ground states of a trap, and showed that the gap between the vortex and ground

state energies decreases as the number of atoms in the condensate increases. Dalfovo

and Stringari [41] have made extensive numerical investigations of the shape char-

acteristics of condensates. Lundh et al. [98] studied the expansion of a condensate

containing a vortex both analytically and numerically. Rokhsar [120] argued that

central vortex states are all thermodynamically unstable, although in that work he

does not make the distinction between thermodynamical and dynamical stability.

Fetter [62] investigated the stability of vortices, and found that excitations could

cause the vortex to move about the condensate. Similarly, many investigations have

been conducted on vortices in rotating BEC. In the line of adding a far-blue-detuned

Gaussian laser stirrer, Caradoc-Davies et al. [30, 29], Jackson et al. [75, 76] and Bao

et al. [19] studied the generation of vortices from the ground state and the dynamics

of vortices. In the line of BEC in a rotational frame, Aftalion and Du [6], Aftalion

and Riviere [7] studied numerically and asymptotically the ground state, critical

angular velocity and energy diagram in the Thomas-Fermi (TF) or semiclassical

regime; Aftalion and Danaila [4] and Modugno et al. [103] reported bent vortices,

e.g. S-shaped vortex and U-shaped vortex, in a cigar-shaped condensate and com-

pared with experimental results [121]; Garćıa-Ripoll and Pérez-Garćıa [66, 67, 68]

studied the stability of central vortex states; Tsubota et al. [130] reported vortex

lattice formation. Moreover, Svidzinsky and Fetter [127] have studied the dynamics

of a vortex line depending on its curvature. However, there is still no report about

the interactions between a few vortices, which is an attracting topic in physics.

Recently, there have been many analytical and numerical studies on vortex dynamics

and interactions in superconductivity and superfluidity by considering the Ginzburg-

Landau-Schödinger equation (GLSE). For the Ginzburg-Landau equation (GLE),

Neu [105, 106] found numerically that vortices with winding number m = ±1 are

dynamically stable, and respectively those with |m| > 1 are dynamically unstable.
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Using asymptotic analysis, he showed that a pair of vortices evolving under GLE

with like (opposite) winding numbers undergoes a repulsive (attractive) interaction.

Later Pismen et. al [115] extended Neu’s studies. E [53] studied the dynamics

of vortices in the asymptotic limit when the core size of a vortex is much smaller

than the inter-vortex distance, and he derived ODEs to govern the evolution of

these vortices. Similar investigations have also been conducted by Chapman [35],

Weinstein and Xin [134]. Lin [94, 95] showed that the energies of solutions in the

GLE flow are concentrated at vortices in 2D case, and respectively filaments in 3D

case. Ovchinnikov and Sigal [107, 108, 110, 111] studied the energy of vortices and

their asymptotic behavior; they also examined the stability properties of vortices.

The pinning effect of vortices due to impurities was established in [96, 80, 81, 82]. On

the numerical side, finite element methods were presented to investigate numerical

solutions of the Ginzburg-Landau equation and related Ginzburg-Landau models

of superconductivity [49, 47, 83, 6, 36]. The interaction between a few vortices

[96, 91, 48], dynamics of vortex lattices [44] as well as the stochastic dynamics [43]

have been studied numerically.

For the nonlinear Schrödinger equation (NLSE), Neu [105] found that the vortices

behave like point vortices in ideal fluid, and obtained the Hamiltonian equations

to govern the dynamics of the vortex centers. Lin and Xin [97] derived vortex

motion laws in the incompressible fluid limit on a bounded domain with Dirichlet

or Neumann boundary condition. Colliander and Jerrard [39] investigated vortex

structures in a torus. Ovchinnikov and Sigal [109, 108] studied vortex structures

of the corresponding solutions as well as corrections due to radiation; they also

derived equations for the vortex dynamics and radiation by using the method of

effective action and geometric solvability. Furthermore, they obtained analytically

the dynamical laws for two vortices with like (opposite) winding numbers by solving

the governing Hamiltonian equations when the initial distance between two vortex

centers is large enough [108]. Due to its dispersive nature and highly oscillating

nature in the transverse direction of the nonzero far-field boundary condition, it
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is extremely difficult to solve the NLSE numerically. There is still no conclusive

numerical result reported in the literature for the stability and interaction of vortices

in NLSE. In fact, the dynamical stability of vortices as solutions of the NLSE remains

largely an open problem [105].

1.3 Overview of this work

The main purpose of this thesis is to conduct an extensive analytical and numerical

investigation of Bose-Einstein condensation (BEC) in dilute alkali gases. The thesis

is organized as follows.

In Chapter 2, the Gross-Pitaevskii equation (GPE) describing BEC at low tem-

peratures is derived from the second quantized Hamiltonian. Then it is scaled to

become a four-parameter model and further reduced to a lower-dimensional one. A

semiclassical scaling is also introduced for the GPE in the strongly repulsive inter-

acting regime. In addition, the stationary states of BEC are discussed based on the

time-independent GPE.

In Chapter 3, we derive approximate solutions for the ground state in both weakly

and strongly repulsive interacting regimes. To verify these approximations, we pro-

pose a backward forward Euler Fourier pseudospectral (BFFP) method which is

very efficient, especially for computing the ground state solution of fast rotating

BEC. The numerical results in different potentials are also reported for both two-

dimensional (2D) and three-dimensional (3D) cases.

In Chapter 4, the conservation of angular momentum expectations and dynamics

of condensate widths are investigated analytically, and the dynamics of the mass-

center of a stationary state with its center shifted are also discussed in details.

Along the numerical front, a second/fourth-order time-splitting sine-pseudospectral

(TSSP) method is proposed for computing the dynamics of non-rotating BEC. While

for rotating BEC, we present a time-splitting type method and a leap-frog Fourier

pseudospectral (LFFP) method.
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In Chapter 5, the stability of central vortex states is investigated numerically. Then

the interactions between two m = ±1 vortices are studied under two different initial

patterns, and the dynamics of vortex lattices are also reported.

Chapter 6 devotes to the ground states and dynamics of rotating two-component

BEC. After introducing the coupled Gross-Pitaevskii equations (CGPEs), we discuss

the relationship between the single-component and two-component condensate in

certain limiting regime of particle numbers. Then the ground states of rotating two-

component BEC are studied for different experiment setups. Along the dynamical

side, an efficient numerical method is developed and some numerical results are also

reported.

In Chapter 7, the vortex dynamics and interaction in superconductivity and su-

perfluidity are investigated asymptotically and numerically based on the Ginzburg-

Landau-Schrödinger equation (GLSE). We review the reduced dynamic laws for the

vortex motion and solve them analytically under some proper initial data. By in-

troducing an efficient and accurate method for the GLSE with non-zero far-field

condition, the vortex dynamics and interaction are studied numerically and com-

pared with those from the reduced dynamic laws. Some conclusive experimental

findings are obtained, and discussions on numerical and theoretical results are also

made to provide further understanding of vortex dynamics in the GLSE.

Finally, some conclusive comments are made in Chapter 8, and the directions for

future research works are also discussed.



Chapter 2
Gross-Pitaevskii equation

In this chapter, the mathematical model is derived for describing Bose-Einstein

condensation (BEC) in the mean field limit, and some notations are also introduced,

which are used throughout the remainder of this thesis.

First, the time-dependent Gross-Pitaevskii equation (GPE) is derived from the sec-

ond quantized Hamiltonian under the approximation of the weakly-interacting Bose

gas model. Then to minimize the number of adjustable parameters in simulations,

the GPE is scaled to obtain a four-parameter model, and furthermore in certain lim-

iting regimes, it is reduced to a lower-dimensional one. Some important properties

of GPE are discussed, and the stationary states of BEC are also studied based on

the time-independent GPE. Finally, in the strongly repulsive interacting regime, a

semiclassical scaling is introduced to the GPE.

2.1 Gross-Pitaevskii equation

A system of N interacting bosons can be described exactly by the second quantized

Hamiltonian in terms of the Bose field operator Ψ̂ (x, t) which is a function of space

x = (x, y, z)T and time t. For convenience, here we denote Ψ̂ (x) ≡ Ψ̂ (x, t) and

only consider the limit condition under which all the particles are condensed into

10
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the same single-particle state. Then the second quantized Hamiltonian for a gas of

bosons (all in the same internal state) interacting by binary collisions and contained

by an external trapping potential is given by [63, 117, 114, 116],

Ĥ =

∫
Ψ̂†(x′)H0Ψ̂(x′) dx′ +

1

2

∫∫
Ψ̂†(x′)Ψ̂†(x)Vint(x

′,x)Ψ̂(x)Ψ̂(x′) dxdx′, (2.1)

where Vint(x
′,x) is the interaction potential acting between particles, and H0 =

−P2/2m + Vext(x
′) is the single particle Hamiltonian with m the particle mass, ~

the Planck constant, P = −i~∇ = (px, py, pz)
T the momentum operator and Vext(x

′)

the external trapping potential acting on the system. The operators Ψ̂†(x) and Ψ̂(x)

represent the creation and annihilation of a particle at position x respectively, and

they satisfy the crucial Bose commutation rules [63, 116]:

[
Ψ̂(x′), Ψ̂†(x)

]
= δ(x′ − x),

[
Ψ̂(x′), Ψ̂(x)

]
=

[
Ψ̂†(x′), Ψ̂†(x)

]
= 0, (2.2)

where δ(x) is the Dirac delta function.

When cold dilute alkali gases are considered, the atomic interactions are dominated

by low-energy two-body s-wave collisions. These essentially elastic, hard-sphere

collisions can be approximated by the pseudopotential defined as [133],

Vint(x
′,x) = U0 δ(x− x′), (2.3)

where U0 = 4π~2as/m with as the s-wave scattering length (positive for a repulsive

interaction and negative for an attractive interaction). Substituting (2.3) into (2.1)

and integrating over all x-space leads to

Ĥ =

∫
Ψ̂†(x′)H0Ψ̂(x′) dx′ +

U0

2

∫
Ψ̂†(x′)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x′) dx′. (2.4)

On the other hand, the Heisenberg equation for motion of Ψ̂(x) is given by

i~
∂

∂t
Ψ̂(x) =

[
Ψ̂(x), Ĥ

]
. (2.5)
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Noticing (2.4) and the commutation rules in (2.2), we can get

i~
∂

∂t
Ψ̂(x) = Ψ̂(x)Ĥ −

∫ [
Ψ̂(x)Ψ̂†(x′)− δ(x− x′)

]
H0Ψ̂(x′) dx′

−U0

2

∫ [
Ψ̂(x)Ψ̂†(x′)− 2δ(x− x′)

]
Ψ̂†(x′)Ψ̂(x′)Ψ̂(x′) dx′

=
[
H0 + U0Ψ̂

†(x)Ψ̂(x)
]
Ψ̂(x). (2.6)

Since the system is in a single-particle state with macroscopic occupation, the Bose

field operator Ψ̂(x) can be replaced by a macroscopic wave function ψ(x, t) and a

fluctuation term δ̂(x, t) [63], i.e.

Ψ̂(x) =
√

Nψ(x, t) + δ̂(x, t), (2.7)

where N is the total particle number in the condensate and the fluctuation operator

δ̂(x, t) satisfies 〈δ̂(x, t)〉 ≡ 0. It is easy to see that the macroscopic wave function

ψ(x, t) can be written as the expectation value of Ψ̂(x), i.e. ψ(x, t) = 〈Ψ̂(x)〉/√N .

Inserting (2.7) into (2.6), taking only the leading order terms in ψ and neglecting

all terms of δ̂, we can obtain the time-dependent Gross-Pitaevskii equation (GPE),

also known as the nonlinear Schrödinger equation (NLSE) [114, 116],

i~
∂ψ(x, t)

∂t
=

(
− ~

2

2m
∇2 + V (x) + NU0|ψ(x, t)|2

)
ψ(x, t), (2.8)

where the potential V (x) = Vext(x). In the above approximation, neglecting lower

order terms involving the fluctuation operator δ̂ amounts to neglecting thermal

and quantum depletion of the condensate. Therefore, the GPE (2.8) is valid only

when the condensate is weakly-interacting and at low temperatures. Due to the

nonlinearity of (2.8), it is essential to specify the normalization of the wave function

ψ(x, t), i.e.

∫

R3

|ψ(x, t)|2 dx = 1. (2.9)

With the realization of BEC in atomic gases, much work has devoted to its re-

lationship with superfluids. One of the characteristic features of a superfluid is its

response to rotation, in particular the occurrence of quantized vortices. By choosing
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a special external potential, quantized vortices can also be observed in BEC, which

is viewed as the manifestation of its superfluidity. Currently, there are at least two

typical ways to generate quantized vortices from the BEC ground state: i) impose

a laser beam rotating with an angular velocity on the magnetic trap holding the

atoms to create a harmonic anisotropic potential [127]; ii). add to the stationary

magnetic trap a narrow, moving Gaussian potential, representing a far-blue-detuned

laser [76]. In a rotating frame, the GPE (2.8) becomes [63, 31, 59, 60, 127, 61, 117],

i~
∂ψ(x, t)

∂t
=

(
− ~

2

2m
∇2 + V (x) + NU0|ψ(x, t)|2 − ΩLz

)
ψ(x, t), (2.10)

where Ω is the angular velocity of the laser beam, and

Lz = xpy − ypx = −i~(x∂y − y∂x) (2.11)

is the z-component of the angular momentum L = x × P. Many experimental

trapping configurations can be described as a harmonic trapping potential,

V (x) =
m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (2.12)

with ωx, ωy and ωz being the trapping frequencies in x-, y- and z-directions, respec-

tively.

2.2 Dimensionless formalism

To minimize the number of adjustable parameters in simulations and also to scale

quantities closer to unity for improving the computational precision, under the nor-

malization condition (2.9), we introduce the dimensionless quantities [23, 14, 138]

t̃ = ωmin t, x̃ =
x

a0

, ψ̃ = a
3/2
0 ψ, Ω̃ = ωmin Ω (2.13)

to nondimensionalize the GPE (2.10), where ωmin = min{ωx, ωy, ωz} is the inverse

of the time unit and a0 =
√
~/mωmin is the length unit. Then the dimensionless

momentum operator P̃ can be defined as

P̃ =
P√

~mωmin

= −i∇. (2.14)
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Inserting (2.13) and (2.14) into (2.10), we can obtain the following dimensionless

GPE (here all ˜ are removed for simplicity),

i
∂ψ(x, t)

∂t
=

(
−1

2
∇2 + V (x) + β|ψ(x, t)|2 − ΩLz

)
ψ(x, t), x ∈ R3, (2.15)

where the dimensionless angular momentum rotation term becomes

Lz = −i(x∂y − y∂x), (2.16)

and the strength of particle interactions is characterized by the single parameter β

given as

β =
NU0

ωmin~a3/2
0

=
4πasN

a0

. (2.17)

The dimensionless harmonic potential is

V (x) =
1

2

(
γ2

xx
2 + γ2

yy
2 + γ2

zz
2
)
, x ∈ R3 (2.18)

with γx = ωx/ωmin, γy = ωy/ωmin and γz = ωz/ωmin.

2.3 Dimension reduction

Experimental investigations have shown that a tight constraint in one or two dimen-

sions can reduce the effective dimensionality of the GPE (2.15). In these treatments,

a proper approximation can be used to separate out the dynamics of the tightly con-

fined dimensions [74, 92, 52, 22]. In the following subsections, we first reduce the

three-dimensional (3D) GPE to a two-dimensional (2D) one, and if Ω = 0, i.e. for

non-rotating BEC, we further reduce the 2D GPE to a one-dimensional (1D) GPE.

Without loss of generality, here we assume ωx ≤ ωy ≤ ωz in (2.12), i.e. γx = 1 and

1 ≤ γy ≤ γz in (2.18) by choosing ωmin = ωx.

2.3.1 Reduction to 2D GPE

In a disk-shaped condensate which is tightly confined in the z-direction, i.e.

ωy ≈ ωx, ωz À ωx, ⇐⇒ γy ≈ 1, γz À 1, (2.19)
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the 3D GPE (2.15) can be reduced to a 2D GPE with x = (x, y)T by assuming that

the time evolution does not cause excitations along the z-axis since their energies

are much larger than those of the excitations along the x- and y-axis. We may also

assume that along the z-axis the condensate wave function can be well described by

the ground state wave function and set [74, 22]

ψ(x, t) = ψ2(x, y, t)φ3(z), (2.20)

where

φ3(z) =

(∫

R2

|φg(x, y, z)|2 dxdy

)1/2

≈ φw(z) =
γ

1/4
z

π1/4
exp

(
−γzz

2

2

)
(2.21)

with φg(x, y, z) being the ground state solution of the 3D GPE (2.15). Substituting

(2.20) into (2.15), multiplying it by φ∗3(z) and integrating with respect to z over

(−∞,∞), we can get

i
∂ψ2(x, t)

∂t
=

[
−1

2
∇2 +

1

2

(
γ2

xx
2 + γ2

yy
2 + C

)
+

(
β

∫ ∞

−∞
φ4

3(z) dz

)
|ψ2|2 − ΩLz

]
ψ2,

where

C = γ2
z

∫ ∞

−∞
z2|φ3|2 dz +

∫ ∞

−∞

∣∣∣∣
dφ3

dz

∣∣∣∣
2

dz.

Since the GPE is time transverse invariant, ψ2 can be replaced by ψ2 → ψe−iCt/2

which drops the constant C in the trapping potential and gives the 2D GPE [23, 24],

i
∂ψ(x, t)

∂t
=

(
−1

2
∇2 + V2(x) + β2|ψ|2 − ΩLz

)
ψ(x, t), x ∈ R2, (2.22)

where

β2 = β

∫ ∞

−∞
φ4

3(z) dz ≈ β

∫ ∞

−∞

(
γ

1/4
z

π1/4
e−γzz2/2

)4

dz = β

√
γz

2π
,

and the potential V2(x) = 1
2

(
γ2

xx
2 + γ2

yy
2
)
.

2.3.2 Reduction to 1D GPE when Ω = 0

For a non-rotating and cigar-shaped condensate, i.e. Ω = 0 and

ωy À ωx, ωz À ωx, ⇐⇒ γy À 1, γz À 1, (2.23)
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the 2D GPE (2.22) can be further reduced to 1D GPE with x = x. Setting [74, 22]

ψ(x, t) = ψ1(x, t)φ23(y, z) (2.24)

with

φ23(y, z) =

(∫ ∞

−∞
|φg(x, y, z)|2 dx

)1/2

≈ φw(y, z) =
(γyγz)

1/4

√
π

exp

(
−γyy

2 + γzz
2

2

)
, (2.25)

and following the analogous lines used to get the 2D GPE, we can obtain the 1D

GPE for non-rotating BEC [24],

i
∂ψ(x, t)

∂t
=

(
−1

2
∂xx + V1(x) + β1|ψ(x, t)|2

)
ψ(x, t), x ∈ (−∞,∞), (2.26)

where

β1 = β

∫

R2

φ4
23(y, z) dydz ≈ β

∫

R2

[
(γyγz)

1/4

√
π

exp

(
−γyy

2 + γzz
2

2

)]4

dydz = β

√
γyγz

2π
,

and the potential V1(x) = 1
2
γ2

xx
2.

2.4 Generalized GPE and its properties

For simplicity, we can write the 3D GPE (2.15), 2D GPE (2.22) and especially 1D

GPE (2.26) for non-rotating BEC into a unified form, i.e. the d-dimensional GPE

[24, 23, 14],

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Rd, t > 0, (2.27)

ψ(x, 0) = ψ0(x), x ∈ Rd, with ‖ψ0‖2 :=

∫

Rd

|ψ0(x)|2 dx = 1, (2.28)

where d = 2, 3 if Ω 6= 0, and respectively d = 1, 2, 3 if Ω = 0, and

βd = β





√
γyγz/2π,

√
γz/2π,

1,

Vd(x) =





γ2
xx

2/2, d = 1,

(γ2
xx

2 + γ2
yy

2)/2, d = 2,

(γ2
xx

2 + γ2
yy

2 + γ2
zz

2)/2, d = 3.

(2.29)
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The GPE (2.27) is time reversible and time transverse invariant. It also has two

important conservation quantities: the normalization of the wave function

‖ψ(·, t)‖2 :=

∫

Rd

|ψ(x, t)|2 dx ≡ ‖ψ(·, 0)‖2 =

∫

Rd

|ψ0(x)|2 dx = 1, t ≥ 0, (2.30)

and the energy

Eβ,Ω(ψ) =

∫

Rd

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

= Eβ,Ω(ψ0), t ≥ 0. (2.31)

These properties can be used, in particular, in the benchmark and validation of the

numerical algorithms for the GPE (2.27)−(2.28).

2.5 Stationary states

To find a stationary state solution of (2.27), we write

ψ(x, t) = e−iµtφ(x), (2.32)

where µ is the chemical potential of the condensate and φ is a function independent

of time t. Inserting (2.32) into (2.27) gives the following time-independent GPE for

φ(x),

µφ(x) = −1

2
∇2φ + Vd(x)φ + βd|φ|2φ− ΩLzφ, x ∈ Rd (2.33)

with the normalization condition

‖φ‖2 :=

∫

Rd

|φ(x)|2 dx = 1. (2.34)

This is a nonlinear eigenvalue problem under a normalization constraint, and any

eigenvalue µ can be computed from its corresponding eigenfunction φ(x) by

µ = µβ,Ω(φ) =

∫

Rd

[
1

2
|∇φ|2 + Vd(x)|φ|2 + βd|φ|4 − ΩRe (φ∗Lzφ)

]
dx

= Eβ,Ω(φ) +

∫

Rd

βd

2
|φ|4 dx. (2.35)
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In fact, under the constraint (2.34), the eigenfunctions of (2.33) are equivalent to

the critical points of the energy functional Eβ,Ω(φ) over the unit sphere

S = {φ | ‖φ‖ = 1, Eβ,Ω(φ) < ∞}. (2.36)

Furthermore, as we noted in [13, 23], they are also equivalent to the steady state

solutions of the following continuous normalized gradient flow (CNGF):

∂tϕ =
1

2
∇2ϕ− Vd(x)ϕ− βd|ϕ|2ϕ + ΩLzϕ +

µβ,Ω(ϕ)

‖ϕ(·, t)‖2
ϕ, x ∈ Rd, t > 0, (2.37)

ϕ(x, 0) = ϕ0(x), x ∈ Rd, with ‖ϕ0‖2 = 1. (2.38)

In the physics literature, the stationary state with the lowest energy is called as

ground state, and all the other stationary states with larger energies are usually

called as excited states [114, 116]. Among all excited states, the most studied one

is the central vortex state defined as [13],

φm(x) =





fm(r) eimθ, d = 2,

fm(r, z) eimθ, d = 3,
(2.39)

where (r, θ) and (r, θ, z) are polar coordinate and cylindrical coordinate respectively,

m ∈ Z is winding number (or index) and fm is a real-valued function satisfying

fm(0) = 0 or fm(0, z) = 0 when m 6= 0.

2.6 Semiclassical scaling and leading asymptotics

If βd À 1, we can introduce another scaling, i.e. semiclassical scaling, for the GPE

(2.27). By replacing ψ with ψε and choosing [20, 23]

x → xε−
1
2 , ψ → ψεε

d
4 , with ε = β

− 2
d+2

d , (2.40)

we obtain

iε
∂ψε(x, t)

∂t
=

[
−ε2

2
∇2 + Vd(x) + |ψε|2 − εΩLz

]
ψε(x, t), x ∈ Rd, t > 0, (2.41)

ψε(x, 0) = ψε
0(x), x ∈ Rd, with ‖ψε

0‖2 = 1. (2.42)
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The semiclassical scaling (2.41)−(2.42) is very useful in practice, especially in the

asymptotic analysis. Under this scaling, we can define the energy functional as

Eε,Ω (ψε) =

∫

Rd

[
ε2

2
|∇ψε|2 + Vd(x)|ψε|2 +

1

2
|ψε|4 − εΩRe ((ψε)∗ Lzψ

ε)

]
dx

= O(1), (2.43)

by assuming that ψε is ε-oscillatory and sufficiently integrable such that all terms

have O(1)-integral. Similarly, the nonlinear eigenvalue problem (2.33) (under the

normalization (2.34) with φ = φε) reads

µεφε(x) = −ε2

2
∇2φε + Vd(x)φε + |φε|2φε − εΩLzφ

ε, x ∈ Rd, (2.44)

where µε can be computed by

µε = µε,Ω (φε) =

∫

Rd

[
ε2

2
|∇φε|2 + Vd(x)|φε|2 + |φε|4 − εΩRe ((φε)∗ Lzφ

ε)

]
dx

= O(1).

Furthermore from this scaling, it is easy to get the leading asymptotics of the energy

functional Eβ,Ω(φ) and the chemical potential µβ,Ω(φ) when βd À 1:

Eβ,Ω(φ) = ε−1Eε,Ω (φε) = O
(
ε−1

)
= O

(
β

2/(d+2)
d

)
, (2.45)

µβ,Ω(φ) = ε−1µε,Ω (φε) = O
(
ε−1

)
= O

(
β

2/(d+2)
d

)
. (2.46)

Suppose that the wave function ψε(x, t) is rapidly oscillating on the scale of ε, and

then it can be written into the WKB form:

ψε(x, t) =
√

ρε(x, t) exp

(
i

ε
Sε(x, t)

)
, x ∈ Rd, t ≥ 0, (2.47)

where ρε = |ψε|2 is the position density and Sε = ε arg (ψε) is the phase of the wave

function ψε. Inserting (2.47) into (2.41) and collecting the real and imaginary parts,

we can obtain the transport equation for ρε and the Hamilton-Jacobi equation for

Sε [23, 15],

∂tρ
ε + div (ρε∇Sε) + ΩL̂zρ

ε = 0, (2.48)

∂tS
ε +

1

2
|∇Sε|2 + Vd(x) + ρε + ΩL̂zS

ε =
ε2

2

1√
ρε
∇2√ρε, (2.49)
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where the operator L̂z = (x∂y − y∂x). Furthermore, by defining the current density

[15, 19]

Jε(x, t) = ρε∇Sε = εIm ((ψε(x, t))∗∇ψε(x, t)) , (2.50)

we can rewrite (2.48)−(2.49) as

∂tρ
ε + divJε + ΩL̂zρ

ε = 0, (2.51)

∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+∇P (ρε) + ρε∇Vd(x)

+Ω
(
L̂zI + G

)
Jε =

ε2

4
∇ (

ρε∇2 ln ρε
)
, (2.52)

where the hydrodynamic pressure P (ρ) is defined as

P (ρ) =
1

2
ρ2, (2.53)

and the symplectic matrix G is

G =


 0 1

−1 0


 , for d = 2, G =




0 1 0

−1 0 0

0 0 0


 , for d = 3. (2.54)

Letting ε → 0+ in (2.48)−(2.49) and setting ρ0 = limε→0+ ρε and S0 = limε→0+ Sε,

we can get

∂tρ
0 + div

(
ρ0∇S0

)
+ ΩL̂zρ

0 = 0, (2.55)

∂tS
0 +

1

2

∣∣∇S0
∣∣2 + Vd(x) + ρ0 + ΩL̂zS

0 = 0. (2.56)

Similarly, letting ε → 0+ in (2.51)−(2.52), we can formally obtain the following

Euler system:

∂tρ
0 + divJ0 + ΩL̂zρ

0 = 0, (2.57)

∂tJ
0 + div

(
J0 ⊗ J0

ρ0

)
+∇P (ρ0) + ρ0∇Vd(x) + Ω

(
L̂zI + G

)
J0 = 0, (2.58)

where J0 = limε→0+ Jε.



Chapter 3
Ground state of Bose-Einstein

condensation

In this chapter, the ground state of BEC is studied both asymptotically and nu-

merically. Under certain limiting regimes, we derive approximate solutions for the

ground state in non-rotating BEC with a box potential or a harmonic potential.

To verify these approximations, we propose a backward forward Euler Fourier pseu-

dospectral (BFFP) method to compute the ground state of rotating or non-rotating

BEC. Compared to the finite difference methods in [4, 5, 23], the BFFP method is

very efficient and accurate, especially for the case of fast rotating BEC with strongly

respective interaction.

3.1 Ground state

As mentioned in Section 2.5, the ground state is one of the stationary states,

which has the lowest energy. On the other hand, the stationary state solutions

of (2.33)−(2.34) are the critical points of the energy functional Eβ,Ω(φ) over the

unit sphere S (2.36). Thus to find the ground state solution φg(x), we can minimize

the energy functional Eβ,Ω(φ) over S, i.e.

21
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Find (µg, φg ∈ S) such that

Eg := Eβ,Ω (φg) = min
φ∈S

Eβ,Ω(φ), µg := µβ,Ω (φg) . (3.1)

In the following two subsections, we discuss the existence and uniqueness of the

ground state in non-rotating and rotating BEC respectively.

3.1.1 In non-rotating BEC

For non-rotating BEC, if βd = 0, we have the following lemma [24]:

Lemma 3.1. In non-rotating BEC, i.e. Ω = 0, if βd = 0 and Vd(x) ≥ 0 for x ∈ Rd,

we have

i). The ground state φg(x) is a global minimizer of E0,0(φ) over S.

ii). Any excited state φj(x) is a saddle point of E0,0(φ) over S.

Proof. Let φe be an eigenfunction of the eigenvalue problem (2.33)−(2.34) with

βd = 0 and Ω = 0, and its corresponding eigenvalue is µe. Then for any eigenfunction

φ satisfying E0,0(φ) < ∞ and ‖φe + φ‖ = 1, noticing (2.34), we have

‖φ‖2 = ‖φe + φ‖2 − ‖φe‖2 −
∫

Rd

(φ∗φe + φφ∗e) dx = −
∫

Rd

(φ∗φe + φφ∗e) dx. (3.2)

Considering the energy functional (2.31) with ψ = φe +φ, noticing (2.34) and (3.2),

and integrating by parts, we obtain

E0,0(φe + φ) =

∫

Rd

[
1

2
|∇φe +∇φ|2 + Vd(x)|φe + φ|2

]
dx

=

∫

Rd

[
1

2
|∇φe|2 + Vd(x)|φe|2

]
dx +

∫

Rd

[
1

2
|∇φ|2 + Vd(x)|φ|2

]
dx

+

∫

Rd

[(
−1

2
∇2φe + Vd(x)φe

)∗
φ +

(
−1

2
∇2φe + Vd(x)φe

)
φ∗

]
dx

= E0,0(φe) + E0,0(φ) +

∫

Rd

(µeφ
∗
eφ + µeφeφ

∗) dx

= E0,0(φe) + E0,0(φ)− µe‖φ‖2

= E0,0(φe) + (E0,0(φ/‖φ‖)− µe) ‖φ‖2. (3.3)
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i). Taking φe = φg and µe = µg in (3.3) and noticing E0,0(φ/‖φ‖) ≥ E0,0(φg) = µg

for any φ 6= 0, we immediately get that φg is a global minimizer of the energy

functional E0,0(φ) over the unit sphere S.

ii). Taking φe = φj and µe = µj in (3.3), it is easy to find an eigenfunction

φ of (2.33)−(2.34) such that E0,0(φ) > E0,0(φj). On the other hand, we have

E0,0(φg) < E0,0(φj). These imply that φj is a saddle point of the functional E0,0(φ)

over the unit sphere S. ¤

When βd > 0, the energy functional Eβ,0(φ) is positive, coercive and weakly lower

semi-continuous on the unit sphere S, therefore the existence of its minimum follows

the standard theory [93]. Note that Eβ,0(αφg) = Eβ,0 (φg) for all α ∈ C with |α| = 1.

Thus to show the uniqueness of the minimum, we have to introduce an additional

constraint. According to [93, 24, 20], for non-rotating BEC, the minimization prob-

lem (3.1) has a unique real-valued nonnegative ground state solution, i.e. φg(x) ≥ 0

for x ∈ Rd.

3.1.2 In rotating BEC

For rotating BEC confined in the harmonic potential (2.29), the existence of its

ground state depends on the magnitude of the angular velocity, i.e. |Ω|, relative to

the trapping frequencies, and there is [124, 23],

Lemma 3.2. In defocusing rotating BEC with a harmonic potential, i.e. βd ≥ 0

and Ω 6= 0, we have

i). When |Ω| < γmin with γmin := min{γx, γy}, there exists a minimizer for the

minimization problem (3.1), i.e. there exists a ground state φg(x). Note that

Eβ,Ω(αφg) = Eβ,Ω(φg) for all α ∈ C with |α| = 1. Thus an additional constraint has

to be introduced to show the uniqueness of the ground state.

ii). When |Ω| > γmax with γmax := max{γx, γy}, there is no ground state.

iii). When γmin < |Ω| ≤ γmax, the existence of the ground state is still an open

problem.
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Especially, when βd = 0, we have the following lemma:

Lemma 3.3. If βd = 0 and |Ω| < γmin, then we have

i). The ground state φg(x) is a global minimizer of E0,Ω(φ) over S.

ii). Any excited state φj(x) is a saddle point of E0,Ω(φ) over S.

In the following two sections, we derive approximate solutions for the ground state

of non-rotating BEC with a box potential and a harmonic potential, respectively.

For convenience of derivation, here we introduce some notations. In non-rotating

BEC, the eigenvalue problem (2.33)−(2.34) becomes

µφ(x) = −1

2
∇2φ + Vd(x)φ + βd|φ|2φ, x ∈ Ωx, (3.4)

‖φ‖2 =

∫

Ωx

|φ(x)|2 dx = 1, (3.5)

where Ωx is the domain of this problem. For example, if a box potential is considered,

Ωx = [0, 1]d, and respectively Ωx = Rd for a harmonic potential. We denote

Ekin,g = Ekin(φg) =
1

2

∫

Ωx

|∇φg(x)|2 dx, (3.6)

Epot,g = Epot(φg) =

∫

Ωx

Vd(x)|φg(x)|2 dx, (3.7)

Eint,g = Eint(φg) =
βd

2

∫

Ωx

|φg(x)|4 dx, (3.8)

as the kinetic energy, potential energy and interaction energy of the ground state

φg(x) respectively. Thus the energy and chemical potential can be computed by

Eg = Ekin,g + Epot,g + Eint,g, µg = Eg + Eint,g. (3.9)

3.2 Approximation in box potential

For non-rotating BEC with a box potential, i.e.

