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1. Introduction

The Schrödinger equation was proposed to model a system when the quan-

tum effect was considered. For a system with N particles, the Schrödinger

equation is defined in 3N +1 dimensions. With such high dimensions, even

use today’s supercomputer, it is impossible to solve the Schrödinger equa-

tion for dynamics of N particles with N > 10. After assumed Hatree

or Hatree-Fork ansatz, the 3N + 1 dimensions linear Schrödinger equa-

tion was approximated by a 3 + 1 dimensions nonlinear Schrödinger equa-

tion (NLSE) or Schrödinger-Poisson (S-P) system. Although nonlinearity

in NLSE brought some new difficulties, but the dimensions were reduced

significantly compared with the original problem. This opened a light to

study dynamics of N particles when N is large. Later, it was found that

NLSE had applications in different subjects, e.g. quantum mechanics, solid

state physics, condensed matter physics, quantum chemistry, nonlinear op-

tics, wave propagation, optical communication, protein folding and bending,

semiconductor industry, laser propagation, nano technology and industry,

biology etc. Currently, the study of NLSE including analysis, numerics and

applications becomes a very important subject in applied and computa-

tional mathematics. This study has very important impact to the progress

of other science and technology subjects.

A typical application of NLSE is for wave motion and interaction in

plasma physics where the Zakharov system (ZS) was derived by Zakharov

[121] in 1972 for governing the coupled dynamics of the electric-field ampli-

tude and the low-frequency density fluctuations of ions. Then it has become

commonly accepted that ZS is a general model to govern interaction of

dispersive wave and nondispersive (acoustic) wave. It has important appli-

cations in plasma physics (interaction between Langmuir and ion acoustic

waves [121, 101]), in the theory of molecular chains (interaction of the in-

tramolecular vibrations forming Davydov solitons with the acoustic distur-

bances in the chain [39]), in hydrodynamics (interaction between short-wave

and long-wave gravitational disturbances in the atmosphere [110, 40]), and

so on. In three spatial dimensions, ZS was also derived to model the col-

lapse of caverns [121]. Later, the standard ZS was extended to generalized

Zakharov system (GZS) [72, 73], vector Zakharov system (VZS) [113] and

vector Zakharov system for multi-component plasma (VZSM) [72, 73].

In this chapter, we first review derivation of NLSE from wave propaga-

tion and Bose-Einstein condensation (BEC). Then we present variational

formulation of NLSE including conservation laws, Lagrangian structure,
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Hamiltonian structure and variance identity. Plane and soliton wave solu-

tions, existence/blowup results of NLSE are then presented. Ground, ex-

cited and central vortex states of NLSE with an external potential are

studied. We also study formally semiclassical limits of NLSE by WKB ex-

pansion and Wigner transform when the (scaled) Planck constant ε → 0.

In addition, numerical methods for computing ground states and dynamics

of NLSE are presented and numerical results are also reported. Then we

review derivation of VZS from the two-fluid model [113] for ion-electron

dynamics in plasma physics and generalize VZS to VZSM, reduce VZSM

to generalized vector Zakharov system (GVZS), GVZS to GZS or vector

nonlinear Schrödinger (VNLS) equations, and GZS to NLSE, as well as

generalize GZS and GVZS with a linear damping term to arrest blowup.

Conservation laws of the systems and well-posedness of GZS are presented,

and plane wave, soliton wave and periodic wave solutions of GZS are re-

viewed. Furthermore, we present a time-splitting spectral (TSSP) method

to discretize GZS and compare it with the standard Crank-Nicolson finite

difference (CNFD) method.

Throughout this notes, we use f∗, Re(f) and Im(f) denote the conjugate,

real part and imaginary part of a complex function f respectively. We also

adopt the standard Sobolev norms.

2. Derivation of NLSE from wave propagation

In this section, we review briefly derivation of NLSE from wave propaga-

tion, i.e. parabolic or paraxial approximation for forward propagation time

harmonic waves, to analyze high frequency asymptotics.

The wave equation

1

c2
∂2u(x, t)

∂t2
−4u(x, t) = 0, x ∈ R3, (2.1)

where x = (x, y, z) is the Cartesian coordinate, t is time and c = c(x, |u|)
is the propagation speed, has time harmonic solutions of the form eiωtu(x)

with the complex wave function u satisfying the Helmholtz or reduced wave

equation

4u(x) +
ω2

c2
u = 0, x ∈ R3. (2.2)

Let c0 be a uniform reference speed, k0 = ω/c0 be the wave number and

n(x, |u|) = c0/c(x, |u|) be the index of refraction. The reduced wave equa-

tion has then the form

4u(x) + k2
0n

2(x, |u|)u = 0. (2.3)
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When wave propagates in a uniform medium, n(x, |u|) = 1; in a lin-

ear medium, n(x, |u|) = n(x); and in a Kerr medium, n(x, |u|) =√
1 + 4n2|u|2/n0 with n0 linear index of refraction and n2 Kerr coefficient.

When waves are approximately plane and move in one direction pri-

marily, say the z direction, e.g. propagation of laser beams, we look for

solutions of the form

u(x, y, z) = eik0zψ(x, z) (2.4)

where x = (x, y) denotes the transverse variables. We insert (2.4) into the

reduced wave equation (2.3) and get

2ik0ψz + 4⊥ψ + k2
0µ(x, z, |ψ|)ψ + ψzz = 0, (2.5)

where 4⊥ is the Laplacian in the transverse variables and µ(x, z, |ψ|) =

n2(x, z, |ψ|) − 1 is the fluctuation in the refractive index. Note that the

direction of propagation z ploys the role of time and −k2
0µ(x, z, |ψ|) is the

(time dependent) potential.

Introduce nondimensional variables:

x̃ =
x

r0
, ỹ =

y

r0
, t̃ =

z

k0r20
, ψ̃(x̃, ỹ, t̃) =

ψ(x, y, z)

ψs
, (2.6)

where r0 is the dimensionless length unit, e.g. width of the input laser beam,

and ψs is dimensionless unit for ψ to be determined. Plugging (2.6) into

(2.5), multiplying by r20/2, and then removing all ˜, we get the following

dimensionless equation:

iψt = −1

2
4⊥ ψ + f(x, t, |ψ|)ψ − δ

2
ψtt, (2.7)

where δ = 1/r20k
2
0 and the real-valued function f depends on µ. Due to the

input beam width r0 � λ = 2π/k0, we get

δ/2 = λ2/8π2r20 � 1.

Thus we drop the nonparaxial term ψtt in (2.7) and obtain the NLSE:

iψt = −1

2
4⊥ ψ + f(x, t, |ψ|)ψ, (2.8)

Of course (2.7) is only an approximation to the full reduced wave equation

and it is valid when the variations in the index of refraction are smooth and

the bulk of the wave energy is away from boundaries. This important and

very useful approximation for wave propagation is well suited for numerical

approximation since we now have an initial value problem for ψ, assuming

that ψ(x, 0) is known, rather than a boundary value problem for u.



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

146 W. Bao

When n(x, z, |u|) = 1 in (2.3), then µ(x, z, |ψ|) = 0 in (2.5) and

f(x, t, |ψ|) = 0 in (2.7), thus (2.7) collapses to the free Schrödinger equa-

tion:

iψt = −1

2
4⊥ ψ. (2.9)

When n(x, z, |u|) = n(x, z) in (2.3), then µ(x, z, |ψ|) = µ(x, z) in (2.5) and

f(x, t, |ψ|) = V (x, t) in (2.7), thus (2.7) collapses to a linear Schrödinger

equation with potential V (x, t):

iψt = −1

2
4⊥ ψ + V (x, t)ψ. (2.10)

When n(x, z, |u|) =
√

1 + 4n2|u|2/n0, i.e. laser beam in Kerr medium, then

µ(x, z, |ψ|) = 2n2r
2
0k

2
0 |ψ|2/n0 in (2.5) and f(x, t, |ψ|) = −|ψ|2 in (2.7) by

choosing ψs =
√
n0/r0k0

√
2n2, thus (2.7) collapses to NLSE with a cubic

focusing nonlinearity:

iψt = −1

2
4⊥ ψ − |ψ|2ψ. (2.11)

The wave energy or power of the beam is conserved:

N(ψ) =

∫

R2

|ψ(x, t)|2 dx ≡
∫

R2

|ψ(x, 0)|2 dx, t ≥ 0. (2.12)

Remark 2.1: When we consider high frequency asymptotics which con-

cerns approximate solutions of (2.10) that are good approximations to os-

cillatory solutions. For such solutions the propagation distance is long com-

pared to the wavelength, the propagation time is large compared to the pe-

riod and the potential V (x) varies slowly. To make this precise, we introduce

slow time and space variables t→ t/ε, x → x/ε with 0 < ε� 1 the (scaled)

Planck constant and the scaled wave function ψε(x, t) = ψ(x/ε, t/ε) which

satisfies the NLSE in the semiclassical regime

iεψεt = −ε
2

2
4⊥ ψ

ε + V ε(x, t)ψε, x ∈ R2, t > 0, (2.13)

where V ε(x, t) = V (x/ε, t/ε).

