Numerical Methods for Problems in Unbounded Domains

Weizhu Bao

Department of Mathematics National University of Singapore Email: <u>matbaowz@nus.edu.sg</u> URL: <u>http://www.math.nus.edu.sg/~bao</u>

Collaborators: – H. Han, Z. Huang, X. Wen

- Motivation
 Different approaches
 For model problems
 New `optimal' error estimates
 Extension of the results
 Application to Navier-Stokes equations
- Conclusion & Future challenges

Motivation

Motivation

dam

Coupling of structures with foundation

Fluid flow around obstacle or in channel

 \square

 \vec{u}_{∞}

Quantum physics & chemistry

Motivation

- Vumerical difficulties
 - Unboundedness of physical domain
 - Others
- Classical numerical methods
 - Finite element method (FEM)
 - Finite difference method (FDM)
 - Finite volume method (FVM)
- Linear/nonlinear system with infinite unknowns

Ω

Different Approaches

Integral equation

- Boundary element method (BEM): Feng, Yu, Du, ...
- Fast Multipole method (FMM): Roklin & Greengard, ...
- Linfinite element method: Xathis, Ying, Han, ...
- **6** Domain mapping
- Perfect matched layer (PML): Beranger
- FEM with two different types basis functions:
- Spectral method: Shen, Guo, ...

Artificial boundary conditions (ABCs)

- Introduce an artificial boundary Γ_e
- Engineers use
 - Dirichlet or Neumann boundary condition on it
- Better way:
 - Solve on $\, \Omega_{e} \,$ analytically
 - Design high-order ABC (DtN) on Γ_e based on transmission conditions, i.e. establish $\frac{\partial u}{\partial n}\Big|_{\Gamma_e} = K(u\Big|_{\Gamma_e})$ $K: H^{1/2}(\Gamma_e) \to H^{-1/2}(\Gamma_e)$
- Reduce to Ω_i

- Solve the reduced problem by a classical method

– How to design high-order ABCs & do error analysis ???

1&2D wave equation: Engquist & majda, 77' 3D case Teng, 03' Helmholtz equation in waveguides: Goldstein, 82' Elliptic equations: Bayliss, Gunzburger & Turkel, 82 Helmholtz equation (local ABC): Feng 84' 😼 Laplace & Navier system: Han & Wu, 85' & 92', Yu 85' Elliptic equations in a cylinder: Hagstrom & Keller, 86' Linear advection diffusion equation: Halpern, 86' Helmholtz equation (DtN): Givoli & Keller, 95'

- Stokes system: Bao & Han, 97'
- Wavier-Stokes equations: Halpern 89'; Bao, 95', 97', 00'
- Linear Schrodinger equation: Arnold, 99'; NLS Besse 02'
- Ginburg-Landau equation: Du & Wu, 99'
- Wew `optimal' error estimates: Bao & Han, 00', 03'
- Flow around a submerged body: Bao & Wen, 01'
- Shrodinger-Poisson: Ben Abdallah 98'
- Landau-Lipschitz: Bao & Wang,

Types of artificial boundary - Circle - Straight line - Segments Polygonal line Elliptic curve

✤ Types of ABCs

- Local: Dirichlet or Neumann

$$u\Big|_{\Gamma_e} = u_{\infty} \quad \text{or} \quad \frac{\partial u}{\partial n}\Big|_{\Gamma_e} = 0$$

al: DtN boundary condition

- Nonlocal: DtN boundary condition

$$\frac{\partial u}{\partial n}\Big|_{\Gamma_e} = K\Big(u\Big|_{\Gamma_e}\Big) \approx K_N\Big(u\Big|_{\Gamma_e}\Big)$$

Discrete:

ID problem: $\frac{1}{r} \frac{1}{r} \frac{d}{dr} \left(r \frac{du(r)}{dr} \right) + \frac{m^2}{r^2} u(r) = f(r), \quad 0 < r < \infty$ $u(0) = 0, \qquad u \to 0 \quad \text{when} \quad r \to \infty$ - Assume that: $m \neq 0$, f(r) = 0 when $r \ge r_0 > 0$ – Artificial boundary: $r = R \ge r_0$ **T=0** G-- Exterior problem: $-\frac{1}{r}\frac{d}{dr}\left(r\frac{du(r)}{dr}\right) + \frac{m^2}{r^2}u(r) = 0, \quad R < r < \infty$ u(R) given, $u \to 0$ when $r \to \infty$