Vd(x) =





0, x ∈ Ωx = (0, 1)d,

∞, otherwise,
(3.10)
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the eigenvalue problem (3.4)−(3.5) collapses to

µφ(x) = −1

2
∇2φ(x) + βd|φ(x)|2φ(x), x ∈ [0, 1]d, (3.11)

‖φ‖2 =

∫

[0,1]d
|φ(x)|2 dx = 1. (3.12)

Since at the boundary the potential reaches infinity, we can assume that there is no

particle and set the boundary condition as

φ(x) = 0, x ∈ Γ = ∂Ωx. (3.13)

In the following subsections, we derive the approximate ground state solutions in

two special regimes, i.e. the weakly interacting regime and the strongly repulsive

interacting regime.

3.2.1 In weakly interacting regime

In the weakly interacting regime, i.e. βd = o(1), the problem (3.11)−(3.13) reduces

to a linear eigenvalue problem,

µφ(x) = −1

2
∇2φ(x), x ∈ [0, 1]d, with ‖φ‖2 = 1, (3.14)

φ(x) = 0, x ∈ Γ. (3.15)

By separating variables, we can obtain a complete set of orthonormal eigenfunctions

of (3.14)−(3.15):

φJ(x) =
d∏

m=1

φjm(xm), x = (x1, . . . , xd)
T ∈ [0, 1]d, J = (j1, . . . , jd) ∈ Nd, (3.16)

where

φl(τ) =
√

2 sin(lπτ), l ∈ N, τ ∈ [0, 1]. (3.17)

Then the eigenvalue corresponding to φJ(x) is

µJ =
d∑

m=1

µjm , with µl =
1

2
l2π2, l ∈ N. (3.18)
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From (3.16)−(3.18), we can get the approximate ground state solution as

φw
g (x) = φ(1, . . . , 1)︸ ︷︷ ︸

d

(x) =
√

2d

d∏
m=1

sin(πxm), x ∈ [0, 1]d, (3.19)

and the corresponding energy and chemical potential are

Ew
g = µw

g =
d

2
π2. (3.20)

3.2.2 Thomas-Fermi (semiclassical) approximation

On the other hand, in the strongly repulsive interacting regime, i.e. βd À 1, the

diffusion term (the first term on the right side of (3.11)) is insignificant. Thus we

can drop it and get

µφ(x) = βd|φ(x)|2φ(x), x ∈ [0, 1]d, (3.21)

which immediately gives the Thomas-Fermi approximation of the ground state, i.e.

φTF
g (x) =

√
µTF

g

βd

, x ∈ [0, 1]d (3.22)

with µTF
g the corresponding chemical potential. Noticing the normalization condition

(3.12), we have

∥∥φTF
g

∥∥2
=

∫

[0, 1]d

∣∣φTF
g (x)

∣∣2 dx =

∫

[0, 1]d

µTF
g

βd

dx =
µTF

g

βd

= 1. (3.23)

This implies that the chemical potential µTF
g = βd, and furthermore we can compute

the corresponding energy as

ETF
g = µTF

g − βd

2

∫

[0, 1]d

∣∣φTF
g

∣∣4 dx =
µTF

g

2
=

βd

2
. (3.24)

Combining (3.22) and (3.23), we obtain

φTF
g (x) ≡ 1, x ∈ [0, 1]d. (3.25)

It is easy to see that the Thomas-Fermi approximate solution φTF
g does not satisfy

the boundary condition (3.13), which suggests that a boundary layer would exist

in the ground state when βd À 1 and the kinetic energy does not go to zero when

βd →∞, so near the boundary the diffusion term can not be removed from (3.11).
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3.2.3 Matched asymptotic approximation

As we discussed, near the boundary, the diffusion term is important and cannot

be neglected. Thus in this subsection, we include it into our analysis to present a

more accurate approximation, i.e. matched asymptotic approximation. For simplic-

ity, we first consider the one-dimensional (1D) case, and then generalize it to high

dimensions.

Approximation in one dimension

In 1D case, i.e. d = 1, since the layers exist at two boundaries, we have to solve

equation (3.11) near x = 0 and x = 1, separately. First we consider 0 ≤ x ≤ 1/2

and rescale (3.11) by introducing

x =
1√
µMA

g

X, φMA
g (x) =

√
µMA

g

β1

Φ(X), (3.26)

where µMA
g is the matched asymptotic approximation of the chemical potential.

Inserting (3.26) into (3.11) gives

Φ(X) = −1

2
∂XXΦ(X) + Φ3(X), 0 < X < ∞, (3.27)

Φ(0) = 0, lim
X→∞

Φ(X) = 1. (3.28)

Solving (3.27)−(3.28), we obtain

Φ(X) = tanh(X), 0 ≤ X < ∞. (3.29)

Substituting (3.29) into (3.26), we immediately get the approximation for φg(x) near

x = 0 when β1 À 1:

φMA
g (x) =

√
µMA

g

β1

tanh
(√

µMA
g x

)
, 0 ≤ x ≤ 1/2. (3.30)

Similarly, near x = 1, we have

φMA
g (x) =

√
µMA

g

β1

tanh
(√

µMA
g (1− x)

)
, 1/2 ≤ x ≤ 1. (3.31)



3.2 Approximation in box potential 28

Combining (3.30) and (3.31), noticing the boundary condition (3.13) and applying

the matched asymptotic method, we can get the matched asymptotic approximation

for the ground state φg(x) when x ∈ [0, 1]:

φMA
g (x) =

√
µMA

g

β1

[
tanh

(√
µMA

g x
)

+ tanh
(√

µMA
g (1− x)

)
− tanh

(√
µMA

g

)]
.(3.32)

From the normalization condition (3.12), we can compute [20]

∥∥φMA
g

∥∥2
=

∫ 1

0

∣∣φMA
g (x)

∣∣2 dx ≈ µMA
g

β1

− 2

√
µMA

g

β1

= 1, (3.33)

which gives the approximation for the chemical potential as

µMA
g = β1 + 2

√
β1 + 1 + 2. (3.34)

Plugging (3.32) and (3.34) into (3.6), (3.8) and (3.9), we can compute [20]

EMA
kin,g =

2

3

√
β1 + 1 + 2, EMA

int,g =
β1

2
+

2

3

√
β1 + 1, (3.35)

EMA
g = EMA

kin,g + EMA
int,g =

β1

2
+

4

3

√
β1 + 1 + 2, β1 À 1. (3.36)

From (3.32), (3.34)−(3.36), we can draw the following conclusions:

i). The width of the boundary layer in the matched asymptotic approximation is

about O
(
1/
√

β1

)
.

ii). The ratios between the chemical potential and the energies satisfy:

lim
β1→∞

Eg

µg

=
1

2
, lim

β1→∞
Eint,g

Eg

= 1, lim
β1→∞

Ekin,g

Eg

= 0. (3.37)

To verify the above approximations, Table 3.1 lists the errors between the numerical

results and the matched asymptotic approximation, where the convergence rate of a

function f(α) as α → 0 is computed by: ln[f(2α)/f(α)]/ ln 2. Figure 3.1 shows the

numerical solutions of the ground state for different β1. These numerical results are

computed by the backward forward Euler Fourier pseudospectral (BFFP) method

proposed in Section 3.4.
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1/β1 4/25 2/25 1/25 1/50 1/100 1/400

max
∣∣φg − φMA

g

∣∣ 8.17E-3 9.24E-4 4.67E-5 8.0E-7 – – – –
∥∥φg − φMA

g

∥∥
L2 6.84E-3 8.05E-4 4.11E-5 6.0E-7 – – – –

∣∣Ekin,g − EMA
kin,g

∣∣ 1.3018 0.9479 0.6464 0.4340 0.2946 0.1399

Rate – – 0.4577 0.5523 0.5747 0.5589 0.5372
∣∣Eint,g − EMA

int,g

∣∣ 0.5948 0.4608 0.3218 0.2171 0.1473 0.0701

Rate – – 0.3683 0.5180 0.5678 0.5596 0.5356
∣∣Eg − EMA

g

∣∣ 0.7071 0.4871 0.3245 0.2171 0.1472 0.0698

Rate – – 0.5377 0.5860 0.5799 0.5606 0.5382
∣∣µg − µMA

g

∣∣ 0.1124 0.0263 0.0027 0.0001 – – – –

Eg/µg 0.6854 0.6234 0.5813 0.5543 0.5368 0.5175

Eint,g/Eg 0.4591 0.6042 0.7204 0.8042 0.8628 0.9323

Ekin,g/Eg 0.5409 0.3958 0.2796 0.1958 0.1372 0.0677

Table 3.1: Convergence study of the matched asymptotic approximation in 1D box

potential when β1 À 1. Here φg, Ekin,g, Eint,g, Eg and µg are numerical results.

From Table 3.1 and Figure 3.1, we can find that:

i). When β1 →∞, the matched asymptotic approximation φMA
g (x) converges to the

ground state solution φg(x) with the convergence rates

max
∣∣φg − φMA

g

∣∣ = O
(
e−3

√
β1/2

)
,

∥∥φg − φMA
g

∥∥
L2 = O

(
e−3

√
β1/2

)
. (3.38)

ii). The asymptotic approximations (3.34)−(3.37) are confirmed by the numerical

results. Furthermore the numerical results suggest the following convergence rates:

Ekin,g = EMA
kin,g + O

(
1/

√
β1

)
, Eint,g = EMA

int,g + O
(
1/

√
β1

)
, (3.39)

Eg = EMA
g + O

(
1/

√
β1

)
, µg = µMA

g + O
(
e−3

√
β1/2

)
, β1 À 1. (3.40)

iii). Boundary layers are observed near x = 0 and x = 1 in the ground state when

β1 À 1 (cf. Fig. 3.1), and the width of the layer is about 2/
√

β1 which is numerically

measured by the wave function changing from 0 to 0.7.
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φ g(x
)

Figure 3.1: Ground state solutions in 1D box potential for β1 =

0, 6.25, 25, 100, 400, 6400 (in the order of decreasing peak).

Extension to high dimensions

Similar to 1D case, in d-dimensions (d > 1), when βd À 1 the matched asymptotic

approximate solution for the ground state can be given by

φMA
g (x) =

√
µMA

g

βd

d∏
j=1

[
tanh

(√
µMA

g xj

)
+ tanh

(√
µMA

g (1− xj)
)

− tanh
(√

µMA
g

) ]
, x = (x1, . . . , xd)

T ∈ [0, 1]d. (3.41)

Inserting (3.41) into (3.12) and after a simple computation, we can get [20],

∥∥φMA
g

∥∥2
=

∫

[0, 1]d

∣∣φMA
g (x)

∣∣2 dx ≈ µMA
g

βd


1− 2√

µMA
g




d

= 1. (3.42)

Solving (3.42) gives the approximate chemical potential µMA
g as

µMA
g = βd + 2d

√
βd + d(2− d) + 2d, βd À 1. (3.43)

Similarly, the energies can be computed from (3.6), (3.8) and (3.9), that is,

EMA
kin,g =

2d

3

√
βd + d(2− d) +

2d

3
(d + 2), (3.44)

EMA
int,g =

βd

2
+

2d

3

√
βd + d(2− d) +

d

3
(1− d), βd À 1, (3.45)

EMA
g =

βd

2
+

4d

3

√
βd + d(2− d) +

d

3
(d + 5). (3.46)
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3.3 Approximation in harmonic potential

For non-rotating BEC with the harmonic potential (2.29), the eigenvalue problem

(3.4)−(3.5) becomes

µφ(x) = −1

2
∇2φ(x) + Vd(x)φ(x) + βd|φ(x)|2φ(x), x ∈ Rd, (3.47)

‖φ‖2 =

∫

Rd

|φ(x)|2 dx = 1. (3.48)

Similarly, we also present the approximate solutions for the ground state in the

weakly interacting regime and the strongly repulsive interacting regime.

3.3.1 In weakly interacting regime

In the weakly interacting regime, i.e. βd = o(1), we can drop the nonlinear term in

(3.47) and get,

µφ(x) = −1

2
∇2φ(x) + Vd(x)φ(x), x ∈ Rd, with ‖φ‖2 = 1, (3.49)

which can be exactly solved to give the approximate ground state solution as

φw
g (x) =

1

πd/4





γ
1/4
x exp

(
−γxx2

2

)
, d = 1,

(γxγy)
1/4 exp

(
−γxx2+γyy2

2

)
, d = 2,

(γxγyγz)
1/4 exp

(
−γxx2+γyy2+γzz2

2

)
, d = 3,

(3.50)

and the corresponding energy and chemical potential are

Ew
g = µw

g =
1

2





γx, d = 1,

γx + γy, d = 2,

γx + γy + γz, d = 3.

(3.51)

3.3.2 Thomas-Fermi (semiclassical) approximation

For a condensate with strongly repulsive interactions, i.e. βd À 1 and γxj
= O(1)

(1 ≤ j ≤ d), we can drop the diffusion term in (3.47) and get,

µφ(x) = Vd(x)φ(x) + βd|φ(x)|2φ(x), x ∈ Rd. (3.52)



3.3 Approximation in harmonic potential 32

Solving (3.52) gives the Thomas-Fermi approximation for the ground state in a

harmonic potential:

φTF
g (x) =





√(
µTF

g − Vd(x)
)
/βd, Vd(x) ≤ µTF

g ,

0, otherwise,
x ∈ Rd. (3.53)

Substituting (3.53) into the normalization condition (3.48), we can compute the

corresponding chemical potential as

µTF
g =

1

2





(3β1γx/2)2/3, d = 1,

(4β2γxγy/π)1/2, d = 2,

(15β3γxγyγz/4π)2/5, d = 3.

(3.54)

Due to the fact that φTF
g (x) is not differentiable at Vd(x) = µTF

g , we cannot use

(3.6) and (2.31) to define the kinetic energy and energy of the Thomas-Fermi ap-

proximation. However, noticing (3.9), we can use the following way to calculate

them:

ETF
g = µTF

g − ETF
int,g, ETF

kin,g = ETF
g − ETF

int,g − ETF
pot,g. (3.55)

After some computations, we get [20],

ETF
int,g =

2

d + 4
µTF

g , ETF
pot,g =

d

d + 4
µTF

g , ETF
kin,g = 0,

ETF
g =

d + 2

d + 4
µTF

g , βd À 1, d = 1, 2, 3. (3.56)

From (3.54) and (3.56), we can see when βd À 1 (d = 1, 2, 3),

lim
βd→∞

Eg

µg

=
d + 2

d + 4
, lim

βd→∞
Eint,g

Eg

=
2

d + 2
, lim

βd→∞
Epot,g

Eg

=
d

d + 2
. (3.57)

To verify the Thomas-Fermi approximation (3.53), (3.54), (3.56) and (3.57), here we

study the 1D case. The errors between the numerical results and the Thomas-Fermi

approximation are listed in Table 3.2, and the numerical solution of the ground

state solutions are plotted in Figure 3.2. From them, we can draw the following

conclusions for 1D case:
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1/β1 1/100 1/200 1/400 1/800 1/1600 1/6400

max
∣∣φg − φTF

g

∣∣ 0.0788 0.0605 0.0464 0.0355 0.0272 0.0159

Rate – – 0.3807 0.3836 0.3840 0.3852 0.3872
∥∥φg − φTF

g

∥∥
L2 0.0571 0.0423 0.0312 0.0230 0.0170 0.0092

Rate – – 0.4350 0.4371 0.4389 0.4404 0.4427
∣∣Epot,g − ETF

pot,g

∣∣ 0.0246 0.0171 0.0118 0.0080 0.0054 0.0023

Rate – – 0.5238 0.5383 0.5528 0.5687 0.6196
∣∣Eint,g − ETF

int,g

∣∣ 0.0204 0.0144 0.0101 0.0070 0.0047 0.0021

Rate – – 0.4980 0.5167 0.5348 0.5531 0.6051

Ekin,g 0.0350 0.0245 0.0170 0.0117 0.0080 0.0037

Rate – – 0.5134 0.5267 0.5381 0.5478 0.5599
∣∣Eg − ETF

g

∣∣ 0.0392 0.0272 0.0187 0.0128 0.0087 0.0039

Rate – – 0.5280 0.5394 0.5492 0.5582 0.5725
∣∣µg − µTF

g

∣∣ 0.0188 0.0128 0.0086 0.0058 0.0039 0.0019

Rate – – 0.5613 0.5651 0.5659 0.5638 0.5329

Eg/µg 0.6020 0.6009 0.6004 0.6002 0.6001 0.6000

Eint,g/Eg 0.6612 0.6643 0.6656 0.6662 0.6665 0.6666

Epot,g/Eg 0.3347 0.3339 0.3336 0.3334 0.3334 0.3333

Table 3.2: Convergence study of the Thomas-Fermi approximation in 1D harmonic

potential with γx = 1. Here φg, Ekin,g, Epot,g, Eint,g, Eg and µg are numerical results.

i). When β1 → ∞, the Thomas-Fermi approximation φTF
g (x) converges to the

ground state solution φg(x) with the convergence rates:

max
∣∣φg − φTF

g

∣∣ = O

(
ln β1

β
2/5
1

)
,

∥∥φg − φTF
g

∥∥
L2 = O

(
ln β1

β
2/5
1

)
.

ii). The Thomas-Fermi approximation (3.54), (3.56) and (3.57) are confirmed by

the numerical results. Furthermore, the numerical results suggest the following
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Figure 3.2: Ground state solutions in 1D harmonic potential with γx = 1 for β1 =

0, 6.25, 25, 100, 400, 1600 (in the order of decreasing peak).

convergence rates when β1 À 1:

Eint,g = ETF
int,g + O

(
ln β1

β
2/3
1

)
, Epot,g = ETF

pot,g + O

(
ln β1

β
2/3
1

)
,

Ekin,g = O

(
ln β1

β
2/3
1

)
, Eg = ETF

g + O

(
ln β1

β
2/3
1

)
, µg = µTF

g + O

(
ln β1

β
2/3
1

)
.

3.4 Numerical method

In this section, we propose a Fourier pseudospectral method to compute the ground

state of non-rotating or rotating BEC. Compared to the finite difference methods

introduced in [4, 5, 23], this method is very efficient and accurate, especially for the

case of rotating BEC with strongly repulsive interaction and large rotation speed.

3.4.1 Normalized gradient flow

In the physics literature [6, 32, 37], the minimization problem (3.1) is solved by

evolving the discrete normalized gradient flow (DNGF) which is obtained by ap-

plying an imaginary time, i.e. t → −it, in the GPE (2.27). The DNGF preserves

the normalization at each time step and makes the energy diminish during the time
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evolution, and thus its steady state solutions can be viewed as the ground state

solutions of the problem (2.33)−(2.34). The details of DNGF are: choosing a time

step ∆t > 0 and a time sequence tn = n∆t for n = 0, 1, 2, . . . , then for t ∈ [tn, tn+1),

the DNGF is given by

∂tφ(x, t) =
1

2
∇2φ− Vd(x)φ− βd|φ|2φ + ΩLzφ, x ∈ Rd, (3.58)

φ(x, tn+1) = φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Rd, (3.59)

φ(x, 0) = φ0(x), x ∈ Rd, with ‖φ0‖2 = 1, (3.60)

where φ(x, t±n+1) = limt→t±n+1
φ(x, t). The DNGF (3.58)−(3.60) can also be viewed

as: i). applying the steepest decent method to minimize the energy functional

Eβ,Ω(φ) without any constraint, and ii). projecting the solution back to the unit

sphere S in order to satisfy the normalization condition.

In fact, when ∆t → 0, the DNGF converges to the continuous normalized gradient

flow (CNGF) (2.37)−(2.38), where we can view µβ,Ω(φ)/‖φ(·, t)‖2 as a Lagrange

multiplier of the constraint (2.34) [13].

3.4.2 Backward Forward Euler Fourier pseudospectral method

In this subsection, we propose the backward forward Euler Fourier pseudospectral

(BFFP) method to discretize the DNGF (3.58)−(3.60). Without loss of generality,

here we consider rotating BEC with the harmonic potential given in (2.29). Due

to the property of the trapping potential, the solution of (3.58)−(3.60) decays to

zero exponentially fast when |x| → ∞. Thus in practical computation, we can

truncate this problem into a bounded domain with homogeneous Dirichlet boundary

conditions [24, 23, 14]. For simplicity, we introduce the BFFP method for 2D case,

i.e. d = 2, and generalizations to other dimensions are straightforward.
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In 2D case, the truncated problem for (3.58)−(3.60) is

∂tφ(x, t) =

(
1

2
∇2 − V2(x)− β2|φ|2 + ΩLz

)
φ, x ∈ Ωx, t ∈ [tn, tn+1), (3.61)

φ(x, tn+1) = φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Ωx, (3.62)

φ(x, t) = 0, x ∈ Γ = ∂Ωx, t ∈ [tn, tn+1), (3.63)

φ(x, 0) = φ0(x), x ∈ Ωx, with ‖φ0‖2 =

∫

Ωx

|φ0(x)|2 dx = 1, (3.64)

where the computational domain Ωx = [a, b]× [c, d] with |a|, b, |c| and d sufficiently

large.

Choose the spatial mesh size ∆x = (b − a)/J and ∆y = (d − c)/K with J and

K even positive integers, define grid points xj := a + j∆x and yk := c + k∆y for

0 ≤ j ≤ J and 0 ≤ k ≤ K respectively, and let φn
j,k be the numerical approximation

of φ(xj, yk, tn). Then the BFFP method for discretizing the problem (3.61)−(3.64)

can be given by

φ
(1)
j,k − φn

j,k

∆t
=

1

2

(∇2
hφ

(1)
)∣∣

j,k
− V2(xj, yk)φ

n
j,k − β2|φn

j,k|2φn
j,k + Ω (Lhφ

n)|j,k
−αn

(
φ

(1)
j,k − φn

j,k

)
, n = 0, 1, 2, . . . , (3.65)

φn+1
j,k =

φ
(1)
j,k

‖φ(1)‖ , with φ0
j,k = φ0(xj, yk), 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1, (3.66)

where ∇2
h and Lh are the pseudospectral differential operators approximating ∇2

and Lz respectively, and the norm
∥∥φ(1)

∥∥ is defined as

∥∥φ(1)
∥∥ :=

√√√√∆x∆y
J−1∑
j=1

K−1∑

k=1

∣∣∣φ(1)
j,k

∣∣∣
2

.

The parameter αn = α(tn) ≥ 0 is called as stabilization parameter, and in practical

simulations, we need choose the “optimal” stabilization parameter αn
opt to get the

steady state solution as fast as possible [12], i.e. letting

αn
opt =

1

2
(bn

max + bn
min) (3.67)
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with

bn
max = max

1≤j≤J−1, 1≤k≤K−1

[
V2 (xj, yk) + β2|φn

j,k|2
]
,

bn
min = min

1≤j≤J−1, 1≤k≤K−1

[
V2 (xj, yk) + β2|φn

j,k|2
]
.

By assuming that

φj,k =

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

φ̂p,q eiµp(xj−a)eiλq(yk−c), 0 ≤ j ≤ J, 0 ≤ k ≤ K (3.68)

with

µp =
2pπ

b− a
, λq =

2qπ

d− c
, φ̂p,q =

1

JK

J−1∑
j=0

K−1∑

k=0

φj,ke
−iµp(xj−a)e−iλq(yk−c),

we can define ∇2
hφ and Lhφ as

(∇2
hφ

)∣∣
j,k

= −
J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

(
µ2

p + λ2
q

)
φ̂p,q eiµp(xj−a)eiλq(yk−c), (3.69)

(Lhφ)|j,k = xj

(
Dh

yφ
)∣∣

j,k
− yk

(
Dh

xφ
)∣∣

j,k
, 0 ≤ j ≤ J, 0 ≤ k ≤ K, (3.70)

(
Dh

xφ
)∣∣

j,k
=

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

µp φ̂p,q eiµp(xj−a) eiλq(yk−c), (3.71)

(
Dh

yφ
)∣∣

j,k
=

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

λq φ̂p,q eiµp(xj−a) eiλq(yk−c). (3.72)

Taking the discrete Fourier transform at both sides of (3.65), we get, for −J/2 ≤
p ≤ J/2− 1 and −K/2 ≤ q ≤ K/2− 1,

(
1

∆t
+

1

2

(
µ2

p + λ2
q

)
+ αn

) (
φ̂(1)

)
p,q

=

(
1

∆t
+ αn

) (
φ̂n

)
p,q

+
(
F̂ n

)
p,q

, (3.73)

where
(
F̂ n

)
p,q

is the Fourier coefficient of F n
j,k which is defined as

F n
j,k := F (φn

j,k) = −V2(xj, yk)φ
n
j,k − β2|φn

j,k|2φn
j,k + Ω (Lhφ

n)|j,k . (3.74)

Solving (3.73) for
(
φ̂(1)

)
p,q

and then substituting it into (3.68) and (3.66), we can

get the solution φn+1
j,k immediately.
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3.5 Numerical results

In this section, we apply the BFFP method to study the ground state of rotat-

ing BEC. In order to do so, we first test different choices of initial data which is

very important for correctly obtaining the ground state solutions, and then present

numerical results in different potentials for 2D and 3D cases.

In our practical computation, the steady state solutions are obtained by setting

ε = max
1≤j≤J−1, 1≤k≤K−1

∣∣φn+1
j,k − φn

j,k

∣∣
∆t

< 10−6. (3.75)

3.5.1 Choices of initial data

For non-rotating BEC with a harmonic potential, there are two kinds of approxi-

mation for the ground state φg(x), i.e. (3.50) when |βd| ¿ 1 and respectively (3.53)

when βd À 1. These two approximations can be used as the initial data when

we compute the ground state of non-rotating BEC in weakly interacting regime

and strongly repulsive interacting regime, respectively. With some modification on

(3.50) and (3.53), here we present four kinds of initial data for rotating BEC:

Type 1. φ0(x) = φw
g (x), x ∈ Ωx;

Type 2. φ0(x) = φTF
g (x), x ∈ Ωx;

Type 3. φ0(x) =
(1− Ω)φw

g (x) + Ωφw
v (x)∥∥(1− Ω)φw

g (x) + Ωφw
v (x)

∥∥ , x ∈ Ωx;

Type 4. φ0(x) =
(1− Ω)φTF

g (x) + ΩφTF
v (x)∥∥(1− Ω)φTF

g (x) + ΩφTF
v (x)

∥∥ , x ∈ Ωx.

where φw
v (x) = (x + iy)φw

g (x) and φTF
v (x) = (x + iy)φTF

g (x) with φw
g (x) and φTF

g (x)

given in (3.50) and (3.53) respectively.

To test the effectiveness of the initial data, one important quantity is the energy

(2.31), and the lower is the energy, the better is the initial data. Another important
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quantity is angular momentum expectation defined as

〈Lz〉(φ) = i

∫

Ωx

φ∗(y∂x − x∂y)φ dx = −i

∫

Ωx

φ∗(x∂y − y∂x)φ dx, (3.76)

which can be used to distinguish the pattern of the ground states when they have

the same energy.

In the following, we take V2(x, y) = 1
2
(x2+y2) and β2 = 10 or 1000, and compute the

steady states of (3.61)−(3.64) with these four different initial data. For different 0 ≤
Ω < min{γx, γy}, Figure 3.3 shows the energy and angular momentum expectation

of the steady state solutions corresponding to different initial data. Here we denote

E(j) and 〈Lz〉(j) as the energy and angular momentum expectation of the steady

state solution φ(j) which is computed by using Type j (1 ≤ j ≤ 4) initial data.
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Figure 3.3: Energy (left) and angular momentum expectation (right) of the steady

state solutions computed from different initial data. a). β2 = 10; b). β2 = 1000.

From Fig. 3.3, we can draw the following conclusions:

i). When β2 is small, for small Ω, e.g. 0 < Ω < 0.75, these four initial data can
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yield steady state solutions with the same energy; while for large Ω, only the Type

3 and 4 initial data can lead to the steady state solutions with smaller energy (cf.

Fig. 3.3a).

ii). When both β2 and Ω are large, Types 2, 3 and 4 initial data can generate

steady state solutions with the same energy which is lower than that from Type 1

initial data (cf. Fig. 3.3b). However, the angular momentum expectations 〈Lz〉 of

these steady state solutions are a bit different. This again suggests that the ground

state solution is not unique, and different initial data give different solutions in some

regimes of β2 and Ω.

iii). Generally, the steady state solutions computed by using Types 3 and 4 initial

data always have lower energies. Thus it is better to use them as the initial data

when computing the ground state solutions of rotating BEC.

iv). Furthermore, from our additional computation, we can find when β2 is small,

Type 3 initial data can converge to the steady state solutions faster that Type

4, but when β2 is large, Type 4 initial data converges faster. Thus in practical

computation, we can choose them according to the magnitude of β2 so as to get

steady state solutions efficiently.

3.5.2 Ground state in harmonic potential

In this subsection, we study the ground state of rotating BEC with a harmonic

potential. As discussed in Section 3.1, in this case the ground state exists only

when |Ω| < γmin = min{γx, γy}, so we just consider 0 ≤ Ω < γmin. Similar studies

were also carried out in [23], by using the backward Euler finite difference (BEFD)

method which is of the second-order accuracy in space and thus has difficulty to

compute the ground state when both βd and |Ω| are large. To compare these two

methods, we apply our BFFP method to compute the ground state in 2D case, and

the contour plots of these solutions are displayed in Figures 3.4−3.6.

From Figs. 3.4−3.6, we can see that in 2D case, the ground state in a harmonic
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Figure 3.4: Contour plots of the ground state solution in 2D case with a harmonic

potential and β2 = 100. a). γx = γy = 1; b). γx = 1, γy = 1.5.
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Figure 3.5: Contour plots of the ground state solution in 2D case with a harmonic

potential and β2 = 2000. a). γx = γy = 1; b). γx = 1, γy = 2.
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Figure 3.6: Contour plots of the ground state solution in 2D case with a harmonic

potential and β2 = 8000. a). γx = γy = 1; b). γx = 1, γy = 2.

potential is a vortex lattice with a number of single vortices. The results in Fig. 3.4

are computed by using the same parameters as those used in [23]. Comparing them

with the results in [23], we can find that they agree very well with each other. This

suggests that when β2 is small, e.g. β2 = 100, both BEFD and BFFP can accurately

compute the ground state solution which has a few vortices.

However, for fixed 0 < |Ω| < γmin, when β2 increases, the number of vortices also

increases to form a dense lattice, and thus its numerical description needs high spatial

resolution. This implies that when β2 is large, the BEFD method has difficulty to

compute the ground state solutions of rotating BEC, due to its lower-order accuracy

in space. To show the effectiveness of our BFFP method, we also compute the

ground state for larger β2, e.g. β2 = 2000, 8000, in symmetric (cf. Fig. 3.5a, 3.6a)

and asymmetric (cf. Fig. 3.5b, 3.6b) harmonic potentials. From them, we can find

for fixed Ω, when β2 increases, the number of vortices increases dramatically and the

lattice becomes much denser. For example, in the case of Ω = 0.9 and γx = γy = 1,



3.5 Numerical results 43

when β2 = 2000, there are 81 vortices in the lattice (cf. Fig. 3.5a), while when β2

increases to 8000, the number of vortices increases to 176 (cf. Fig. 3.6a), and it is

very hard to obtain them by using the low-order accuracy methods [122, 4, 5, 23].

Therefore, we may conclude that the BFFP method is an efficient and accurate

method for computing the ground state, especially in rotating BEC with strongly

repulsive interaction and large rotation speed.

a)

b)

Figure 3.7: Ground states in 3D case with a harmonic potential. Left: isosurface

plots for |φg(x, y, z)|2 = 0.0005; Right: surface plots of |φg(x, y, 0)|2.

In addition, we also show the ground state solution for 3D case in Figure 3.7, where

the parameters are chosen as β3 = 400 and γx = γy = γz = 1 in (2.29). From Fig.

3.7 and our additional computation, we can find that the ground state in 3D case

is composed of single vortex lines. For fixed β3, when Ω increases, the number of

vortex lines increases, while for fixed Ω, the larger β3, the more vortex lines, which

is consistent with the 2D results in Figs. 3.4−3.6.
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3.5.3 Giant vortex in harmonic plus quartic potential

As mentioned in Section 3.1, when |Ω| > γmax = max{γx, γy}, there is no ground

state for rotating BEC with a harmonic potential. This is because under this con-

dition, the centrifugal force caused by the angular rotation is large enough to com-

pensate the trapping force, and thus the trap confinement vanishes. To study the

ground state when |Ω| > γmax, we often introduce a stiffer trapping potential, called

as harmonic-plus-quartic potential, which takes the form [75, 5, 70],

Ṽd(x) =





(1− α)r2 + 1
4
kr4, d = 2,

(1− α)r2 + 1
4
kr4 + γ2

zz
2, d = 3,

(3.77)

where r =
√

x2 + y2, and α, k and γz are positive constants. Under this potential,

the ground state exists for any |Ω|, but its structure is completely different from

that in a harmonic potential.

Figure 3.8 shows the 2D ground state solution in a harmonic-plus-quartic potential

for different Ω. The parameters used here are α = 1.2, k = 0.3 and β2 = 1000, and

the initial data is chosen as the Thomas-Fermi approximation, i.e.

φ0(x) = φTF
g (x) =





√(
µ− Ṽ2(x)

)
/β2, µ > Ṽ2(x),

0, otherwise,

x ∈ R2, (3.78)

where µ = 1
k

[
(3k2β2/8π)

2/3 − (1− α)2
]
.

From Fig. 3.8, we can draw the following conclusions for a fixed β2:

i). There exist two critical angular velocities Ω1 and Ω2, e.g. when β2 = 1000,

Ω1 ≈ 0.9 and Ω2 ≈ 2.2, which determine the structure of the ground state. When

|Ω| < Ω1, no vortex appears in the ground state; when Ω1 ≤ |Ω| < Ω2, the ground

state is a vortex lattice but its structure is different from that in a harmonic potential

(cf. Figs. 3.4−3.6); when |Ω| ≥ Ω2, a giant vortex appears in the ground state.

ii). In the case of Ω1 ≤ |Ω| < Ω2, when |Ω| increases, the number of vortices

increases, which makes the lattice become denser and denser, but the density at the

center of the condensate decreases.
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a)

Ω = 0.8 Ω = 1.0 Ω = 1.3 Ω = 1.8

b)

Ω = 2.0 Ω = 2.3 Ω = 2.6 Ω = 3.0

c)

Ω = 3.3 Ω = 3.8 Ω = 4.0 Ω = 4.5

Figure 3.8: Ground states in 2D case with a harmonic-plus-quartic potential. Plot

domain: a). [−6, 6]2; b). [−8, 8]2; c). [−10, 10]2.

t = 0 t = 4 t = 5 t = 7

t = 9 t = 11 t = 12 t = 22.05

Figure 3.9: Formation of the vortex lattice in a harmonic-plus-quartic potential with

Ω = 1.2. Plot domain: [−6, 6]2.
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t = 0 t = 0.14 t = 0.18 t = 0.24

t = 0.34 t = 0.42 t = 0.60 t = 1.3

t = 2 t = 5 t = 25 t = 87.53

Figure 3.10: Formation of the giant vortex in a harmonic-plus-quartic potential with

Ω = 2.5. Plot domain: [−8, 8]2.

iii). When |Ω| > Ω2, a giant “hole” surrounded by a few cycles of single vortices

appears at the center of the condensate. When |Ω| increases, the size of the giant

hole increases, while the width of the vortex cycle decreases.