3. Derivation of NLSE from BEC

Since its realization in dilute bosonic atomic gases [3, 26], BEC of alkali

atoms and hydrogen has been produced and studied extensively in the

laboratory [71], and has spurred great excitement in the atomic physics

community and renewed the interest in studying the collective dynamics of
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macroscopic ensembles of atoms occupying the same one-particle quantum

state [99, 34, 68]. The condensate typically consists of a few thousands to

millions of atoms which are confined by a trap potential. In fact, beside

the effects of the internal interactions between the atoms, the macroscopic

behavior of BEC matter is highly sensitive to the shape of this external

trapping potential. Theoretical predictions of the properties of a BEC like

the density profile [19], collective excitations [43] and the formation of vor-

tices [105] can now be compared with experimental data [3]. Needless to

say that this dramatic progress on the experimental front has stimulated a

wave of activity on both the theoretical and the numerical front.

At temperatures T much smaller than the critical temperature Tc [84], a

BEC is well described by the macroscopic wave function ψ = ψ(x, t) whose

evolution is governed by a self-consistent, mean field NLSE known as the

Gross-Pitaevskii equation (GPE) [69, 103]

i~
∂ψ(x, t)

∂t
=
δH(ψ)

δψ∗

= − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t) +NU0|ψ(x, t)|2ψ(x, t), (3.1)

where x = (x, y, z), m is the atomic mass, ~ is the Planck constant,

N is the number of atoms in the condensate, V (x) is an external trap-

ping potential. When a harmonic trap potential is considered, V (x) =
m
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

with ωx, ωy and ωz being the trap frequencies

in x, y and z-direction, respectively. The Hamiltonian (or energy) of the

system H(ψ) per particle is defined as

H(ψ) =

∫

R3

ψ∗(x, t)

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t)dx

+
1

2

∫

R3×R3

ψ∗(x, t) ψ∗(x′, t)Φ(x − x′)ψ(x′, t)ψ(x, t)dxdx′, (3.2)

where the interaction potential is taken as the Fermi form

Φ(x) = (N − 1)U0δ(x). (3.3)

U0 = 4π~2as/m describes the interaction between atoms in the condensate

with the s-wave scattering length as (positive for repulsive interaction and

negative for attractive interaction). It is convenient to normalize the wave

function by requiring
∫

R3

|ψ(x, t)|2 dx = 1. (3.4)
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3.1. Dimensionless GPE

In order to scale the Eq. (3.1) under the normalization (3.4), we introduce

t̃ = ωmt, x̃ =
x

a0
, ψ̃(x̃, t̃) = a

3/2
0 ψ(x, t), with a0 =

√
~/mωm, (3.5)

where ωm = min{ωx, ωy, ωz}, a0 is the length of the harmonic oscillator

ground state. In fact, we choose 1/ωm and a0 as the dimensionless time

and length units, respectively. Plugging (3.5) into (3.1), multiplying by

1/mω2
ma

1/2
0 , and then removing all ˜, we get the following dimensionless

GPE under the normalization (3.4) in three dimension

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ(x, t) + V (x)ψ(x, t) + β |ψ(x, t)|2ψ(x, t), (3.6)

where β = U0N
a3
0~ωm

= 4πasN
a0

and

V (x) =
1

2

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
, with γα =

ωα
ωm

(α = x, y, z).

There are two extreme regimes of the interaction parameter β: (1) β =

o(1), the Eq. (3.6) describes a weakly interacting condensation; (2) β � 1,

it corresponds to a strongly interacting condensation or to the semiclassical

regime.

There are two typical extreme regimes between the trap frequencies: (1)

γx = 1, γy ≈ 1 and γz � 1, it is a disk-shaped condensation; (2) γx = 1,

γy � 1 and γz � 1, it is a cigar-shaped condensation. In these two cases,

the three-dimensional (3D) GPE (3.6) can be approximately reduced to a

2D and 1D equation respectively [85, 8, 5] as explained below.

3.2. Reduction to lower dimension

Case I (disk-shaped condensation):

ωx ≈ ωy, ωz � ωx, ⇐⇒ γx = 1, γy ≈ 1, γz � 1.

Here, the 3D GPE (3.6) can be reduced to a 2D GPE with x = (x, y)

by assuming that the time evolution does not cause excitations along the

z-axis, since the excitations along the z-axis have large energy (of order

~ωz) compared to that along the x and y-axis with energies of order ~ωx.

Thus, we may assume that the condensation wave function along the z-

axis is always well described by the harmonic oscillator ground state wave

function, and set

ψ = ψ2(x, y, t)φho(z) with φho(z) = (γz/π)1/4 e−γzz
2/2. (3.7)
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Plugging (3.7) into (3.6), multiplying by φ∗ho(z), integrating with respect to

z over (−∞,∞), we get

i
∂ψ2(x, t)

∂t
= −1

2
∇2ψ2 +

1

2

(
γ2
xx

2 + γ2
yy

2 + C
)
ψ2 + β2|ψ2|2ψ2, (3.8)

where

β2 = β

∫ ∞

−∞

φ4
ho(z) dz = β

√
γz
2π
, C =

∫ ∞

−∞

(
γ2
zz

2|φho(z)|2 +

∣∣∣∣
dφho

dz

∣∣∣∣
2
)
dz.

Since this GPE is time-transverse invariant, we can replace ψ2 → ψ e−i
Ct
2

so that the constant C in the trap potential disappears, and we obtain the

2D effective GPE:

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ +

1

2

(
γ2
xx

2 + γ2
yy

2
)
ψ + β2|ψ|2ψ. (3.9)

Note that the observables, e.g. the position density |ψ|2, are not affected

by dropping the constant C in (3.8).

Case II (cigar-shaped condensation):

ωy � ωx, ωz � ωx ⇐⇒ γx = 1, γy � 1, γz � 1.

Here, the 3D GPE (3.6) can be reduced to a 1D GPE with x = x. Similarly

as in the 2D case, we can derive the following 1D GPE [85, 8, 5]:

i
∂ψ(x, t)

∂t
= −1

2
ψxx(x, t) +

γ2
xx

2

2
ψ(x, t) + β1|ψ(x, t)|2ψ(x, t), (3.10)

where β1 = β
√
γyγz/2π.

The 3D GPE (3.6), 2D GPE (3.9) and 1D GPE (3.10) can be written

in a unified form:

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + Vd(x)ψ + βd |ψ|2ψ, x ∈ Rd, (3.11)

ψ(x, 0) = ψ0(x), x ∈ Rd, (3.12)

with

βd = β





√
γyγz/2π,√
γz/2π,

1,

Vd(x) =





γ2
xx

2/2, d = 1,(
γ2
xx

2 + γ2
yy

2
)
/2, d = 2,(

γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
/2, d = 3,

(3.13)

where γx > 0, γy > 0 and γz > 0 are constants. The normalization condition

for (3.11) is

N(ψ) = ‖ψ(·, t)‖2 =

∫

Rd

|ψ(x, t)|2 dx ≡
∫

Rd

|ψ0(x)|2 dx = 1. (3.14)
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Remark 3.1: When βd � 1, i.e. in a strongly repulsive interacting con-

densation or in semiclassical regime, another scaling of the GPE (3.11) is

also very useful. In fact, after a rescaling in (3.11) under the normalization

(3.14): x → ε−1/2x and ψ → εd/4ψ with ε = β
−2/(d+2)
d , then the GPE

(3.11) can be rewritten as

iε
∂ψ(x, t)

∂t
= −ε

2

2
∇2ψ + Vd(x)ψ + |ψ|2ψ, x ∈ Rd. (3.15)

4. The NLSE and variational formulation

Consider the following NLSE:

iψt = −1

2
4 ψ + V (x)ψ + β|ψ|2σψ, x ∈ Rd, t ≥ 0, (4.1)

ψ(x, 0) = ψ0(x), x ∈ Rd, (4.2)

where σ > 0 is a positive constant (σ = 1 corresponds to a cubic nonlinear-

ity and σ = 2 corresponds to a quintic nonlinearity), V (x) is a real-valued

potential whose shape is determined by the type of system under investi-

gation, β positive/negative corresponds to defocusing/focusing NLSE.