- Exact solution: $u(r) = u(R) (R/r)^{|m|}$ $r \ge R$ Transmission conditions: $u(R^{-}) = u(R^{+})$ $u'(R^{-}) = u'(R^{+})$ Exact boundary condition: u'(R) = -|m| u(R) / R- Reduced problem: $-\frac{1}{r}\frac{d}{dr}\left(r\frac{du(r)}{dr}\right) + \frac{m^2}{r^2}u(r) = f(r), \quad 0 < r < R$ u(0) = 0, u'(R) = -|m| u(R) / R

♦ 2D problem:

- $-\Delta u = f$ in $\Omega = Q^c$
- $u|_{\Gamma_i} = g,$ u bounded when $r = |\vec{x}| \to \infty$

- ASSUME: $supp(f) \cup \Gamma_i \subset B_{R_0}(\vec{0})$ - Artificial boundary: $\Gamma_R = \{(R, \theta) | 0 \le \theta \le 2\pi\}$ with $R \ge R_0$ - Exterior problem:

> $-\Delta u = 0, \quad r > R$ $u(R,\theta)$ given, u bounded when $r \to \infty$

- Exact solution: $\overline{u}(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{R}{r}\right)^n (a_n \cos n\theta + b_n \sin n\theta), \qquad r \ge R$ $a_n = \frac{1}{\pi} \int_{-\pi}^{2\pi} u(R,\theta) \cos n\theta \, d\theta, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{2\pi} u(R,\theta) \sin n\theta \, d\theta$ - Transmission conditions: $u(R^{-},\theta) = u(R^{+},\theta) \qquad \frac{\partial u}{\partial r}(R^{-},\theta) = \frac{\partial u}{\partial r}(R^{+},\theta) \quad 0 \le \theta \le 2\pi$ Exact boundary condition: $\frac{\partial u}{\partial r}(R,\theta) = -\frac{1}{\pi R} \sum_{n=1}^{\infty} n \int_{0}^{2\pi} u(R,\phi) \cos n(\theta-\phi) \, d\phi = -\frac{1}{\pi R} \sum_{n=1}^{\infty} \int_{0}^{2\pi} \frac{\partial u}{\partial \phi}(R,\phi) \sin n(\theta-\phi) \, d\phi$ $:= K(u(R,\phi)) = K(u|_{\Gamma_R}), \qquad K: H^{1/2}(\Gamma_R) \to H^{-1/2}(\Gamma_R)$

– Approximate ABCs:

$$\frac{\partial u}{\partial r}(R,\theta) \approx K_N(u\Big|_{\Gamma_R}) \coloneqq -\frac{1}{\pi R} \sum_{n=1}^N n \int_0^{2\pi} u(R,\theta) \cos n(\theta - \phi) \, d\phi \quad 0 \le \phi \le 2\pi \qquad N \ge 0$$

$$N = 0 \implies \frac{\partial u}{\partial r}(R,\theta) = 0$$
 (Neumann BC)

Reduced problem:

$$\Delta u = f \quad \text{in} \quad \Omega_i$$

$$\Gamma_i = g, \quad \frac{\partial u}{\partial r}(R,\theta) = K_N(u|_{\Gamma_R}) \quad 0 \le \theta \le 2\pi$$

Variational formulation:

 $V = \left\{ v \in H^1(\Omega_i) \mid v \Big|_{\Gamma_i} = 0 \right\} \text{ with norm } \left\| v \right\|_V \coloneqq \left\| v \right\|_{1,2,\Omega_i}$ $A(u,v) = \int_{\Omega_{v}} \nabla u \bullet \nabla v \, d\vec{x} \qquad F(v) = \int_{\Omega_{v}} f \, v \, d\vec{x}$ $B(u,v) = \sum_{n=1}^{\infty} n \left[\int_{-\infty}^{2\pi} u(R,\theta) \cos n\theta \, d\theta \int_{-\infty}^{2\pi} v(R,\theta) \cos n\phi \, d\phi + \int_{-\infty}^{2\pi} u(R,\theta) \sin n\theta \, d\theta \int_{-\infty}^{2\pi} v(R,\theta) \sin n\phi \, d\phi \right]$ $B_N(u,v) = \sum_{n=1}^N n \left[\int_0^{2\pi} u(R,\theta) \cos n\theta \, d\theta \int_0^{2\pi} v(R,\theta) \cos n\phi \, d\phi + \int_0^{2\pi} u(R,\theta) \sin n\theta \, d\theta \int_0^{2\pi} v(R,\theta) \sin n\phi \, d\phi \right]$ - With exact BCs: Find $u \in V_{\rho}$ s.t. $A(u,v) + B(u,v) = F(v), \quad \forall v \in V$ – With approximate ABCs: Find $u_N \in V_g$ s.t. $A(u_N, v) + B_N(u_N, v) = F(v), \qquad \forall v \in V$

Finite element approximation: Find $u_N^h \in V_g^h$ s.t. $A(\boldsymbol{\mu}_{N}^{h},\boldsymbol{\nu}^{h})+B_{N}(\boldsymbol{\mu}_{N}^{h},\boldsymbol{\nu}^{h})=F(\boldsymbol{\nu}^{h}),$ $\forall v^h \in V^h$ \bigvee Properties of A(u,v) $|A(u,v)| \le M_1 ||u||_V ||v||_V \qquad M_2 ||v||_U^2 \le A(v,v)$ We Properties of B(u,v) & $B_N(u,v)$ $|B(u,v)| \le M_3 ||u||_V ||v||_V ||B_N(u,v)| \le M_3 ||u||_V ||v||_V$ $0 \le B_N(v, v) \le B(v, v)$

- $\begin{aligned} & \underset{W}{\overset{h}{=}} \text{ Existing error estimates (Han&Wu, 85', Yu, 85', Givoli & Keller 89')} \\ & \left\| u \boldsymbol{\mu}_{N}^{h} \right\|_{V} \leq C(R, u) \left[h^{p} + \frac{1}{(N+1)^{p}} \right] \quad \text{or} \quad C(R, u) \left[h^{p} + \frac{1}{(N+1)^{k}} \left(\frac{R_{0}}{R} \right)^{N} \right] \\ & \underset{W}{\overset{W}{=}} \text{ Deficiency} \end{aligned}$
 - N=0: no convergence, but numerically gives
 - How does error depend on R?
 - Find new error estimates depend on – h, N & R ?????

New `Optimal' Error Estimate

$$\left| u - \mathcal{U}_{N}^{h} \right|_{1,\Omega_{i}} \leq C_{0} \left[h^{p} \left| u \right|_{p+1,\Omega_{i}} + \frac{1}{(N+1)^{p}} \left(\frac{R_{0}}{R} \right)^{N+1} \left| u \right|_{\Gamma_{0}} \right|_{p+1/2,\Gamma_{0}} \right]$$

New `Optimal' Error Estimate

Ideas (Bao & Han, SIAMNA, 00'): - Use an equivalent norm on V: $\|v\|_* = [A(v,v)]^{1/2} = |v|_{1,2,\Omega_i}$ $|A(u,v)| \le \|u\|_* \|v\|_* \qquad \|v\|_*^2 \le A(v,v)$ - Analysis B(u,v) carefully $B_N(v,v) = \pi \sum_{n=1}^N n(C_n^2 + d_n^2) \le \pi \sum_{n=1}^\infty n(C_n^2 + d_n^2) = B(v,v) = |v|_{\Gamma_R} / R|^2_{1/2,\Gamma_R} \le \|v\|_*^2$ $v(R,\theta) = \frac{c_0}{2} + \sum_{n=1}^\infty (c_n \cos n\theta + d_n \sin n\theta)$

– Notice u satisfying Laplacian when $r > R_0$

Numerical example

Poisson equation outside a disk with radius 0.5:
 Choose f and g s.t. there exists exact solution
 Vⁿ : piecewise linear finite element subspace
 Test cases:

- Mesh size <u>h effect</u>: $R = R_0 = 1, N = 101$

 $- \underline{\text{N effect}}: R = R_0 = 1$

– R effect: $R > R_0$ varies

next

h effect

Mesh	$h_0 = 0.31416$	$h_0/2$	$h_0/4$	$h_0/8$
$\max \mathbf{u} - \mathbf{u}_{N}^{h} $	1.306E - 2	3.24E - 3	8.097E - 4	2.024E - 4
$\left\ \mathbf{u} - \mathbf{u}_{N}^{h} \right\ _{0,\Omega_{i}}$	4.175E - 2	1.081E - 2	2.728E - 3	6.836E - 4
$\left\ \mathbf{u} - \mathbf{u}_{N}^{h} \right\ _{1,\Omega_{i}}$	0.517	0.275	0.139	0.070

Conclusion:

 $\left\| \mathbf{u} - \mathbf{u}_{N}^{h} \right\|_{1,\Omega_{i}} = O(h) \qquad \underline{back}$ $\left\| \mathbf{u} - \mathbf{u}_{N}^{h} \right\|_{0,\Omega_{i}} = O(h^{2}) \qquad \max \left\| \mathbf{u} - \mathbf{u}_{N}^{h} \right\| = O(h^{2})$

h & N effect

 $\bigvee \text{Conclusion:}$ $\left| \boldsymbol{\mu}_{\infty}^{h} - \boldsymbol{\mu}_{N}^{h} \right|_{k,\Omega_{i}} = O\left(\frac{1}{(N+1)^{p}} \right), \quad R = R_{0} \qquad \left| \boldsymbol{\mu}_{\infty}^{R} - \boldsymbol{\mu}_{N}^{R} \right|_{1,\Omega_{i}} = O\left(\frac{R_{0}}{R} \right)^{N+1}$

Ω

Vukawa equation (Bao & Han, SIAMNA, 00'): $-\nabla \bullet (\kappa(\vec{x})\nabla u(\vec{x})) + \beta(\vec{x})u(\vec{x}) = f(\vec{x}), \text{ in } \Omega$ $u\Big|_{\Gamma_D} = g, \quad \frac{\partial u}{\partial n}\Big|_{\Gamma_N} = k, \quad u \to 0 \text{ when } r \to \infty$ $- \text{Assumption: } f(\vec{x}) = 0, \quad \kappa(\vec{x}) = \kappa_0 > 0, \quad \beta(\vec{x}) = \beta_0 > 0, \text{ when } r = |\vec{x}| > R_0$ - Exact & approximate ABCs:- Error bounds:

$$\left\| u - \boldsymbol{\mathcal{U}}_{N}^{h} \right\|_{1,\Omega_{i}} \leq C_{0} \left[h^{p} + \frac{(1 + \sqrt{\beta_{0}})K_{N+1}(R\sqrt{\beta_{0}})}{(N+1)^{p}K_{N+1}(R_{0}\sqrt{\beta_{0}})} \right]$$

Problem in a semi-infinite strip (Bao & Han, SIAMNA,00'):

- $-\nabla \bullet (\kappa(\vec{x})\nabla u(\vec{x})) + \beta(\vec{x})u(\vec{x}) = f(\vec{x}), \quad in \quad \Omega$
- + B.C.

– Assumption:

 $f(\vec{x}) = 0$, $\kappa(\vec{x}) = \kappa_0 > 0$, $\beta(\vec{x}) = \beta_0 > 0$, when $x > d_0$ – Exact & approximate ABCs:

– Error bounds:

$$\left\| u - \boldsymbol{u}_{N}^{h} \right\|_{1,\Omega_{i}} \leq C_{0} \left[h^{p} + \frac{1}{(N+1)^{p}} e^{-(d-d_{0})\pi(n+1)/b} \right]$$

Exterior Stokes Eqs. (Bao, IMANA, 03')

- $-\nu \Delta \vec{u} + \text{grad } p = \vec{f}, \quad \text{div } \vec{u} = 0, \text{ in } \Omega$
- $\vec{u} = \vec{0}$ on Γ_i
- \vec{u} bounded $p \to 0$ when $r \to \infty$

Ω

Exact & approximate nonlocal/local ABCs:
 Difficulty: Constant in inf-sup condition
 Error bounds:

$$\left\|\vec{u} - \vec{u}_N^h\right\| + \left\|p - p_N^h\right\| \le C_0 \left[h^k + \frac{1}{(N+1)^k} \left(\frac{R_0}{R}\right)^{\max\{1, N-1\}}\right]$$