To show the formation of a vortex lattice or a giant vortex in the harmonic-plus-

quartic potential, Figures 3.9 and 3.10 present the contour plots of |φ(x, y, t)|2 at

different times during the time evolution of the gradient flow (3.61)−(3.64). We

first consider the formation of a vortex lattice by choosing small Ω, e.g. Ω = 1.2.

As shown in Fig. 3.9, initially it is the Thomas-Fermi approximate ground state

without vortices. When t ≈ 4, the boundary becomes unstable and there are 16

vortices generated along the boundary. Then the rotating force pulls these vortices

towards the rotation axis, but the repulsive interaction between vortices tends to

push them apart. At time t ≈ 12, eight out of them are almost pushed out of the
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condensate, and the rest arranges and forms a stable lattice until t = 22.05.

The formation of a giant vortex is a bit different from that of the vortex lattice.

In this case, the vortices are generated not only from the boundary but also from

the interior (cf. Fig. 3.10) because of the large angular velocity Ω. Similarly,

the competition between the rotating force and the repulsive interaction of vortices

makes a steady giant vortex eventually.

a)

b)

Figure 3.11: Ground states in 3D case with a harmonic-plus-quartic potential. Left:

isosurface plots of |φg(x, y, z)|2 = 0.0005; Right: surface plots of |φg(x, y, 0)|2.

We also study the ground states in 3D case with a harmonic-plus-quartic potential

by choosing β3 = 100, α = 1.2, k = 0.3 and γz = 3. The numerical results are shown

in Figure 3.11. From it, we can see when Ω is small, e.g. Ω = 1.4, the ground state

is a giant vortex formed by a giant hole and a few single vortex lines; when Ω is

large, e.g. Ω = 1.8, there is only a giant hole and no vortex line appears.



Chapter 4
Dynamics of Bose-Einstein condensation

In this chapter, we investigate the dynamics of BEC both analytically and numeri-

cally. Some important quantities are introduced and the dynamical laws are derived

for them. The dynamics of the mass center of a stationary state with its center

shifted are also discussed in details. On the numerical front, several high-order

numerical methods are proposed for computing the dynamics of non-rotating and

rotating BEC.

4.1 Angular momentum expectation

To characterize the dynamics of BEC, an important quantity is the angular momen-

tum expectation which is defined as

〈Lz〉(t) :=

∫

Rd

ψ∗(x, t)Lzψ(x, t) dx = i

∫

Rd

ψ∗(x, t)(y∂x − x∂y)ψ(x, t) dx. (4.1)

The angular momentum expectation can be used to measure the vortex flux, and

we have the following lemma for its dynamics:

Lemma 4.1. Suppose ψ(x, t) be the solution of the problem (2.27)−(2.28). Then

we have,

d〈Lz〉(t)
dt

=
(
γ2

x − γ2
y

)
δxy(t), where δxy(t) =

∫

Rd

xy|ψ(x, t)|2 dx, t ≥ 0 . (4.2)

48
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Consequently, the angular momentum expectation is conserved at least for 2D case

with a radially symmetric trap or 3D case with a cylindrically symmetric trap. That

is, for any given initial data ψ0(x) in (2.28), if γx = γy in (2.29), we have

〈Lz〉(t) ≡ 〈Lz〉(0), t ≥ 0. (4.3)

Proof. Differentiating (4.1) with respect to t, noticing (2.27), integrating by parts,

and taking into account that ψ(x, t) decays to 0 exponentially when |x| → ∞, we

get, for t ≥ 0,

d〈Lz〉(t)
dt

= i

∫

Rd

[(∂tψ
∗) (y∂x − x∂y)ψ + ψ∗(y∂x − x∂y)(∂tψ)] dx

=

∫

Rd

[(−i∂tψ
∗) (x∂y − y∂x)ψ + (i∂tψ) (x∂y − y∂x)ψ

∗] dx

=

∫

Rd

[
− 1

2

[∇2ψ∗(x∂y − y∂x)ψ +∇2ψ(x∂y − y∂x)ψ
∗]

+
(
Vd(x) + βd|ψ|2

)
[ψ∗(x∂y − y∂x)ψ + ψ(x∂y − y∂x)ψ

∗]
]

dx

= −
∫

Rd

|ψ|2 [(x∂y − y∂x)Vd(x)] dx = (γ2
x − γ2

y)

∫

Rd

xy|ψ|2 dx. (4.4)

This gives the ODE (4.2) immediately. Furthermore, if γx = γy, then (4.2) can be

reduced to

d〈Lz〉(t)
dt

= 0, t ≥ 0, (4.5)

which implies that 〈Lz〉 is conserved for any t ≥ 0. ¤

4.2 Condensate width

Another important quantity characterizing the dynamics of BEC is the condensate

width defined as

σα(t) =
√

δα(t), where δα(t) = 〈α2〉(t) =

∫

Rd

α2|ψ(x, t)|2dx, t ≥ 0 (4.6)

with α being the spatial variable x, y or z.

For the dynamics of condensate widths, we have the following lemma:
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Lemma 4.2. Suppose ψ(x, t) be the solution of the problem (2.27)−(2.28). We

have,

d2δα(t)

dt2
=

∫

Rd

[
(∂yα− ∂xα)

(
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2)

+2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α(Vd(x))

]
dx, t ≥ 0, (4.7)

δα(0) = δ(0)
α =

∫

Rd

α2|ψ0|2 dx, α = x, y, z, (4.8)

δ̇α(0) = δ(1)
α = 2

∫

Rd

α
[−Ω|ψ0|2 (x∂y − y∂x) α + Im (ψ∗0∂αψ0)

]
dx. (4.9)

Proof. Differentiating (4.6) with respect to t, and applying (2.27) and integration

by parts, we get

dδα(t)

dt
=

d

dt

∫

Rd

α2|ψ(x, t)|2dx =

∫

Rd

α2 (ψ∂tψ
∗ + ψ∗∂tψ) dx

=

∫

Rd

[
i

2
α2

(
ψ∗∇2ψ − ψ∇2ψ∗

)
+ Ωα2 (x∂y − y∂x) |ψ|2

]
dx

=

∫

Rd

[
iα (ψ∂αψ∗ − ψ∗∂αψ)− 2Ωα|ψ|2 (x∂y − y∂x) α

]
dx. (4.10)

Differentiating (4.10), noticing (2.27) and integrating by parts, we have,

d2δα(t)

dt2

=

∫

Rd

[
iα (∂tψ∂αψ∗ + ψ∂αtψ

∗ − ∂tψ
∗∂αψ − ψ∗∂αtψ)

−2Ωα (ψ∂tψ
∗ + ψ∗∂tψ) (x∂y − y∂x) α

]
dx

=

∫

Rd

[
2iα (∂tψ∂αψ∗ − ∂tψ

∗∂αψ) + i (ψ∗∂tψ − ψ∂tψ
∗)

−2Ωα(x∂y − y∂x)α

(
i

2

(
ψ∗∇2ψ − ψ∇2ψ∗

)
+ Ω(x∂y − y∂x)|ψ|2

)]
dx

=

∫

Rd

[
− α

(
∂αψ∗∇2ψ + ∂αψ∇2ψ∗

)
+ 2α

(
Vd(x) + βd|ψ|2

)
(ψ∂αψ∗ + ψ∗∂αψ)

−2iΩα [∂αψ (x∂y − y∂x) ψ∗ − ∂αψ∗ (x∂y − y∂x) ψ]− 1

2

(
ψ∗∇2ψ + ψ∇2ψ∗

)

+2
(
Vd(x)|ψ|2 + βd|ψ|4

)− iΩ [ψ (x∂y − y∂x) ψ∗ − ψ∗ (x∂y − y∂x) ψ]

−2iΩψ∗ [∂xα (α∂y + y∂α) ψ − ∂yα (α∂x + x∂α) ψ]
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+2Ω2|ψ|2 [(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

] ]
dx

=

∫

Rd

[
−4iΩψ∗ [∂xα (α∂y + y∂α) ψ − ∂yα (α∂x + x∂α) ψ] + 2|∂αψ|2 + βd|ψ|4

+2Ω2|ψ|2 [(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

]− 2α|ψ|2∂α (Vd(x))

]
dx

=

∫

Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

) |ψ|2]

+2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α (Vd(x))

]
dx, t ≥ 0. (4.11)

Furthermore, noticing (2.28), and taking t = 0 in (4.6) and (4.10), we can obtain

(4.8) and (4.9) immediately. ¤

Lemma 4.3. i). In 1D without rotation and interaction, i.e. d = 1, Ω = 0 and

β1 = 0, for any initial data ψ0(x) in (2.28), we have

δx(t) =
E0,0(ψ0)

γ2
x

+

(
δ(0)
x − E0,0(ψ0)

γ2
x

)
cos (2γxt) +

δ
(1)
x

2γx

sin (2γxt) , t ≥ 0. (4.12)

ii). In 2D with a radially symmetric trap, i.e. d = 2 and γx = γy := γr, for any

initial data ψ0(x, y) in (2.28), we have, for any t ≥ 0,

δr(t) =
Eβ,Ω(ψ0) + Ω〈Lz〉(0)

γ2
r

[1− cos(2γrt)] + δ(0)
r cos(2γrt) +

δ
(1)
r

2γr

sin(2γrt), (4.13)

where δr(t) = δx(t)+δy(t), δ
(0)
r := δx(0)+δy(0) and δ

(1)
r := δ̇x(0)+δ̇y(0). Furthermore,

if the initial data ψ0(x, y) is the central vortex state solution (2.39), then we have,

for t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t)

=
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1− cos(2γxt)] + δ(0)
x cos(2γxt) +

δ
(1)
x

2γx

sin(2γxt). (4.14)

Noticing (4.6) and (4.14), we immediately get

σx(t) = σy(t) =

√
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1− cos(2γxt)] + δ
(0)
x cos(2γxt) +

δ
(1)
x

2γx

sin(2γxt).

Therefore, in this case, the condensate widths σx(t) and σy(t) are periodic functions

with frequency doubling the trapping frequency.
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iii). In all other cases, we have, for t ≥ 0,

δα(t) =
Eβ,Ω(ψ0)

γ2
α

+

(
δ(0)
α − Eβ,Ω(ψ0)

γ2
α

)
cos(2γαt) +

δ
(1)
α

2γα

sin(2γαt) + fα(t), (4.15)

where fα(t) is the solution of the following second-order ODE:

d2fα(t)

dt2
+ 4γ2

α fα(t) = Fα(t), fα(0) = ḟα(0) = 0, (4.16)

with

Fα(t) =

∫

Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα2 − 4Vd(x)
) |ψ|2 + 4Ωψ∗Lzψ

+(∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x) ψ + 2Ω2(x2 − y2)|ψ|2)

]
dx.

Proof. i). From (4.7) with d = 1, Ω = 0 and β1 = 0, noticing (2.31), we get

d2δx(t)

dt2
= 4E0,0(ψ0)− 4γ2

xδx(t), t ≥ 0, (4.17)

δx(0) = δ(0)
x , δ̇x(0) = δ(1)

x . (4.18)

Thus (4.12) is the unique solution of the second-order ODE (4.17)−(4.18).

ii). From (4.7) with d = 2, we get

d2δx(t)

dt2
+ 2γ2

xδx(t)

=

∫

R2

[
2|∂xψ|2 + β2|ψ|4 − 4iΩψ∗ (x∂y + y∂x) ψ − 2Ω2

(
x2 − y2

) |ψ|2] dx,

d2δy(t)

dt2
+ 2γ2

yδy(t)

=

∫

R2

[
2|∂yψ|2 + β2|ψ|4 + 4iΩψ∗ (x∂y + y∂x) ψ + 2Ω2

(
x2 − y2

) |ψ|2
]
dx.

When γx = γy := γr in (2.29), summing up the above two equations, and noticing

(2.31) and (4.3), we obtain the following ODE for δr(t):

d2δr(t)

dt2
= −2γ2

r δr(t) +

∫

R2

[
2|∇ψ|2 + 2β2|ψ|4

]
dx

= −2γ2
r δr(t)− 4

∫

R2

[
V2(x)|ψ|2 − Ωψ∗Lzψ

]
dx
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+4

∫

R2

[
1

2
|∇ψ|2 + V2(x)|ψ|2 +

β2

2
|ψ|4 − Ωψ∗Lzψ

]
dx

= −2γ2
r δr(t)− 2γ2

r δr(t) + 4Ω〈Lz〉(t) + 4Eβ,Ω(ψ(·, t))
= −4γ2

r δr(t) + 4Eβ,Ω(ψ0) + 4Ω〈Lz〉(0), t ≥ 0, (4.19)

δr(0) = δ(0)
r , δ̇r(0) = δ(1)

r . (4.20)

Thus (4.13) is the unique solution of the second-order ODE (4.19)−(4.20). Fur-

thermore, if the initial data ψ0(x, y) satisfies (2.39), then the solution ψ(x, y, t) of

(2.27)−(2.28) can be given by

ψ(x, y, t) = g(r, t)eimθ, with g(r, 0) = f(r). (4.21)

This implies

δx(t) =

∫

R2

x2|ψ(x, y, t)|2 dx =

∫ ∞

0

∫ 2π

0

r2 cos2 θ|g(r, t)|2r dθdr

= π

∫ ∞

0

r2|g(r, t)|2r dr =

∫ ∞

0

∫ 2π

0

r2 sin2 θ|g(r, t)|2r dθdr

=

∫

R2

y2|ψ(x, y, t)|2 dx = δy(t), t ≥ 0. (4.22)

Since γx = γy, by Lemma 4.1, we can get

〈Lz〉(t) = 〈Lz〉(0) = −i

∫

R2

ψ∗0(x, y)∂θψ0(x, y) dx

= 2πm

∫ ∞

0

|f(r)|2r dr = m‖ψ0‖2 = m. (4.23)

Thus (4.14) is a combination of (4.13), (4.22) and (4.23).

iii). From (4.7), noticing the energy conservation (2.31), we can get

d2δα(t)

dt2
=

∫

Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

) |ψ|2]

+2|∂αψ|2 + βd|ψ|4 − 2γ2
αα2|ψ|2

]
dx

= −4γ2
αδα(t) + 4

∫

R2

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − Ωψ∗Lzψ

]
dx

+

∫

Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα2 − 4Vd(x)
) |ψ|2 + 4Ωψ∗Lzψ

+(∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x) ψ + 2Ω2(x2 − y2)|ψ|2)

]
dx

= −4γ2
αδα(t) + 4Eβ,Ω(ψ(·, t)) + Fα(t)
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= −4γ2
αδα(t) + 4Eβ,Ω(ψ0) + Fα(t), t ≥ 0. (4.24)

Thus (4.15) is the unique solution of the second-order ODE (4.24) with the initial

data (4.8)−(4.9). ¤

4.3 Mass center of a stationary state

Let φe(x) be a stationary state solution of the GPE (2.27) with a chemical potential

µe, i.e. (µe, φe) satisfying the eigenvalue problem (2.33)−(2.34). If the initial data

ψ0(x) in (2.28) is chosen as φe(x) with a shift in its center, then we can construct

an exact solution of the GPE (2.27) with a harmonic potential (2.29). This kind of

analytical construction can be used, in particular, in the benchmark and validation of

numerical algorithms for the time-dependent GPE. In [69], a similar kind of solution

was constructed and a second-order ODE system was derived for the dynamics of

the center, but their results were valid only for non-rotating BEC, i.e. Ω = 0.

Modifications must be made for rotating BEC, i.e. Ω 6= 0. Later, in [25], similar

results were extended to the case of a general Hamiltonian but without specifying

the initial data for the ODE system, and there is no analysis about the ODE system.

In this section, we present a simple and complete derivation of the dynamic laws in

rotating BEC [14]. By solving the ODE system in different cases, we classify the

motion patterns of the center [138].

Lemma 4.4. If the initial data ψ0(x) in (2.28) is chosen as

ψ0(x) = φe(x− x0), x ∈ Rd (4.25)

with x0 ∈ Rd a given point, then the exact solution of (2.27) satisfies:

ψ(x, t) = φe(x− x(t)) e−iµet eiw(x,t), x ∈ Rd, t ≥ 0, (4.26)

where for any time t ≥ 0, w(x, t) is a linear function with respect to x, i.e.

w(x, t) = c(t) · x + g(t), c(t) = (c1(t), · · · , cd(t))
T , x ∈ Rd, t ≥ 0, (4.27)
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and x(t) satisfies the following second-order ODE system:

ẍ(t)− 2Ωẏ(t) +
(
γ2

x − Ω2
)
x(t) = 0, (4.28)

ÿ(t) + 2Ωẋ(t) +
(
γ2

y − Ω2
)
y(t) = 0, t ≥ 0, (4.29)

x(0) = x0, y(0) = y0, ẋ(0) = Ωy0, ẏ(0) = −Ωx0. (4.30)

Moreover, if in 3D case, another ODE needs to be added:

z̈(t) + γ2
zz(t) = 0, z(0) = z0, ż(0) = 0. (4.31)

Proof. For d = 2, we introduce

A =


 γ2

x 0

0 γ2
y


 .

Differentiating (4.26) with respect to t and x respectively, plugging it into (2.27),

changing variable x − x(t) → x and noticing (2.33), we obtain for φe = φe(x) and

w = w(x + x(t), t):

φe∂tw + iẋ(t) · ∇φe =
1

2

[
iφe∇2w − φe|∇w|2 − x(t)TA(2x + x(t))φe

]

+i∇φe · ∇w − φeΩ(x + x(t)) · (G∇w) + iΩx(t) · (G∇φe), (4.32)

where G is the symplectic matrix given in (2.54). Taking the real and imaginary

parts of (4.32) and noticing (4.27), we have

[ẋ(t)−∇w(x + x(t), t)− ΩGx(t)] · ∇φe = 0, (4.33)[
∂tw +

1

2
|∇w|2 +

1

2
x(t)TA(2x + x(t))− Ω(x + x(t)) · (G∇w)

]
φe = 0, (4.34)

that is,

ẋ(t) = ∇w(x + x(t), t) + ΩGx(t), (4.35)

∂tw(x + x(t), t) = −1

2

[|∇w|2 + x(t)TA(2x + x(t))
]

+Ω(x + x(t)) · (G∇w). (4.36)
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Differentiating (4.35) and (4.36) with respect to t and x respectively, noticing (4.27)

which implies that |∇w|2 is independent of x, we get

0 = ẍ(t)− ∂t(∇w(x + x(t), t))− ΩGẋ(t)

= ẍ(t)−∇(∂tw(x + x(t), t))− ẋ(t) ∇2w(x + x(t), t)− ΩGẋ(t)

= ẍ(t)−∇(∂tw(x + x(t), t))− ΩGẋ(t)

= ẍ(t) + Ax(t)− ΩG [ẋ(t)− ΩGx(t)]− ΩGẋ(t)

= ẍ(t)− 2ΩGẋ(t) +
(
A + Ω2G2

)
x(t)

= ẍ(t)− 2ΩGẋ(t) +
(
A− Ω2I

)
x(t), t ≥ 0, (4.37)

where I is an identity matrix. From (4.26) with t = 0, we have

x(0) = x0, w(x, 0) ≡ 0, x ∈ Rd. (4.38)

Thus (4.30) is a combination of (4.38) and (4.35) with t = 0. For d = 3, the proof

is similar and the details are omitted here. ¤
From (2.27), (2.34) and (4.26), by changing variables, we obtain

〈x〉(t) : =

∫

Rd

x|ψ(x, t)|2 dx =

∫

Rd

x|φe(x− x(t))|2 dx (4.39)

=

∫

Rd

(x + x(t))|φe(x)|2 dx = x(t), t ≥ 0. (4.40)

This immediately implies that the dynamics of the mass center 〈x〉(t) is the same

as that of x(t), i.e. satisfying the ODE system (4.28)−(4.31).

Notice that with y(t) = ẋ(t) − ΩGx(t), (4.37) gives a coupled first-order ODE

system, 



ẋ(t) = ΩGx(t) + y(t) ,

ẏ(t) = −Ax(t) + ΩGy(t) ,

x(0) = x0, y(0) = 0 ,

t ≥ 0, (4.41)

which is a Hamiltonian system with the Hamiltonian H(x,y) = ΩyTGx + (yTy +

xTAx)/2. The characteristic roots λ of the system are given by

λ4 +
(
γ2

x + γ2
y + 2Ω2

)
λ2 +

(
γ2

x − Ω2
) (

γ2
y − Ω2

)
= 0 . (4.42)
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The exact solutions of (4.41) may thus be completely determined. We note that not

only results on the dynamics of a stationary state with its center shifted are physi-

cally interesting, but also this type of exact solution can serve as a good benchmark

for numerical algorithms and is useful in the mathematical studies of the dynamic

stabilities of central vortex states in BEC.

It is easy to see that the solution of (4.31) is

z(t) = z0 cos(γzt), t ≥ 0, (4.43)

that is, z(t) is a periodic function with period Tz = 2π/γz.

In the following subsections, we discuss the solution of the ODE system (4.28)−(4.30)

in different parameter regimes of the trapping frequencies and angular speed. With-

out loss of generality, next we assume γx = 1 and γx ≤ γy.

4.3.1 For non-rotating BEC

For non-rotating BEC, i.e. Ω = 0 in (2.27), the second-order ODE system (4.28)−(4.30)

collapses to

ẍ(t) + γ2
xx(t) = 0, ÿ(t) + γ2

yy(t) = 0, t ≥ 0, (4.44)

x(0) = x0, y(0) = y0, ẋ(0) = ẏ(0) = 0. (4.45)

It is straightforward to see that the solution of (4.44)−(4.45) is

x(t) = x0 cos(γxt), y(t) = y0 cos(γyt), t ≥ 0. (4.46)

This implies that both x(t) and y(t) are periodic functions with periods Tx = 2π/γx

and Ty = 2π/γy, respectively.

Figure 4.1 displays time evolutions of the center x(t) with x0 = (1, 1)T for different

trapping frequencies γx and γy. From it, we can draw the following conclusions for

the motion of the mass-center in non-rotating BEC:

i). Each component of x(t) is a periodic function with the same frequency as the
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Figure 4.1: Motion of the center x(t) in non-rotating BEC. Left: trajectory for

t ∈ [0, 50]; Right: time evolution of x(t) (solid line) and y(t) (dash line), where ‘*’

is obtained by directly simulating the GPE (2.27)−(2.28). a). γx = γy = 1; b).

γx = 1, γy = 8; c). γx = 1, γy = 2π.

trapping frequency in that direction.

ii). When γx = γy := γr, i.e. in a radially symmetric trap, the center moves like a

pendulum with period T = 2π/γr, and its trajectory is a straight segment (cf. Fig.

4.1a).

iii). If γy/γx is a rational number, i.e. γy/γx = q/p with q and p positive integers

and no common factor, then the center moves periodically with period T = 2pπ (cf.
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Fig. 4.1b). On the other hand, if γy/γx is an irrational number, the center moves

chaotically in the rectangle Ωx = [−|x0|, |x0|]× [−|y0|, |y0|], and the envelope of its

trajectory is the boundary of the rectangle Ωx (cf. Fig. 4.1c).

iv). All the above observations can be confirmed by the numerical results from

directly simulating the GPE (2.27)−(2.28).

4.3.2 For rotating BEC in symmetric trap

For rotating BEC in a radially symmetric trap, i.e. Ω 6= 0 and γx = γy, we have the

following solutions for the second-order ODE system (4.28)−(4.30):

Lemma 4.5. If Ω 6= 0 and γx = γy, then the solutions of the ODE system

(4.28)−(4.30) can be given by

x(t) =
x0

2
[cos(at) + cos(bt)] +

|Ω|y0

2Ω
[sin(at)− sin(bt)] , (4.47)

y(t) =
y0

2
[cos(at) + cos(bt)] +

|Ω|x0

2Ω
[− sin(at) + sin(bt)] , t ≥ 0, (4.48)

where a = γx + |Ω| and b = γx − |Ω|. Furthermore, we can get that the distance

between the mass center and the trap center is a periodic function with period

T = π/γx, i.e.

|x(t)| :=
√

x2(t) + y2(t) =
√

x2
0 + y2

0 | cos(γxt)|, t ≥ 0. (4.49)

Proof. If γx = γy, the characteristic equation (4.42) collapses to

λ4 + 2
(
γ2

x + Ω2
)
λ2 +

(
γ2

x − Ω2
)2

= 0. (4.50)

Solving (4.50), we get its roots as

λ1, 2 = ±i(γx + |Ω|) = ±a i, λ3, 4 = ±i(γx − |Ω|) = ±b i, (4.51)

which gives the general solution of x(t) as

x(t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt), t ≥ 0 (4.52)
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with c1, c2, c3 and c4 constants. On the other hand, from (4.28), we have

ẏ(t) =
1

2Ω

(
ẍ(t) +

(
γ2

x − Ω2
)
x(t)

)
, t ≥ 0. (4.53)

Plugging (4.52) into (4.53) and integrating with respect to t, we can obtain the

general solution of y(t) as

y(t) = −|Ω|
Ω

[c1 sin(at)− c2 cos(at)]+
|Ω|
Ω

[c3 sin(bt)− c4 cos(bt)]+c5, t ≥ 0. (4.54)

Taking t = 0 in (4.52) and (4.54), and noticing (4.28) and (4.30), we get

c1 = c3 =
x0

2
, c2 = −c4 =

Ωy0

2|Ω| , c5 = 0. (4.55)

Thus the solution (4.47)−(4.48) is a combination of (4.52), (4.54) and (4.55). Fur-

thermore, from (4.47)−(4.48), it is easy to compute

|x(t)|2 = x(t)2 + y(t)2 =

[
x0

2
(cos(at) + cos(bt)) +

|Ω|y0

2Ω
(sin(at)− sin(bt))

]2

+

[
y0

2
(cos(at) + cos(bt)) +

|Ω|x0

2Ω
(− sin(at) + sin(bt))

]2

=
x2

0

4
[2 + 2 cos((a + b)t)] +

y2
0

4
[2 + 2 cos((a + b)t)]

=
(
x2

0 + y2
0

)
cos2(γxt), t ≥ 0, (4.56)

which gives (4.49) immediately. ¤

Figure 4.2 shows time evolutions of the center x(t) with γx = γy = 1 and x0 = (1, 1)T

for different Ω. Figure 4.3 depicts the distance between the mass-center and the trap

center, i.e. |x(t)|, for different Ω. From them, we can draw the following conclusions:

i). For any angular velocity Ω, the distance between the mass center and the trap

center is a periodic function with period T = π/γx (cf. Fig. 4.3).

ii). When Ω is a rational number, i.e. |Ω| = q/p with q and p positive integers and

no common factor, the center moves periodically with period T = pπ if both q and

p are odd integers (cf. Fig. 4.2a, c), and otherwise T = 2pπ (cf. Fig. 4.2b, d, e).

Furthermore, the graph of the trajectory is unchanged under a rotation of the angle

θ = 2mπω, where m is an integer and ω = 2π/T is the angular frequency of the
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Figure 4.2: Motion of the center x(t) in rotating BEC with a radially symmetric

trap. Left: trajectory for t ∈ [0, 100]; Right: time evolution of x(t) (solid line) and

y(t) (dash line), where ‘*’ is obtained by directly simulating the GPE (2.27)−(2.28).

a). Ω = 1/5; b). Ω = 4/5; c). Ω = 1.

motion (cf. Fig. 4.2a−e).

iii). If Ω is an irrational number, the center moves chaotically, but the envelope of

its trajectory is a circle centered at the origin (0, 0) and with the radius r = |x0| (cf.
Fig. 4.2f).

iv). All the above observations can be confirmed by the numerical results from

directly simulating the GPE (2.27)−(2.28).
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Figure 4.2 (cont’d): d). Ω = 3/2; e). Ω = 6; f). Ω = π.

4.3.3 For rotating BEC in asymmetric trap

For rotating BEC in an asymmetric trap, i.e. Ω 6= 0 and γx 6= γy, the solutions of

(4.28)−(4.30) can be analytically given for four different cases: (a). |Ω| = γx; (b).

|Ω| = γy; (c). 0 < |Ω| < γx or |Ω| > γy, and (d). γx < |Ω| < γy.

For case (a): |Ω| = γx, we have

Lemma 4.6. If |Ω| = γx < γy, then the solutions of the ODE system (4.28)−(4.30)
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Figure 4.3: Distance between the mass center and the trap center for γx = γy = 1

and different Ω, where ‘*’ is obtained by directly simulating the GPE (2.27)−(2.28).

can be given by

x(t) =
x0

a2

[
(γ2

y + Ω2) + 2Ω2 cos(at)
]
+

Ωy0

a2

[
−(γ2

y − Ω2)t +
2(γ2

y + Ω2)

a
sin(at)

]
,

(4.57)

y(t) =
y0

a2

[
2Ω2 + (γ2

y + Ω2) cos(at)
]− Ωx0

a
sin(at), t ≥ 0, (4.58)

where a =
√

γ2
y + 3Ω2. This implies that the center moves on an ellipse when y0 = 0,

and moves to infinity when y0 6= 0.

Proof. When |Ω| = γx < γy, the ODE system (4.28)−(4.29) reduced to

ẍ(t)− 2Ωẏ(t) = 0, (4.59)

ÿ(t) + 2Ωẋ(t) +
(
γ2

y − Ω2
)
y(t) = 0, t ≥ 0. (4.60)

Differentiating (4.60) with respect to t and noticing (4.59), we obtain

y(3)(t) +
(
γ2

y + 3Ω2
)
ẏ(t) = 0, t ≥ 0. (4.61)

The characteristic equation of (4.61) is

λ3 +
(
γ2

y + 3Ω2
)
λ = 0. (4.62)
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Solving the above equation, we obtain

λ1 = 0, λ2, 3 = ±i
√

γ2
y + 3Ω2 = ±a i. (4.63)

Thus the general solution of y(t) takes the form

y(t) = c1 + c2 cos(at) + c3 sin(at) (4.64)

with c1, c2 and c3 constants. Plugging (4.64) into (4.59) and integrating with respect

to t, we obtain the general solution of x(t) as

x(t) = −
(
γ2

y − Ω2
)
c1

2Ω
t +

2Ω

a
[c2 sin(at)− c3 cos(at)] + c4 (4.65)

with c4 a constant. Taking t = 0 in (4.64) and (4.65), and noticing (4.30), we get

c1 =
2Ω2y0

a2
, c2 =

(
γ2

y + Ω2
)
y0

a2
, c3 = −Ωx0

a
, c4 =

(
γ2

y + Ω2
)
x0

a2
. (4.66)

Thus the solution (4.57)−(4.58) is a combination of (4.64)−(4.66). ¤

Similarly, for case (b): γx < γy = |Ω|, we have

Lemma 4.7. If γx < γy = |Ω|, the solutions of the ODE system (4.28)−(4.30) are

x(t) =
x0

a2

[
2Ω2 + (γ2

x + Ω2) cos(at)
]
+

Ωy0

a
sin(at), t ≥ 0, (4.67)

y(t) =
y0

a2

[
(γ2

x + Ω2) + 2Ω2 cos(at)
]
+

Ωx0

a2

[
(γ2

x − Ω2)t− 2(γ2
x + Ω2)

a
sin(at)

]
,

(4.68)

where a =
√

γ2
x + 3Ω2. Again this implies that the center moves on an ellipse when

x0 = 0, and moves to infinity when x0 6= 0.

Proof. The proof follows the line of the analogous results in Lemma 4.6. ¤

Figure 4.4 displays time evolutions of the center x(t) with Ω = γx = 1 and γy = 2

for different x0. From it and our additional results, we can draw the following con-

clusions for cases (a)−(b):

i). When |Ω| = γx < γy and y0 6= 0, the trajectory of the center is a spiral coil going
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Figure 4.4: Motion of the center x(t) in rotating BEC with Ω = γx = 1 and γy = 2.

Left: trajectory for t ∈ [0, 30]; Right: time evolution of x(t) (solid line) and y(t)

(dash line). a). x0 = (1, 1)T ; b). x0 = (1, 0)T .

to infinity in x-direction (cf. Fig. 4.4a).

ii). When |Ω| = γx < γy and y0 = 0, the trajectory is an ellipse (cf. Fig. 4.4b).

iii). Similarly, when γx < γy = |Ω|, if x0 6= 0, the trajectory is a spiral coil going to

infinity in y-direction, while if x0 = 0, it is an ellipse.

If |Ω| 6= 0, γx or γy, we denote

ζ1 =
(
γ2

x + γ2
y + 2Ω2

)
/2, ζ2 =

√
ζ2
1 − (γ2

x − Ω2)
(
γ2

y − Ω2
)
,

and let a =
√
|ζ1 − ζ2| and b =

√
ζ1 + ζ2. When 0 < |Ω| < γx or |Ω| > γy, we have

0 < ζ2 < ζ1, and get the four roots of the characteristic equation (4.42) as

λ1, 2 = ±i
√

ζ1 − ζ2 = ±a i, λ3, 4 = ±i
√

ζ1 + ζ2 = ±b i. (4.69)

Following the procedure in the proof of Lemma 4.5, after a detailed computation,



4.3 Mass center of a stationary state 66

we can get the solutions of the ODE system (4.28)−(4.30) in this case,

Lemma 4.8. If 0 < |Ω| < γx or |Ω| > γy, the solutions of the ODE system

(4.28)−(4.30) are

x(t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt), (4.70)

y(t) = c5 cos(at) + c6 sin(at) + c7 cos(bt) + c8 sin(bt), t ≥ 0, (4.71)

where

c1 =
(γ2

x + Ω2 − b2) x0

a2 − b2
, c2 =

aΩ (γ2
x − Ω2 + b2) y0

(γ2
x − Ω2) (a2 − b2)

,

c3 = −(γ2
x + Ω2 − a2) x0

a2 − b2
, c4 = −bΩ (γ2

x − Ω2 + a2) y0

(γ2
x − Ω2) (a2 − b2)

,

c5 = −(γ2
x − Ω2 − a2) (γ2

x − Ω2 + b2) y0

2 (γ2
x − Ω2) (a2 − b2)

, c6 =
(γ2

x − Ω2 − a2) (γ2
x + Ω2 − b2) x0

2aΩ (a2 − b2)
,

c7 =
(γ2

x − Ω2 + a2) (γ2
x − Ω2 − b2) y0

2 (γ2
x − Ω2) (a2 − b2)

, c8 = −(γ2
x − Ω2 − b2) (γ2

x + Ω2 − a2) x0

2bΩ (a2 − b2)
.