4.1. Conservation laws

Two important invariants of (4.1) are the normalization of the wave function

N(ψ(·, t)) =

∫

Rd

|ψ(x, t)|2 dx ≡ N = N(ψ0), t ≥ 0 (4.3)

and the energy

E(ψ(·, t)) =

∫

Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 +

β

σ + 1
|ψ(x, t)|2σ+2

]
dx

= E(ψ0), t ≥ 0. (4.4)

When V (x) ≡ 0, another important invariant of (4.1) is the momentum

P(ψ(·, t)) =
i

2

∫

Rd

(ψ∇ψ∗ − ψ∗∇ψ) dx ≡ P(ψ0), t ≥ 0. (4.5)

Define the mass center

x̄(t) =
1

N

∫

Rd

x|ψ(x, t)|2 dx. (4.6)
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Note that the mass center obeys

N
dx̄

dt
=

∫
x∂t|ψ|2 dx = − i

2

∫
x∇ · [ψ∇ψ∗ − ψ∗ 4 ψ] dx

=
i

2

∫
[ψ∇ψ∗ − ψ∗ 4 ψ] dx = P(ψ0) (4.7)

and thus moves at a constant speed.

To get more conservation laws, one can use the Noether theorem [113].

4.2. Lagrangian structure

Define the Lagrangian density L associated to (4.1) in terms of the real and

imaginary parts u and v of ψ, or equivalently in terms of ψ and ψ∗ viewed

as independent variables in the form

L =
i

2
(ψ∗ψt−ψψ∗

t )−
1

2
∇ψ · ∇ψ∗ −V (x)ψψ∗ − β

σ + 1
ψσ+1(ψ∗)σ+1. (4.8)

Consider the action

S{ψ, ψ∗} =

∫ t1

t0

∫

Rd

L dxdt (4.9)

as a functional on all admissible regular function satisfying the prescribed

conditions ψ(x, t0) = ψ0(x) and ψ(x, t1) = ψ1(x). Its variation

δS = S{ψ + δψ, ψ∗ + δψ∗} − S{ψ, ψ∗} (4.10)

for infinitesimal δψ and δψ∗ reads

δS =

∫ t1

t0

∫

Rd

[
∂L
∂ψ

δψ +
∂L
∂∇ψ · ∇δψ +

∂L
∂ψt

δψt

]
dxdt+ c.c.

=

∫ t1

t0

∫

Rd

[
∂L
∂ψ

−∇ ·
(
∂L
∂∇ψ

)
− ∂t

(
∂L
∂ψt

)]
δψ dxdt

+

[
∂L
∂ψt

δψ

]t1

t0

+ c.c. (4.11)

A necessary and sufficient condition for a function ψ(x, t) to lead to

an extremum for the action S among the functions with prescribed values

ψ(·, t0) and ψ(·, t1), thus reduces to the Euler-Lagrange equations

∂L
∂ψ

= ∇ ·
(
∂L
∂∇ψ

)
+ ∂t

(
∂L
∂ψt

)
, (4.12)
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which, when the Lagrangian (4.8) is used, reduces to the NLSE (4.1). This

system is easily rewritten in terms of the real fields u = (ψ + ψ∗)/2 and

v = (ψ − ψ∗)/2i as

∂L
∂u

= ∇ ·
(
∂L
∂∇u

)
+ ∂t

(
∂L
∂ut

)
, (4.13)

∂L
∂v

= ∇ ·
(
∂L
∂∇v

)
+ ∂t

(
∂L
∂vt

)
. (4.14)

4.3. Hamiltonian structure

As usual, a Hamiltonian structure is easily derived from the existence of

a Lagrangian. Writing ψ = u + iv in order to deal with real fields, the

Hamiltonian density H = i
2 (ψ∗∂tψ − ψ∂tψ

∗) − L becomes

H = v∂tu− u∂tv − L. (4.15)

Introducing the canonical variables

q1 ≡ u, p1 ≡ ∂L
∂(∂tq1)

, (4.16)

q2 ≡ v, p2 ≡ ∂L
∂(∂tq2)

, (4.17)

it takes the form

H =
∑

j

pj∂tqj − L. (4.18)

Define

ρj ≡
∂L

∂(∇qj)
, (4.19)

and rewrite the Euler-Lagrange equations as

∂L
∂q

= ∇ · ρj + ∂tpj . (4.20)

Using that

∂tL =
∑

j

∂L
∂qj

∂tqj +
∂L
∂∇qj

∂t∇qj +
∂L

∂(∂tqj)
∂ttqj , (4.21)

and the Euler-Lagrange equations, we get

∂tH = −∇ ·
∑

j

ρj∂tqj , (4.22)
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which ensures that the conservation fo the Hamiltonian or energy H =∫
Rd H dx.

Similarly, from the variation of the Lagrangian density

δL =
∑

j

δL
δqj

δqj +
δL
δ∇qj

∇δqj +
δL

δ(∂tqj)
∂tδqj , (4.23)

the Euler-Lagrange equations, and the definition of pj we obtain the vari-

ation of the Hamiltonian H , in the form

δH =
∑

j

∫
(∂tqjδpj − ∂tpjδqj)dx, (4.24)

which leads to the Hamilton equaitons

∂qj
∂t

=
δH

δpj
,

∂pj
∂t

= −δH
δqj

, (4.25)

or in complex form,

i∂tψ =
δH

δψ∗
. (4.26)

4.4. Variance identity

Define the ‘variance’ (or ‘momentum of inertia’ in a context where N is

referred to as the mass of the wave packet) as

δ
V

=

∫

Rd

|x|2|ψ|2 dx =

d∑

j=1

δj , δj =

∫

Rd

x2
j |ψ|2 dx, j = 1, · · · , d (4.27)

and the square width of the wave packet

δx =
1

N

∫

Rd

|x−x̄|2|ψ|2 dx =
1

N

∫

Rd

(|x|2−|x̄|2)|ψ|2 dx =
δ

V

N
−|x̄|2. (4.28)

Here we use x = (x1, · · · , xd) ∈ Rd.

When V (x) ≡ 0 in (4.1), due to the conservation of the wave energy N

and of the linear momentum P, we have

d2δx
dt2

=
1

N

d2δV

dt2
− 2

|P|2
N2

. (4.29)
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Lemma 4.1: Suppose ψ(x, t) be the solution of the problem (4.1), (4.2),

then we have

d2δj(t)

dt2
=

∫

Rd

[
2|∂xjψ|2 +

2σβ

σ + 1
|ψ|2σ+2 − 2xj |ψ|2∂xj (V (x))

]
dx, (4.30)

δj(0) = δ
(0)
j =

∫

Rd

x2
j |ψ0(x)|2 dx, j = 1, · · · , d, (4.31)

δ′j(0) = δ
(1)
j = 2 Im

[∫

Rd

xjψ
∗
0 ∂xjψ0dx

]
. (4.32)

Proof: Differentiate (4.27) with respect to t, notice (4.1), integrate by parts,

we have

dδj(t)

dt
=

d

dt

∫

Rd

x2
j |ψ(x, t)|2 dx =

∫

Rd

x2
j (ψ ∂tψ

∗ + ψ∗ ∂tψ) dx

=
i

2

∫

Rd

x2
j (ψ∗ 4 ψ − ψ4 ψ∗) dx

= i

∫

Rd

xj
(
ψ ∂xjψ

∗ − ψ∗ ∂xjψ
)
dx. (4.33)

Similarly, differentiate (4.33) with respect to t, notice (4.1), integrate by

parts, we have

d2δj(t)

dt2
= i

∫

Rd

xj
[
∂tψ ∂xjψ

∗ + ψ ∂xj tψ
∗ − ∂tψ

∗ ∂xjψ − ψ∗ ∂xj tψ
]
dx

=

∫

Rd

[
2ixj

(
∂tψ ∂xjψ

∗ − ∂tψ
∗ ∂xjψ

)
+ i (ψ∗ ∂tψ − ψ ∂tψ

∗)
]
dx

=

∫

Rd

[
−xj

(
∂xjψ

∗ 4 ψ + ∂xjψ 4 ψ∗
)
− 1

2
(ψ∗ 4 ψ + ψ 4 ψ∗)