Ω

Exterior linear elastic Eqs. (Bao & Han, Math. Comp. 01') $-\mu \Delta \vec{u} - (\lambda + \mu) \text{ grad div } \vec{u} = \vec{f}, \text{ in } \Omega$ $\vec{u} = \vec{0} \text{ on } \Gamma_i$

- \vec{u} bounded when $r \to \infty$
 - Exact & approximate nonlocal/local ABCs:
 Difficulty: Constant in Korn inequality
 Error bounds:

$$\left\| \vec{u} - \vec{u}_N^h \right\| \le C_0 \left[h^k + \frac{1}{(N+1)^k} \left(\frac{R_0}{R} \right)^{\max\{1, N-1\}} \right]$$

High-order Local ABCs

Poisson Eq. $-\Delta u = f$ in $\Omega = Q^c$ $u\Big|_{\Gamma_i} = g,$ u bounded when $r = |\vec{x}| \to \infty$ **Exact BC** $\frac{\partial u}{\partial r}(R,\theta) = -\frac{1}{R} \sum_{n=1}^{\infty} n(a_n \cos n\theta + b_n \sin n\theta) = L u(R,\theta)$ $u(R,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$ **WApproximate** $L \approx L_N$ s.t. correct for first N terms $L_N u(R,\theta) = -\frac{1}{R} \sum_{m=1}^{N} (-1)^m \alpha_m^{(N)} \frac{\partial^{2m}}{\partial \theta^{2m}} u(R,\theta) \Longrightarrow \sum_{m=1}^{N} n^{2m} \alpha_m^{(N)} = n, n = 1, \cdots, N$

High-order Local ABCs

V=1: $\frac{\partial u}{\partial r}(R,\theta) = \frac{1}{R} \frac{\partial^2 u}{\partial \theta^2}(R,\theta) \qquad 0 \le \theta \le 2\pi$ Finite element approximation: Error bounds: (Bao & Han, CMAME, 01')

$$\left\| u - \boldsymbol{\mathcal{U}}_{N}^{h} \right\|_{1,\Omega_{i}} \leq C_{N,u} \left[h^{p} + \left(\frac{R_{0}}{R} \right)^{N+1} \right]$$

For Navier-Stokes Eqs. (Bao, JCP,95',97',00')

$$(\vec{u} \bullet \nabla)\vec{u} + \nabla p = \frac{1}{\text{Re}}\Delta\vec{u} \quad \text{in} \quad R^2 \setminus \Omega_i$$
$$\nabla \bullet \vec{u} = 0$$

Two types exterior flows: around obstacles & in channel

 \vec{u}_{∞}

Ideas

 $\begin{aligned} & \Rightarrow \text{ Introduce two lines } x_2 = 0 \& x_2 = L \text{ and set} \\ & u_2|_{x_2=0,L} = \sigma_{12} \Big|_{x_2=0,L} = \frac{1}{\text{Re}} \Big(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \Big) \Big|_{x_2=0,L} = 0 \quad -\infty < x_1 < \infty \end{aligned}$ $\begin{aligned} & \Rightarrow \text{ Introduce a segment } x_1 = b \text{ and set} \\ & \vec{u}(\vec{x}) \Big|_{x_1=b} = \vec{u}_{\infty} \quad 0 \le x_2 \le L \end{aligned}$

Ideas

 \bigvee Introduce a segment $x_1 = c$ and design ABCs - Linearize NSEs on Ω_c by Oseen Eq. - Solve Oseen Eq. on Γ_c analytically by given $\vec{u}(c, x_2)$ - Use transmission conditions $\vec{u}(c^{-}, x_{2}) = \vec{u}(c^{+}, x_{2})$ $\sigma_{n}(c^{-}, x_{2}) = \sigma_{n}(c^{+}, x_{2})$ – Design ABCs on Ω_c $\sigma_n(c, x_2) = T(\vec{u}|_{x_1=c}, p|_{x_1=c}) \approx T_N(\vec{u}(c, x_2), p(c, x_2)) \quad 0 \le x_2 \le L$

Solve the reduced problem

Well-posedness

Variational formulation:

 $A(\vec{u}^{N}, \vec{v}) + A_{1}(\vec{u}^{N}, \vec{u}^{N}, \vec{v}) + A_{2}^{N}(\vec{u}^{N}, \vec{v}) + B(\vec{v}, p^{N}) = F(\vec{v}) \quad \forall \vec{v} \in V \equiv [H_{*}^{1}(\Omega_{T})]^{2}$ $B(u^{N}, q) = 0 \qquad \forall q \in W \equiv L^{2}(\Omega_{T})$

With

$$A(\vec{u},\vec{v}) = \frac{2}{\text{Re}} \int_{\Omega_r} \sum_{i,j=1}^2 \varepsilon_{ij}(\vec{u}) \varepsilon_{ij}(\vec{v}) d\vec{x} = \frac{1}{2 \text{Re}} \int_{\Omega_r} \sum_{i,j=1}^2 \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) d\vec{x}$$

$$A_1(\vec{u},\vec{v},\vec{w}) = \frac{1}{2} \int_{\Omega_r} \left[((\vec{u} \bullet \nabla)\vec{v}) \bullet \vec{w} - ((\vec{u} \bullet \nabla)\vec{w}) \bullet \vec{v} \right] d\vec{x}$$

$$B(\vec{v},q) = -\int_{\Omega_r} q \nabla \bullet \vec{v} d\vec{x} \qquad F(v) = \frac{a^2}{2} \int_0^L v_1(c,x_2) dx_2$$

$$A_2^N(\vec{u},\vec{v}) = \sum_{m=1}^N \left[\cdots \int_0^L u_1(c,x_2) \cos \frac{m\pi x_2}{L} dx_2 \int_0^L v_1(c,x_2) \cos \frac{m\pi x_2}{L} dx_2 + \cdots \right]$$

Well-posedness

- Well-posedness:
 - There exists solution of the reduced problem
 When Re is not too big, uniqueness
- **Error** estimates for N-S Eqs.

$$\|\vec{u} - \vec{u}^N\| + \|p - p^N\| \le \frac{C}{(N+1)^{3/2}} \|\vec{u}\|_{2,\Gamma_c}$$

Error estimates for Oseen Eqs.

$$\vec{u} - \vec{u}^{N} \| + \| p - p^{N} \| \le \frac{C e^{-(N+1)(c-c_{0})}}{(N+1)^{3/2}} \| \vec{u} \|_{2,\Gamma_{c_{0}}}$$

Finite Element Approximation

FEM approximation:

 $A(\vec{u}_{h}^{N}, \vec{v}_{h}) + A_{1}(\vec{u}_{h}^{N}, \vec{u}_{h}^{N}, \vec{v}_{h}) + A_{2}^{N}(\vec{u}_{h}^{N}, \vec{v}_{h}) + B(\vec{v}_{h}, p_{h}^{N}) = F(\vec{v}_{h}) \quad \forall \vec{v}_{h} \in V_{h}$ $B(u_{h}^{N}, q_{h}) = 0 \qquad \forall q_{h} \in W_{h}$

$\begin{aligned} & \underbrace{\|\vec{u} - \vec{u}_{h}^{N}\| + \|p - p_{h}^{N}\| \leq C_{1} h^{m} \left\|\vec{u}\right\|_{m+1,\Omega_{T}} + |p|_{m,\Omega_{T}} \right] + \frac{C_{2}}{(N+1)^{3/2}} \|\vec{u}\|_{2,\Gamma_{c}} \\ & \underbrace{\|\vec{u} - \vec{u}_{h}^{N}\| + \|p - p_{h}^{N}\| \leq C_{1} h^{m} \left\|\vec{u}\right\|_{m+1,\Omega_{T}} + |p|_{m,\Omega_{T}} \right] + \frac{C_{2} e^{-(N+1)(c-c_{0})}}{(N+1)^{3/2}} \|\vec{u}\|_{2,\Gamma_{c}} \end{aligned}$

Examples

Backward-facing step flow:
 Streamfuction & vorticity
 Flow around rectangle cylinder :
 Velocity field & near obstacle

Flow around circular cylinder : – <u>Velocity field</u> & <u>near obstacle</u>

<u>next</u>

Flow in Channel

	0.59606
	0.525466
	0.384265
	0.31366
	0.17246
	0.031262
Contraction of the second seco	0.03126