This implies that the graph of the trajectory is a bounded set.

Similarly, when γx < |Ω| < γy, we have ζ2 > ζ1. Thus the four roots of the

characteristic equation (4.42) are

λ1, 2 = ±
√

ζ2 − ζ1 = ±a, λ3, 4 = ±i
√

ζ1 + ζ2 = ±b i. (4.72)

Following the procedure in the proof of Lemma 4.5, after a detailed computation,

we obtain the solutions of the ODE system (4.28)−(4.30) as

Lemma 4.9. If γx < |Ω| < γy, the solutions of the ODE system (4.28)−(4.30) are

x(t) = d1e
at + d2e

−at + d3 cos(bt) + d4 sin(bt), (4.73)

y(t) = d5e
at + d6e

−at + d7 cos(bt) + d8 sin(bt), t ≥ 0, (4.74)

where

d1 =
1

2
(c1 − c2), d2 = −1

2
(c1 + c2), d3 = c3, d4 = c4, d7 = c7, d8 = c8,

d5 =
(γ2

x − Ω2 + a2)

4aΩ
(c1 − c2), d6 =

(γ2
x − Ω2 + a2)

4aΩ
(c1 + c2)
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Figure 4.5: Motion of the center x(t) in rotating BEC with an asymmetric potential.

Left: trajectory for t ∈ [0, 100]; Right: time evolution of x(t) (solid line) and y(t)

(dash line). a). Ω = 1/2, γx = 1, γy = 2; b). Ω = 4, γx = 1, γy = 2; c). Ω = 1/2,

γx = 1, γy = π; d). Ω = 4, γx = 1, γy = π.
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with c1, . . . , c8 constants defined in Lemma 4.8. From the above solutions, we can

see if c1 = c2, i.e.

y0

x0

=
(γ2

x − Ω2) (γ2
x + Ω2 − b2)

aΩ (γ2
x − Ω2 + b2)

, (4.75)

the center moves in a bounded domain; otherwise, it moves to the infinity exponen-

tially fast and satisfies

lim
t→∞

y(t)

x(t)
=

d5

d1

=
(γ2

x − Ω2 + a2)

2aΩ
. (4.76)

a)
−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

x

y

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

t

x(
t) 

or
 y(

t)

b)
0 5 10 15

x 10
8

−12

−10

−8

−6

−4

−2

0

2
x 10

8

x

y 0 10 20 30 40 50
−2

0

2
x 10

9

t

x(t
) o

r y
(t)

0 10 20 30 40 50
−4

−2

0

2

t

y(t
)/x

(t)

Figure 4.6: Motion of the center x(t) in rotating BEC with Ω = 1.5, 1 = γx and

γy = 2. Left: trajectory for t ∈ [0, 50]; Right: time evolution of x(t) (solid line) and

y(t) (dash line). a). x0 = (1, 1.3424)T ; b). x0 = (1, 1)T .

Figure 4.5 shows time evolutions of the center x(t) with x0 = (1, 1)T for different

γx < γy and Ω satisfying 0 < |Ω| < γx or |Ω| > γy, and Figure 4.6 shows similar

results for 1 = γx < Ω = 1.5 < γy = 2 for different x0. From them, we can draw the

following conclusions for cases (c)−(d):
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i). In case (c), i.e. 0 < |Ω| < γx or |Ω| > γy, the graph of the trajectory is a bounded

set, and generally, the center moves chaotically (cf. Fig. 4.5).

ii). In case (d), i.e. γx < |Ω| < γy, if (x0, y0) satisfy (4.75), the graph of the trajectory

is a bounded set (cf. Fig. 4.6a); otherwise it moves to the infinity exponentially

fast, and after a short time, it almost moves along a straight line with a slope

(γ2
x − Ω2 + a2) /2aΩ (cf. Fig. 4.6b).

4.4 Numerical methods

In this section, we propose several numerical methods for computing the dynamics

of non-rotating and rotating BEC. Due to the potential Vd(x) given in (2.29), the

solution ψ(x, t) of the GPE (2.27) decays to zero exponentially fast when |x| →
∞. Thus in practical computation, we can truncate the problem (2.27)−(2.28)

into a bounded computational domain Ωx with homogeneous Dirichlet boundary

conditions. The more sophisticated boundary condition is an interesting topic that

remains to be examined in the future. Without loss of generality, here we consider

the following problem:

i∂tψ(x, t) = −1

2
∇2ψ + Vd(x, t)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Ωx, t ≥ 0, (4.77)

ψ(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0, (4.78)

ψ(x, 0) = ψ0(x), x ∈ Ωx, (4.79)

where Vd(x, t) = Vd(x)+Wd(x, t) is a time-dependent trapping potential with Vd(x)

given in (2.29) and Wd(x, t) an external driven field. There are two typical external

driven fields used in the physics literature: one is the far-blued detuned Gaussian

laser beam stirrer [30, 24],

Wd(x, t) = Ws(t) exp

[
−

( |x− xs(t)|2
ws/2

)]
, x ∈ Rd (4.80)
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with Ws the height, ws the width, and xs(t) the position of the stirrer; the other

one is the Delta-kicked potential [78],

W1(x, t) = K cos(kx)
∞∑

n=−∞
δ(t− nτ), x ∈ R (4.81)

with K the kick strength, k the wavenumber, τ the time interval between kicks and

δ(τ) the Dirac delta function.

4.4.1 For non-rotating BEC

Here, we present a time-splitting sine pseudospectral (TSSP) method for computing

the dynamics of non-rotating BEC with/without the external driven field. For

simplicity of notation, the method is introduced for the case of one space dimension

(d = 1). Generalizations to high dimensions (d > 1) are straightforward for tensor

product grids and the results remain valid without modifications. In 1D case with

Ω = 0, the problem (4.77)−(4.79) collapses to

i∂tψ = −1

2
∂xxψ + V1(x)ψ + W1(x, t)ψ + β1|ψ|2ψ, a < x < b, t > 0, (4.82)

ψ(a, t) = ψ(b, t) = 0, t ≥ 0, ψ(x, 0) = ψ0(x), a ≤ x ≤ b (4.83)

with |a| and b sufficiently large.

In order to present the TSSP method, we can rewrite the GPE (4.77) into the form

i∂tψ = Aψ + B ψ, (4.84)

where A and B are two operators and they do not need to commute. Choose the

time step ∆t > 0 and spatial mesh size ∆x = (b − a)/J with J an even positive

integer, and define the time sequence tn = n∆t for n = 0, 1, 2, . . . , and grid points

xj := a + j∆x for 0 ≤ j ≤ J . Let ψn
j be the approximation of ψ(xj, tn) and Ψn be

the solution vector with components ψn
j .
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Fourth-order TSSP for GPE without external driven field

When W1(x, t) ≡ 0, i.e. without the external driven field, the GPE (4.82) can be

written in the form of (4.84) with

Aψ = V1(x)ψ(x, t) + β1|ψ(x, t)|2ψ(x, t), Bψ = −1

2
∂xxψ(x, t). (4.85)

Thus the key for an efficient implementation of time-splitting is to efficiently solve

the following two subproblems:

i∂tψ(x, t) = Bψ = −1

2
∂xxψ, (4.86)

and

i∂tψ(x, t) = Aψ = V1(x)ψ(x, t) + β1|ψ(x, t)|2ψ(x, t). (4.87)

Equation (4.86) can be discretized in space by the sine pseudospectral method and

integrated in time exactly. For t ∈ [tn, tn+1], the ODE (4.87) leaves |ψ| invariant in

time t [18, 19] and thus becomes

iψt(x, t) = V1(x)ψ(x, t) + β1|ψ(x, tn)|2ψ(x, t), tn ≤ t ≤ tn+1, (4.88)

which can be integrated exactly.

From time t = tn to t = tn+1, we combine the splitting steps via the fourth-order

split-step method [136, 64, 21] and obtain the fourth-order time-splitting sine pseu-

dospectral (TSSP4) method for the problem (4.82)−(4.83). The detailed method is

given by

ψ
(1)
j = e−i2w1∆t(V1(xj)+β1|ψn

j |2) ψn
j , ψ

(2)
j =

J−1∑

l=1

e−iw2µ2
l ∆t

(
ψ̂(1)

)
l
sin(µl(xj − a)),

ψ
(3)
j = e−i2w3∆t(V1(xj)+β1|ψ(2)

j |2) ψ
(2)
j , ψ

(4)
j =

J−1∑

l=1

e−iw4µ2
l ∆t

(
ψ̂(3)

)
l
sin(µl(xj − a)),

ψ
(5)
j = e−i2w3∆t(V1(xj)+β1|ψ(4)

j |2) ψ
(4)
j , ψ

(6)
j =

J−1∑

l=1

e−iw2µ2
l ∆t

(
ψ̂(5)

)
l

sin(µl(xj − a)),

ψn+1
j = e−i2w1∆t(V1(xj)+β1|ψ(6)

j |2) ψ
(6)
j , 1 ≤ j ≤ J − 1, (4.89)
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where Ûl, the sine-transform coefficients of a complex vector U = (U0, U1, · · · , UJ)

with U0 = UJ = 0, are defined as

µl =
πl

b− a
, Ûl =

2

J

J−1∑
j=1

Uj sin(µl(xj − a)), 1 ≤ l ≤ J − 1, (4.90)

and the constants w1, w2, w3 and w4 are [64, 21]

w1 = 0.33780 17979 89914 40851, w2 = 0.67560 35959 79828 81702,

w3 = −0.08780 17979 89914 40851, w4 = −0.85120 71979 59657 63405.

The initial data is discretized as

ψ0
j = ψ(xj, 0) = ψ0(xj), 0 ≤ j ≤ J. (4.91)

Note that the only time discretization error of TSSP4 is the splitting error, which

is fourth order in ∆t for any fixed mesh size ∆x > 0. This scheme is explicit,

time reversible just as the initial value problem (IVP) for the GPE. Also, a main

advantage of the time-splitting method is its time-transverse invariance, just as it

holds for the GPE itself. If a constant α is added to the potential V1(x), then

the discrete wave functions ψn+1
j obtained from TSSP4 is multiplied by the phase

factor e−iα(n+1)∆t, which leaves the discrete quadratic observables unchanged. This

property does not hold for finite difference schemes [122, 32, 129].

Second-order TSSP for GPE with external driven field

When W1(x, t) 6= 0, i.e. with an external driven field, the GPE (4.82) can be

similarly rewritten into the form (4.84) with

Aψ = −1

2
∂xxψ(x, t),

Bψ = V1(x)ψ(x, t) + W1(x, t)ψ(x, t) + β1|ψ(x, t)|2ψ(x, t). (4.92)

As the external driven field could be very complicated, e.g. the Delta-function [78],

here we only use a second-order split-step scheme in time discretization [126, 24].
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More precisely, from time t = tn to t = tn+1, we proceed as follows:

ψ
(1)
j =

J−1∑

l=1

e−iµ2
l ∆t/4

(
ψ̂n

)
l
sin(µl(xj − a)),

ψ
(2)
j = ψ

(1)
j exp

[
−i∆t

(
V1(xj) + β1

∣∣ψn
j

∣∣2
)
− i

∫ tn+1

tn

W1(xj, t) dt

]
,

ψn+1
j =

J−1∑

l=1

e−iµ2
l ∆t/4

(
ψ̂(2)

)
l
sin(µl(xj − a)), 1 ≤ j ≤ J − 1. (4.93)

Remark 4.1. If the integral in (4.93) could not be integrated analytically, we can

use numerical quadrature to evaluate it, e.g.

∫ tn+1

tn

W1(xj, t) dt ≈ ∆t

6
[W1(xj, tn) + 4W1(xj, tn + ∆t/2) + W1(xj, tn+1)] .

Let U = (U0, U1, · · · , UJ)T be a complex vector with U0 = UJ = 0, and ‖ · ‖L2 be

the usual discrete L2-norm on the interval (a, b), i.e.

‖U‖L2 =

√√√√b− a

J

J−1∑
j=1

|Uj|2. (4.94)

For the stability of the time-splitting pseudospectral approximations TSSP4 (4.89)

and the second-order scheme (4.93), we have the following lemma:

Lemma 4.10. The fourth-order time-splitting sine pseudospectral scheme (TSSP4)

(4.89) and the second-order scheme (4.93) are unconditionally stable. In fact, for

every mesh size ∆x > 0 and time step ∆t > 0,

‖Ψn‖L2 = ‖Ψ0‖L2 = ‖ψ(x, 0)‖L2 , n = 1, 2, · · · (4.95)

Proof. The proof follows the line of the analogous results for the linear Schrödinger

equation by time-splitting Fourier pseudospectral approximation [18, 19, 15]. ¤

Another important issue is how to choose mesh size ∆x and time step ∆t in the

strongly repulsive interacting regime or semiclassical regime, i.e. βd À 1, in order

to get“correct” physical observables. As introduced in Section 2.6, in the semiclas-

sical regime we can rescale the GPE (2.27) into the form (2.41). Then similar as
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demonstrated in [18, 19], the admissible meshing strategy of TSSP4 for the GPE

the strongly repulsive interacting regime is

∆x = O(ε) = O
(
1/β

2/(d+2)
d

)
, ∆t = O(ε) = O

(
1/β

2/(d+2)
d

)
, d = 1, 2, 3. (4.96)

4.4.2 For rotating BEC

As discussed above, the TSSP method is very efficient for computing the dynamics

of non-rotating BEC. However, due to the appearance of the angular momentum

rotation term in the GPE, it can no longer be directly used for rotating BEC. In

order to simulate the dynamics of rotating BEC, here we proposed another two

efficient numerical methods. For simplicity, the methods are introduced for 2D case,

and generalization to 3D is straightforard.

If we consider the damping effect in rotating BEC, the GPE (4.77)−(4.79) in 2D

case can be written as

(i− λ)∂tψ = −1

2
∇2ψ + V2(x, t)ψ + β2|ψ|2ψ − ΩLzψ, x ∈ Ωx, t ≥ 0, (4.97)

ψ(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0, (4.98)

ψ(x, 0) = ψ0(x), x ∈ Ωx, (4.99)

where λ is the damping parameter and Ωx is the 2D bounded computational domain.

Time-splitting type method

To develop this method, we use the polar coordinate in 2D, i.e. Ωx = {(x, y) |
r =

√
x2 + y2 < R}, and respectively the cylindrical coordinate in 3D, i.e. Ωx =

{(x, y, z) | r =
√

x2 + y2 < R, e < z < f}, with R, |e| and f sufficiently large.

Choose a time step size ∆t > 0. For n = 0, 1, 2, · · · , from time t = tn = n∆t to

t = tn+1 = tn + ∆t, the GPE (4.97) is solved in two splitting steps. One first solves

(i− λ) ∂tψ(x, t) = V2(x, t)ψ + β2|ψ|2ψ (4.100)
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for the time step of length ∆t, followed by solving

(i− λ) ∂tψ(x, t) = −1

2
∇2ψ − ΩLzψ (4.101)

for the same time step. For t ∈ [tn, tn+1], dividing (4.100) by (i− λ), multiplying it

by ψ∗(x, t) and adding to its complex conjugate, we obtain the following ODE for

ρ(x, t) = |ψ(x, t)|2:

∂tρ(x, t) = −η0

[
V2(x, t)ρ(x, t) + β2ρ

2(x, t)
]
, x ∈ Ωx, tn ≤ t ≤ tn+1, (4.102)

where η0 = 2λ/(1 + λ2). The ODE for the phase S(x, t) (determined as ψ =
√

ρeiS)

is given by

∂tS(x, t) = − 1

1 + λ2
[V2(x, t) + β2ρ(x, t)] , x ∈ Ωx, tn ≤ t ≤ tn+1. (4.103)

Typically if λ 6= 0, the above ODE is equivalent to

∂tS =
1

2λ
∂t ln ρ, x ∈ Ωx, tn ≤ t ≤ tn+1. (4.104)

Denoting V n
2 (x, t) =

∫ t

tn
V2(x, τ)dτ , we can solve (4.102) and get

ρ(x, t) =
ρ(x, tn) exp[−η0V

n
2 (x, t)]

1 + η0β2ρ(x, tn)
∫ t

tn
exp[−η0V n

2 (x, τ)] dτ
. (4.105)

Consequently, in the special case V2(x, t) = V2(x), the exact analytical solutions of

(4.102) can be given by

ρ(x, t) =





ρ(x, tn), λ = 0,

ρ(x, tn)

1 + η0β2(t− tn)ρ(x, tn)
, λ 6= 0, V2(x) = 0,

V2(x)ρ(x, tn) exp[−η0V2(x)(t− tn)]

V2(x) + β2 [1− exp[−η0V2(x)(t− tn)]] ρ(x, tn)
, λ 6= 0, V2(x) 6= 0.

Plugging (4.105) into (4.100), we obtain, for t ∈ [tn, tn+1],

ψ(x, t) = ψ(x, tn)
√

Un(x, t) exp

[
−η0i

2λ

(
V n

2 (x, t) + β2

∫ t

tn

ρ(x, τ)dτ

)]
, (4.106)
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where

Un(x, t) =
exp[−η0V

n
2 (x, t)]

1 + η0β2|ψ(x, tn)|2 ∫ t

tn
exp[−η0V n

2 (x, τ)] dτ
. (4.107)

Again, with V2(x, t) = V2(x), we can integrate (4.106) exactly to get

ψ(x, t) = ψ(x, tn)





exp [−i(β2|ψ(x, tn)|2 + V2(x))(t− tn)] , λ = 0,

√
Ûn(x, t) exp

[
i

2λ
ln Ûn(x, t)

]
, λ 6= 0;

(4.108)

where

Ûn(x, t) =





1

1 + η0β2(t− tn)|ψ(x, tn)|2 , V2(x) = 0,

V2(x) exp[−η0V2(x)(t− tn)]

V2(x) + β2 [1− exp[−η0V2(x)(t− tn)]] |ψ(x, tn)|2 , V2(x) 6= 0.

Remark 4.2. If the function V n
2 (x, t) as well as other integrals in (4.105), (4.106),

and (4.107) can not be evaluated analytically, we can use numerical quadrature to

approximate them. See details in Remark 4.1.

To solve (4.101), we try to formulate it in a variable separable form by using the polar

coordinate, and then discretize it in θ-direction by Fourier pseudospectral method,

in r-direction by finite difference method (FDM) and in time by the Crank-Nicolson

(C-N) scheme. Assume that

ψ(r, θ, t) =

L/2−1∑

l=−L/2

ψ̂l(r, t) eilθ, (4.109)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the lth

mode. Plugging (4.109) into (4.101) and noticing the orthogonality of the Fourier

functions, we obtain, for 0 < r < R and −L
2
≤ l ≤ L

2
− 1,

(i− λ) ∂tψ̂l(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
+

(
l2

2r2
− lΩ

)
ψ̂l(r, t), (4.110)

ψ̂l(R, t) = 0 (for all l), ψ̂l(0, t) = 0 (for l 6= 0). (4.111)
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Choose a mesh size ∆r = 2R/(2J + 1) with J > 0 an integer, define shifted grid

points rj = (j − 1/2)∆r for 0 ≤ j ≤ J + 1, and let ψ̂l,j(t) be the approximation of

ψ̂l(rj, t). A second-order finite difference discretization for (4.110)−(4.111) in space

can be given by [89, 88, 14]

(i− λ)
dψ̂l,j(t)

dt
= −rj+1/2 ψ̂l,j+1(t)− 2rj ψ̂l,j(t) + rj−1/2 ψ̂l,j−1(t)

2 (∆r)2 rj

+

(
l2

2r2
j

− lΩ

)
ψ̂l,j(t), tn ≤ t ≤ tn+1, 1 ≤ j ≤ J (4.112)

with essential boundary conditions:

ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,J+1(t) = 0, tn ≤ t ≤ tn+1. (4.113)

The ODE system (4.112)−(4.113) may then be discretized by the C-N scheme.

Although an implicit time discretization is applied for (4.112), the 1D nature of the

problem makes the coefficient matrix a tridiagonal linear system, and thus it can be

solved by fast algorithms with O(J) arithmetic operations.

In practice, we always uses the second-order Strang splitting method [126], i.e. from

time t = tn to t = tn+1: i) evolve (4.100) for half time step ∆t/2 with initial data

given at t = tn; ii) evolve (4.101) for one time step ∆t starting with the new data;

iii) evolve (4.100) for half time step ∆t/2 with the newer data.

For the discretization considered here, the total memory requirement is O(JL) and

the total computational cost per time step is O(JL ln L). Furthermore, following

the similar proofs in [15, 19, 24], the total density can be shown to be conserved in

the discrete level when λ = 0 and to be decreased when λ > 0.

Remark 4.3. As noticed in [89, 88, 14], another way for discretizing (4.110)−(4.111)

in space is to use the fourth-order finite difference method, i.e. for t ∈ [tn, tn+1],

(i− λ)
dψ̂l,j(t)

dt
=

(
l2

2r2
j

− lΩ

)
ψ̂l,j(t)

−−ψ̂l,j+2(t) + 16ψ̂l,j+1(t)− 30ψ̂l,j(t) + 16ψ̂l,j−1(t)− ψ̂l,j−2(t)

24(∆r)2

−−ψ̂l,j+2(t) + 8ψ̂l,j+1(t)− 8ψ̂l,j−1(t) + ψ̂l,j−2(t)

24∆r rj

, 1 ≤ j ≤ J, (4.114)
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(i− λ)
dψ̂l,J+1(t)

dt
=

(
l2

2r2
J+1

− lΩ

)
ψ̂l,J+1(t)

−11ψ̂l,J+2(t)− 20ψ̂l,J+1(t) + 6ψ̂l,J(t) + 4ψ̂l,J−1(t)− ψ̂l,J−2(t)

24(∆r)2

−3ψ̂l,J+2(t) + 10ψ̂l,J+1(t)− 18ψ̂l,J(t) + 6ψ̂l,J−1(t)− ψ̂l,J−2(t)

24∆r rJ+1

, (4.115)

ψ̂l,−1(t) = (−1)lψ̂l,2(t), ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,J+1(t) = 0. (4.116)

Again the ODE system (4.114)−(4.116) may be discretized by the C-N scheme and

only a pentadiagonal linear system is to be solved, which can be done very efficiently

too, i.e. via O(J) arithmetic operations.

Leap-frog Fourier pseudospectral (LFFP) method

Another efficient method for rotating BEC is the leap-frog Fourier pseudospectral

(LFFP) method which adopts the Cartesian coordinate, and thus the 2D computa-

tional domain Ωx = [a, b] × [c, d] with |a|, b, |c| and d sufficiently large. Choose a

time step ∆t > 0 and spatial mesh sizes ∆x = (b− a)/J and ∆y = (d− c)/K with

J and K even positive integers. Denote the grid points as

xj := a + j∆x, 0 ≤ j ≤ J, yk := c + k∆y, 0 ≤ k ≤ K,

and let ψn
j,k be the approximation of ψ(xj, yk, tn).

For n = 1, 2, · · · , from time t = tn−1 = (n − 1)∆t to t = tn+1 = (n + 1)∆t, we

can discretize the GPE (4.97) in space by the Fourier pseudospectral method and

in time by the leap-frog scheme, i.e. for 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ K − 1,

(i− λ)
ψn+1

j,k − ψn−1
j,k

2∆t
= −1

2

(∇2
hψ

n
)∣∣

j,k
+ V2(xj, yk)ψ

n
j,k + β2|ψn

j,k|2ψn
j,k −Ω (Lhψ

n)|j,k ,

(4.117)

where ∇2
h and Lh, the pseudospectral differential operators approximating the op-

erators ∇2 and Lz respectively, are defined in (3.69) and (3.70).
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For n = 1, to compute ψ1
j,k, we apply the modified trapezoidal rule on the interval

[0, t1], i.e.

(i− λ)
ψ

(1)
j,k − ψ0

j,k

∆t
= −1

2

(∇2
hψ

0
)∣∣

j,k
+ V2(xj, yk)ψ

0
j,k + β2

∣∣ψ0
j,k

∣∣2 ψ0
j,k

−Ω
(
Lhψ

0
)∣∣

j,k
,

(i− λ)
ψ

(2)
j,k − ψ

(1)
j,k

∆t
= −1

2

(∇2
hψ

(1)
)∣∣

j,k
+ V2(xj, yk)ψ

(1)
j,k + β2

∣∣∣ψ(1)
j,k

∣∣∣
2

ψ
(1)
j,k

−Ω
(
Lhψ

(1)
)∣∣

j,k
,

ψ1
j,k =

1

2

(
ψ

(1)
j,k + ψ

(2)
j,k

)
, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1. (4.118)

The initial data (4.99) is discretized as

ψ0
j,k = ψ0(xj, yk), 0 ≤ j ≤ J, 0 ≤ k ≤ K. (4.119)

The leap-frog Fourier pseudospectral discretization (4.117)−(4.119) is explicit and

time reversible. The total memory requirement is O(JK) and the total computa-

tional cost per time step is O(JK ln(JK)). Following the standard Von Neumann

analysis, the stability condition is

∆t <
2(∆x)2

π2

[
1 +

(
∆x
∆y

)2
]

+ 2 (∆x)2 maxx∈Ωx

[
π|Ω|

(
|x|
∆x

+ |y|
∆y

)
+ V2(x) + β2|ψ(x, t)|2

] .

Comparing these two methods for rotating BEC, the time-splitting type method

uses the polar coordinate in 2D or cylindrical coordinate in 3D, which makes the

coefficient of the angular momentum rotation term become a constant; the leap-frog

Fourier pseudospectral (LFFP) method adopts the Cartesian coordinate. Both two

methods are time reversible just as the GPE (2.27) does. On the other hand, each

one has its own advantages and disadvantages. The former is unconditionally stable

and of second or fourth-order accuracy in radial direction and spectral accuracy in

other directions of space. It also conserves the total density. The latter is explicit,

of spectral accuracy in all directions of space and easy to program. It is stable



4.5 Numerical results 80

under a stability condition. Due to its fully spectral resolution in space, the LFFP

method may resolve better dynamics of vortex lattices in rotating BEC, especially

in the regimes with strongly repulsive interaction, i.e. βd À 1, and fast rotation, i.e.

|Ω| ≈ min{γx, γy}, where a large number of vortices appear in the condensate and

thus spatial resolution is one of the key issues.

4.5 Numerical results

In this section, we apply our numerical methods to verify the conservation of the

angular momentum expectation and to study the dynamics of condensate widths.

In order to do so, we consider the 2D GPE (2.27)−(2.28) with β2 = 100 and Ω = 0.8.

The initial data (2.28) is the central vortex state (2.39) with index m = 1, which is

computed by setting γx = γy = 1 in (2.29). At time t = 0, we change the external

potential by setting the trapping frequencies γx = γy = 1.5 or γx = 1.2, γy = 1.5.
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Figure 4.7: Time evolution of angular momentum expectation and energy. a). An-

gular momentum expectation 〈Lz〉(t); b). energy Eβ,Ω(ψ).

Figure 4.7 shows time evolutions of the angular momentum expectation 〈Lz〉(t)
and energy Eβ,Ω(ψ). From it, we can see when γx = γy, the angular momentum

expectation 〈Lz〉(t) is conserved very well, which confirms the analytical result in

(4.3). However, if γx 6= γy, 〈Lz〉(t) is no longer conserved. On the other hand,
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Figure 4.8: Time evolution of condensate widths. a). γx = γy = 1.5; solid line:

obtained by solving the 2D GPE (2.27); ∗: obtained from the analytical solution

(4.14); b). γx = 1.2 and γy = 1.5.

the total energy Eβ,Ω is always conserved (cf. Fig. 4.7b), which agrees with the

conservation law in (2.31).

Figure 4.8 presents time evolutions of condensate widths σx(t) and σy(t). Form it,

we can find when γx = γy = 1.5, the condensate widths σx(t) = σy(t) are periodic

functions with period T = 2π/3, i.e. T = π/γx (cf. Fig. 4.8a), which confirms

the results in (4.14). If γx 6= γy, then σx(t) 6= σy(t) and both of them are periodic

functions with a perturbation (cf. Fig. 4.8b). These numerical observations agree

very well with the analytical results in Lemma 4.3.



Chapter 5
Vortex dynamics in Bose-Einstein

condensation

In this chapter, we investigate the vortex dynamics in Bose-Einstein condensation

by applying the numerical methods introduced in Chapter 4. First, the stability

of central vortex states is studied and we find that the central vortex with wind-

ing number |m| = 1 is dynamically stable, and respectively that with |m| > 1 is

unstable. Then under two different initial patterns, the interactions between two

|m| = 1 vortices with like or opposite winding numbers are investigated. Finally,

the dynamics of vortex lattices in an asymmetric potential are also reported, which

again demonstrates the efficiency and high accuracy of our numerical methods.

5.1 Central vortex state

In this section, the central vortex state is introduced for 2D and 3D cases. Central

vortex state is one of the stationary states, and its wave function φ(x) can be written

into a variable separable form. As we mentioned in Section 2.5, in 2D with a radially

symmetric trap, i.e. d = 2 and γx = γy := γr in (2.29), to find the central vortex

82



5.1 Central vortex state 83

state, we can write

φ(x) = φm(x, y) = fm(r)eimθ, x ∈ R2, (5.1)

where m 6= 0 is an integer called as index or winding number and fm(r) is a real-

valued function. Defining µm as the chemical potential corresponding to φm(x) and

inserting (5.1) into the eigenvalue problem (2.33)−(2.34), we can get the following

stationary problem for fm(r):

µmfm(r) =

[
− 1

2r

d

dr

(
r

d

dr

)
+

1

2

(
γ2

rr
2 +

m2

r2

)
+ β2 |fm|2 + mΩ

]
fm(r), (5.2)

fm(0) = 0, lim
r→∞

fm(r) = 0 (5.3)

with the normalization condition

2π

∫ ∞

0

|fm(r)|2 r dr = 1. (5.4)

In order to find the central vortex state (5.1), we can find a real nonnegative function

fm(r) which minimizes the energy functional

Em
β,Ω(f(r)) = Eβ,Ω

(
f(r) eimθ

)

= π

∫ ∞

0

[
|f ′(r)|2 +

(
γ2

rr
2 +

m2

r2

)
f 2(r) + β2|f(r)|4

]
r dr + mΩ

over the set

S0 =

{
f | 2π

∫ ∞

0

|f(r)|2r dr = 1, f(0) = 0, Em
β,Ω(f) < ∞

}
.

Note that the set Sm = {f(r)eimθ | f ∈ S0} is a subset of the unit sphere S given

in (2.36), so fm(r) eimθ is a minimizer of the energy functional Em
β,Ω(f) over the

set Sm ⊂ S. The existence and uniqueness of the nonnegative minimizer for this

minimization problem can be obtained similarly as for the ground state [93]. When

β2 = 0 and Ω = 0, we can construct exactly the central vortex solution φm(x) as

[13]

φm(x) =
γ

1/2
r√
π|m|!r

|m|e−γrr2/2 eimθ, x ∈ R2, m ∈ Z, (5.5)
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Figure 5.1: Numerical solutions of the function fm(r) for different winding numbers.

a)

b)

Figure 5.2: Surface (left) and phase (right) plots of the central vortex states with

different winding numbers m. a). m = 1; b). m = 5.

by solving fm(r) from the eigenvalue problem (5.2)−(5.4).

Figure 5.1 shows the numerical solutions of fm(r) for different winding numbers m

with β2 = 100, Ω = 0 and γr = 1 in (5.2), and Figure 5.2 displays the corresponding

surface and phase plots of the central vortex states with winding number m = 1 and

m = 5. From them, we can see that along a close path around the vortex center,
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there is a 2mπ jump in the phase of φm(x, y) (cf. Fig. 5.2), and for fixed parameters

β2 and γr, when the winding number m increases, the peak of the function fm(r)

decreases (cf. Fig. 5.1), due to the normalization constraint. Let

fm

(
r0
m

)
= αfm

(
r1
m

)
, where fm

(
r1
m

)
= max

r≥0
fm (r) and 0 < α < 1.

Then r0
m satisfying 0 < r0

m < r1
m is called as core size of the central vortex state

φm(x, y). In practice, the constant α is often chosen as α =
√

2/2.

Similarly, in order to find central vortex line states in 3D case with a cylindrically

symmetric trap, i.e. d = 3 and γx = γy := γr in (2.29), we can write

φ(x) = φm(x, y, z) = fm(r, z)eimθ, x ∈ R3, m ∈ Z, (5.6)

where fm(r, z) is a real-valued function. Inserting (5.6) into (2.33)−(2.34), we can

obtain the following eigenvalue problem

µm fm(r, z) =

[
− 1

2r

∂

∂r

(
r

∂

∂r

)
− ∂2

2∂z2
+

1

2

(
γ2

rr
2 +

m2

r2
+ γ2

zz
2

)

+β3|fm|2 + mΩ

]
fm(r, z), 0 ≤ r < ∞, −∞ < z < ∞, (5.7)

fm(0, z) = 0, lim
r→∞

fm(r, z) = 0, −∞ < z < ∞, (5.8)

lim
|z|→∞

fm(r, z) = 0, 0 ≤ r < ∞ (5.9)

with the normalization condition

2π

∫ ∞

−∞

∫ ∞

0

|fm(r, z)|2r drdz = 1. (5.10)

Similar to the 2D case, to find the central vortex line state (5.6), we can find a real

nonnegative function fm(r, z) minimizing the energy functional

Em
β,Ω(f(r, z)) = Eβ,Ω(f(r, z)eimθ)

= π

∫ ∞

−∞

∫ ∞

0

[
|fr|2 + |fz|2 +

(
γ2

rr
2 + γ2

zz
2 +

m2

r2

)
|f |2 + β3|f |4

]
r drdz + mΩ

over the set

S0 =

{
f | 2π

∫ ∞

−∞

∫ ∞

0

|f |2r drdz = 1, f(0, z) = 0, −∞ < z < ∞, Em
β,Ω(f) < ∞

}
.
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The existence and uniqueness of the nonnegative minimizer for this minimization

problem can be obtained similarly as for the ground state [93]. When β3 = 0 and

Ω = 0 in (5.7), we can obtain the exact solution of the central vortex line states

with winding number m [13],

φm(x) =
γ

1/2
r γ

1/4
z

π3/4
√
|m|!r

|m|e−(γrr2+γzz2)/2eimθ, x ∈ R3, m ∈ Z. (5.11)

a) b)

Figure 5.3: Isosurface plots of the central vortex line states in 3D with different

winding numbers. a). m = 1; b). m = 3.