+2xjV (x)
(
ψ ∂xjψ

∗ + ψ∗ ∂xjψ
)

+ 2V (x)|ψ|2 + 2β|ψ|2σ+2

+2βxj |ψ|2σ
(
ψ ∂xjψ

∗ + ψ∗ ∂xjψ
)]
dx

=

∫

Rd

[
2|∂xjψ|2 − |∇ψ|2 − |ψ|2∂xj (2xjV (x)) + |∇ψ|2

− 2β

σ + 1
|ψ|2σ+2 + 2V (x)|ψ|2 + 2β|ψ|2σ+2

]
dx

=

∫

Rd

[
2|∂xjψ|2 +

2σβ

σ + 1
|ψ|2σ+2 − 2xj |ψ|2 ∂xj(V (x))

]
dx. (4.34)

Thus we obtain the desired equality (4.30). Setting t = 0 in (4.27) and

(4.33), we get (4.31) and (4.32) respectively. �
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Lemma 4.2: When V (x) ≡ 0 in the NLSE (4.1), we have

d2δ
V

dt2
= 4E(ψ0) +

2β(dσ − 2)

σ + 1

∫

Rd

|ψ2σ+2 dx. (4.35)

Proof: Sum (4.30) from j = 1 to d, we get

d2δ
V
(t)

dt2
=

d∑

j=1

d2δj(t)

dt2
=

d∑

j=1

∫

Rd

(
2|∂xjψ|2 +

2σβ

σ + 1
|ψ|2σ+2

)
dx

=

∫

Rd

[
2|∇ψ|2 +

2dσβ

σ + 1
|ψ|2σ+2

]
dx

= 4E +
2β(σd− 2)

σ + 1

∫

Rd

|ψ|2σ+2dx. (4.36)

Here we use conservation of energy of the NLSE. �

From this lemma, when V (x) ≡ 0 and at critical dimension, i.e. dσ−2 =

0, (4.35) reduces to

d2δ
V

dt2
= 4E, (4.37)

leading to

δ
V
(t) = 2Et2 + δ′

V
(0)t+ δ

V
(0). (4.38)

When the external potential V (x) is chosen as harmonic oscillator (3.13)

and σ = 1 in (4.1), we have

Lemma 4.3: (i) In 1D without interaction, i.e. d = 1 and β = 0 in (4.1),

we have

δx(t) =
E(ψ0)

γ2
x

+

(
δ(0)x − E(ψ0)

γ2
x

)
cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt), t ≥ 0.

(4.39)

(ii) In 2D with radial symmetry, i.e. d = 2 and γx = γy := γr in (4.1),

for any initial data ψ0(x, y) in (4.2), we have

δr(t) =
E(ψ0)

γ2
r

+

(
δ(0)r − E(ψ0)

γ2
r

)
cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt), t ≥ 0,

(4.40)

where

δr(t) = δx(t) + δy(t),

δ(0)r := δr(0) = δx(0) + δy(0),

δ(1)r := δ′r(0) = δ′x(0) + δ′y(0).
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Furthermore, when d = 2 and γx = γy in (4.1) and the initial data ψ0(x)

in (4.2) satisfying

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m 6= 0, (4.41)

we have for t ≥ 0

δx(t) = δy(t) =
1

2
δr(t)

=
E(ψ0)

2γ2
x

+

(
δ(0)x − E(ψ0)

2γ2
x

)
cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt). (4.42)

(iiii) For all other cases, we have for t ≥ 0

δj(t) =
E(ψ0)

γ2
xj

+

(
δ
(0)
j − E(ψ0)

γ2
xj

)
cos(2γxj t) +

δ
(1)
j

2γxj

sin(2γxj t) + gj(t),

(4.43)

where gj(t) is a solution of the following problem

d2gj(t)

dt2
+ 4γ2

xj
gj(t) = fj(t), gj(0) =

dgj(0)

dt
= 0, (4.44)

with

fj(t) =

∫

Rd

[
2|∂xjψ|2 − 2|∇ψ|2 − β|ψ|4 + (2γ2

xj
x2
j − 4V (x))|ψ|2

]
dx

satisfying

|fα(t)| < 4Eβ(ψ0), t ≥ 0.

Proof: (i) From (4.30) with d = 1 and β1 = 0, we have

d2δx(t)

dt2
= 4E(ψ0) − 4γ2

xδx(t), t > 0, (4.45)

δx(0) = δ(0)x , δ′x(0) = δ(1)x . (4.46)

Thus (4.39) is the unique solution of this ordinary differential equation

(ODE).

(ii). From (4.30) with d = 2, we have

d2δx(t)

dt2
= −2γ2

xδx(t) +

∫

Rd

(
2|∂xψ|2 + β|ψ|4

)
dx, (4.47)

d2δy(t)

dt2
= −2γ2

yδy(t) +

∫

Rd

(
2|∂yψ|2 + β|ψ|4

)
dx. (4.48)
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Sum (4.47) and (4.48), notice (4.4) and γx = γy, we have the ODE for δr(t):

d2δr(t)

dt2
= 4E(ψ0) − 4γ2

xδr(t), t > 0, (4.49)

δr(0) = 2δ(0)x , δ′r(0) = 2δ(1)x . (4.50)

Thus (4.40) is the unique solution of the second order ODE (4.49) with

the initial data (4.50). Furthermore, when the initial data ψ0(x) in (4.2)

satisfies (4.41), due to the radial symmetry, the solution ψ(x, t) of (4.1)-

(4.2) satisfies

ψ(x, y, t) = g(r, t)eimθ with g(r, 0) = f(r). (4.51)

This implies

δx(t) =

∫

R2

x2 |ψ(x, y, t)|2 dx =

∫ ∞

0

∫ 2π

0

r2 cos2 θ |g(r, t)|2r dθdr

= π

∫ ∞

0

r2|g(r, t)|2r dr =

∫ ∞

0

∫ 2π

0

r2 sin2 θ |g(r, t)|2r dθdr

=

∫

R2

y2|ψ(x, y, t)|2 dx = δy(t), t ≥ 0. (4.52)

Thus the equality (4.42) is a combination of (4.52) and (4.40).

(iii). From (4.30), notice the energy conservation (4.4) of the GPE (4.1),

we have

d2δj(t)

dt2
= 4E(ψ0) − 4γ2

xj
δj(t) + fj(t), t ≥ 0. (4.53)

Thus (4.43) is the unique solution of this ODE (4.53). �

5. Plane and solitary wave solutions of NLSE

For simplicity, we assume V (x) ≡ 0, d = 1 and σ = 1 in this section. In

this case, the NLSE (4.1) collapses to

iψt = −1

2
ψxx + β|ψ|2ψ. (5.1)

To find the plane wave solution of (5.1), we take the ansatz

ψ = Aei(kx−ωt), (5.2)

where A, ω and k are amplitude, angular frequency and wavenumber re-

spectively. Plugging (5.2) into (5.1), we get the dispersive relation

ω =
1

2
k2 + β|A|2 (5.3)
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This implies that the dispersive relation depends on wavenumber and am-

plitude. Define the group velocity

cg ≡
dω

dk
= k. (5.4)

So the NLSE has the plane wave solution (5.2) provided the dispersive rela-

tion is satisfied. In fact, (5.3) can be viewed as zeroth-order approximation

of the NLSE (5.1), and (5.2) can be viewed as zeroth-order solution of the

NLSE (5.1).

To find the solitary wave solution, we take the ansatz

ψ = φ(ξ)ei(kx−ωt), ξ = x− cgt, (5.5)

where φ is a real-valued function. Plugging (5.5) into (5.1), we get

1

2

d2φ

dξ2
+ (ω − k2/2)φ− βφ3 + i(k − cg)

dφ

dξ
= 0. (5.6)

This implies

−d
2φ

dξ2
+ γφ+ 2βφ3 = 0, γ = k2 − 2ω > 0; cg = k. (5.7)

When β < 0, we have a solution for (5.7)

φ(ξ) = ±
√

γ

−β(2 − k2)
dn

(√
γ

2 − k2
(ξ − ξ0), k

)
, (5.8)

where dn is the Jacobian elliptic function. Letting k → 1, we have

φ(ξ) = ±
√

γ

−β sech
√
γ(ξ − ξ0). (5.9)

Thus we get a solitary wave solution for the NLSE (5.1) with β < 0:

ψ(x, t) =

√
γ

−β sech
√
γ(x− t− x0)e

i[x−(1−γ)t/2], (5.10)

where γ > 0 is a constant.