Streamfunction ("Exact solution")

Streamfunction (Artificial)

back

Flow in Channel

Vorticity (Artificial)

back

Vorticity (Dirichlet)

Re=100																					
NA NG 11 A. 101			-		> >	>>:	>>>	>>>	>>>	>>	>	> >		>	>	>	>	>	>	>	>
· * · +/, 874	-> ->		->	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	->>:	****	***	>>>	>>-	>-	>>	• >	\rightarrow	\rightarrow	\rightarrow	->	\rightarrow	\rightarrow	->	->
そみ ひとう いい			->		->->	->>;	****	***	>>>	>>-	->	> - 3	\rightarrow	\rightarrow	\rightarrow	\rightarrow	->	\rightarrow	->	\rightarrow	->
	-> ->		-	->->	->->		****	~ ~ ~	>>>	>>-	>	>->	>	>	->	->		->	->		
ニブ をぶいだい	-> ->	->					****	***	>>>	>>-	>	$\rightarrow \rightarrow$	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	->	\rightarrow	->	->
¤≔==(; { { }•(} })	-	-				13		***	***		>	>	->			-		-	-	-	
						1.								-			-		-		
										-				-							-
** 広いていた。							5-15-5				-	-	-	-	-	-	-	-	-	-	
						24			1	a i i a	-	-	Ŧ	-	-	-	-		-		
QU (하) X - (+																					
🔌 🏹 🎸 🖉 Re=200	12211 21	a (12)	1.1.2	2002					~ ~ ~	~ ~	-	~ ~			~	~	~		~		
- 7 J. X. I. I.						221			~~~~	22	1	2 3	1	1		2	1		2	-	2
			-								-	S = 1	-	-	-	~		-	-	1	-
ニンチンといない																					
アイ・ヘーク。			-	-	100	22					1	2.1				-	-				
イイントレースノー			1		-	22															
+ A WA			-		17	120					-										
18185 V . 1					27	100									1						
VARIAN ER																					
・ キットじ おたし	\rightarrow \rightarrow									5 3	-	=	-	-	-	-	-	-	-	-	-
イネズト かったい					÷ -	8			i	2 22	-	-	÷	-	+	-	-	÷	+		
🚽 🎸 Re=400																					
ニュネトロなり		-		~ ~ ~	~ ~ ~	~ ~ ~	~~~	>>>	~~~	~~	~	>	> >	-							
アイ・ヘーク。			->	->->	- > >	~~~	>>>	>>>	~~~	~~	->	5	5 5								
イイント・スノー	-> ->		->	->>	~ > 3	~~~	>>>	>>>	>>>	~~~	~	>	> >								
+ A WA	->>	>	->	->->	~ ~ ~	2.23	>>>	>>>	>>>>	>>>	~	>	> >							>	>
18185 V . 1	\rightarrow \rightarrow		->	->->	23	2.33	222	>>>	>>>	>>>	>	>	>>	>		>	>	>	>	->	>
SALVEL A SEE	-> ->		->	->>	~ ~ ~	133	222	>>>	>>>>	>>>	>	>	>>>		>	>	>	>	->	\rightarrow	->
- +	->->		->	->->	77	12	272	>>>	>>>	>>-	>	>		->	->	->	->	->	->	->	->
hack 4 - 4	$\rightarrow \rightarrow$		\rightarrow	->>	1	1/2	>> >				-		->	->		->	->		->		->
<u>uuun</u>	3 3	: -?	->	->->	-7-7			1			1	-	-	-	-	-	12		-		-
ニブ すぎいどい	->							1		1	2			-	22	2	-	-	-	-	-
k≕(_ĩ(<)∘(>))	- 5 - 5		- 5	53	~ ~			_					-						-		

 Re=100

 Re=200

 Re=400

Re=100 2222 2 2 2 2 2 2 Re=200 X τ ï 1.3 Re=400 11 ١.

Conclusions & Future challenges

Conclusions:

- New `optimal' error estimates
- New high-order local B.C.
- Application to N-S Eqs.
- **&** Future challenges
 - 3D problems
 - Nonlinear problems
 - Coupling system