Figure 5.3 presents the isosurface plots of the central vortex line states in 3D cases

with winding number m = 1 and m = 3.

5.2 Stability of central vortex states

In this section, we study the stability of central vortex states by directly simulating

the 2D GPE (2.27)−(2.28). In order to do so, we choose β2 = 100, Ω = 0.8 and

γx = γy = 1 in (2.29). The initial data is taken as the central vortex state in (5.1)

with winding number |m| = 1 or |m| > 1. Notice that similar study was also carried

out for non-rotating BEC by using different numerical methods [75, 30, 77], and

those methods have difficulty in strongly repulsive interacting regime.

From our numerical simulations, we find that if there is no perturbation, the central

vortex states with winding number |m| ≥ 1 are always stable in both rotating and
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non-rotating BEC. In the following part, we introduce a small perturbation on the

external potential to study the vortex stability, that is, when t ∈ [0, π/2], a far-blue

detuned Gaussian laser beam stirrer defined in (4.80) is introduced to perturb the

condensate, and when t > π/2, it is removed. The parameters in (4.80) are chosen

as

(xs(t), ys(t)) ≡ (3, 0), ωs = 1, Ws(t) =





10 sin2(2t), t ∈ [0, 2π],

0, t ≥ π/2.

To quantify the numerical results, we define the quantum hydrodynamic velocity as

u(x, t) = ∇S(x, t) = Im(ψ∗∇ψ)/|ψ|2.

Figures 5.4 and 5.5 show the velocity fields during time evolution of the central

vortex states with winding number m = 1 and m = 2, respectively, and Figure 5.6

displays the time evolution of the energy and angular momentum expectation.

t = 0 t = 5 t = 10

t = 20 t = 40 t = 65

Figure 5.4: Velocity field at different times for the stability study of a central vortex

state with winding number m = 1. Plot domain: [−1, 1]2.

From Figs. 5.4−5.5 and our additional numerical experiments conducted, we can

find that in both rotating and non-rotating BEC, the central vortex states with
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t = 0 t = 1 t = 2

t = 4 t = 8 t = 16

Figure 5.5: Velocity field at different times for the stability study of a central vortex

state with winding number m = 2. Plot domain: [−1, 1]2.

a)
0 2 4 6 8 10

2.5

3

3.5

4

4.5

5

t

E
(t)

m = 1
m = 2

b)
0 2 4 6 8 10

0.8

1

1.2

1.4

1.6

1.8

2

t

〈 L
z〉 (

t)

m = 1
m = 2

Figure 5.6: Time evolution of energy E(t) := Eβ,Ω(ψ(t)) and angular momentum

expectation 〈Lz〉 in the stability study of central vortex states.

winding number m = ±1 are dynamically stable, and respectively those with |m| > 1

are unstable. After a short time, the central vortex initially with winding number

|m| > 1 splits into |m| vortices with winding number +1 if m > 0 and respectively

−1 if m < 0 (cf. Fig. 5.5). These |m| vortices are well overlapped and they would

rotate with respect to each other. Fig. 5.6 suggests that the energy increases and the

angular momentum expectation decreases when t ∈ [0, π/2] due to the appearance
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of the perturber. After removing the stirrer at t = π/2, they are conserved with

time, which again confirms the conservation laws in (2.31) and (4.3).

5.3 Interaction of vortices with m = ±1

Since the central vortex states with winding number |m| = 1 are dynamically stable,

it is of great interest to investigate the interaction between several vortices which

have winding number m = ±1. This is an attractive topic both mathematically and

physically, and so far there are still many open problems about it.

In this section, we study the interaction between two vortices with like or opposite

winding numbers. Due to the property of the central vortex state (5.1), we can

classify the interactions into two patterns:

Pattern I. ψ (x, 0) =

∏N
j=1 φmj

(
x− x0

j

)
∥∥∥∏N

j=1 φmj

(
x− x0

j

)∥∥∥
=

∏N
j=1 φmj

(
x− x0

j , y − y0
j

)
∥∥∥∏N

j=1 φmj

(
x− x0

j , y − y0
j

)∥∥∥
,

Pattern II. ψ(x, 0) =

∑N
j=1 φmj

(
x− x0

j

)
∥∥∥∑N

j=1 φmj

(
x− x0

j

)∥∥∥
=

∑N
j=1 φmj

(
x− x0

j , y − y0
j

)
∥∥∥∑N

j=1 φmj

(
x− x0

j , y − y0
j

)∥∥∥
,

where N is the total number of vortices (in this section we consider N = 2), φmj

is the central vortex state with winding number mj (mj = +1 or −1) and x0
j is

the initial location of the jth vortex. Both of these two interaction patterns are of

interest, and in view of the small core size of a single vortex, in Pattern I the initial

distance between two vortex centers should be small, while in Pattern II it must be

large such that the support of the vortices is not overlapped.

5.3.1 Pattern I

As it is known that the properties of non-interacting and interacting BEC are dis-

tinctly different, thus here we consider the vortex interaction for β2 = 0 and β2 6= 0

separately.
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Case (x0
1, y0

1) m1 (x0
2, y0

2) m2

I (a, 0) m0 (−a, 0) m0

II (a, 0) m0 (−a, 0) −m0

Table 5.1: Initial setups in Pattern I, where m0 = +1 or −1.

Table 5.1 lists the initial setups to be considered, where two vortices are symmetri-

cally located with respect to the trap center (0, 0)T . A radially symmetric potential

is chosen by setting γx = γy := γr = 1 in (2.29). In the following, the numerical

results are reported only for m0 = +1, and those for m0 = −1 are similar and thus

omitted here for brevity.

t = 0

t = 4

t = 1

t = 8

t = 2

t = 60

Figure 5.7: Phase plots of ψ(x, t) at different times in Case I of Pattern I with Ω = 0,

β2 = 0 and a = 1 (‘+’: location of vortex center). Plot domain: [−5, 5]2.

For Case I, i.e. two vortices with the same winding numbers, Figures 5.7 and 5.9

show the phase plots of ψ(x, t) at different times with β2 = 0 and β2 = 100 respec-

tively. Figure 5.8 displays the time evolutions of two vortex centers for different Ω

when β2 = 0, while Figure 5.10 plots the time evolutions of the 1st vortex center,

i.e. x1(t) = −x2(t), when β2 = 100.
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Figure 5.8: Time evolution of two vortex centers in Case I of Pattern I with β2 = 0

and a = 1. Left: trajectory for t ∈ [0, 30] (‘+’: initial location); Right: time

evolution of x1(t) (solid line) and y1(t) (dash line). a). Ω = 0; b). Ω = 1/3; c).

Ω = 1/2; d). Ω = 1.

From Figs. 5.7−5.10, we can draw the following conclusions for the interaction of

two like vortices in Pattern I:

i). During the interaction, two vortices with the same winding numbers do not
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Figure 5.8 (cont’d): e). Ω = 4; f). Ω = 1/π; g). Ω = π.

collide, and they are always symmetrically located with respect to the trap center,

i.e. x1(t) = −x2(t), for any time t ≥ 0.

ii). In non-interacting BEC, i.e. β2 = 0, if Ω is a rational number, i.e. |Ω| = q/p with

q and p positive integers and no common factor, the two vortices rotate periodically

with the same period. If both p and q are odd integers, the period T = pπ, but the

trajectories of two vortex centers are different (cf. Fig. 5.8b&d); otherwise T = 2pπ

and their trajectories are exactly the same (cf. Fig. 5.8c&e). Especially, if Ω = 0,

the two vortices rotate (counter clockwise if m0 = +1, and respectively clockwise if

m0 = −1) with period T = 2π (cf. Fig. 5.7, 5.8a), and their trajectory is an ellipse

which satisfies:

xj(t) = x0
j cos(t), yj(t) = 2x0

j sin(t), t ≥ 0, j = 1, 2. (5.12)
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t = 0

t = 4

t = 1

t = 8

t = 2

t = 16

Figure 5.9: Phase plots of ψ(x, t) at different times in Case I of Pattern I with Ω = 0,

β2 = 100 and a = 1 (‘+’: location of vortex center). Plot domain: [−5, 5]2.

On the other hand, if Ω is an irrational number, the two vortex centers rotate chaot-

ically in a bounded domain (cf. Fig. 5.8f&g).

iii). In interacting BEC, i.e. β2 6= 0, the two vortex centers move chaotically, but

the envelope of their trajectories is a circle centered at the origin (0, 0). If the initial

distance between two vortex centers is fixed, i.e. fixed d0 = |x0
1 − x0

2|, the time evo-

lution of the distance d(t) = |x1(t)−x2(t)| is the same for different Ω. Furthermore,

it is a quasi-periodic function with period T = π (cf. Fig. 5.11).

The interactions of two opposite vortices are more complicated than those of two

like vortices, because in this case not only the parameters β2 and Ω but also the

initial distance between two vortex centers, i.e. d0 = |x0
1 − x0

2| = 2a, play important

roles in the interaction. For simplicity, here we consider the case of Ω = 0 and define

〈Lz〉l(t) =

∫ ∞

−∞

(∫ 0

−∞
ψ∗Lzψ dx

)
dy, t ≥ 0, (5.13)

〈Lz〉r(t) =

∫ ∞

−∞

(∫ ∞

0

ψ∗Lzψ dx

)
dy, t ≥ 0, (5.14)
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Figure 5.10: Time evolution of the 1st vortex center x1(t) in Case I of Pattern I with

β2 = 100 and a = 1. Left: trajectory for t ∈ [0, 80] (‘+’: initial location); Right:

time evolution of x(t) (solid line) and y(t) (dash line). a). Ω = 0; b). Ω = 1/2; c).

Ω = 1; d). Ω = 4.

as the angular momentum expectation of the left and right half-plane respectively.
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Figure 5.10 (cont’d): e). Ω = 1/π; f). Ω = π.
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Figure 5.11: Time evolution of the distance between two vortex centers in Case I of

Pattern I for different Ω with β2 = 100 and a = 1.

Consequently, the total angular momentum expectation of this system can be com-

puted by

〈Lz〉(t) = 〈Lz〉l(t) + 〈Lz〉r(t), t ≥ 0. (5.15)

Figure 5.12 shows the phase plot of ψ(x, t) at different times with β2 = 0 and a = 1,

and Figure 5.13 displays the corresponding time evolution of the angular momentum

expectations. Figures 5.14 and 5.15 plot the time evolutions of two vortex centers
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t = 0

t = 1.7

t = 1.4

t = 3.14

t = 1.57

t = 5

Figure 5.12: Phase plots of ψ(x, t) at different times in Case II of Pattern I with

Ω = 0, β2 = 0 and a = 1 (‘+/-’: location of positive/negative vortex center). Plot

domain: [−4, 4]2.
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Figure 5.13: Time evolution of the angular momentum expectation 〈Lz〉r(t) (dash

line), 〈Lz〉l(t) (dot line) and 〈Lz〉(t) = 〈Lz〉l(t) + 〈Lz〉r(t) (solid line) in Case II of

Pattern I with Ω = 0, β2 = 0 and a = 1.

for β2 = 0 and β2 6= 0, respectively.

From Figs. 5.12−5.14, we can draw the following conclusions for the interaction of

two opposite vortices in Pattern I with Ω = 0 and β2 = 0:
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Figure 5.14: Time evolution of two vortex centers in Case II of Pattern I with Ω = 0

and β2 = 0. Left: trajectory (‘+’: initial location, ‘o’: collision location); Right:

time evolution of x(t) (solid line) and y(t) (dash line). a). a = 0.4; b). a = 0.5; c).

a = 1.

i). There exist two critical initial distances d1 ≈ 0.8 and d2 ≈ 1.1, which determine

the interaction of two vortices.

ii). If the initial distance d0 ≤ d1, the two vortices approach each other and then

collide and annihilate at t = tc < π/2 (cf. Fig. 5.14a).

iii). If d1 < d0 < d2, the two vortices move to each other, and when t = π/2, they

collide and annihilate at the point (0, b)T with b < 0. At the same time, there are

two new vortices generated at this point. Comparing to the old vortex on each (left

or right) half-plane, the new one has an opposite winding number. These two new
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Figure 5.15: Time evolution of two vortex centers in Case II of Pattern I with Ω = 0

and β2 6= 0 (‘+’: initial location, ‘o’: collision location). a). β2 = 1 (left-right:

d0 = 0.8, 1 and 2); b). β2 = 50 (left-right: d0 = 0.8, 1.4 and 2.6)

vortices would move on their own half-planes along the trajectories of the old ones,

and at t = π, they reach the initial locations of the two old vortices, i.e. point

(a, 0)T and (−a, 0)T . Similar to the old ones, they would move to each other and

collide and annihilate at the point (0,−b)T when t = 3π/2 (cf. Fig. 5.14b). Then

two newer vortices are generated and they repeat the similar process of the older

ones.

iv). If d0 ≥ d2, the two vortices move far away from each other while drifting

sideways, and do not collide. When t = π/2, each of them collides with the external

potential and annihilates there, and meanwhile a new vortex with opposite winding

number appears at the same location (cf. Fig. 5.12). Similar to the vortices in

iii), the new vortices would move back to the initial locations of the old ones along

their trajectories, and then the similar process is repeated. In this case, both the

angular momentum expectation 〈Lz〉l(t) and 〈Lz〉r(t) evolve periodically with period

T = 2π, but the total angular momentum expectation 〈Lz〉(t) is conserved for any
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time t ≥ 0 (cf. Fig. 5.13).

v). Furthermore, when d0 > d1, there are always two opposite vortices in the

condensate. The life time of any pair of opposite vortices is T = π, except for that

of the initial two vortices, which is T = π/2.

Similarly, from Fig. 5.15 and our additional results (omitted here for brevity), we

can draw the following conclusions for the interaction of two opposite vortices in

Pattern I with Ω = 0 and β2 6= 0:

i). The total angular momentum expectation of this system is always conserved, i.e.

〈Lz〉(t) ≡ 〈Lz〉(0) for any time t ≥ 0.

ii). When the initial distance d0 is small, the two vortices move to each other, and

then collide and annihilate at a critical time tc (cf. Fig. 5.15), but after a short

time, one or more pairs of opposite vortices would be generated in the condensate.

iii). When the initial distance d0 is large, the interaction is more complicated, which

depends on the magnitude of β2 (cf. Fig. 5.15). During the interaction, many pairs

of opposite vortices would be generated and annihilate frequently.

5.3.2 Pattern II

Here, we also consider the interactions of two vortices for β2 = 0 and β2 6= 0

separately. As we mentioned, in this pattern, the initial distance between two vortex

centers should be large, i.e. no overlap between two vortex cores. The initial setup

is shown in Table 5.2, and the external potential is given in (2.29) with γx = γy :=

γr = 1. Similarly, here we only consider m0 = +1, and the results for m0 = −1 are

similar.

Case (x0
1, y0

1) m1 (x0
2, y0

2) m2

I (a, a) m0 (−a, −a) m0

II (a, a) m0 (−a, −a) −m0

Table 5.2: Initial setups in Pattern II, where m0 = +1 or −1.
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Figure 5.16: Surface plots of |ψ(x, t)|2 at different times in Case I of Pattern II,

where β2 = 0, Ω = 1 and a = 5.

Figure 5.17: Surface plots of |ψ(x, t)|2 at different times in Case I of Pattern II,

where β2 = 100, Ω = 0 and a = 5.
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For Case I, Figure 5.16 shows the surface plots of |ψ(x, t)|2 at different times with

β2 = 0 and Ω = 1, while Figure 5.17 displays the similar results with β2 = 100 and

Ω = 0.

From them and additional numerical experiments conducted, we can draw the fol-

lowing conclusions for the interaction of two vortices in Pattern II:

i). For fixed parameters β2, Ω and a, the interactions in Case I and Case II are

exactly the same, and the two like or opposite vortices would collide during the

interaction.

ii). In non-interacting BEC, i.e. β2 = 0, after collision, two vortices would separate

and recover their initial shapes completely (cf. Fig. 5.16), and the motion of each

vortex center is governed by the ODE system (4.28)−(4.30).

iii). In interacting BEC, i.e. β2 6= 0, there is a critical time tc, and when t ≤ tc, the

two vortices can separate after collision, but when t > tc, they do not separate and

turn into a chaos (cf. Fig. 5.17).

5.4 Dynamics of vortex lattice

In this section, we study the dynamics of vortex lattices by imposing a small per-

turbation on the external potential (2.29). The initial data is the stationary state

solution of rotating BEC with β2 = 1000, Ω = 0.9 and γx = γy = 1. For t ≥ 0, we

introduce a perturber on the external potential (2.29), which is defined as

W (x, t) =
ε

2
γ2

r

[
(x2 − y2) cos (2ωt) + 2xy sin (2ωt)

]
, x ∈ R2, t ≥ 0,

where γr := γx = γy = 1, and ε and ω are positive constants. This implies that the

total potential V (x, t) is

V (x, t) =
1

2
γ2

r

[
(1 + ε)X2(t) + (1− ε)Y 2(t)

]

with X(t) = x cos(ωt) + y sin(ωt) and Y (t) = y cos(ωt)− x sin(ωt).

Figure 5.18 shows the contour plots of |ψ(x, t)|2 at different times, where the pa-

rameters are chosen as ε = 0.35 and ω = 0.75. From it, we can see that initially
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t = 5 t = 7 t = 9.5

Figure 5.18: Contour plots of |ψ(x, t)|2 at different times for the dynamics of a

vortex lattice. Plot domain: [−12, 12]2.

there are 45 vortices in the lattice and during the time evolution, the number of

vortices is preserved. Due to the angular momentum term and anisotropic external

stirrer W (x, t), the lattice rotates to form different patterns. Our numerical results

can be compared with the experimental observations in [57], where the anisotropic

compression of the vortex lattices was observed due to the dynamic distortion of the

trap potentials.



Chapter 6
Two-component Bose-Einstein

condensation

In this chapter, we extend our investigation on single-component BEC to two-

component one. Starting from the three-dimensional (3D) coupled Gross-Pitaevskii

equations (CGPEs) with an angular momentum rotation term and an external driven

field, we rescale them to obtain a dimensionless model, and further reduce them to

the single GPE in certain limiting regime of particle numbers. By applying the

BFFP method introduced in Chapter 3, the ground states of two-component rotat-

ing BEC are numerically studied for different experiment setups. Some dynamical

laws are also derived for the density, condensate widths, angular momentum ex-

pectation and other important quantities in the dynamics of two-component BEC.

Finally, an efficient numerical method is proposed for computing its dynamics.

6.1 Coupled Gross-Pitaevskii equations

At temperatures T much smaller than the critical temperature Tc [90], in the rotating

frame, a two-component BEC with an external driven field can be well described by

two self-consistent nonlinear Schrödinger equations (NLSEs), also known as coupled

103
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Gross-Pitaevskii equations (CGPEs) [113, 85, 11, 86],

i~
∂ψj(x, t)

∂t
=

[
− ~

2

2m
∇2 + Vj(x)− ΩLz +

2∑

l=1

Ujl|ψl|2
]

ψj − λ~ψkj
, (6.1)

where ψj(x, t) denotes the macroscopic wave function of the jth (j = 1, 2) com-

ponent, m is the atomic mass (here we assume that the atomic mass of the two

components is the same), Ω is the angular velocity of the rotating laser beam, Lz

defined in (2.11) is the z-component of the angular momentum and λ > 0 is the Rabi

frequency describing the strength of the external driven field. Vj(x) is the external

trapping potential acting on the jth component, and if the harmonic potential is

considered, it takes the form

Vj(x) =
m

2

(
ω2

x,j x2 + ω2
y,j y2 + ω2

z,j z2
)
, j = 1, 2, (6.2)

where ωx,j, ωy,j and ωz,j are the trapping frequencies of the jth component in x-, y-

and z-direction, respectively. Without loss of generality, in the following we assume

that ωx,1 = min1≤j≤2{ωx,j, ωy,j, ωz,j}. The interaction of particles is described by

Ujl = 4π~2ajl/m, where ajl = alj is the s-wave scattering length between the jth

and lth component (positive for a repulsive interaction and negative for an attractive

interaction). The integer kj is chosen as

kj =





2, j = 1,

1, j = 2.
(6.3)

It is necessary to ensure that the wave functions are properly normalized. Especially,

we require

∫

R3

(|ψ1(x, t)|2 + |ψ2(x, t)|2) dx = N = N0
1 + N0

2 , t ≥ 0, (6.4)

where

N0
j =

∫

R3

|ψj(x, 0)|2dx, j = 1, 2, (6.5)

is the particle number of the jth component at time t = 0, and N is the total particle

number in the condensate.
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6.1.1 Dimensionless CGPEs

In order to scale the CGPEs (6.1), we introduce

t → ωx,1 t, x → a0x, ψj →
√

N

a
3/2
0

ψj, Ω → ωx,1 Ω, λ → ωx,1 λ (6.6)

with 1/ωx,1 and a0 =
√
~/mωx,1 being the dimensionless time unit and length

unit, respectively. Inserting (6.6) into (6.1), we obtain the following dimensionless

CGPEs:

i
∂ψj(x, t)

∂t
=

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑

l=1

βjl|ψl|2
]

ψj − λψkj
, j = 1, 2, (6.7)

where the dimensionless potential is

Vj(x) =
1

2

(
γ2

x,j x2 + γ2
y,j y2 + γ2

z,j z2
)
, j = 1, 2 (6.8)

with γx,j = ωx,j/ωx,1, γy,j = ωy,j/ωx,1 and γz,j = ωz,j/ωx,1, and the dimensionless

angular momentum rotation term becomes Lz = −i(x∂y − y∂x). The strength of

particle interactions is characterized by

βjl = βlj =
mUjlN

~2a0

=
4πNajl

a0

, j, l = 1, 2. (6.9)

Similar to the single-component BEC, in the limiting regime,

ωx,j ≈ ωy,j ≈ ωx,1, ωz,j À ωx,1 ⇐⇒ γx,j ≈ γy,j ≈ 1, γz,j À 1, j = 1, 2,

the 3D CGPEs (6.7) can be reduced to 2D CGPEs with x = (x, y)T [11, 141]. Here

we write the d-dimensional (d = 2, 3) CGPEs into a unified form,

i
∂ψj(x, t)

∂t
=

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑

l=1

βj l|ψl|2
]

ψj − λψkj
, t ≥ 0, (6.10)

ψj(x, 0) = ψ0
j (x), x ∈ Rd, (6.11)

where the initial data are normalized as

‖ψ0
1‖2 + ‖ψ0

2‖2 :=

∫

Rd

(|ψ0
1(x)|2 + |ψ0

2(x)|2) dx =
N0

1

N
+

N0
2

N
= 1, (6.12)
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and the external potentials are given as

Vj(x) =





1
2

(
γ2

x,j x2 + γ2
y,j y2

)
, d = 2,

1
2

(
γ2

x,j x2 + γ2
y,j y2 + γ2

z,j z2
)
, d = 3,

j = 1, 2. (6.13)

The dimensionless CGPEs (6.10) conserve the total density

N(t) = N1(t) + N2(t) ≡ ‖ψ0
1‖2 + ‖ψ0

2‖2 = 1, t ≥ 0 (6.14)

with

Nj(t) = ‖ψ(·, t)‖2 :=

∫

Rd

|ψj(x, t)|2dx, t ≥ 0, j = 1, 2, (6.15)

and the energy

E(ψ1, ψ2) =

∫

Rd

[
2∑

j=1

(
1

2
|∇ψj|2 + Vj(x)|ψj|2 − ΩRe

(
ψ∗j Lzψj

)

+
2∑

l=1

βjl

2
|ψj|2|ψl|2

)
− 2λRe(ψ∗1ψ2)

]
dx = E

(
ψ0

1, ψ
0
2

)
, t ≥ 0. (6.16)

6.1.2 Reduction to single GPE when λ = 0

If there is no external driven field, i.e. λ = 0, the CGPEs (6.10) become

i
∂ψj(x, t)

∂t
=

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑

l=1

βjl|ψl|2
]

ψj, j = 1, 2. (6.17)

The CGPEs (6.17) are time reversible, time transverse invariant. The density of

each component is conserved, i.e.

Nj(t) = ‖ψj(·, t)‖2 ≡ ‖ψj(·, 0)‖2 =
N0

j

N
, t ≥ 0, j = 1, 2. (6.18)

Furthermore, if the initial particle numbers N0
1 and N0

2 (w.l.o.g., assuming that

N0
2 ≥ N0

1 ), satisfy N0
2 À N0

1 , i.e. N0
1 = o(N) and N0

2 = O(N) when N À 1, then

we have

N1(t) =
N0

1

N
:= ε ¿ 1, N2(t) =

N0
2

N
:= 1− ε ≈ 1, t ≥ 0. (6.19)
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These imply that the effect of the first component is insignificant and the original

two-component BEC is dominated by the second component. Formally, we can drop

the first component from this system and get a single-component condensate, and

in this case the CGPEs (6.17) are reduced to

i
∂ψ(x, t)

∂t
=

[
−1

2
∇2 + V (x) + β|ψ|2 − ΩLz

]
ψ, t ≥ 0, (6.20)

by setting ψ(x, t) =
√

N/N0
2 ψ2(x, t), V (x) = V2(x) and β = N0

2 β22/N ≈ β22. The

GPE (6.20) conserves the normalization of the wave function

‖ψ(·, t)‖2 ≡ ‖ψ(·, 0)‖2 =

∫

Rd

N

N0
2

|ψ2(x, 0)|2dx =
N

N0
2

N0
2

N
= 1, t ≥ 0, (6.21)

and the energy (2.31).

6.1.3 Semiclassical scaling

Let βmax = max{β11, β12, β22}. If βmax À 1, i.e. in the strongly repulsive interacting

regime, under the normalization (6.14), we can introduce a semiclassical scaling for

the CGPEs (6.10) by choosing

x = ε−1/2x, ψε
j = εd/4ψj, ε = β−2/(d+2)

max . (6.22)

Substituting (6.22) into (6.10) gives the following CGPEs:

iε
∂ψε

j (x, t)

∂t
=

[
−ε2

2
∇2 + Vj(x)− εΩLz +

2∑

l=1

αjl|ψε
l |2

]
ψε

j − ελψε
kj

, (6.23)

where αjl = βjl/βmax = O(1) (or o(1)). In this case, the energy functional Eε(ψε
1, ψ

ε
2)

is defined as

Eε(ψε
1, ψ

ε
2) =

∫

Rd

[
2∑

j=1

(
ε2

2
|∇ψε

j |2 + Vj(x)|ψε
j |2 − εΩRe

(
(ψε

j )
∗Lzψ

ε
j

)

+
2∑

l=1

αjl

2
|ψε

j |2|ψε
l |2

)
− 2ελRe ((ψε

1)
∗ψε

2)

]
dx = O(1), t ≥ 0, (6.24)
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by assuming that ψε
j (j = 1, 2) is ε-oscillatory and “sufficiently” integrable such that

all terms have O(1)-integral. Then the leading asymptotics of the energy functional

E(ψ1, ψ2) in (6.16) can be given by

E(ψ1, ψ2) = ε−1Eε(ψε
1, ψ

ε
2) = O(ε−1) = O

(
β2/(d+2)

max

)
. (6.25)

If λ = 0 and 0 < ε ¿ 1 in (6.23), we can set

ψε
j (x, t) =

√
ρε

j(x, t) exp

(
i

ε
Sε

j (x, t)

)
, j = 1, 2, (6.26)

where ρε
j = |ψε

j |2 and Sε
j = ε arg

(
ψε

j

)
. Inserting (6.26) into (6.23) and collecting the

real and imaginary parts, we can get the transport equations for the density ρε
j and

the Hamilton-Jacobi equations for the phase Sε
j :

∂tρ
ε
j + div

(
ρε

j∇Sε
j

)
+ ΩL̂zρ

ε
j = 0, (6.27)

∂tS
ε
j +

1

2
|∇Sε

j |2 + Vj(x) +
2∑

l=1

αjlρ
ε
l =

ε2

2
√

ρε
j

∇2
√

ρε
j , j = 1, 2, (6.28)

where the operator L̂z = (x∂y − y∂x). Furthermore, by defining the current density

Jε
j(x, t) = ρε

j∇Sε
j = ε Im

[(
ψε

j (x, t)
)∗∇ψε

j (x, t)
]
, j = 1, 2, (6.29)

we can rewrite (6.27)−(6.28) as

∂tρ
ε
j + divJε

j + ΩL̂zρ
ε
j = 0, j = 1, 2, (6.30)

∂tJ
ε
j + div

(
Jε

j ⊗ Jε
j

ρε
j

)
+ ρε

j∇Vj(x) +∇Pj (ρε
1, ρ

ε
2)

+Ω
(
L̂zI + G

)
Jε

j =
ε2

4
∇ (

ρε
j∇2 ln ρε

j

)
, (6.31)

where G is the symplectic matrix given in (2.54) and the pressure

Pj (ρε
1, ρ

ε
2) =

1

2

2∑

l=1

αjl ρ
ε
j ρε

l , j = 1, 2.

Let ε → 0+ in (6.27)−(6.28) and set ρ0
j = limε→0+ ρε

j and S0
j = limε→0+ Sε

j . Then we

can formally get

∂tρ
0
j + div

(
ρ0

j∇S0
j

)
+ ΩL̂zρ

0
j = 0, (6.32)

∂tS
0
j +

1

2

∣∣∇S0
j

∣∣2 + Vj(x) +
2∑

l=1

αj lρ
0
l = 0, j = 1, 2. (6.33)
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Similarly, letting ε → 0+ in (6.30)−(6.31), formally we can get the following Euler

system coupling through the pressures:

∂tρ
0
j + divJ0

j + ΩL̂zρ
0
j = 0, j = 1, 2, (6.34)

∂tJ
0
j + div

(
J0

j ⊗ J0
j

ρ0
j

)
+ ρ0

j∇Vj(x) +∇Pj

(
ρ0

1, ρ
0
2

)
+ Ω

(
L̂zI + G

)
J0

j = 0, (6.35)

where J0
j = limε→0+ Jε

j = ρ0
j∇S0

j . The system (6.34)−(6.35) is a coupled isotropic

Euler system with quadratic pressure-density constitutive relations in the rotational

frame.

6.2 Ground state

In this section, we investigate the ground state of rotating two-component BEC by

considering the CGPEs (6.17), i.e. without the external driven field. To find the

stationary solution, we write

ψj(x, t) = e−iµjtφj(x), j = 1, 2, (6.36)

where φj is a function independent of time. Substituting (6.36) into (6.17) gives the

following equations for (µj, φj):

µjφj(x) = −1

2
∇2φj + Vj(x)φj − ΩLzφj +

2∑

l=1

βjl|φl|2φj, x ∈ Rd (6.37)

with the normalization condition

∫

Rd

|φj(x)|2 dx =
N0

j

N
, j = 1, 2. (6.38)

This is a nonlinear eigenvalue problem under the constraint (6.38), and the eigen-

values µj = µj(φ1, φ2) can be computed by

µj(φ1, φ2) =
N

N0
j

∫

Rd

[
1

2
|∇φj|2 + Vj(x)|φj|2 − ΩRe

(
φ∗jLzφj

)
+

2∑

l=1

βjl|φj|2|φl|2
]

dx

=
N

N0
j

Ej(φ1, φ2) +
N

2N0
j

∫

Rd

2∑

l=1

βjl|φj|2|φl|2 dx, j = 1, 2.
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It is easy to see that critical points of the energy functional E(φ1, φ2) under the

constraint (6.38) are eigenfunctions of the nonlinear eigenvalue problem (6.37) under

the constraint (6.38) and vice versa. In fact, (6.37) can be viewed as the Euler-

Lagrange equations of the energy functional E(φ1, φ2) under the constraint (6.38).

The ground state solution of two-component BEC can be found by minimizing the

energy functional under the constraint (6.38), i.e.

Find (Ug = (µg,1, µg,2), Φg = (φg,1, φg,2) ∈ U), such that

Eg = E(Φg) = min
Φ∈U

E(Φ), µg,j = µj(Φg), j = 1, 2, (6.39)

where the set U is defined as

U =

{
Φ = (φ1, φ2) | E(Φ) < ∞,

∫

Rd

|φj(x)|2 dx =
N0

j

N
, j = 1, 2

}
.

When βjl ≥ 0 (j, l = 1, 2), for non-rotating two-component BEC, the minimiza-

tion problem (6.39) has a unique real-valued nonnegative ground state solution

Φg(x) ≥ 0 for x ∈ Rd [93, 11], while for rotating two-component BEC, if |Ω| <

min1≤j≤2{γx,j, γy,j}, there exists minimizer for the minimization problem (6.39).

As we seen in Chapter 3, the BFFP method is a very efficient method for computing

the ground state of rotating BEC. In the section, we extend it to compute the ground

state of rotating two-component BEC. The detailed discrietization is omitted here.

In the following subsections, we report 2D numerical results for different experiment

setups, and for simplicity of notation, we denote β11 : β12 : β22 = (a11 : a12 : a22) β0

with β0 ≥ 0.

6.2.1 Different angular velocity Ω

In this part, we study the ground state for different angular velocity 0 ≤ Ω ≤
min1≤j≤2{γx,j, γy,j}. In order to do so, we take a11 : a12 : a22 = 1.03 : 1.0 : 0.97

[72, 101, 73], β0 = 200, N0
1 = N0

2 and γx,j = γy,j = 1 (j = 1, 2).

Figure 6.1 displays the contour plots of the ground state |φg,j|2 (j = 1, 2). From it,

we can see when Ω = 0.3, there is only one vortex in one component and no vortex
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a)

b)

Figure 6.1: Contour plots of the ground state in two-component BEC with Ω = 0.3,

0.4, 0.6 and 0.8 (from left to right). a). |φg,1|2; b). |φg,2|2.

in the other. When Ω increases, the number of vortices also increases to form two

vortex lattices, and these two lattices interlock in such a way that a peak in the

density of one component is located at the density hole of the other. According to

the energy functional, the two components interact via the intercomponent interac-

tion β12|φ1|2|φ2|2, therefore this interlocked feature of two lattices can minimize the

interaction energy, and further minimize the total energy.