For β > 0, one can get a traveling wave in a similar manner.

6. Existence/blowup results of NLSE

For simplicity, in this section, we assume V (x) ≡ 0 in (4.1).
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6.1. Integral form

When β = 0 in (4.1), the free Schrödinger equation is solved as

ψ(x, t) = U(t)ψ0(x), x ∈ Rd, t ≥ 0, (6.1)

where free Schrödinger operator U(t) = eit4/2 given by

U(t)ψ0(x) =

(
1

4πit

)d/2 ∫

Rd

ei
|x−x

′|2

4t ψ0(x
′) dx′ (6.2)

defines a unitary transformation group in L2.

Theorem 6.1: (Decay estimates) For conjugate p and p′ ( 1
p + 1

p′ = 1),

with 2 ≤ p ≤ ∞, and t 6= 0, the transformation U(t) maps continuously

Lp
′

(Rd) into Lp(Rd) and

‖U(t)ψ0‖Lp ≤ (4π|t|)−d( 1
2−

1
p )‖ψ0‖Lp′ . (6.3)

Proof (scratch): Use the conservation of L2-norm ‖ψ(t)‖L2 = ‖ψ0‖L2 , the

estimate |ψ(x, t)| ≤ (4π|t|)−d/2‖ψ0‖L1 and the Riesz-Thorin interpolation

theorem. �

When β 6= 0 in (4.1), the problem is conveniently rewritten in the

integral form

ψ(t) = U(t)ψ0 − iβ

∫ t

0

U(t− t′)|ψ(t′)|2σψ(t′) dt′. (6.4)

6.2. Existence results

Based on a fixed point theorem to (6.4), the following existence results for

NLSE is proved [113]:

Theorem 6.2: (Solution in H1) For 0 ≤ σ < 2
d−2 (no condition on σ

when d = 1 or 2) and an initial condition ψ0 ∈ H1(Rd), there exists, lo-

cally in time, a unique maximal solution ψ in C((−T ∗, T ∗), H1(Rd)), where

maximal means that if T ∗ < ∞, then ‖ψ‖H1 → ∞ as t approaches T ∗. In

addition, ψ satisfies the normalization and energy (or Hamiltonian) con-

servation laws

N(ψ) ≡
∫

Rd

|ψ|2 dx = N(ψ0), (6.5)

E(ψ) ≡
∫

Rd

[
1

2
|∇ψ|2 +

β

σ + 1
|ψ|2σ+2

]
dx = E(ψ0), (6.6)
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and depends continuously on the initial condition ψ in H1.

If in addition, the initial condition ψ0 belongs to the space
∑

= {f, f ∈
H1(Rd), |xf(x)| ∈ L2(Rd)} of the functions in H1 with finite variance, the

above maximal solution belongs to C((−T ∗, T ∗),
∑

). The variance δ
V
(t) =∫

Rd |x|2|ψ|2 dx belongs to C2(−T ∗, T ∗) and satisfies the identity

d2δ
V

dt2
= 4E(ψ0) +

2β(dσ − 2)

σ + 1

∫

Rd

|ψ|2σ+2 dx. (6.7)

Theorem 6.3: (Solution in L2) For 0 ≤ σ < 2
d and an initial condition

ψ0 ∈ L2(Rd), there exist a unique solution ψ in C((−T ∗, T ∗), L2(Rd)) ∩
Lq((−T ∗, T ∗), L2σ+2(Rd)) with q = 4(σ+1)

dσ , satisfying the L2-norm conser-

vation law (6.5).

Theorem 6.4: (Global existence in H1) Assume 0 ≤ σ < 2/(d−2) if β < 0

(attractive nonlinearity), or 0 ≤ σ < 2/d if β > 0 (repulsive nonlinearity).

For any ψ ∈ H1(Rd), there exists a unique solution ψ in C(R, H1(Rd)). It

satisfies the conservation laws (6.5) and (6.6) and depends continuously on

initial conditions in H1(Rd).

Theorem 6.5: (Global existence in L2) For 0 ≤ σ < 2/d and ψ0 ∈ L2(Rd),

there exists a unique solution ψ in C(R, L2(Rd))∩Lqloc(R, L
2σ+2(Rd)) with

q = 4(σ+ 1)/dσ that satisfies the L2-norm conservation (6.5) and depends

continuously on initial conditions in L2.

6.3. Finite time blowup results

Classical blowup results are based on the “variance identity”, also known

as the “viral theorem”, and “uncertainty principle”. Define the variance

δ
V
(t) =

∫
Rd |x|2|ψ|2 dx, we have the identity

d2

dt2
δ

V
(t) = 4E +

2β(dσ − 2)

σ + 1

∫

Rd

|ψ|2σ+2 dx. (6.8)

Theorem 6.6: Suppose that β < 0 and dσ ≥ 2. Consider an initial condi-

tion ψ0 ∈ H1 with δV (0) finite that satisfies one of the conditions below:

(i) E(ψ0) < 0,

(ii) E(ψ0) = 0 and δ′
V
(0) = 2 Re

∫
Rd ψ

∗
0(x · ∇ψ0)dx < 0,

(iii) E(ψ0) > 0 and
∣∣δ′

V
(0)
∣∣ ≥ 2

√
2E(ψ0)δV

(0) = 2
√

2E(ψ0)‖xψ0‖L2 .

Then, there exists a time t∗ <∞ such that

lim
t→t∗

‖∇ψ‖L2 = ∞ and lim
t→t∗

‖ψ‖L∞ = ∞. (6.9)
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Proof: If β < 0 and dσ ≥ 2,

d2

dt2
δ

V
(t) ≤ 4E, (6.10)

and by time integration,

δ
V
(t) ≤ 2Et2 + δ′

V
(0)t+ δ

V
(0). (6.11)

Under any of the hypotheses (i)-(iii) of the above theorem, there exists

a time t0 such that the right-hand side of (6.11) vanishes, and thus also

t1 ≤ t0 such that

lim
t→t1

δV (t) = 0. (6.12)

Furthermore, from the equality
∫

Rd

|f |2 dx =
1

d

∫

Rd

(∇ · x)|f |2 dx = −1

d

∫

Rd

x · ∇(|f |2) dx, (6.13)

one gets the “uncertainty principle”

‖f‖2
L2 ≤ 2

d
‖∇f‖L2 ‖xf‖L2. (6.14)

When this inequality is applied to a solution ψ, one gets from (6.14)

and from the conservation of ‖ψ‖2
L2, that there exists a time t∗ ≤ t1

such that limt→t∗ ‖∇ψ‖L2 = ∞. The conservation of E then ensures that

limt→t∗ ‖ψ‖2σ+2
L2σ+2 = ∞, and since ‖ψ‖2

L2 is conserved, this implies that

limt→t∗ ‖ψ‖L∞ = ∞. �

7. WKB expansion and quantum hydrodynamics

In this section, we consider the NLSE in semiclassical regime

iεψεt = −ε
2

2
4 ψε + V (x)ψε + f(|ψε|2)ψε, x ∈ Rd, t ≥ 0, (7.1)

ψε(x, 0) = ψε0(x), x ∈ Rd, (7.2)

where 0 < ε� 1 is the (scaled) Planck constant, f(ρ) is a given real-valued

function; and find its semiclassical limit by using WKB expansion.

Suppose that the initial datum ψε0 in (7.2) is rapidly oscillating on the

scale ε, given in WKB form:

ψε0(x) = A0(x) exp

(
i

ε
S0(x)

)
, x ∈ Rd, (7.3)
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where the amplitude A0 and the phase S0 are smooth real-valued functions.

Plugging the radial-representation of the wave-function

ψε(x, t) = Aε(x, t) exp

(
i

ε
Sε(x, t)

)
=
√
ρε(x, t) exp

(
i

ε
Sε(x, t)

)
(7.4)

into (7.1), one obtains the following quantum hydrodynamic (QHD) form

of the NLSE for ρε = |Aε|2, Jε = ρε∇Sε [58, 41, 79]

ρεt + div Jε = 0, (7.5)

Jεt + div

(
Jε ⊗ Jε

ρε

)
+ ∇P (ρε) + ρε∇V =

ε2

4
div(ρε∇2 log ρε); (7.6)

with initial data

ρε(x, 0) = ρε0(x) = |A0(x)|2, Jε(x, 0) = ρε0(x)∇S0(x) = |A0(x)|2 ∇S0(x),

(7.7)

(see Grenier [66], Jüngel [79, 80], for mathematical analyses of this system).