6.2.2 Different inter-atomic interaction

To study the effect of intercomponent interactions, in this section, we compute the

ground state solutions by fixing scattering length a11 = a22 = 1 and changing a12

from −1 to 3. The other parameters are chosen as β0 = 200, Ω = 0.9, N0
1 = N0

2 and

γx,j = γy,j = 1 (j = 1, 2).

Figure 6.2 depicts the contour plots of the ground states |φg,j|2 (j = 1, 2) for different

scattering length a12. From it and our additional results, we can conclude that:

i). If a12 < −1, there is no ground state for this two-component condensate. In

fact, in this case, the two components collapse to each other due to the strongly
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a)

b)

c)

d)

e)

Figure 6.2: Contour plots of the ground state in two-component BEC with different

scattering length a12. a)-e): a12 = −1, −0.8, −0.5, 0.1 and 0.5. Left: |φg,1|2; Middle:

|φg,2|2; Right: |φg,1|2 + |φg,2|2.

attractive interaction [58, 118].

ii). When −1 ≤ a12 < 0, the ground states are two identical triangular vortex

lattices (cf. Fig. 6.2a−c), i.e. φg,1(x) ≡ φg,2(x) for x ∈ R2.
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f)

g)

h)

i)

j)

Figure 6.2 (cont’d): f)-j): a12 = 0.8, 1.0, 1.2, 1.6 and 3.0.

iii). Especially when a12 = 0, this two-component BEC becomes two independent

single-component BECs, and the ground states are two triangular vortex lattices

which are exactly the same after the rotation of an angle θ0.

iv). With the increase of 0 < a12 < 1, the position of vortex cores in one component

gradually shifts from those of the other component, and the triangular lattices are
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distorted. Eventually, the vortices in each component form a square lattice rather

than a triangular one (cf. Fig. 6.2 d−f).

v). When a12 = 1, two “pair-vortex” lattices are formed, where the lattices in both

components are made by pairs of vortices (cf. Fig. 6.2g).

vi). When a12 > 1 increases, vortices in the same component begin to overlap in lines

to from a stripe pattern (cf. Fig. 6.2h). While if a12 is large enough, e.g. a12 ≥ 1.5,

the densities of two components are symmetrically separated (cf. Fig. 6.2i&j), which

is caused by the strongly repulsive interaction between two components.

As we seen in Fig. 6.2a−c, when −1 ≤ a12 ≤ 0 the ground state solutions of

the two components are exactly the same, so we may make the conjecture that in

this case, the two-component BEC may be reduced to single-component BEC, and

correspondingly the stationary problem (6.37)−(6.38) becomes

µφ(x) = −1

2
∇2φ + V (x)φ + β|φ|2φ− ΩLzφ, x ∈ R2, with ‖φ‖2 = 1, (6.40)

where

µ = µ1 = µ2, β =
1

2
(β11 + β12), V (x) = V1(x) = V2(x).

β = 0 β = 20 β = 50

Figure 6.3: Contour plots of ground states in single-component BEC with Ω = 0.9.

To verify our conjecture, Figure 6.3 depicts the contour plots of the ground state in

single-component BEC with different β. Comparing Fig. 6.3 with Fig. 6.2a−c, we

can see that the ground state solution of single-component BEC is the same as that

of two-component BEC with corresponding parameters.
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6.2.3 Different ratio of particle numbers N 0
1/N0

2

By fixing the total particle number N = N0
1 + N0

2 , in this part we study the ground

state for different ratio N0
1 /N0

2 . The parameters are chosen as a11 : a12 : a22 = 1.03 :

0.97 : 0.94, β0 = 1000, Ω = 0.9 and γx,j = γy,j = 1 (j = 1, 2).

a)

b)

c)

Figure 6.4: Contour plots of the ground state in two-component BEC with different

ratio of particle number N0
1 /N0

2 . Left: |φg,1|2; Middle: |φg,2|2; Right: |φg,1|2 + |φg,2|2.
a)−c): N0

1 /N0
2 = 1/2, 1/5 and 1/50.

Figure 6.4 gives the contour plots of the ground states |φg,j|2 (j = 1, 2). From it, we

can see when N0
1 = O(N0

2 ), e.g. N0
1 = N0

2 /2, the ground states of two components

are similar, which are two vortex stripes (cf. Fig. 6.4a). When the ratio N0
1 /N0

2

decreases, the second component becomes dominant. It changes from a vortex stripe

to a square lattice and eventually becomes a triangular lattice just like the ground

state of single-component BEC (cf. Fig. 6.4c). The above observation confirms the

analysis in Section 6.1.2.
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6.2.4 Different trapping potentials

In this part, we study the effect of the trapping potential (6.13) by shifting its center

from the origin (0, 0) to (−cj, cj), i.e.

Vj(x) =
1

2

(
(x + cj)

2 + (y − cj)
2
)
, x ∈ R2, j = 1, 2 (6.41)

with cj a constant. For simplicity, here we choose c1 = −c2 = c ≥ 0. The other

parameters are taken as a11 : a12 : a22 = 1.03 : 1.0 : 0.97, β0 = 200, Ω = 0.9

and N0
1 = N0

2 . For non-rotating two-component BEC, according to [72, 38], if the

centers of two potentials are displaced from each other by a distance which is small

compared to the size of total condensate, the resulting separation of the centers of

the condensate is much larger. While for rotating two-component BEC, there is still

no similar result in the literature.

The contour plots of the ground state |φg,j|2 (j = 1, 2) for different parameter

c are shown in Figure 6.5. From it, we can see if the distance d12 = |c1 − c2|
is small, e.g. d12 = 0.02, the two components are well overlapped, and the two

resulting lattices interlock each other. Additionally, in this case the vortex pairs are

preferred to form. When the distance d12 increases, the overlapping part gradually

decreases. For example, when d12 = 1 the densities of the two components are well

separated but there still exists a small “connecting” part due to the intercomponent

interaction. Furthermore, comparing Fig. 6.5 with Fig. 6.2i&j, we can find that

increasing the scattering length a12 > max{a11, a22} can have similar effects to those

from increasing the distance between two potential centers.

6.3 Dynamics of two-component BEC

In this section, we first introduce some important quantities characterizing the dy-

namics of two-component BEC and derive dynamical laws for them. Then we pro-

pose an efficient and accurate numerical method for computing the dynamics of

rotating two-component BEC with an external driven field, and apply this method
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a)

b)

c)

Figure 6.5: Contour plots of the ground state in two-component BEC with different

trapping potentials (6.41). Left−right: c = 0.01, 0.1, 0.2 and 0.5. a). |φg,1|2; b).

|φg,2|2; c). |φg,1|2 + |φg,2|2.

to verify the dynamical laws and also to study the dynamics of vortex lattices.

6.3.1 Dynamical laws

As we known, when λ = 0 in (6.10), the density of each component is conserved as

specified in (6.18). When λ 6= 0, we have the following lemmas for the density of

each component:

Lemma 6.1. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of the CGPEs (6.10)−(6.11);

then we have for j = 1, 2,

d2Nj(t)

dt2
= −2λ2 [2Nj(t)− 1] + Fj(t), t ≥ 0 (6.42)
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with initial conditions

Nj(0) = N
(0)
j =

∫

Rd

|ψ0
j (x)|2 dx =

N0
j

N
, (6.43)

Ṅj(0) = N
(1)
j = 2λ

∫

Rd

Im
[
ψ0

j (x)
(
ψ0

kj
(x)

)∗]
dx; (6.44)

where for t ≥ 0,

Fj(t) = λ

∫

Rd

(
ψ∗j ψkj

+ ψjψ
∗
kj

) [
Vkj

(x)− Vj(x)

−(βjj − βkjj)|ψj|2 + (βkjkj
− βjkj

)|ψkj
|2

]
dx, t ≥ 0.

Proof. The proof is omitted here. ¤

By solving (6.42)−(6.44), we have

Lemma 6.2. (i) If the external trapping potentials are the same and the inter-

/intra-component s-wave scattering lengths in (6.10) are the same, i.e.

V1(x) = V2(x) x ∈ Rd, and β11 = β12 = β22 (i.e. a11 = a12 = a22), (6.45)

for any initial data (ψ0
1(x), ψ0

2(x)), we have, for t ≥ 0,

Nj(t) = ‖ψj(·, t)‖2 =

(
N

(0)
j − 1

2

)
cos(2λt) +

N
(1)
j

2λ
sin(2λt) +

1

2
, j = 1, 2. (6.46)

Thus in this case, the density of each component is a periodic function with period

T = π/λ depending only on λ.

(ii) For all other cases, we have, for any t ≥ 0,

Nj(t) =

(
N

(0)
j − 1

2

)
cos(2λt) +

N
(1)
j

2λ
sin(2λt) +

1

2
+ fj(t), j = 1, 2, (6.47)

where fj(t) is the solution of the following second-order ODE:

f̈j(t) + 4λ2fj(t) = Fj(t), fj(0) = ḟj(0) = 0. (6.48)

In two-component BEC, we can also define the angular momentum expectation as

〈Lz〉(t) = 〈Lz〉1(t) + 〈Lz〉2(t), t ≥ 0, (6.49)
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where for j = 1, 2,

〈Lz〉j(t) =

∫

Rd

ψ∗j (x, t)Lzψj(x, t) dx = i

∫

Rd

ψ∗j (x, t)(y∂x − x∂y)ψj(x, t) dx. (6.50)

In fact, when λ = 0, due to the conservation of the density of each component,

N〈Lz〉j(t)/N0
j is the angular momentum expectation of the jth component. For the

dynamics of the angular momentum expectation in rotating two-component BEC,

we have the following lemmas:

Lemma 6.3. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of the CGPEs (6.10)−(6.11);

then we have,

d〈Lz〉j(t)
dt

=
(
γ2

x,j − γ2
y,j

) ∫

Rd

xy|ψj|2 dx− βjkj

∫

Rd

|ψj|2(x∂y − y∂x)|ψkj
|2 dx

−2λ Re

[∫

Rd

ψ∗kj
(x∂y − y∂x)ψj dx

]
, t ≥ 0, j = 1, 2. (6.51)

Furthermore, if the traps in (6.13) are radially symmetric in 2D, and resp. cylindri-

cally symmetric in 3D, i.e. γx,1 = γy,1 and γx,2 = γy,2, then we have

i). For any given initial data (ψ0
1(x), ψ0

2(x)) in (6.11), the total angular momentum

expectation is conserved, i.e.

〈Lz〉(t) ≡ 〈Lz〉(0) = −
2∑

j=1

∫

Rd

(
ψ0

j (x)
)∗

Lzψ
0
j (x) dx, t ≥ 0. (6.52)

In addition, the energy for non-rotating part is also conserved, i.e.

En(ψ1, ψ2) :=

∫

Rd

2∑
j=1

[
1

2
|∇ψj|2 + Vj(x)|ψj|2 +

2∑

l=1

βjl

2
|ψj|2|ψl|2 − 2λRe(ψ∗1ψ2)

]
dx

≡ En

(
ψ0

1, ψ
0
2

)
, t ≥ 0. (6.53)

ii). Suppose the initial data ψ0
j (x) (j = 1, 2) in (6.11) is chosen as

ψ0
j (x) = fj(r)e

imjθ with mj ∈ Z and fj(0) = 0 when mj 6= 0, (6.54)

in 2D, and resp. in 3D,

ψ0
j (x) = fj(r, z)eimjθ with mj ∈ Z and fj(0, z) = 0 when mj 6= 0. (6.55)
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If λ = 0, then 〈Lz〉j(t) (j = 1, 2) is also conserved, i.e.

〈Lz〉j(t) ≡ 〈Lz〉j(0) =

∫

Rd

(
ψ0

j (x)
)∗

Lzψ
0
j (x) dx, t ≥ 0, j = 1, 2. (6.56)

The condensate width of a two-component BEC can be defined as

σξ(t) =
√

δξ(t) =
√

δξ,1(t) + δξ,2(t), ξ = x, y, or z, (6.57)

where

δξ,j(t) = 〈ξ2〉j(t) =

∫

Rd

ξ2|ψj(x, t)|2 dx, t ≥ 0, j = 1, 2. (6.58)

Then in 2D with radially symmetric traps, we have the following lemma:

Lemma 6.4. In 2D with radially symmetrical traps, i.e. d = 2 and γx,1 = γy,1 =

γx,2 = γy,2 := γr in (6.10), if there is no external driven field, i.e. λ = 0 in (6.10),

for any given initial data (ψ0
1(x), ψ0

2(x)) in (6.11), we have, for t ≥ 0,

δr(t) =
E(ψ0

1, ψ
0
2) + Ω〈Lz〉(0)

γ2
r

[1− cos(2γrt)] + δ(0)
r cos(2γrt) +

δ
(1)
r

2γr

sin(2γrt), (6.59)

where δr(t) = δx(t)+δy(t), δ
(0)
r := δx(0)+δy(0) and δ

(1)
r := δ̇x(0)+δ̇y(0). Furthermore,

if the initial data satisfies (6.54), we have, for any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t) (6.60)

=
E (ψ0

1, ψ
0
2) + Ω〈Lz〉(0)

2γ2
r

[1− cos(2γrt)] + δ(0)
x cos(2γrt) +

δ
(1)
x

2γr

sin(2γrt).

Thus in this case, the condensate widths σr(t), σx(t) and σy(t) are periodic functions

with frequency doubling the trapping frequency.

Similar to Lemma 4.4, in rotating two-component BEC, when λ = 0 we have,

Lemma 6.5. If the initial data (ψ0
1(x), ψ0

2(x)) in (6.11) is chosen as

ψ0
1(x) = φe

1(x− x0
1), ψ0

2(x) = φe
2(x− x0

2), x ∈ Rd, (6.61)
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where x0
1 and x0

2 are two given points in Rd, when λ = 0, x0
1 = x0

2 := x0 and

V1(x) ≡ V2(x), then the exact solution of the CGPEs (6.10)−(6.11) satisfies

ψj(x, t) = φe
j(x− x(t))e−iµe

j teiwj(x,t), x ∈ Rd, t ≥ 0, j = 1, 2, (6.62)

where for any t ≥ 0, wj(x, t) is a linear function of x, i.e. for j = 1, 2

wj(x, t) = cj(t) ·x+gj(t), cj(t) = (cj,1(t), · · · , cj,d(t))
T , x ∈ Rd, t ≥ 0, (6.63)

and x(t) satisfies the second-order ODE system (4.28)−(4.31).

Remark 6.1. When the two shifted centers at t = 0 are different or the trapping

potentials are different, i.e. x0
1 6= x0

2 or V1(x) 6= V2(x), our numerical results show

that, in general, there isn’t such an analytical construction of the solution as in

(6.62) for this problem.

6.3.2 Numerical method

By extending the time-splitting type method for rotating single-component BEC, in

this section, we present an efficient and accurate method for computing the dynamics

of rotating two-component BEC with an external driven field. For simplicity, here we

introduce the method for 2D case. Similarly, we truncate the problem (6.10)−(6.11)

into a bounded domain and set homogeneous Dirichlet boundary conditions for it,

i
∂ψj(x, t)

∂t
=

[
−1

2
∇2 + Vj(x)− ΩLz +

2∑

l=1

βjl|ψl|2
]

ψj − λψkj
, x ∈ Ωx, (6.64)

ψj(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0, (6.65)

ψj(x, 0) = ψ0
j (x), x ∈ Ωx, with

∥∥ψ0
1

∥∥2
+

∥∥ψ0
2

∥∥2
= 1, (6.66)

where the computational domain Ωx = {(x, y) | r =
√

x2 + y2 ≤ R} with R suffi-

ciently large.

Let ∆t > 0 be the time step. From time t = tn = n∆t to t = tn+1 = tn + ∆t, the

problem (6.64)−(6.66) can be solved in three splitting steps [11]. One first solves

i∂tψj(x, t) = Vj(x)ψj +
2∑

l=1

βjl|ψl|2ψj, j = 1, 2, (6.67)
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for the time step of length ∆t, followed by solving

i∂tψj(x, t) = −λψkj
, j = 1, 2, (6.68)

for the same time step, and then by solving

i∂tψj(x, t) = −1

2
∇2ψj − ΩLzψj, j = 1, 2, (6.69)

for the same time step. For t ∈ [tn, tn+1], the ODE (6.67) leaves |ψj(x, t)| time

invariant, i.e. |ψj(x, t)| = |ψj(x, tn)| (j = 1, 2), and thus it can be integrated exactly

to obtain, for j = 1, 2 and t ∈ [tn, tn+1],

ψj(x, t) = ψj(x, tn) exp

[
−i

(
Vj(x) +

2∑

l=1

βjl|ψl(x, tn)|2
)

(t− tn)

]
. (6.70)

By denoting Ψ = (ψ1, ψ2)
T , we can rewrite the ODE system (6.68) as

i∂t
∂Ψ

∂t
= −λAΨ, with A =


 0 1

1 0


 . (6.71)

Since A is a real and symmetric matrix, after a simple computation [11], we can

obtain the solution of the ODE system (6.68) as

ψj(x, t) = ψj(x, tn) cos(λ(t− tn)) + iψkj
(x, tn) sin(λ(t− tn)), t ∈ [tn, tn+1]. (6.72)

The equation (6.69) are now decoupled, and thus we can discretize it in r-direction

by the finite difference method, in θ-direction by the Fourier pseudospectral method

and in time by the Crank-Nicolson scheme. See the detailed scheme in Section 4.4.2.

From time t = tn to t = tn+1, we combine the splitting steps via the standard

second-order splitting method to get the following scheme:

ψ
(1)
j = ψj(x, tn) exp

[
−i∆t

2

(
Vj(x) +

2∑

l=1

βjl |ψl(x, tn)|2
)]

,

ψ
(2)
j = ψ

(1)
j cos (λ∆t/2) + iψ

(1)
kj

sin (λ∆t/2) ,

ψ
(3)
j = F

(
ψ

(2)
j

)
,

ψ
(4)
j = ψ

(3)
j cos (λ∆t/2) + iψ

(3)
kj

sin (λ∆t/2) ,

ψn+1
j = ψ

(4)
j exp

[
−i∆t

2

(
Vj(x) +

2∑

l=1

βjl

∣∣∣ψ(4)
l

∣∣∣
2
)]

, j = 1, 2,
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where F(ψ) is the discretization operator for the problem (4.101) with the initial

data ψ as discussed in Section 4.4.2.

This scheme for rotating two-component BEC is of spectral accuracy in θ-direction

and second-order accuracy in r-direction and in time. It is unconditionally stable

and conserves the total density in the discretized level.

Remark 6.2. When λ = 0 in (6.64), in the above second-order Strang splitting

method, the steps (ii) and (iv) can be removed, and then the method will consist

of three steps. In this case, the density of each component is also conserved in the

discretized level.

6.3.3 Numerical results

In this section, we apply our method to verify the dynamical laws in Lemmas 6.1−6.5

and study the dynamics of quantized vortex lattices in rotating two-component BEC.

For simplicity of notations, we denote

β11 = β0 ≥ 0, β12 = a12β0, β22 = a22β0 ⇔ β11 : β12 : β22 = 1 : a12 : a22. (6.73)

Example 1. Dynamics of the densities of the two components. To verify

the dynamics of the densities Nj(t) = ‖ψj(·, t)‖2 (j = 1, 2), we take d = 2, λ = 1,

Ω = 0.6, β0 = 500 and γx,j = γy,j = 1 (j = 1, 2). The initial data (6.11) is chosen as

ψ0
1(x) =

x + iy√
π

exp

(
−x2 + y2

2

)
, ψ0

2(x) ≡ 0, x ∈ R2. (6.74)

In the following, we consider two cases: i). a11 = a22 = 1 (⇔ β11 = β12 = β22); ii).

a12 = 0.6 and a22 = 0.8 (⇔ β11 6= β12 6= β22). Figure 6.6 shows the time evolution

of the densities for these two cases.

From it, we can see that: i). the total density N(t) is conserved in the discrete level

for both cases (cf. Fig. 6.6); ii). the densities of each component Nj(t) (j = 1, 2)

is a periodic function of period T = π/λ = π when β11 = β12 = β22 (cf. Fig. 6.6a)

and respectively a periodic function of period T = π with a perturbation when

β11 6= β12 6= β22 (cf. Fig. 6.6b), which confirms the analytical results in Lemma 6.2.
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Figure 6.6: Time evolution of the densities N1(t) = ‖ψ1(·, t)‖2 (dash line), N2(t) =

‖ψ2(·, t)‖2 (dot line) and N(t) = N1(t) + N2(t) (solid line). a). Case i); b). Case ii).

In the following two examples, we study the conservation of angular momentum

expectations and the dynamics of condensate widths, respectively. In order to do

so, we consider the 2D CGPEs (6.10), and take parameters a12 = 0.97, a22 = 0.94

and β0 = 400 in (6.73) and Ω = 0.6. The initial data (6.11) is taken as

ψ0
1(x) = ψ0

2(x) =
x + iy√

2π
exp

(
−x2 + y2

2

)
, x ∈ R2, (6.75)

which satisfies the form (6.54).

Example 2. Conservation of angular momentum expectations. In this

example, we choose the radially symmetric harmonic potentials by setting γx,1 =

γy,1 = 1 and γx,2 = γy,2 = 1.2, and at time t = 0, we set λ = 0 or λ = 1 in (6.10).

Figure 6.7 plots time evolution of the angular momentum expectations. From it, we

can see that for either λ = 0 or λ = 1, the angular momentum expectation 〈Lz〉(t) is

always conserved due to the symmetries of the external potential V1(x) and V2(x).

Furthermore, if λ = 0, then 〈Lz〉1(t) and 〈Lz〉2(t) are also conserved (cf. Fig. 6.7a),

which confirms the conclusions in Lemma 6.3.

Example 3. Dynamics of condensate widths. In this example, we set λ = 0

and study two cases about the trapping frequencies: i). γx,j = γy,j = 1 (j = 1, 2);

ii). γx,1 = γy,2 = 1 and γx,2 = γy,1 = 1.2.

Figure 6.8 plots time evolution of the condensate widths for the above two cases.
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Figure 6.7: Time evolution of the angular momentum expectations 〈Lz〉1(t) (dash

line), 〈Lz〉2(t) (dot line) and 〈Lz〉(t) (solid line). a). λ = 0; b). λ = 1.
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Figure 6.8: Time evolution of the condensate widths σx(t) (dash line), σy(t) (dot

line) and σr(t) (solid line). a). Case i); b). Case ii).

From it, we can find when γx,j = γy,j = 1 (j = 1, 2), the condensate widths σr(t),

σx(t) and σy(t) evolve periodically with the same period T = π/γx, which confirms

the results (6.59) and (6.60). Otherwise, for case ii), they are periodic functions

with a perturbation.

Example 4. Dynamics of stationary states with their centers shifted. In

this example, we study the dynamics of stationary states with their centers shifted.

In order to do so, we take λ = 0, Ω = 1 in (6.10), and a12 = 0.97, a22 = 0.94 and

β0 = 200 in (6.73), and then consider the following three cases:

i). with the same traps and the same shifted centers, i.e. x0
1 = x0

2 = (1, 1)T
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and γx,j = γy,j = 1 (j = 1, 2);

ii). with the same shifted centers but different traps, i.e. x0
1 = x0

2 = (1, 1)T

and γx,1 = γy,1 = 1, γx,2 = γy,2 = 2;

iii). with the same traps but different shifted centers, i.e. x0
1 = (1, 1)T , x0

2 =

(−1,−1)T and γx,j = γy,j = 1 (j = 1, 2).

The initial data (6.11) is taken as

ψ0
j (x) = φj(x− x0

j), x ∈ R2, j = 1, 2 (6.76)

where φj(x) is the central vortex state solution with winding number m = 1 [11],

which is computed by using the same parameters in the above cases.

a)

b)

Figure 6.9: Surface plots of |ψj|2 at different times in Case i). a). |ψ1|2; b). |ψ2|2.

Figures 6.9, 6.11 and 6.12 display the surface plots of |ψj|2 at different times for the

above three cases respectively. Figure 6.10 depicts the time evolution of the two

component centers in Case i). From the surface plots, we can see when x0
1 = x0

2

and V1(x) = V2(x), the stationary states of each component move like solitons, and

their shapes do not change during the dynamics (cf. Fig. 6.9). Furthermore, the

time evolutions of the two component centers are exactly the same (cf. Fig. 6.10),
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Figure 6.10: Time evolution of the two component centers in Case i) (‘+/o’: initial

location of vortex centers).

a)

b)

Figure 6.11: Surface plots of |ψj|2 at different times in Case ii). a). |ψ1|2; b). |ψ2|2.

which satisfy the ODE system (4.28)−(4.30). On the other hand, if x0
1 6= x0

2 or

V1(x) 6= V2(x), the stationary states evolve chaotically (cf. Fig. 6.11, 6.12). This

implies that there is no soliton-like construction of the solution in two-component

BEC when x0
1 6= x0

2 or V1(x) 6= V2(x).

Example 5. Dynamics of vortex lattices. In this example, the dynamics of

quantized vortex lattices in rotating two-component BEC are studied. Initially, we

choose the lattices as the ground states shown in Fig. 6.2f, that is, the parameters

used here are a12 = 0.8, a22 = 1, β0 = 200, Ω = 0.9, λ = 0 and γx,j = γy,j = 1

(j = 1, 2). Then at time t = 0, we either set λ = 1 or change the trapping frequencies
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a)

b)

Figure 6.12: Surface plots of |ψj|2 at different times in Case iii). a). |ψ1|2; b). |ψ2|2.

to γx,1 = γy,1 = 0.9 and γx,2 = γy,2 = 1.1.

a)

t = 0 t = 1.5 t = 3 t = 5

b)

t = 0 t = 1.5 t = 3 t = 5

Figure 6.13: Dynamics of the vortex lattices by setting λ = 1 at t = 0. a). |ψ1|2;
b). |ψ2|2.

Figures 6.13 and 6.14 depict the contour plots of the lattices at different times.

From them, we can see when we set λ = 1, within a short time, the two lattices

shift their shapes almost periodically (cf. Fig. 6.13). However, when t is large,

their shapes are completely destroyed and can not be recovered. This is caused

by the intercomponent interactions. On the other hand, if we change the trapping
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a)

t = 0 t = 2.5 t = 5 t = 10

b)

t = 0 t = 2.5 t = 5 t = 10

Figure 6.14: Dynamics of the vortex lattices by changing the trapping frequencies

from γx,j = γy,j = 1 (j = 1, 2) to γx,1 = γy,1 = 0.9 and γx,2 = γy,2 = 1.1. a). |ψ1|2;
b). |ψ2|2.

frequencies at time t = 0, the structures of two lattices are changed, but the number

of the vortices in each lattice is always preserved (cf. Fig. 6.14).



Chapter 7
Vortex dynamics in superconductivity and

superfluidity

In this chapter, the vortex dynamics and interaction in superconductivity and su-

perfluidity are investigated both analytically and numerically. Starting with the

Ginzburg-Landau-Schrödinger equation (GLSE), we review the reduced dynamic

laws governing the motion of vortex centers, and solve them analytically under

some proper initial data. By extending the numerical method for rotating BEC, we

introduce an efficient and accurate method for the GLSE and apply it to numerically

study the vortex dynamics and interaction. The numerical results are compared with

those from the reduced dynamic laws. Some conclusive experimental findings are

obtained, and discussions on numerical and theoretical results are made to provide

further understanding of vortex dynamics in the GLSE.

7.1 Ginzburg-Landau-Schrödinger equation

The Ginzburg-Landau-Schrödinger equation (GLSE) is one of the most studied non-

linear equations in the physics community. It describes a vast variety of phenomena

from nonlinear waves to the second-order phase transitions, from superconductivity

and superfluidity to liquid crystals and strings in the field theory. A specific form

130
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of the GLSE we study here is given by:

(α− iβ)∂tψ(x, t) = ∇2ψ +
1

ε2

(
V0(x)− |ψ|2) ψ, x ∈ R2, t > 0, (7.1)

ψ(x, 0) = ψ0(x), x ∈ R2 (7.2)

with nonzero far field conditions

|ψ(x, t)| → 1 (e.g. ψ → eimθ), t ≥ 0, when r = |x| =
√

x2 + y2 →∞, (7.3)

where ψ(x, t) is a complex-valued wave function (or order parameter), m ∈ Z is a

given integer, V0(x) is a real-valued external potential satisfying lim|x|→∞ V0(x) → 1,

ε > 0 is a constant, and α, β are two nonnegative constants satisfying α + β > 0.

The GLSE (7.1) covers many nonlinear equations arising in various different appli-

cations. For example, when α = 1 and β = 0, it collapses to the nonlinear heat

equation (NLHE), also known as the Ginzburg-Landau equation (GLE) [105, 106].

The GLE with a complex order parameter is well known for modelling superconduc-

tivity [3, 49, 53, 50, 94], while that with a real order parameter, corresponding to

the so called Allen-Cahn equation, is often used to study the phase transition [51].

When α = 0 and β = 1, the GLSE reduces to the nonlinear Schrödinger equation

(NLSE) [105, 108, 97, 6] for modelling, for example, superfluidity or BEC. While

α > 0 and β > 0, it is the complex Ginzburg-Landau equation (CGLE) or NLSE

with a damping term [13, 14], which also arises in the study of the hydrodynamic

instability [10].

The boundary condition (7.3) allows one to introduce the notation deg ψ, i.e. degree

of ψ, as an index (winding number) of ψ at ∞, considered as a vector field on R2,

i.e.

deg ψ =
1

2π

∫

|x|=R

d(arg ψ), (7.4)

for R sufficiently large. Based on (7.4), we can introduce the rescaled free energy or

Lyapunov functional relative to (7.1), i.e.

E(ψ) =

∫

R2

[
|∇ψ|2 − (deg ψ)2

|x|2 χ(|x|) +
1

ε2

(
V0(x)− |ψ|2)2

]
dx, t ≥ 0, (7.5)
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where χ(r) is a smooth positive function on [0,∞) vanishing at r = 0 and converging

to 1 as r →∞ [91]. Then the GLSE (7.1) can be written as

(α− iβ)∂tψ(x, t) = −δE(ψ)

δψ∗
. (7.6)

From (7.6), we can see when α > 0, the GLSE is a dissipative system and the free

energy decreases when time t increases, i.e. dE(ψ)
dt

≤ 0. On the other hand, when

α = 0, it is a dispersive system and also it is time reversible and time transverse

invariant. Furthermore, it admits at least two important invariants: the rescaled

density

‖ψ(·, t)‖2 :=

∫

R2

[|ψ(x, t)|2 − |ψ0(x)|2] dx = 0, t ≥ 0 (7.7)

and the rescaled free energy

E(ψ(·, t)) = E(ψ(·, 0)) = E(ψ0), t ≥ 0. (7.8)

7.2 Stationary vortex states

To study stationary vortex states of the GLSE (7.1), we consider the following time-

independent GLSE with ε = 1 and V0(x) ≡ 1 [105]:

∇2φ(x) +
(
1− |φ(x)|2) φ(x) = 0, x ∈ R2, (7.9)

|φ(x)| → 1, when |x| → ∞ , (7.10)

where φ(x) is a complex-valued function and can be viewed as the steady state

solution of the GLSE (7.1). Similar to (5.1), the vortex state solution φm(x) takes

the form

φm(x) = fm(r) eimθ, x = (r cos θ, r sin θ)T ∈ R2, (7.11)

where m ∈ Z is called as winding number or index, and fm(r) is a real-valued

function satisfying

1

r

d

dr

(
r
dfm(r)

dr

)
− m2

r2
fm(r) +

(
1− f 2

m(r)
)
fm(r) = 0, 0 < r < ∞, (7.12)

fm(0) = 0, fm(r) = 1, when r →∞. (7.13)
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The asymptotic behavior of fm(r) as r → 0 and r →∞ can be estimated by [105]

fm(r) ∼





a r|m| + O
(
r|m|+2

)
, as r → 0,

1− m2

2r2
+ O

(
1

r4

)
, as r →∞,

(7.14)

where a is a constant.

To find the numerical solution of fm(r), we can truncate the problem (7.12)−(7.13)

into a bounded interval r ∈ [0, R] with R sufficiently large and set the artificial

boundary condition fm(R) = 1 at r = R. Then we discretize (7.12) by using the

second-order finite difference method and solve the resulting nonlinear system by

the Newton iteration. Note that a shooting method can also be employed to obtain

such solutions [87]. Figure 7.1 shows the numerical results of fm(r) for different

winding numbers m, and Figure 7.2 displays surface plots of the vortex states |φm|2

for m = 1 and m = 3.
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Figure 7.1: Numerical solutions of fm(r) for different winding numbers m.

Based on our numerical results in Sections 7.6−7.7, we hereby define the core size

r0
m of a vortex state with winding number m by the condition fm(r0

m) = 0.755.

Table 7.1 lists the core sizes of vortex states with different winding number m, in

particular, r0
1 ≈ 1.75.

For (7.9)−(7.10) with a specified degree condition, solutions of the form (7.11) are

the only vortex state solutions known in the literature, and the question whether

there are other symmetry breaking solutions in the whole space remains open. A



7.3 Reduced dynamic laws 134

a) b)

Figure 7.2: Surface plots of the vortex states |φm|2 in GLSE. a). m = 1; b). m = 3.

winding number m = ±1 m = ±2 m = ±3 m = ±4

core size r0
m 1.7500 3.3674 4.9128 6.4303

Table 7.1: Core sizes of the vortex states with different winding numbers m.

recent exploration of this issue was made in [111].

7.3 Reduced dynamic laws

To study the vortex dynamics of the GLSE, in the literature [105, 106, 97, 81], one

always assumes that the vortex states with winding number m = ±1 are dynamically

stable, which can be confirmed by our numerical results in Section 7.5. Thus it is

of interest to study the interaction of a few vortices which have winding numbers

m = +1 or m = −1. In order to do so, we take ε = 1 and V0(x) ≡ 1 in (7.1), and

choose the initial data in (7.2) as

ψ0(x) =
N∏

j=1

φmj

(
x− x0

j

)
=

N∏
j=1

φmj

(
x− x0

j , y − y0
j

)
, x ∈ R2, (7.15)

where N is the total number of vortices, and φmj
is the vortex state in (7.11) with

winding number mj (mj = +1 or −1). That is, we consider the interaction of

N vortices by shifting their initial centers from the origin (0, 0) to x0
j =

(
x0

j , y0
j

)T

(1 ≤ j ≤ N). Take m =
∑N

j=1 mj in (7.3) and refer to vortices with the same
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winding numbers as like vortices while with different winding numbers as opposite

vortices.