Here the hydrodynamic pressure P (ρ) is related to the nonlinear potential

f(ρ) by

P (ρ) = ρf(ρ) −
∫ ρ

0

f(s) ds, (7.8)

i.e. f ′ is the enthalpy. Letting ε → 0+, one obtains formally the following

Euler system

ρt + div J = 0, (7.9)

Jt + div

(
J ⊗ J

ρ

)
+ ∇P (ρ) + ρ∇V = 0. (7.10)

which can be viewed formally as the dispersive (semiclassical) limit of the

NLSE (7.1). In the case f ′ > 0 we expect (7.9), (7.10) to be the ‘rigorous’

semiclassical limit of (7.1) as long as caustics do not occur, i.e. in the pre-

breaking regime. After caustics the dispersive behavior of the NLSE takes

over and (7.9), (7.10) is not correct any more.

8. Wigner transform and semiclassical limit

In this section, we consider the linear Schrödinger equation in semiclassical

regime

iεψεt = −ε
2

2
4 ψε + V (x)ψε, x ∈ Rd, t ≥ 0, (8.1)

ψε(x, 0) = ψε0(x), x ∈ Rd, (8.2)
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and find its semiclassical limit by using Wigner transformation.

Let f, g ∈ L2(Rd). Then the Wigner-transform of (f, g) on the scale

ε > 0 is defined as the phase-space function:

wε(f, g)(x, ξ) =
1

(2π)d

∫

Rd

f∗
(
x +

ε

2
y
)
g
(
x − ε

2
y
)
eiy·ξ dy (8.3)

(cf. [58], [91] for a detailed analysis of the Wigner-transform). It is well-

known that the estimate

‖wε(f, g)‖E∗ ≤ ‖f‖L2(Rd) ‖g‖L2(Rd) (8.4)

holds, where E is the Banach space

E := {φ ∈ C0(R
d
x × Rdξ) : (Fξ→vφ)(x,v) ∈ L1(Rdv;C0(R

d
x))},

‖φ‖E :=

∫

Rd
v

sup
x∈Rd

x

|(Fξ→vφ)(x,v)| dv,

(cf. [91]). E∗ denotes the dual space of E and (Fξ→vσ)(v) :=∫
Rd

ξ
σ(ξ) e−iv·ξ dξ the Fourier transform.

Now let ψε(t) be the solution of the linear Schrödinger equation (8.1),

(8.2) and denote

wε(t) := wε(ψε(t), ψε(t)). (8.5)

Then wε satisfies the Wigner equation

wεt + ξ · ∇xw
ε + Θε[V ]wε = 0, (x, ξ) ∈ Rdx × Rdξ , t ∈ R, (8.6)

wε(t = 0) = wε(ψε0, ψ
ε
0), (8.7)

where Θε[V ] is the pseudo-differential operator:

Θε[V ]wε(x, ξ, t) :=
i

(2π)d

∫

Rd
α

V (x + ε
2α) − V (x − ε

2α)

ε
ŵε(x, α, t)eiα·ξdα,

(8.8)

here ŵε stands for the Fourier-transform

Fξ→α w
ε(x, ·, t) :=

∫

Rd
ξ

wε(x, ξ, t)e−iα·ξ dξ.

The main advantage of the formulation (8.6), (8.7) is that the semiclassical

limit ε→ 0 can easily be carried out. Taking ε to 0 gives the Vlasov-equation

( or Liouville equation):

w0
t + ξ · ∇xw

0 −∇xV (x) · ∇ξw
0 = 0, (x, ξ) ∈ Rdx × Rdξ , t ∈ R, (8.9)

w0(t = 0) = w0 := lim
ε→0

wε(ψε0, ψ
ε
0), (8.10)
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(cf. [58], [91]), where

w0 := lim
ε→0

wε.

Here, the limits hold in an appropriate weak sense (i.e. in E∗−ω∗) and have

to be understood for subsequences (εnk
) → 0 of sequence εn. We recall that

w0, w
0(t) are positive bounded measures on the phase-space Rdx × Rdξ .

When the initial Wigner distribution has the high frequency form

w0 = |A0(x)|2δ(ξ −∇S0(x)), (8.11)

then it is easy to see that the solution of (8.9) is given that

w0(x, ξ, t) = |A(x, t)|2δ(ξ −∇S(x, t)), (8.12)

where A(x, t) is the solution of the transport equation

(|A|2)t + ∇ · (|A|2∇S) = 0, |A(x, 0)|2 = |A0(x)|2 (8.13)

and S(x, t) is the solution of the Eiconal equation

St +
1

2
|∇S|2 + V (x) = 0, S(x, 0) = S0(x). (8.14)

Define the moments

ρ(x, t) =

∫

Rd
ξ

w0(x, ξ, t) dξ, (8.15)

J(x, t) =

∫

Rd
ξ

ξw0(x, ξ, t) dξ. (8.16)

Then ρ and J satisfy the pressureless Euler equation:

ρt + div J = 0, (8.17)

Jt + div

(
J ⊗ J

ρ

)
+ ρ∇V = 0; (8.18)

with initial data

ρ(x, 0) = ρ0(x) = |A0(x)|2, J(x, 0) = ρ0(x)∇S0(x) = |A0(x)|2 ∇S0(x).

(8.19)

9. Ground, excited and central vortex states of GPE

For simplicity, in this section, we take σ = 1 and the potential V (x) as a

harmonic oscillator (4.1), i.e. NLSE is considered in terms of BEC setup.
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9.1. Stationary states

To find a stationary solution of (4.1), we write

ψ(x, t) = e−iµtφ(x), (9.1)

where µ is the chemical potential and φ is a function independent of time.

Inserting (9.1) into (4.1) gives the following equation for φ(x)

µ φ(x) = −1

2
4 φ(x) + V (x) φ(x) + β|φ(x)|2φ(x), x ∈ Rd, (9.2)

under the normalization condition

‖φ‖2 =

∫

Rd

|φ(x)|2 dx = 1. (9.3)

This is a nonlinear eigenvalue problem under a constraint and any eigen-

value µ can be computed from its corresponding eigenfunction φ by

µ = µ(φ) =

∫

Rd

[
1

2
|∇φ(x)|2 + V (x) |φ(x)|2 + β |φ(x)|4

]
dx

= E(φ) +

∫

Rd

β

2
|φ(x)|4 dx. (9.4)

In fact, the eigenfunctions of (9.2) under the constraint (9.3) are equivalent

to the critical points of the energy functional over the unit sphere S =

{φ | ‖φ‖ = 1, E(φ) <∞}. Furthermore, as noted in [6], they are equivalent

to the steady state solutions of the following continuous normalized gradient

flow (CNGF):

∂tφ =
1

2
4 φ− V (x)φ − β |φ|2φ+

µ(φ)

‖φ(·, t)‖2
φ, x ∈ Rd, t ≥ 0, (9.5)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1. (9.6)

9.2. Ground state

The BEC ground state wave function φg(x) is found by minimizing the

energy functional E(φ) over the unit sphere S = {φ | ‖φ‖ = 1, E(φ) <∞}:
(V) Find (µgβ , φ

g
β ∈ S) such that

Egβ = E(φgβ) = min
φ∈S

E(φ), µgβ = µ(φgβ) = E(φgβ) +

∫

Rd

β

2
|φgβ |2 dx.

(9.7)

In the case of a defocusing condensate, i.e. β ≥ 0, the energy functional

E(φ) is positive, coercive and weakly lower semicontinuous on S, thus the

existence of a minimum follows from the standard theory. For understanding
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the uniqueness question note that E(αφgβ) = E(φgβ) for all α ∈ C with |α| =

1. Thus an additional constraint has to be introduced to show uniqueness.

For non-rotating BECs, the minimization problem (9.7) has a unique real

valued nonnegative ground state solution φgβ(x) > 0 for x ∈ Rd [87].

When β = 0, the ground state solution is given explicitly [5]

µg0 =
1

2





γx, d = 1,

γx + γy, d = 2,

γx + γy + γz, d = 3,

(9.8)

φg0(x) =
1

πd/4





γ
1/4
x e−γxx

2/2, d = 1,

(γxγy)
1/4e−(γxx

2+γyy
2)/2, d = 2,

(γxγyγz)
1/4e−(γxx

2+γyy
2+γzz

2)/2, d = 3.