It is known that for N well-separated vortices of winding numbers mj = ±1 and

locations xj (1 ≤ j ≤ N), the leading asymptotic expansion of the energy is

E ∼
N∑

j=1

Ej − π
∑

j 6=l

mj ml ln |xl − xj| , (7.16)

where Ej is the self-energy of the vortex at xj, and the second term corresponds

to the well-known Kirchoff-Onsager Hamiltonian. From (7.16), we can obtain the

vortex dynamic laws of the induced motion in the leading order, i.e. the adiabatic

approximation [105]. For the GLE, i.e. α = 1 and β = 0 in (7.1), the vortex

dynamics satisfies,

κvj(t) := κ
dxj(t)

dt
= 2mj

N∑

l=1, l 6=j

ml
xj(t)− xl(t)

|xj(t)− xl(t)|2 , t ≥ 0, (7.17)

xj(0) = x0
j , 1 ≤ j ≤ N, (7.18)

where κ is a constant determined from the initial setup (7.15). On the other hand,

for the NLSE, i.e. α = 0 and β = 1 in (7.1), it satisfies,

vj(t) :=
dxj(t)

dt
= 2

N∑

l=1, l 6=j

ml
G (xj(t)− xl(t))

|xj(t)− xl(t)|2 , t ≥ 0, (7.19)

xj(0) = x0
j , 1 ≤ j ≤ N, (7.20)

where G is the symplectic matrix given in (2.54).

When N = 2, the nonlinear ODEs (7.17)−(7.18) and (7.19)−(7.20) can be solved

analytically and their solutions are presented in the literature [109]. Here we solve

them provided that for any N ≥ 2, initially the vortex centers in (7.15) are located

on a circle or its center. Without loss of generality, we assume that the center of

this circle is (0, 0) and its radius is r0 = a > 0 with a a constant. For simplicity, we

denote θ0 as a given constant and m0 = +1 or −1, and consider the following four

cases for the initial condition in (7.15):
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Pattern I. N (N ≥ 2) like vortices uniformly locate on a circle, i.e. for

1 ≤ j ≤ N ,

x0
j = a

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, with mj = m0. (7.21)

Pattern II. N (N ≥ 3) like vortices locate on a circle and its center, i.e.

x0
N = (0, 0)T , with mN = m0, (7.22)

and for 1 ≤ j ≤ N − 1,

x0
j = a

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

, with mj = m0. (7.23)

Pattern III. Two opposite vortices, i.e. for j = 1, 2,

x0
j = a (cos (jπ + θ0) , sin (jπ + θ0))

T , with m1 = −m2 = m0. (7.24)

Pattern IV. N − 1 (N ≥ 3) like vortices locate on a circle and one opposite

vortex locates at its center, i.e.

x0
N = (0, 0)T , with mN = −m0, (7.25)

and for 1 ≤ j ≤ N − 1,

x0
j = a

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

, with mj = m0. (7.26)

7.3.1 For Ginzburg-Landau equation

Summing (7.17) for 1 ≤ j ≤ N , we can get

κ
N∑

j=1

dxj(t)

dt
=

N∑
j=1

2mj

N∑

l=1, l 6=j

ml
xj(t)− xl(t)

|xj(t)− xl(t)|2

= 2
N−1∑
j=1

N∑

j<l≤N

mj ml

[
xj(t)− xl(t)

|xj(t)− xl(t)|2 +
xl(t)− xj(t)

|xl(t)− xj(t)|2
]

= 0, t ≥ 0. (7.27)
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This immediately implies that the mass center of the N vortex centers is conserved

for any initial setup in (7.15), i.e.

x(t) :=
1

N

N∑
j=1

xj(t) ≡ x(0) :=
1

N

N∑
j=1

xj(0) =
1

N

N∑
j=1

x0
j , t ≥ 0. (7.28)

By considering (7.17), (7.18) and (7.28), we have the following lemmas for the above

four patterns:

Lemma 7.1. If the initial data in (7.15) satisfy (7.21), i.e. Pattern I, then the

solutions of (7.17)−(7.18) can be given by

xj(t) =

√
a2 +

2 (N − 1)

κ
t

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, t ≥ 0, (7.29)

for 1 ≤ j ≤ N with N ≥ 2.

Proof. For simplicity, we first consider the case of N = 2. From the ODEs (7.17),

we can get

κ
dx1(t)

dt
= 2

x1(t)− x2(t)

|x1(t)− x2(t)|2 , κ
dx2(t)

dt
= 2

x2(t)− x1(t)

|x2(t)− x1(t)|2 ,

which implies that

κ
d [x1(t)− x2(t)]

dt
= 4

x1(t)− x2(t)

|x1(t)− x2(t)|2 , t ≥ 0. (7.30)

On the other hand, from (7.28), we have

x1(t) = −x2(t), t ≥ 0. (7.31)

Inserting (7.31) into (7.30) gives

κ
dx1(t)

dt
=

x1(t)

|x1(t)|2 , t ≥ 0, with x1(0) = x0
1. (7.32)

Solving (7.32) and noticing (7.31), we get when N = 2, the solutions of (7.17)−(7.18)

are

xj(t) =

√
a2 +

2

κ
t (cos (jπ + θ0) , sin (jπ + θ0))

T , t ≥ 0, j = 1, 2. (7.33)
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For the cases of N > 2, we can generalize the solution (7.33) by assuming

xj(t) = c(t)

(
cos

(
2jπ

N
+ θ0

)
, sin

(
2jπ

N
+ θ0

))T

, t ≥ 0, 1 ≤ j ≤ N, (7.34)

where c(t) is a function of time t and c(0) = a. Substituting (7.34) into (7.17), we

can obtain

c(t) =

√
a2 +

2(N − 1)

κ
t, t ≥ 0. (7.35)

Thus the solution (7.29) is a combination of (7.33)−(7.35). ¤

The results in Lemma 7.1 imply that for any time t ≥ 0, these N vortices are always

located on a circle whose radius depends on time t, i.e. r(t) =
√

a2 + 2(N − 1)t/κ.

Lemma 7.2. If the initial data in (7.15) satisfy (7.22)−(7.23), i.e. Pattern II, then

the solutions of (7.17)−(7.18) are:

xN(t) ≡ (0, 0)T , t ≥ 0, (7.36)

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

xj(t) =

√
a2 +

2N

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

, t ≥ 0. (7.37)

Proof. The proof follows the analogous results in Lemma 7.1. ¤

That is, the vortex initially at the center of the circle does not move for any time

t ≥ 0, and the other N − 1 ones initially on a circle would always locate on a circle

which has a time-dependent radius r(t) =
√

a2 + 2Nt/κ for t ≥ 0.

Lemma 7.3. If the initial data in (7.15) satisfy (7.24), i.e. Pattern III, then the

solutions of (7.17)−(7.18) can be given by

xj(t) =

√
a2 − 2

κ
t (cos (jπ + θ0) , sin (jπ + θ0))

T , 0 ≤ t ≤ tc, j = 1, 2, (7.38)

where tc = κa2/2. Solutions (7.38) implies that, when 0 ≤ t < tc, the two vortices

move along a line passing through their initial centers, and their velocities are

v1(t) = −v2(t) = − 2√
κ (κa2 − 2) t

(cos θ0, sin θ0)
T , 0 ≤ t < tc. (7.39)

When t = tc, they collide at the origin (0, 0).
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Proof. The proof follows the analogous results in Lemma 7.1 for N = 2. ¤

Lemma 7.4. If the initial data in (7.15) satisfy (7.25)−(7.26), i.e. Pattern IV, then

the solutions of (7.17)−(7.18) are:

xN(t) ≡ (0, 0)T , (7.40)

for 1 ≤ j ≤ N − 1 with N ≥ 3,

xj(t) =

√
a2 +

2(N − 4)

κ
t

(
cos

(
2jπ

N − 1
+ θ0

)
, sin

(
2jπ

N − 1
+ θ0

))T

. (7.41)

Proof. The proof follows the analogous results in Lemma 7.1. ¤

From the results in Lemma 7.4, we can draw the following conclusions:

i). During the interaction, the vortex initially at the center does not move.

ii). When N = 3, before t = tc = κa2/2, the other two vortices move towards each

other along the line passing through their initial centers, and their velocities are

given in (7.39). When t = tc, they collide at the origin (0, 0).

iii). When N = 4, all these four vortices would stay at their initial locations for any

time t ≥ 0.

iv). When N ≥ 5, the N−1 vortices initially located on a circle would move outside

along the lines which connect their initial centers and the origin. For any time t ≥ 0,

they are always on a circle having radius r(t) =
√

a2 + 2(N − 4)t/κ.

7.3.2 For nonlinear Schrödinger equation

Multiplying (7.19) by mj and summing it for 1 ≤ j ≤ N , we have

N∑
j=1

mj
dxj(t)

dt
=

N∑
j=1

2mj

N∑

l=1, l 6=j

ml
G (xj(t)− xl(t))

|xj(t)− xl(t)|2

= 2
N−1∑
j=1

N∑

j<l≤N

mj ml

[
G (xj(t)− xl(t))

|xj(t)− xl(t)|2 +
G (xl(t)− xj(t))

|xl(t)− xj(t)|2
]

= 0, t ≥ 0 . (7.42)
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This implies that the signed mass center of the N vortex centers is conserved for

any initial setup in (7.15), i.e.

x̃(t) :=
1

N

N∑
j=1

mj xj(t) ≡ x̃(0) :=
1

N

N∑
j=1

mj xj(0) =
1

N

N∑
j=1

mj x0
j , t ≥ 0. (7.43)

By considering (7.19), (7.20) and (7.43), we have the following lemmas:

Lemma 7.5. If the initial data in (7.15) satisfy (7.21), i.e. Pattern I, then the

solutions of (7.19)−(7.20) can be given by

xj(t) = a

(
cos

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

)
,

sin

(
2jπ

N
+ θ0 +

m0(N − 1)

a2
t

))T

, t ≥ 0, (7.44)

for 1 ≤ j ≤ N with N ≥ 2.

Proof. Again for simplicity, we first consider the case of N = 2. From (7.19), we

have

dx1(t)

dt
= 2m0

G (x1(t)− x2(t))

|x1(t)− x2(t)|2 ,
dx2(t)

dt
= 2m0

G (x2(t)− x1(t))

|x2(t)− x1(t)|2 ,

which implies that

d [x1(t)− x2(t)]

dt
= 4m0

G (x1(t)− x2(t))

|x1(t)− x2(t)|2 , t ≥ 0. (7.45)

While from (7.43), we can get

x1(t) = −x2(t), t ≥ 0. (7.46)

Plugging (7.46) into (7.45), we obtain the first-order ODE for x1(t) as

dx1(t)

dt
= m0

Gx1(t)

|x1(t)|2 , t ≥ 0, with x1(0) = x0
1. (7.47)

Solving (7.47) and noticing (7.46), we get the general solutions of xj(t) as

xj(t) = a (cos (jπ + θ0 + ϑ(t)) , sin (jπ + θ0 + ϑ(t)))T , t ≥ 0, j = 1, 2, (7.48)
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where ϑ(t) is a function of time t and ϑ(0) = 0. Inserting (7.48) into the ODEs

(7.19) and solving them, we obtain ϑ(t) = m0t/a
2 and thus give the solutions when

N = 2 as

xj(t) = a
(
cos

(
jπ + θ0 +

m0

a2
t
)

, sin
(
jπ + θ0 +

m0

a2
t
))T

, t ≥ 0. (7.49)

Generally, for N ≥ 2, we can assume that the solutions xj(t) take the form

xj(t) = a

(
cos

(
2jπ

N
+ θ0 + ϑ(t)

)
, sin

(
2jπ

N
+ θ0 + ϑ(t)

))T

, t ≥ 0, (7.50)

for 1 ≤ j ≤ N . Inserting (7.50) into (7.19)−(7.20), we can obtain ϑ(t) as

ϑ(t) =
m0(N − 1)

a2
t, t ≥ 0, (7.51)

and combining (7.49)−(7.51) we can immediately get the solutions (7.44). ¤

The results in Lemma 7.5 imply that in this case, the N ≥ 2 vortices would always

rotate along the circle (counter clockwise if m0 = +1, and clockwise if m0 = −1)

with a frequency ω(a) = (N − 1)/a2.

Lemma 7.6. If the initial data in (7.15) satisfy (7.22)−(7.23), i.e. Pattern II, then

the solutions of (7.19)−(7.20) are:

xN(t) ≡ (0, 0)T , t ≥ 0, (7.52)

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

)
, sin

(
2jπ

N − 1
+ θ0 +

m0N

a2
t

))T

. (7.53)

Proof. The proof follows the analogous results in Lemma 7.5. ¤

In this case, the vortex initially at (0, 0) does not move, and the other N − 1

ones would rotate along the circle (counter clockwise if m0 = +1, and clockwise if

m0 = −1) with a frequency ω(a) = N/a2.

Lemma 7.7. If the initial data in (7.15) satisfy (7.24), i.e. Pattern III, then the

solutions of (7.19)−(7.20) can be given by

xj(t) = x0
j +

m0

a
t (− sin θ0, cos θ0)

T , t ≥ 0, j = 1, 2. (7.54)
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This implies that these two opposite vortices move along two parallel lines which

are perpendicular to the line passing through the two vortex centers at t = 0, and

their velocities are

v1(t) = v2(t) =
m0

a
(− sin θ0, cos θ0)

T , t ≥ 0. (7.55)

Proof. From the conservation of the signed mass center (7.43), we have

x̃(t) = x1(t)− x2(t) ≡ x1(0)− x2(0) = 2a (cos θ0, sin θ0)
T , t ≥ 0. (7.56)

On the other hand, form the ODEs (7.19), we obtain

dx1(t)

dt
= −2m0

G (x1(t)− x2(t))

|x1(t)− x2(t)|2 ,
dx2(t)

dt
= 2m0

G (x2(t)− x1(t))

|x2(t)− x1(t)|2 ,

which gives

d [x1(t) + x2(t)]

dt
= −4m0

G (x1(t)− x2(t))

|x1(t)− x2(t)|2 , t ≥ 0. (7.57)

Combining (7.56) and (7.57), we get the following ODE for x1(t):

dx1(t)

dt
= −m0

a
G (cos θ0, sin θ0)

T , t ≥ 0, with x1(0) = x0
1. (7.58)

Solving (7.58) and noticing (7.56), we can obtain (7.54) immediately. Then noticing

vj(t) =
dxj(t)

dt
, t ≥ 0, (7.59)

we can compute their velocities as (7.55). ¤

Lemma 7.8. If the initial data in (7.15) satisfy (7.25)−(7.26), i.e. Pattern IV, then

the solutions of (7.19)−(7.20) are:

xN(t) ≡ (0, 0)T , t ≥ 0, (7.60)

and

xj(t) = a

(
cos

(
2jπ

N − 1
+ θ0 +

m0(N − 4)

a2
t

)
,

sin

(
2jπ

N − 1
+ θ0 +

m0(N − 4)

a2
t

))T

, 1 ≤ j ≤ N − 1. (7.61)
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Proof. The proof follows the analogous results in Lemmas 7.5. ¤

Following the discussion in Lemma 7.4, we can draw the following conclusions:

i). The vortex initially at the center does not move.

ii). When N = 3, the two vortices initially located on a circle would rotate along this

circle (clockwise if m0 = +1, and counter clockwise if m0 = −1) with a frequency

ω(a) = 1/a2.

iii). When N = 4, all these four vortices would stay at their initial locations for any

time t ≥ 0.

iv). When N ≥ 5, the vortices initially located on a circle would always rotate along

this circle with a frequency ω(a) = (N − 4)/a2. However, their rotation directions

are different from those when N = 3, that is, when N ≥ 5, the vortices rotate

counter clockwise if m0 = +1, and respectively clockwise if m0 = −1.

7.4 Numerical method

In this section, we propose an efficient numerical method for the GLSE by extending

the time-splitting type method for rotating BEC. Similarly, in practical implementa-

tion, we truncate the problem (7.1)−(7.3) to one defined in a bounded computational

domain with inhomogeneous Dirichlet boundary conditions:

(α− iβ)∂tψ(x, t) = ∇2ψ +
1

ε2

[
V (x, t)− |ψ|2]ψ, x ∈ ΩR, t ≥ 0, (7.62)

ψ(x, 0) = ψ0(x), x ∈ ΩR, (7.63)

ψ(x, t) = eimθ, x ∈ Γ = ∂ΩR, t ≥ 0, (7.64)

where the computational domain ΩR =
{

(x, y) | r =
√

x2 + y2 ≤ R
}

with R suf-

ficiently large to assure that the effect of domain truncation remains insignificant,

and the external potential V (x, t) = V0(x)+W (x, t) with W (x, t) an external driven

field satisfying lim|x|→∞ W (x, t) = 0.

Let ∆t > 0 be the time step. From tn = n∆t to tn+1 = tn + ∆t, the GLSE (7.62) is
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solved in two splitting steps. One first solves

(α− iβ)∂tψ(x, t) = ∇2ψ, (7.65)

for the time step of length ∆t, then followed by solving

(α− iβ)∂tψ(x, t) =
1

ε2

[
V (x, t)− |ψ|2]ψ, (7.66)

for the same time step. Following the same lines as (4.102)−(4.107), we can solve

(7.66) and get, for t ∈ [tn, tn+1],

ψ(x, t) = ψ(x, tn)
√

Un(x, t) exp

[
iβ

ε2(α2 + β2)

(
Vn(x, t)−

∫ t

tn

ρ(x, τ)dτ

)]
, (7.67)

where Vn(x, t) =
∫ t

tn
V (x, τ) dτ and ρ(x, t) = |ψ(x, t)|2 = Un(x, t)|ψ(x, tn)|2 with

Un(x, t) =
exp [ηVn(x, t)]

1 + η|ψ(x, tn)|2 ∫ t

tn
exp [ηVn(x, τ)] dτ

, η =
2α

ε2(α2 + β2)
. (7.68)

If V (x, t) = V0(x), i.e. W (x, t) ≡ 0, we can integrate (7.67) exactly and obtain

ψ(x, t) = ψ(x, tn)





exp
[

i
ε2β

(V0(x)− |ψ(x, tn)|2) (t− tn)
]
, α = 0,√

Ûn(x, t) exp
[

iβ
2α

ln Ûn(x, t)
]
, α 6= 0,

(7.69)

where

Ûn(x, t) =





1

1 + η|ψ(x, tn)|2(t− tn)
, V0(x) = 0,

V0(x)

|ψ(x, tn)|2 + (V0(x)− |ψ(x, tn)|2) exp(−η(t− tn)V0(x))
, V0(x) 6= 0.

Remark 7.1. If the function Vn(x, t) as well as other integrals in (7.67) can not

be evaluated analytically, we can approximate them by the numerical quadrature in

Remark 4.1.

To solve (7.65), we adopt the polar coordinate so as to match the highly oscillatory

boundary condition (7.3) in the transverse direction, and try to formulate it in a

variable separable form. Then we discretize it in θ-direction by Fourier pseudospec-

tral method, in time by the Crank-Nicolson (C-N) scheme and in r-direction by
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finite element method (FEM) instead of the finite difference method used in Section

4.4.2 so that we can use non-uniform grids in r-direction. With the same expansion

as (4.109), i.e.

ψ(r, θ, t) =

L/2−1∑

l=−L/2

ψ̂l(r, t) eilθ, (7.70)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the lth

mode, we get, for −L
2
≤ l ≤ L

2
− 1,

(α− iβ) ∂tψ̂l(r, t) =
1

r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
− l2

r2
ψ̂l(r, t), 0 < r < R, (7.71)

ψ̂l(0, t) = 0 (for l 6= 0), ψ̂l(R, t) = δlm (for all l); (7.72)

where δlm is the Kronecker delta satisfying

δlm =





1, l = m,

0, l 6= m.

Let P k denote all polynomials with degree at most k, J > 0 be a chosen integer,

0 = r0 < r1 < r2 < · · · < rJ = R be a partition for the interval [0, R] with a mesh

size h = max0≤j<J {rj+1 − rj}. Define a finite element space

Uh =
{
uh ∈ C[0, R] | uh|[rj , rj+1] ∈ P k, 0 ≤ j < J, uh(R) = δlm

}
, for l = 0,

and for l 6= 0,

Uh =
{
uh ∈ C[0, R] | uh|[rj , rj+1] ∈ P k, 0 ≤ j < J, uh(0) = 0, uh(R) = δlm

}
.

Then we can obtain the FEM approximation for (7.71)−(7.72) as: Find ψ̂h
l (·, t) ∈ Uh

such that for all ϕh ∈ Uh and tn ≤ t ≤ tn+1,

(α− iβ)
d

dt
A

(
ψ̂h

l (·, t), ϕh
)

= B
(
ψ̂h

l (·, t), ϕh
)

+ l2C
(
ψ̂h

l (·, t), ϕh
)

, (7.73)

where for uh, vh ∈ Uh,

A(uh, vh) =

∫ R

0

ruh(r)vh(r) dr, B(uh, vh) = −
∫ R

0

r
duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) = −
∫ R

0

1

r
uh(r) vh(r) dr .
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The ODE system (7.73) can be discretized by the standard Crank-Nicolson scheme

and the resulting linear system can be solved by applying fast algorithms.

In practice, we always use the second-order Strang splitting [126] to combine (7.65)

and (7.66). For the discretization considered here, the total memory requirement is

O(JL) and the total computational cost per time step is O(JL ln L).

In the following sections, the vortex dynamics, such as stability of quantized vortices,

interaction of a few vortices, dynamics of vortex lattices and vortex motion under

an inhomogeneous external potential, are numerically investigated.

7.5 Stability of stationary vortex states

In order to study the stability of vortex states in the GLSE, we take ε = 1 and

V0(x) ≡ 1 in (7.62) and choose the initial data (7.63) as

ψ0(x) = φm(x) = fm(r)eimθ, x ∈ ΩR,

where fm(r) is the numerical solution of (7.12)−(7.13) as depicted in Figure 7.1.

As it is commonly accepted that the stability of vortices depends on the type of

perturbations, we thus consider two types of perturbations in the following cases:

Type 1. Small perturbation on the initial data; an example is given by artifi-

cially setting ψ0(±0.2, 0) = 0 and choosing W (x, t) ≡ 0 in (7.62);

Type 2. Perturbation on the external potential; an example is given by intro-

ducing a far-blue detuned Gaussian laser beam stirrer defined in (4.80).

The numerical results for the GLE under a perturbation on the initial data, i.e. Type

1, are illustrated in Figure 7.3. In comparison, Figure 7.4 shows similar results for

the NLSE under a perturbation on the external potential, i.e. Type 2. In addition,

Figure 7.5 presents time evolution of the vortex centers, and Figure 7.6 depicts the

wave radiation in the same stability study of a vortex state (m = 2) of NLSE. In
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our implementation, the parameters in (4.80) are chosen as

(xs(t), ys(t)) ≡ (3, 0), ωs = 1, Ws(t) =




−5 sin2(2t), t ∈ [0, π/2],

0, t ≥ π/2.

That is, the perturber is only introduced when t ∈ [0, π/2], and when t > π/2, it is

removed.
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Figure 7.3: Surface plots of −|ψ| at different times for the stability study of vortex

states in GLE under Type 1 perturbation. a). m = 1; b). m = 3.

From Figs. 7.3−7.6 and similar numerical experiments (omitted here for brevity),

we may draw the following conclusions for the stability of vortex states in the GLSE:

First, the vortex states with winding numbers m = ±1 are dynamically stable in

all three cases, i.e. in GLE, NLSE and CGLE (cf. Fig. 7.3a and Fig. 7.4a). This

substantiates the stability assumption used in the studies of such vortex dynamics

in the literature for GLE and NLSE [97].

Second, for the vortex states with winding numbers |m| > 1, there are two different

scenarios. On one hand, for GLE and CGLE, they are dynamically unstable under

either Type 1 or Type 2 perturbations (cf. Fig. 7.3b). When t is large, a vortex state

initially with winding number m splits into |m| well-separated vortices with winding

numbers +1 when m > 0, and respectively −1 when m < 0. The details of the
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Figure 7.4: Surface plots of −|ψ| at different times for the stability study the vortex

states in NLSE under Type 2 perturbation. a). m = 1; b). m = 3.
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Figure 7.5: Time evolution of the vortex centers in the stability study of the vortex

state with m = 2 in NLSE under a Type 2 perturbation. a). Trajectory; b). time-

evolution of x(t) (solid line) and y(t) (dash line).

splitting and the motion of the |m| separated vortices depend on the perturbation.

These results agree very well with those for GLE in the literature [105, 53]. On the

other hand, for NLSE, vortex states with winding numbers |m| > 1 are dynamically

stable under Type 1 perturbation but unstable under Type 2 (cf. Fig. 7.4b). Under a

Type 2 perturbation, a vortex state with winding number m splits into |m| vortices,

though the cores of these |m| vortices are well overlapped (cf. Fig. 7.4b). We

also conducted some studies on the effect of radiation for this set of experiments
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Figure 7.6: Plots of |ψ(x, 0, t)| at different times in the same study as Fig. 7.5.

(cf. Fig. 7.6). It was predicted that, for example in [91], a perturbed vortex with

m = 2 in NLSE would rotate and emit radiation which carries away energy. The

vortex configuration would then make adjustment by finding a configuration of lower

energy, that is to say, by splitting up into two m = 1 vortices. It is unclear which

type of perturbation is implied in [91], but the above prediction is nevertheless

consistent with our simulation using a perturbation on the external potential (cf.

Figs. 7.5−7.6).

7.6 Interaction of vortices in GLE

To verify the reduced dynamic laws in Lemmas 7.1−7.4, the vortex interactions in

GLE are numerically studied with respect to the four initial patterns (7.21)−(7.26).

The results are reported only for the case of m0 = +1, and for m0 = −1, they are

similar and thus omitted here for brevity.

Patterns I and II. For Pattern I, Figure 7.7 shows time evolution of the vortex

centers for different N , and especially for N = 2, Figure 7.8 displays the surface

plots of −|ψ| at different times. Figure 7.9 shows time evolution of the vortex centers

in Pattern II. From them and our additional results, we can draw the following

conclusions:
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Figure 7.7: Time evolution of the vortex centers in GLE for Pattern I with a = 2.

From the reduced dynamic laws with κ = 1 (a&c) and direct simulations of GLE

(b&d). Case I: N = 2.
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Figure 7.7 (cont’d): Case II: N = 3.
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Figure 7.8: Surface plots of −|ψ| at different times in GLE for Pattern I with N = 2.
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Figure 7.9: Time evolution of the vortex centers in GLE for Pattern II with a = 3.

From the reduced dynamic laws with κ = 1 (a&c) and direct simulations of GLE

(b&d). Case I: N = 3.

i). The mass center of the vortex centers is conserved for any time t ≥ 0, which

confirms the dynamic law in (7.28).

ii). Vortices with the same winding numbers undergo repulsive interactions and they

never collide. Their speeds depend on their distances to the origin, i.e. the larger

is the distance, the slower is the motion. In Pattern II, the vortex initially at the

origin (0, 0) does not move during the dynamics.
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Figure 7.9 (cont’d): Case II: N = 4.

iii). Vortices initially located on a circle would move outside along the lines pass-

ing through their initial centers and the origin, and the symmetry of their initial

locations is preserved for any t ≥ 0, i.e. they are always on a circle which has a

time-dependent radius r(t) (cf. Fig. 7.7b&d, 7.9b&d).

v). The solutions of the reduced dynamic laws agree with our numerical results if a

proper κ is chosen, which depends on the initial setup in (7.15). For example, we

numerically find that in Pattern I with N = 2, if a = 3, then κ ≈ 1.6411, while if

a = 6, κ ≈ 1.7080.

Pattern III. In this pattern, we study the interaction of two vortices with opposite

winding numbers. Figure 7.10 shows time evolution of the two vortex centers, and

Figure 7.11 displays the surface plots of −|ψ| at different times.

From them, we can draw the following conclusions:

i). The mass center of the two vortex centers is conserved before they collide, which

confirms the dynamic law in (7.28).

ii). Two opposite vortices undergo an attractive interaction, and they move along
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Figure 7.10: Time evolution of the two vortex centers in GLE for Pattern III with

a = 1.5, where ’o’ is the collision point. From the reduced dynamic laws with κ = 1

(a) and direct simulations of GLE (b).
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Figure 7.11: Surface plots of −|ψ| at different times in GLE for Pattern III.

the lines passing through their initial centers (cf. Fig. 7.10, 7.11). Their speeds

depend on their distance, i.e. the larger is the distance, the smaller is the speed.

iii). At a critical time tc > 0, the two vortices would collide at the origin (0, 0), and

the collision time tc can be numerically approximated by

tc ≈ 1

14.8710
d2.0715

0 , with d0 = 2a. (7.74)

Immediately, (7.74) implies that tc = O (a2), which confirms the analytical results

in Lemma 7.3.
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iv). The solutions of the reduced dynamic laws agree with our numerical results if

we choose proper κ, which depends on the initial distance of the two vortex centers.

Pattern IV. According to Lemma 7.4, for different N , the motion of vortex centers

in this pattern are distinctly different. Here we consider the interactions for some

special N , e.g. N = 3, 4 and 5. The time evolution of the vortex centers are shown

in Figure 7.12.

a)
−2 0 2

−0.1

−0.05

0

0.05

0.1

x

y

0 1 2 3 4 5
0

1

2

3

t

x 1(t)
 o

r y
1(t)

0 1 2 3 4
−1

0

1

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

b)
−2 0 2

−0.1

−0.05

0

0.05

0.1

x

y

0 0.5 1 1.5 2
0

1

2

3

t

x 1(t)
 o

r y
1(t)

0 0.5 1 1.5
−1

0

1

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

Figure 7.12: Time evolution of the vortex centers in GLE for Pattern IV with a = 3,

where ’o’ is the collision point. From the reduced dynamic laws with κ = 1 (a, c&e)

and direct simulations of GLE (b, d&f). Case I: N = 3.

From Fig. 7.12, we can get the following conclusions:

i). During the interaction, the mass center of the vortex centers is conserved very

well, which again confirms the dynamic law in (7.28), and the vortex initially at the

origin does not move.

ii). When N = 3, the three opposite vortices undergo attractive interactions. Before

a critical time tc > 0, the two vortices initially on a circle would move towards the

center along the line passing through their initial centers (cf. Fig. 7.12b). When
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Figure 7.12 (cont’d): Case II: N = 4.
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Figure 7.12 (cont’d): Case III: N = 5.

t = tc, three vortices collide at the point (0, 0), and after it, only one vortex with

winding number m0 is left, which would stay at the point (0, 0) for any time t > tc.

The numerical results in this case are consistent with the dynamic laws in Lemma

7.4.
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iii). When N = 4, the three vortices located on a circle would move towards the

center before a critical time tc. At time t = tc, they collide at the center (cf. Fig.

7.12d), and after it, there are two like vortices left, which have winding numbers m0

and undergo a repulsive interaction. In this case, the numerical results are different

from those of the reduced dynamic law, where the four vortices would stay at their

initial locations for any time t ≥ 0 (cf. Fig. 7.12c). This difference is caused by

neglecting the next order terms in the asymptotic approximations when we get the

ODEs (7.17), so we can make some corrections on the reduced dynamic laws from

our numerical results.

iv). When N ≥ 5, the N vortices undergo repulsive interactions and they never

collide, which confirms the dynamic laws in Lemma 7.4 (cf. Fig. 7.12f).

7.7 Interaction of vortices in NLSE

In this section, we numerically study the vortex interactions in NLSE and compare

them with the reduced dynamic laws in Lemmas 7.5−7.8. For the NLSE, the mag-

nitude of a plays an important role in vortex interactions, so for each example we

consider two cases, i.e. small |a| and large |a|. For brevity, the results are reported

only for m0 = +1.

Pattern I. For N = 2, Figure 7.13 shows the surface plots of−|ψ| at different times,

and Figure 7.14 depicts the plots of |ψ(x, 0, t)| to study the sound wave propagation

during the interaction. Figure 7.15 gives time evolution of the vortex centers for

different N .

From Figs. 7.13−7.15, we can draw the following conclusions:

i). Vortices with same winding numbers never collide during the interaction, and

the signed mass center of the vortex centers is conserved very well.

ii). Vortices initially located on a circle would move first to another circle with a

radius a1 > a within time 0 ≤ t ≤ t0, where t0 is dependent on a. After t ≥ t0,
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Figure 7.13: Surface plots of −|ψ| at different times in NLSE for Pattern I with

N = 2 and a = 2.
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Figure 7.14: Plots of |ψ(x, 0, t)| (x ≥ 4) in NLSE for Pattern I with N = 2 and

a = 2.

they would rotate (counter clockwise when m0 = +1, and respectively clockwise

when m0 = −1) on a circle whose radius depends on time t, i.e. r = r(t) ≥ a1 and

dr(t)
dt

≥ 0.

iii). All our numerical results show that the reduced dynamic laws are only valid for

large a, which is caused by neglecting the next order terms when we derive the ODEs

(7.19). While for the case of small a, our numerical results suggest a correction for

the dynamic laws.

iv). The reduced dynamic laws fail to take into account the effect of the excessive

energy and the radiation effect (cf. Fig. 7.14) which play important roles in vortex

dynamics.

For the case of N = 2, we do more detailed numerical studies to compare with the
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Figure 7.15: Time evolution of the vortex centers in NLSE for Pattern I. From the

reduced dynamic laws (a&d) and direct simulations of NLSE with a = O (r0
1): (b&e)

and a À r0
1: (c&f). Case I. N = 2: a). a = 2; b). a = 0.5; c). a = 6.

dynamic laws in [109]. Figure 7.16 presents the dynamical laws obtained from our

numerical simulations.

According to (7.44), two like vortices would rotate with an angular frequency ω(a) =

1/a2. This is confirmed by our numerical simulations (cf. Fig. 7.16a) when d0 = 2a

is large, however, it is invalid when d0 is small because the reduced dynamic laws

(7.19) are not correct when the vortex pairs have overlap support. On the other

hand, from our numerical results, we find that after some time t0, the two vortices

would rotate on a circle which has a time-dependent diameter d(t) = 2r(t), and if

these two vortices are initially well-separated, i.e. d0 = 2a À 1, the diameter d(t)



7.7 Interaction of vortices in NLSE 159

d)
−2 −1 0 1 2

−2

−1

0

1

2

x

y 0 10 20 30 40 50

−2

0

2

t

x 1(t)
 o

r y
1(t)

0 10 20 30 40 50
−1

0

1

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

e)
−1 0 1

−1

0

1

x

y 0 20 40 60 80 100
−2

0

2

t
x 1(t)

 o
r y

1(t)

0 20 40 60 80 100
−1

0

1

t

x
1
+x

2
+x

3
y

1
+y

2
+x

3

f)
−5 0 5

−5

0

5

x

y 0 50 100 150

−5

0

5

t

x 1(t)
 o

r y
1(t)

0 50 100 150
−1

0

1

t

x
1
+x

2
+x

3
y

1
+y

2
+y

3

Figure 7.15 (cont’d): Case II. N = 3: d). a = 2; e). a = 1; f). a = 6.

increases at O
(
t1/6

)
[108], so we fit it by

d(t) = |x1(t)− x2(t)| =
[
d0(t0)

6 + α(d0)(t− t0)
]1/6

, t ≥ t0, (7.75)

with α(d0) a constant depending on d0. The numerical results show that (7.75) is a

very good predication (cf. Fig. 7.16b). Of course, much more detailed information

on the vortex dynamics in this case can be found through our numerical simulations.

For example, our simulations suggest that when the initial distance d0 increases, the

time t0 increases, the diameter d1 = |x1(t0)− x2(t0)| increases (cf. Fig. 7.16c),

and α(d0) in (7.75) also increases (cf. Fig. 7.16b). From Fig. 7.16, we have the

numerical dynamic laws for the diameter d1 when t ≥ t0:

d1 ≈




d0 + d0.9053
0 /2.9189, d0 < 2r0

1,

d0 + 1.4453/d0.7996
0 , d0 > 2r0

1,
(7.76)
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Figure 7.16: Dynamic laws for two like vortices in NLSE. a). Frequency ω (solid

line from (7.44); ‘*’: numerical results); b). α(d0) in (7.75) (solid line: α = 26 · 3π
[108]; ‘*’: numerical results); c). diameter d1 = |x1(t0)− x2(t0)|; d). time-evolution

of the free energy.

with r0
1 being the core size of the vortex with winding number m = ±1. In addition,

from Fig. 7.16d, we can see that the rescaled free energy E(ψ) is conserved very

well during the dynamics.

Pattern II. In this case, we study the interaction between three or four like vortices.

The time evolution of the vortex centers are shown in Figure 7.17.

From Fig. 7.17 and our additional results, we can get the same conclusions as i)−iv)

drawn for the interaction in Pattern I. Additionally, in this case, the vortex initially

at the center does not move for any time t ≥ 0.

Pattern III. In this case, we consider two opposite vortices for different d0 = 2a.

Figures 7.18 and 7.21 display the surface plots of −|ψ| at different times for d0 =

3 and d0 = 10 respectively, and Figures 7.19, 7.20 and 7.22 plot |ψ(x, y(t), t| or
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Figure 7.17: Time evolution of the vortex centers in NLSE for Pattern II. From the

reduced dynamic laws (a&d) and direct simulations of NLSE with a = O (r0
1): (b&e)

and a À r0
1: (c&f). Case I. N = 3: a). a = 2; b). a = 0.5; c). a = 10.

|ψ(0, y, t)| to show the sound wave propagation during the dynamics. Figure 7.23

shows time evolution of the two vortex centers for different d0.

From Figs. 7.18−7.23, we can draw the following conclusions:

i). The signed mass center of the two vortex centers is conserved only when the

initial distance between two vortices, i.e. d0, is large enough, while when d0 is small,

it is not conserved any more.

ii). There exists a critical distance dcr, such that for d0 < dcr, the two vortices

approach each other while drifting sideways and then collide and annihilate at time

t = tc (cf. Figs. 7.18, 7.23b), while for d0 > dcr, they move almost in parallel
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Figure 7.17 (cont’d): Case II: N = 4: d). a = 2; e). a = 1; f). a = 6.
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Figure 7.18: Surface plots of −|ψ| at different times in NLSE for Pattern III with

d0 = 3.

courses (cf. Figs. 7.21, 7.23c&d). Our numerical simulations suggest that dcr ≈
2r0

1 = 2× 1.75 = 3.5, i.e. two times of the core size r0
1, which is almost three times

of the theoretical prediction dcr ≈
√

2 derived in [108].

iii). When d0 < dcr = 2r0
1, before collision, our numerical simulation reveals that
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Figure 7.19: Plots of |ψ(x, y(t), t)| at different times in NLSE for Pattern III with

d0 = 3. Here y = y(t) is the line passing through two vortex centers before tc ≈ 3.0.
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Figure 7.20: Plots of |ψ(0, y, t)| at different times in NLSE for Pattern III with

d0 = 3.

Figure 7.21: Surface plots of −|ψ| at different times in NLSE for Pattern III with

d0 = 10.
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Figure 7.22: Plots of |ψ(0, y, t)| at different times in NLSE for Pattern III with

d0 = 10.

two sound waves moving towards each other are generated along the line joining

the two vortex centers (cf. Fig. 7.19), which cause the collision, while no radiation

is observed; after the collision, some outgoing radiation is observed along with a

solitary-like sound wave also being observed in the y-axis (cf. Fig. 7.20). In addition,

a discontinuity or shock wave in the hydrodynamical velocity is observed just after

the collision. Furthermore, for the initial setup in Pattern III, the two vortices

collide at the point (0,−d2) with d2 > 0 when t = tc. When the initial distance d0

increases, both tc and d2 increase, and our numerical results suggest the following

relation between them:

tc ≈ 1

7.0790
d2.0954

0 , d1 ≈ 1

1.9300
d1.0365

0 , with d1 =
√

d2
0 + d2

2. (7.77)

iv). When d0 À dcr = 2r0
1, the two vortices drift almost on two parallel lines

perpendicular to the line joining them, with a constant speed. Our numerical results

confirm the speed (7.55) (cf. Fig. 7.24). Additionally, a solitary wave is observed

during the dynamics (cf. Fig. 7.22).

v). Again, in Pattern III, the solutions of the reduced dynamic laws agree with our

numerical results qualitatively when a À r0
1, and they are completely invalid when

a is small (cf. Fig. 7.23).
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Figure 7.23: Time evolution of the two vortex centers in NLSE for Pattern III, where

‘o’ is the collision point. From the reduced dynamic laws (a) and direct simulations

of NLSE with a < r0
1: (b), a = O (r0

1): (c), and a À r0
1: (d).

Pattern IV. Figure 7.25 shows time evolutions of the vortex centers for N = 3, 4

and 5. Form it, we can draw the following conclusions:

i). During the interaction, the signed mass center of the vortex centers is conserved,

and the vortex initially at the center does not move.
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Figure 7.24: Comparisons of numerical speed (‘*’) and dynamical laws from (7.55)

(solid line) in NLSE for Pattern III with d0 > dcr.

ii). For the case of N = 3, when a < 2r0
1, three opposite vortices undergo attractive

interactions, and the two vortices initially on a circle would move symmetrically

towards the center before a critical time tc. When t = tc, they collide at the origin

(cf. Fig. 7.25b), and after it, only one vortex with winding number m0 is left and

it would stay at the point (0, 0) for any time t > tc. On the other hand, when

a > 2r0
1, the two vortices would rotate (clockwise for m0 = +1, and respectively

counter clockwise for m0 = −1) on a circle whose radius depends on time t, i.e.

r = r(t), and dr(t)
dt

≥ 0 (cf. Fig. 7.25c).

iii). When N = 4, the three vortices initially on a circle would move first to another

circle with radius a1 < a, then they would rotate (clockwise for m0 = +1, and

respectively counter clockwise for m0 = −1) on a circle which has a time-dependent

radius r = r(t) and dr(t)
dt

≥ 0 (cf. Fig. 7.25e&f) .

iv). When N ≥ 5, the four vortices would rotate on a circle with a time-dependent

radius r(t) and dr(t)
dt

≥ 0. If m0 = +1, they rotate counter clockwise, and otherwise

they rotate clockwise.

v). For any N ≥ 3, if a is large, our numerical results confirm the reduced dynamic

laws, while when a is small, some corrections need to make on the reduced dynamic

laws.
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Figure 7.25: Time evolution of the vortex centers in NLSE for Pattern IV, where ‘o’ is

the collision point. From the reduced dynamic laws (a, d&g) and direct simulations

of NLSE with a = O (r0
1): (b, e&h) and a À r0

1: (c, f&i). Case I. N = 3: a). a = 2;

b). a = 3; c). a = 6.

7.8 Dynamics of vortex lattices

In this section, we study the dynamics of vortex lattices in GLE and NLSE. In order

to do so, we take ε = 1 and V0(x) ≡ 1 in (7.1) and choose the initial data (7.2) as

ψ0(x) =
N∏

j=1

φ1

(
x− x0

j

)
=

N∏
j=1

φ1

(
x− x0

j , y − y0
j

)
, x ∈ R2, (7.78)

where N is the total number of vortices in the lattice, and φ1 is the vortex state

solution in (7.11) with winding number +1. Then we take m = N in (7.3) and study
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Figure 7.25 (cont’d): Case II. N = 4: d). a = 2; e) a = 1.6; f). a = 6.

two cases:

Case I. N = 9 and the initial vortex centers are located on a uniform 3 × 3

mesh points of the rectangle [−4, 4]× [−4, 4]. That is, one vortex is located at

the origin and the other ones are uniformly located on two homocentric circles

with radii r1 = 4 and r2 = 4
√

2, respectively.

Case II. N = 25 and the initial vortex centers are located on a uniform 5× 5

mesh points of the rectangle [−4, 4]× [−4, 4].

For Case I, Figures 7.26 and 7.27 show the surface plots of −|ψ| and time evolutions

of the vortex centers in GLE and NLSE respectively, and Figure 7.28 plots |ψ(x, 0, t)|
(x ≥ 0) at different times in NLSE. For Case II, Figure 7.29 shows the contour plots
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Figure 7.25 (cont’d): Case III. N = 5: g). a = 2; h). a =
√

2; i). a = 6
√

2.

of −|ψ| in NLSE.

Based on Figs. 7.26−7.29, we can draw the following conclusions: First, for GLE

and NLSE, the vortex initially at the origin does not move due to the symmetry (cf.

Figs. 7.26a&b, 7.27a&b, 7.29).

Second, for GLE in Case I, each vortex moves outward along the line passing through

its initial center and the origin (cf. Fig. 7.26b), and after some time, the lattice

splits into 9 well-separated vortices with winding numbers +1 (cf. Fig. 7.26a). For

any time t ≥ 0, the symmetry of their initial locations is preserved, i.e. they are

always located on two homocentric circles, and when time t increases, the radii of

the two circles, i.e. r1(t) and r2(t), increase, but their distance, i.e. |r1(t) − r2(t)|,
decreases (cf. Fig. 7.26c).
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Figure 7.26: Dynamics of a vortex lattice in GLE for Case I. a). Surface plots of

−|ψ| at different times; b). trajectory of the vortex centers (‘+’: t = 0 and ‘o’:

t = 15); c) time evolution of the radius r1(t) and r2(t).

Third, for NLSE, the vortices rotate counterclockwise and the initial symmetry of

their locations is preserved. In Case I, the distance between two circles, i.e. |r1(t)−
r2(t)|, changes periodically (cf. Fig. 7.27c). The vortex cores are well-overlapped

for a very long time. During the time evolution, sound waves are generated and

they radiate outward (cf. Fig. 7.28). In Case II, similar results can be observed,

but the dynamics are more complicated (cf. Fig. 7.29).
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Figure 7.27: Dynamics of a vortex lattice in NLSE for Case I. a). Surface plots of

−|ψ| at different times; b). trajectory of the vortex centers (‘+’: t = 0 and ‘o’:

t = 15); c) time evolution of the radius r1(t) and r2(t).

7.9 Vortex motion in inhomogeneous potential

In this section, we study the vortex motion under an inhomogeneous external po-

tential. In order to do so, we take the external driven field W (x, t) ≡ 0 and

V0(x) =
1
2

+ γxx
2 + γyy

2

1 + γxx2 + γyy2
= 1− 1

2 (1 + γxx2 + γyy2)
, x ∈ R2, (7.79)
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Figure 7.28: Plots of |ψ(x, 0, t)| (x ≥ 0) at different times in NLSE for Case I.
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Figure 7.29: Contour plots of −|ψ| at different times in NLSE for Case II.

where γx and γy are two positive constants. It is easy to see that V0(x) attains its

minimum value 1/2 at the origin (0, 0). The initial data (7.2) is chosen as

ψ(x, 0) = ψ0(x) = φ1

(
x− x0

)
, x ∈ R2, (7.80)

where φ1(x) is the vortex state (7.11) with winding number m = +1.

We study the dynamics of a vortex under two types of inhomogeneous external

potentials:



7.9 Vortex motion in inhomogeneous potential 173

Case I. Isotropic external potential, e.g. γx = γy = 1 in (7.79);

Case II. Anisotropic external potential, e.g. γx = 1 and γy = 5 in (7.79).

For the GLE, i.e. α = 1 and β = 0 in (7.1), the velocity of the induced motion due

to the inhomogeneous impurities was obtained in [81], i.e.

v(t) :=
dx(t)

dt
= −∇ ln V0(x(t)), t ≥ 0, with x(0) = x0. (7.81)

This implies that in this case, the vortex would move to the minimizer of the external

potential V0(x). Furthermore, if the external potential is isotropic, the trajectory is

a segment connecting x0 and the minimizing point of V0(x). While for the NLSE

and CGLE, the dynamic laws with impurities remain to be established.
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Figure 7.30: The trajectory of vortex center trajectory and errors between the nu-

merical results and those from (7.81) for GLE. a). Case I; b). Case II.

In the following, we study the vortex motion by directly simulating the GLSE

(7.1)−(7.3). For GLE, Figure 7.30 shows the trajectory of the vortex center for

different ε with x0 = (1, 2)T and plots the errors between the numerical results and
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Figure 7.31: The trajectory of vortex center under an inhomogeneous external po-

tential for CGLE. a). Case I; b). Case II.
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Figure 7.32: The trajectory of vortex center under an inhomogeneous external po-

tential for the NLSE in Case I.

those from (7.81). Similarly, Figures 7.31 and 7.32 display the trajectory of the

vortex center in CGLE and NLSE respectively.

From Figs. 7.30−7.32, we can draw the following conclusions: First, for GLE and
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CGLE, the vortex center moves monotonically to the point where the external po-

tential V0(x) attains its minimum value (cf. Fig. 7.30, 7.31). The speed of the

motion depends on the values of the parameter ε. The trajectory of the vortex cen-

ter depends on the external potential V0(x), which agrees with the analytical results

for GLE in [80, 81, 96]. After the vortex reaches the minimum point of the external

potential, it would stay there for any time t ≥ 0, which illustrates the pinning effect.

Second, for NLSE, the vortex center moves rotationally clockwise to the minimum

point of the external potential (cf. Fig. 7.32). When ε is small, the smaller is the

ε, the longer time the vortex center stays on a circle. Additional experiments were

carried out for Case II, and similar motion patterns are observed, so the results are

omitted here.

Based on our numerical results in Figs. 7.31−7.32, we make the following con-

jectures about the vortex motion in NLSE and CGLE. For the NLSE under an

inhomogeneous potential, the velocity of the induced motion would satisfy

v(t) :=
dx(t)

dt
= −mG∇ ln V0(x(t)), t ≥ 0, with x(0) = x0, (7.82)

where m is the winding number of the vortex, and G is the symplectic matrix given

in (2.54). While for the CGLE, it can be given by

v(t) :=
dx(t)

dt
= −Q∇ ln V0(x(t)), t ≥ 0, with x(0) = x0, (7.83)

where the matrix Q = G + I with G and I being the symplectic matrix in (2.54)

and identity matrix respectively. Rigorous mathematical justification for (7.82) and

(7.83) are still not available.



Chapter 8
Conclusion

The main purpose of this thesis was to conduct an extensive analytical and numerical

investigation of Bose-Einstein condensation (BEC) in dilute alkali gases. In this

chapter, we summarize the main results described in previous chapters and discuss

the directions for future research works.

8.1 Conclusion and remark

This work considers the condensate in the mean field limit which is a low temperature

limit well described by the Gross-Pitaevskii equation (GPE). The time-dependent

GPE is time reversible and time transverse invariant. It also conserves the normal-

ization of the wave function and the energy.

Ground state is the most studied stationary state since it has the lowest energy

and it is the most stable state. In both weakly interacting regime, i.e. |βd| ¿ 1,

and strongly repulsive interacting regime, i.e. βd À 1, we derived the asymptotic

approximations for the ground state and its energy and chemical potential. These

approximations are up to o(1) in terms of the parameter βd. Along the numerical

front, the backward forward Euler Fourier pseudospectal (BFFP) method was de-

veloped to compute the ground state of non-rotating and rotating BEC. Compared

176
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to the finite difference methods in [4, 5, 23], the BFFP method is more efficient and

accurate, especially for the case of fast rotating BEC with strongly repulsive inter-

action, where a large number of vortices appear to form a dense lattice and thus its

numerical description needs high spatial resolution. The ground states in different

potentials were numerically studied for two dimensional (2D) and three dimensional

(3D) cases.

The dynamics of BEC were investigated both analytically and numerically, based

on the time-dependent GPE. Along the analytical side, we proved that the angular

momentum expectation is conserved when the external trapping potential is radi-

ally symmetric in 2D case, and respectively cylindrically symmetric in 3D case. A

second-order ordinary differential equation (ODE) was derived to describe the time

evolution of the condensate width as a period function with/without a perturba-

tion, and the frequency of the periodic function doubles the trapping frequency in

that direction. Also a second-order ODE system was presented, which characterizes

the dynamics of a stationary state with its center shifted. By analytically solving

this ODE system, we classified different motion patterns for the mass center of a

stationary state. On the numerical side, we developed several numerical methods

to compute the dynamics of non-rotating and rotating BEC. For non-rotating BEC,

a second-order or fourth-order time-splitting sine pseudospectral (TSSP) method is

proposed, and the merit of this method is that it is explicit and unconditionally

stable. It is also time reversible and time transverse invariant, and preserves the po-

sition density, which are consistent with the properties of time-dependent GPE. Due

to the appearance of the rotation term in the GPE, these high-order TSSP meth-

ods cannot be directly used for simulating the dynamics of rotating BEC. Thus

we proposed another two time reversible methods: time-splitting type method and

leap-frog Fourier pseudospectral (LFFP) method. The time-splitting type method

adopts the polar coordinate or cylindrical coordinate so as to make the angular mo-

mentum rotation term become a term with constant coefficient. It is unconditionally
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stable, usually of second or fourth-order accuracy in radial direction and spectral ac-

curacy in other directions of space, and also conserves the total density. The LFFP

method adopts the Cartesian coordinate and it is explicit, of spectral accuracy in

all directions of space and easy to program. It is stable under a stability condition.

Due to its fully spectral resolution in space, the LFFP method can resolve better

dynamics of vortex lattice in rotating BEC, especially in the fast rotating regimes

with strongly repulsive interaction where a large number of vortices appears in the

condensate and thus spatial resolution is one of the key issues.

By directly simulating the time-dependent GPE, we demonstrated that the central

vortex states with winding number |m| = 1 are dynamically stable, while those with

winding number |m| > 1 are dynamically unstable and they can split into |m| well

overlapped vortices with winding number +1 if m > 0, and respectively −1 if m < 0.

Under two different initial patterns, the interactions between two |m| = 1 vortices

were studied. We found that for both patterns, the interactions in non-interacting

BEC, i.e. βd = 0, and interacting BEC, i.e. βd 6= 0, are distinctly different. The

dynamics of vortex lattices in an anisotropic potential were also discussed.

We also extended our investigation on single-component BEC to rotating two-

component condensates. In certain limiting regime of particle numbers, we reduced

the two component condensate to single component. The ground states of two-

component rotating BEC were numerically studied for different experiment setups.

An efficient numerical method was developed to study the dynamics of this two-

component system, and some numerical results were also reported.

The vortex dynamics and interactions in superconductivity and superfluidity were

investigated asymptotically and numerically, by considering the Ginzburg-Landau-

Schrödinger equation (GLSE) which covers Ginzburg-Landau equation (GLE), non-

linear Schrödinger equation (NLSE) and complex Ginzburg-Landau equation (CGLE).

We reviewed the reduced dynamic laws characterizing the motion of vortex cen-

ters during the interactions, and solved them analytically under some proper initial
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data. On the other hand, the vortex interactions were numerically studied by di-

rectly solving the GLSE. Comparing to our numerical results, we found that the

reduced dynamic laws are valid only when the initial distance between vortices is

large enough, which is caused by neglecting the next-order terms when they were

derived. Furthermore, for the NLSE, the reduced dynamic laws fail to consider the

sound wave propagation in the dynamics, which can be observed in our simulations.

In addition, our numerical simulations for small initial distance presented interesting

interaction results and provided further understanding of vortex interactions. In an

inhomogeneous external potential, we numerically found that the vortex moves to

the point where the external potential attains its minimum after a long time. For

GLE, there has been a first-order ODE presented in [81] to govern the motion of the

vortex center, which is consistent with our numerical results. For NLSE and CGLE,

we made some conjectures about the vortex motion based on our numerical results.

8.2 Directions for future work

The numerical methods developed in this thesis have broad application in comput-

ing the ground state and dynamics of BEC, and we have adapted them to two-

component condensates. They can similarly be applied to other multi-component

system which has been an extremely hot topic recently. Although there are many

studies on this system, issues like role of different scattering lengths, collective modes

of the system and the relation to the phenomenon of superfluidity are still open

problems waiting to be investigated.

With recent observations of vortices in experiments [99, 100, 9], vortex dynamics

in BEC are attracting intense current research interest. Our efficient and accurate

numerical methods can be used to further investigate the rich dynamics of them.

They can also be applied to study the dynamics and interaction of vortex line states

in 3D case.

The vortex dynamics in superconductivity and superfluidity in the whole space have
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been investigated in this thesis. Those in the bounded domain is also an interesting

topic, and recently there have been some theoretical studies about it [95]. In the

future, one could use the methods introduced in this thesis to study it, and then

compare the theoretical results with numerical ones.

A further extension would treat finite temperature effects in BEC by including the

collision terms in the kinetic equation for the mean field and fluctuations [114,

137]. In fact, the ZGN theory, named after Zaremba, Griffin and Nikuni [137], was

proposed to model BEC at finite temperatures. But its numerical simulation is

extremely challenging and results are very limited.



Bibliography

[1] S. K. Adhikari, Numerical solution of the two-dimensional Gross-Pitaevskii

equation for trapped interacting atoms, Phys. Lett. A, 265 (2000), pp. 91-96.

[2] S. K. Adhikari and P. Muruganandam, Bose-Einstein condensation dynamics

from the numerical solution of the Gross-Pitaevskii equation, J. Phys. B: At.

Mol. Opt. Phys., 35 (2002), pp. 2831-2843.

[3] S. L. Adler and T. Piran, Relaxation methods for gauge field equilibrium

equations, Rev. Mod. Phys., 56 (1984), pp. 1-40.

[4] A. Aftalion and I. Danaila, Three-dimensional vortex configurations in a ro-

tating Bose-Einstein condensate, Phys. Rev. A, 68 (2003), pp. 023603.

[5] A. Aftalion and I. Danaila, Giant vortices in combined harmonic and quartic

traps, Phys. Rev. A, 69 (2004), pp. 033608.

[6] A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: critical

angular velocities and energy diagrams in the Thomas-Fermi regime, Phys.

Rev. A, 64 (2001), pp. 063603.

[7] A. Aftalion and T. Riviere, Vortex energy and vortex bending for a rotating

Bose-Einstein condensate, Phys. Rev. A, 64 (2001), pp. 043611.

181



Bibliography 182

[8] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A.

Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,

Science, 269 (1995), pp. 198-201.

[9] B. P. Anderson, P. C. Haljan, C. E. Wieman and E. A. Cornell, Vortex preces-

sion in Bose-Einstein condensates: observations with filled and empty cores,

Phys. Rev. Lett., 85 (2000), pp. 2857-2860.

[10] I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau

equation, Rev. Mod. Phys., 74 (2002), pp. 99-133.

[11] W. Bao, Ground states and dynamics of multicomponent Bose-Einstein con-

densates, Multiscale Model. Simul., 2 (2004), pp. 210-236.

[12] W. Bao, I. -L. Chern and F. Y. Lim, Efficient and spectrally accurate numer-

ical methods for computing ground and first excited states in Bose-Einstein

condensates, J. Comput. Phys., to appear.

[13] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein

condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004),

pp. 1674-1697.

[14] W. Bao, Q. Du and Y. Zhang, Dynamics of rotating Bose-Einstein condensates

and their efficient and accurate numerical computation, SIAM J. Appl. Math.,

66 (2006), pp. 758-786.

[15] W. Bao and D. Jaksch, An explicit unconditionally stable numerical method

for solving damped nonlinear Schrödinger equations with a focusing nonlin-

earity, SIAM J. Numer. Anal., 41 (2003), pp. 1406-1426.

[16] W. Bao, D. Jaksch and P. A. Markowich, Numerical solution of the Gross-

Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187

(2003), pp. 318-342.



Bibliography 183

[17] W. Bao, D. Jaksch and P. A. Markowich, Three-dimensional simulation of

jet formation in collapsing condensates, J. Phys. B: At. Mol. Opt. Phys., 37

(2004), pp. 329-343.

[18] W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approxima-

tions for the Schrödinger equation in the semiclassical regime, J. Comput.

Phys., 175 (2002), pp. 487-524.

[19] W. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral

discretizations of nonlinear Schrödinger equations in the semiclassical regimes,

SIAM J. Sci. Comput., 25 (2003), pp. 27-64.

[20] W. Bao, F. Y. Lim and Y. Zhang, Energy and chemical potential asymptotics

for the ground state of Bose-Einstein condensates in the semiclassical regime,

Trans. Theory Stat. Phys., to appear.

[21] W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudo-

spectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26

(2005), pp. 2010-2028.

[22] W. Bao and W. Tang, Ground state solution of Bose-Einstein condensate by

directly minimizing the energy functional, J. Comput. Phys., 187 (2003), pp.

230-254.

[23] W. Bao, H. Wang and P.A. Markowich, Ground, symmetric and central vortex

states in rotating Bose-Einstein condensates, Comm. Math. Sci., 3 (2005), pp.

57-88.

[24] W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states

in Bose-Einstein condensation, Math. Mod. Meth. Appl. Sci., 15 (2005), pp.

1863-1896.



Bibliography 184

[25] I. Bialynicki-Birula and Z. Bialynicka-Birula, Center-of-mass motion in the

many-body theory of Bose-Einstein condensates, Phys. Rev. A, 65 (2002), pp.

063606.

[26] S. N. Bose, Plancks Gesetz und Lichtquantenhypothese, Zeitschift Für Physik

A, 26 (1924), pp. 178-181.

[27] C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Evidence of Bose-

Einstein condensation in an atomic gas with attractive interactions, Phys. Rev.

Lett., 75 (1995), pp. 1687-1690.

[28] V. Bretin, S. Stock, Y. Seurin and J. Dalibard, Fast rotation of a Bose-Einstein

condensate, Phys. Rev. Lett., 92 (2004), pp. 050403.

[29] B. M. Caradoc-Davies, R. J. Ballagh and P. B. Blakie, Three-dimensional

vortex dynamics in Bose-Einstein condensates, Phys. Rev. A, 62 (2000), pp.

011602.

[30] B. M. Caradoc-Davies, R. J. Ballagh and K. Burnett, Coherent dynamics of

vortex formation in trapped Bose-Einstein condensates, Phys. Rev. Lett., 83

(1999), pp. 895-898.

[31] Y. Castin and R. Dum, Bose-Einstein condensates with vortices in rotating

traps, Eur. Phys. J. D, 7 (1999), pp. 399-412.

[32] M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi and M. P. Tosi, Numerical

solution of the Gross-Pitaevskii equation using an explicit finite difference

scheme: an application to trapped Bose-Einstein condensates, Phys. Rev. E,

62 (2000), pp. 1382-1389.

[33] S. -M. Chang, C. -S. Lin, T. -C. Lin and W. -W. Lin, Segregated nodal domains

of two-dimensional multispecies Bose-Einstein condensates, Physica D, 196

(2004), pp. 341-361.



Bibliography 185

[34] S. -M. Chang, W. -W. Lin and S. -F. Shieh, Gauss-Seidel-type methods for en-

ergy states of a multi-component Bose-Einstein condensate, J. Comput. Phys.,

202 (2005), pp. 367-390.

[35] S. J. Chapman and G. Richardson, Motion of vortices in type II superconduc-

tors, SIAM J. Appl. Math., 55 (1995), pp. 1275-1296.

[36] Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dy-

namical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal.,

38 (2001), pp. 1961-1985.

[37] M. L. Chiofalo, S. Succi and M. P. Tosi, Ground state of trapped interacting

Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev.

E, 62 (2000), pp. 7438-7444.

[38] S. T. Chui, V. N. Ryzhov and E. E. Tareyeva, Amplification of trap centers po-

sition difference in mixtures of Bose-Einstein condensates, J. Phys.: Condens.

Matter., 14 (2002), pp. L77-L82.

[39] J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-

Schrödinger equation, Math. Res. Notes, 7 (1998), pp. 333-358.

[40] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wie-

man, Stable 85Rb Bose-Einstein condensations with widely tunable interac-

tions, Phys. Rev. Lett., 85 (2000), pp. 1795-1798.

[41] F. Dalfovo and S. Stringari, Bosons in anisotropic traps: ground state and

vortices, Phys. Rev. A, 53 (1996), pp. 2477-2485.

[42] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium

atoms, Phys. Rev. Lett., 75 (1995), pp. 3969-3973.

[43] J. Deang, Q. Du and M. Gunzburger, Stochastic dynamics of Ginzburg-Landau

vortices in superconductors, Phys. Rev. B, 64 (2001), pp. 052506.



Bibliography 186

[44] J. Deang, Q. Du, M. Gunzburger and J. Peterson, Vortices in superconductors:

modelling and computer simulations, Phil. Tran. Roy. Soc. London. A, 355

(1997), pp. 1957-1968.

[45] R. J. Dodd, Approximate solutions of the nonlinear Schrödinger equation for

ground and excited states of Bose-Einstein condensates, J. Res. Natl. Inst.

Stand. Technol., 101 (1996), pp. 545-552.

[46] F. P. Dos Santos, J. Leonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, C. S.

Unnikrishnan, M. Leduc and C. Cohen-Tannoudji, Bose-Einstein condensation

of metastable Helium, Phys. Rev. Lett., 86 (2001), pp. 3459-3462.

[47] Q. Du, Finite element methods for the time dependent Ginzburg-Landau

model of superconductivity, Comp. Math. Appl., 27 (1994), pp. 119-133.

[48] Q. Du, Diverse vortex dynamics in superfluids, Contemp. Math., 329 (2003),

pp. 105-117.

[49] Q. Du, M. Gunzburger and J. S. Peterson, Analysis and approximation of

the Ginzburg-Landau model of superconductivity, SIAM Rev., 34 (1992), pp.

54-81.

[50] Q. Du, M. Gunzburger and J. Peterson, Computational simulation of type-II

superconductivity including pinning phenomena, Phys. Rev. B, 51 (1995), pp.

16194-16203.

[51] Q. Du and W. Zhu, Stability analysis and application of the exponential time

differencing schemes, J. Comput. Math., 22 (2004), pp. 200-209.

[52] V. Dunjko, V. Lorent and M. Olshanii, Bosons in cigar-shaped traps: Thomas-

Fermi regime, Tonks-Girardeau regime, and in between, Phys. Rev. Lett., 86

(2001), pp. 5413-5416.

[53] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to

superconductivity, Physica D, 77 (1994), pp. 383-404.



Bibliography 187

[54] M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger

equation for small samples of trapped neutral atoms, Phys. Rev. A, 51 (1995),

pp. 1382-1386.

[55] M. Edwards, R. J. Dodd, C. W. Clark, P. A. Ruprecht and K. Burnett, Proper-

ties of a Bose-Einstein condensate in an anisotropic harmonic potential, Phys.

Rev. A, 53 (1996), pp. R1950-R1953.

[56] A. Einstein, Quantentheorie des einatomigen idealen gases, Sitzber. Kgl.

Preuss. Akad. Wiss., 261 (1924).

[57] P. Engels, I. Coddington, P. Haijan and E. Cornell, Nonequilibrium effects of

anistropic compression applied to vortex lattices in Bose-Einstein condensates,

Phys. Rev. Lett., 89 (2002), pp. 100403.

[58] B. D. Esry, C. H. Greene, J. P. Burke, Jr. and J. L. Bohn, Hartree-Fock theory

for double condensates, Phys. Rev. Lett., 78 (1999), pp. 3594-3597.

[59] D. L. Feder, C. W. Clark and B. I. Schneider, Nucleation of vortex arrays in

rotating anisotropic Bose-Einstein condensates, Phys. Rev. A, 61 (1999), pp.

011601.

[60] D. L. Feder, C. W. Clark and B. I. Schneider, Vortex stability of interacting

Bose-Einstein condensates confined in anisotropic harmonic traps, Phys. Rev.

Lett., 82 (1999), pp. 4956-4959.

[61] D. L. Feder, A. A. Svidzinsky, A. L. Fetter and C. W. Clark, Anomalous modes

drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett.,

86 (2001), pp. 564-567.

[62] A. L. Fetter, Vortex stability in a trapped Bose Condensate, Journal of Low

Temperature Physics, 113 (1998), pp. 189-194.

[63] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems,

McGraw-Hill, San Francisco, 1971.



Bibliography 188

[64] B. Fornberg and T. A. Driscoll, A fast spectral algorithm for nonlinear wave

equations with linear dispersion, J. Comput. Phys., 155 (1999), pp. 456-467.

[65] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner

and T. J. Greytak, Bose-Einstein condensation of atomic hydrogen, Phys. Rev.

Lett., 81 (1998), pp. 3811-3814.

[66] J. J. Garćıa-Ripoll and V. M. Pérez-Garćıa, Stability of vortices in inhomo-

geneous Bose-Einstein condensates subject to rotation: a three-dimensional

analysis, Phys. Rev. A, 60 (1999), pp. 4864-4874.
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