(9.9)

In fact, this solution can be viewed as an approximation of the ground

state for weakly interacting condensate, i.e. |βd| � 1. For a condensate

with strong repulsive interaction, i.e. β � 1 and γα = O(1) (α = x, y, z),

the ground state can be approximated by the Thomas-Fermi approximation

in this regime [5]:

φTF
β (x) =

{√
(µTF
β − V (x))/β, V (x) < µTF

β ,

0, otherwise,
(9.10)

µTF
β =

1

2





(3βγx/2)2/3, d = 1,

(4βγxγy/π)1/2, d = 2,

(15βγxγyγz/4π)2/5, d = 3.

(9.11)

Due to φTF
β is not differentiable at V (x) = µTF

β , as noticed in [5, 8],

E(φTF
β ) = ∞ and µ(φTF

β ) = ∞. This shows that we can’t use (4.4) to define

the energy of the Thomas-Fermi approximation (9.10). How to define the

energy of the Thomas-Fermi approximation is not clear in the literatures.

Using (9.4), (9.11) and (9.10), here we present a way to define the energy

of the Thomas-Fermi approximation (9.10):

ETF
β = µTF

β −
∫

Rd

β

2
|φTF
β (x)|4 dx =

∫

Rd

[
V (x)|φTF

β (x)|2 +
β

2
|φTF
β (x)|4

]
dx

=
d+ 2

d+ 4
µTF
β , d = 1, 2, 3. (9.12)

From the numerical results in [6, 5], when γx = O(1), γy = O(1) and γz =

O(1), we can get

Egβ − ETF
β = E(φgβ) − ETF

β → 0, as βd → ∞.
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Any eigenfunction φ(x) of (9.2) under constraint (9.3) whose energy

E(φ) > E(φgβ) is usually called as excited states in physical literatures.

9.3. Central vortex states

To find central vortex states in 2D with radial symmetry, i.e. d = 2 and

γx = γy = 1 in (4.1), we write

ψ(x, t) = e−iµmtφm(x, y) = e−iµmtφm(r)eimθ , (9.13)

where (r, θ) is the polar coordinate, m 6= 0 is an integer and called as

index or winding number, µm is the chemical potential, and φm(r) is a real

function independent of time. Inserting (9.13) into (4.1) gives the following

equation for φm(r) with 0 < r <∞

µm φm(r) =

[
− 1

2r

d

dr

(
r
d

dr

)
+

1

2

(
r2 +

m2

r2

)
+ β2|φm|2

]
φm, (9.14)

φm(0) = 0, lim
r→∞

φm(r) = 0. (9.15)

under the normalization condition

2π

∫ ∞

0

|φm(r)|2 r dr = 1. (9.16)

In order to find the central vortex state φmβ (x, y) = φmβ (r)eimθ with index

m, we find a real nonnegative function φmβ (r) which minimizes the energy

functional

Em(φ(r)) = E(φ(r)eimθ)

= π

∫ ∞

0

[
|φ′(r)|2 +

(
r2 +

m2

r2

)
|φ(r)|2 + β2|φ(r)|4

]
rdr, (9.17)

over the set S0 = {φ | 2π
∫∞

0 |φ(r)|2r dr = 1, φ(0) = 0, Em(φ) <∞}. The

existence and uniqueness of nonnegative minimizer for this minimization

problem can be obtained similarly as for the ground state [87]. Note that

the set Sm = {φ(r)eimθ | φ ∈ S0} ⊂ S is a subset of the unit sphere, so

φmβ (r)eimθ is a minimizer of the energy functional Eβ over the set Sm ⊂ S.

When β2 = 0 in (4.1), φm0 (r) = 1√
π|m|!

r|m|e−r
2/2 [6].

Similarly, in order to find central vortex line states in 3D with cylindrical

symmetry, i.e. d = 3 and γx = γy = 1 in (4.1), we write

ψ(x, t) = e−iµmtφm(x, y, z) = e−iµmtφm(r, z)eimθ, (9.18)
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where m 6= 0 is an integer and called as index, µm is the chemical potential,
and φm(r, z) is a real function independent of time. Inserting (9.18) into
(4.1) with d = 3 gives the following equation for φm(r, z)

µm φm =

»
−

1

2r

∂

∂r

„
r

∂

∂r

«
−

∂2

2 ∂z2
+

1

2

„
r2 +

m2

r2
+ γ2

zz
2
«

+ β3|φm|2
–

φm, (9.19)

φm(0, z) = 0, lim
r→∞

φm(r, z) = 0, −∞ < z < ∞, (9.20)

lim
|z|→∞

φm(r, z) = 0, 0 ≤ r < ∞, (9.21)

under the normalization condition

2π

∫ ∞

0

∫ ∞

−∞

|φm(r, z)|2 r drdz = 1. (9.22)

In order to find the central vortex line state φmβ (x, y, z) = φmβ (r, z)eimθ with

index m, we find a real nonnegative function φmβ (r, z) which minimizes the

energy functional

Em(φ(r, z)) = E(φ(r, z)eimθ) (9.23)

= π

∫ ∞

0

∫ ∞

−∞

[
|∂rφ|2 + |∂zφ|2 +

(
r2 + γ2

zz
2 +

m2

r2

)
|φ|2 + β3|φ|4

]
r drdz,

over the set S0 = {φ | 2π
∫∞

0

∫∞

−∞
|φ(r, z)|2r drdz = 1, φ(0, z) = 0, −∞ <

z < ∞, Emβ (φ) < ∞}. The existence and uniqueness of nonnegative min-

imizer for this minimization problem can be obtained similarly as for the

ground state [87]. Note that the set Sm = {φ(r, z)eimθ | φ ∈ S0} ⊂ S

is a subset of the unit sphere, so φmβ (r, z)eimθ is a minimizer of the en-

ergy functional Eβ over the set Sm. When β3 = 0 in (3.11), φm0 (r, z) =
γ1/4

z

π3/4
√

|m|!
r|m|e−(r2+γzz

2)/2 [6].

9.4. Variation of stationary states over the unit sphere

For the stationary states of (9.2), we have the following lemma:

Lemma 9.1: Suppose β = 0 and V (x) ≥ 0 for x ∈ Rd, we have

(i) The ground state φg is a global minimizer of E(φ) over S.

(ii) Any excited state φj is a saddle point of E(φ) over S.

Proof: Let φe be an eigenfunction of the eigenvalue problem (9.2) and (9.3).

The corresponding eigenvalue is µe. For any function φ such that E(φ) <∞
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and ‖φe + φ‖ = 1, notice (9.3), we have that

‖φ‖2 = ‖φ+ φe − φe‖2 = ‖φ+ φe‖2 − ‖φe‖2 −
∫

Rd

(φ∗φe + φφ∗e) dx

= −
∫

Rd

(φ∗φe + φφ∗e) dx. (9.24)

From (4.4) with ψ = φe + φ and β = 0, notice (9.3) and (9.24), integration

by parts, we get

E(φe + φ) =

∫

Rd

[
1

2
|∇φe + ∇φ|2 + V (x)|φe + φ|2

]
dx

=

∫

Rd

[
1

2
|∇φe|2 + V (x)|φe|2

]
+

∫

Rd

[
1

2
|∇φ|2 + V (x)|φ|2

]
dx

+

∫

Rd

[(
−1

2
4 φe + V (x)φe

)∗

φ+

(
−1

2
4 φe + V (x)φe

)
φ∗
]
dx

= E(φe) + E(φ) +

∫

Rd

(µeφ
∗
e + µeφeφ

∗) dx

= E(φe) + E(φ) − µe‖φ‖2

= E(φe) + [E(φ/‖φ‖) − µe] ‖φ‖2. (9.25)

(i) Taking φe = φg and µe = µg in (9.25) and noticing E(φ/‖φ‖) ≥
E(φg) = µg for any φ 6= 0, we get immediately that φg is a global minimizer

of E(φ) over S.

(ii). Taking φe = φj and µe = µj in (9.25), since E(φg) < E(φj) and it

is easy to find an eigenfunction φ of (9.2) such that E(φ) > E(φj), we get

immediately that φj is a saddle point of the functional E(φ) over S. �

9.5. Conservation of angular momentum expectation

Another important quantity for studying dynamics of BEC in 2&3d, espe-

cially for measuring the appearance of vortex, is the angular momentum

expectation value defined as

〈Lz〉(t) :=

∫

Rd

ψ∗(x, t)Lzψ(x, t) dx, t ≥ 0, d = 2, 3, (9.26)

where Lz = i (y∂x − x∂y) is the z-component angular momentum.

Lemma 9.2: Suppose ψ(x, t) is the solution of the problem (4.1), (4.2)

with d = 2 or 3, then we have

d〈Lz〉(t)
dt

=
(
γ2
x − γ2

y

)
δxy(t), δxy(t) =

∫

Rd

xy|ψ(x, t)|2 dx, t ≥ 0.

(9.27)
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This implies that, at least in the following two cases, the angular momentum

expectation is conserved:

i) For any given initial data ψ0(x) in (4.2), if the trap is radial sym-

metric in 2d, and resp., cylindrical symmetric in 3d, i.e. γx = γy;

ii) For any given γx > 0 and γy > 0 in (3.13), if the initial data ψ0(x)

in (4.2) is either odd or even in the first variable x or second variable y.

Proof: Differentiate (9.26) with respect to t, notice (4.1), integrate by parts,

we have

d〈Lz〉(t)
dt

=

∫

Rd

[(iψ∗
t ) (y∂x − x∂y)ψ + ψ∗ (y∂x − x∂y)(iψt)] dx

=

∫

Rd

[(
1

2
∇2ψ∗ − V (x)ψ∗ − β|ψ|2ψ∗

)
(y∂x − x∂y)ψ

+ψ∗ (y∂x − x∂y)

(
−1

2
∇2ψ + V (x)ψ + β|ψ|2ψ

)]
dx

=

∫

Rd

1

2

[
∇2ψ∗ (y∂x − x∂y)ψ − ψ∗ (y∂x − x∂y)∇2ψ

]
dx

+

∫

Rd

[
ψ∗ (y∂x − x∂y)

(
V (x)ψ + β|ψ|2ψ

)

−
(
V (x)ψ∗ + β|ψ|2ψ∗

)
(y∂x − x∂y)ψ

]
dx

=

∫

Rd

|ψ|2(y∂x − x∂y)
(
V (x) + β|ψ|2

)
dx

=

∫

Rd

|ψ|2(y∂x − x∂y)Vd(x) dx =

∫

Rd

|ψ|2(γ2
x − γ2

y)xy dx

= (γ2
x − γ2

y)

∫

Rd

xy|ψ|2 dx, t ≥ 0. (9.28)

For case i), since γx = γy, we get the conservation of 〈Lz〉 immediately

from the first order ODE:

d〈Lz〉(t)
dt

= 0, t ≥ 0. (9.29)

For case ii), we know the solution ψ(x, t) is either odd or even in the

first variable x or second variable y due to the assumption of the initial

data and symmetry of V (x). Thus |ψ(x, t)| is even in either x or y, which

immediately implies that 〈Lz〉 satisfies the first order ODE (9.29). �
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10. Numerical methods for computing ground states of

GPE

In this section, we present the continuous normalized gradient flow (CNGF),

prove its energy diminishing and propose its semi-discretization for com-

puting ground states in BEC. For simplicity, we take σ = 1 in (4.1).

10.1. Gradient flow with discrete normalization (GFDN)

Various algorithms for computing the minimizer of the energy functional

E(φ) under the constraint (9.3) have been studied in the literature. For

instance, second order in time discretization scheme that preserves the nor-

malization and energy diminishing properties were presented in [2, 6]. Per-

haps one of the more popular technique for dealing with the normalization

constraint (9.3) is through the following construction: choose a time se-

quence 0 = t0 < t1 < t2 < · · · < tn < · · · with 4tn = tn+1 − tn > 0

and k = maxn≥0 4tn. To adapt an algorithm for the solution of the usual

gradient flow to the minimization problem under a constraint, it is natural

to consider the following splitting (or projection) scheme which was widely

used in physical literatures [6] for computing the ground state solution of

BEC:

φt = −1

2

δE(φ)

δφ
=

1

2
4 φ− V (x)φ − β |φ|2φ,

x ∈ Ω, tn < t < tn+1, n ≥ 0, (10.1)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Ω, n ≥ 0, (10.2)

φ(x, t) = 0, x ∈ Γ = ∂Ω, φ(x, 0) = φ0(x), x ∈ Ω; (10.3)

where φ(x, t±n ) = limt→t±n
φ(x, t), ‖φ0‖ = 1 and Ω ⊂ Rd. In fact, the gra-

dient flow (10.1) can be viewed as applying the steepest decent method to

the energy functional E(φ) without constraint and (10.2) then projects the

solution back to the unit sphere in order to satisfying the constraint (9.3).

From the numerical point of view, the gradient flow (10.1) can be solved via

traditional techniques and the normalization of the gradient flow is simply

achieved by a projection at the end of each time step.

10.2. Energy diminishing of GFDN

Let

φ̃(·, t) =
φ(·, t)

‖φ(·, t)‖ , tn ≤ t ≤ tn+1, n ≥ 0. (10.4)
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For the gradient flow (10.1), it is easy to establish the following basic facts:

Lemma 10.1: Suppose V (x) ≥ 0 for all x ∈ Ω, β ≥ 0 and ‖φ0‖ = 1, then

(i). ‖φ(·, t)‖ ≤ ‖φ(·, tn)‖ = 1 for tn ≤ t ≤ tn+1, n ≥ 0.

(ii). For any β ≥ 0,

E(φ(·, t)) ≤ E(φ(·, t′)), tn ≤ t′ < t ≤ tn+1, n ≥ 0. (10.5)

(iii). For β = 0,

E(φ̃(·, t)) ≤ E(φ̃(·, tn)), tn ≤ t ≤ tn+1, n ≥ 0. (10.6)

Proof: (i) and (ii) follows the standard techniques used for gradient flow.

As for (iii), from (4.4) with ψ = φ̃ and β = 0, (10.1), (10.3) and (10.4),

integration by parts and Schwartz inequality, we obtain

d

dt
E(φ̃) =

d

dt

∫

Ω

[ |∇φ|2
2‖φ‖2

+
V (x)φ2

‖φ‖2

]
dx

= 2

∫

Ω

[∇φ · ∇φt
2‖φ‖2

+
V (x)φ φt
‖φ‖2

]
dx −

(
d

dt
‖φ‖2

) ∫

Ω

[ |∇φ|2
2‖φ‖4

+
V (x)φ2

‖φ‖4

]
dx

= 2

∫

Ω

[
− 1

2 4 φ+ V (x)φ
]
φt

‖φ‖2
dx −

(
d

dt
‖φ‖2

)∫

Ω

1
2 |∇φ|2 + V (x)φ2

‖φ‖4
dx

= −2
‖φt‖2

‖φ‖2
+

1

2‖φ‖4

(
d

dt
‖φ‖2

)2

=
2

‖φ‖4

[(∫

Ω

φ φt dx

)2

− ‖φ‖2‖φt‖2

]

≤ 0 , tn ≤ t ≤ tn+1. (10.7)

This implies (10.6). �

Remark 10.2: The property (10.5) is often referred as the energy dimin-

ishing property of the gradient flow. It is interesting to note that (10.6)

implies that the energy diminishing property is preserved even with the

normalization of the solution of the gradient flow for β = 0, that is, for

linear evolution equations.

Remark 10.3: When β > 0, the solution of (10.1)-(10.3) may not preserve

the normalized energy diminishing property

E(φ̃(·, t)) ≤ E(φ̃(·, t′)), 0 ≤ t′ < t ≤ t1

for any t1 > 0 [6].

From Lemma 10.1, we get immediately
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Theorem 10.4: Suppose V (x) ≥ 0 for all x ∈ Ω and ‖φ0‖ = 1. For β = 0,

GFDN (10.1)-(10.3) is energy diminishing for any time step k and initial

data φ0, i.e.

E(φ(·, tn+1)) ≤ E(φ(·, tn)) ≤ · · · ≤ E(φ(·, 0)) = E(φ0), n = 0, 1, 2, · · · .
(10.8)

10.3. Continuous normalized gradient flow (CNGF)

In fact, the normalized step (10.2) is equivalent to solve the following ODE

exactly

φt(x, t) = µφ(t, k)φ(x, t), x ∈ Ω, tn < t < tn+1, n ≥ 0, (10.9)

φ(x, t+n ) = φ(x, t−n+1), x ∈ Ω; (10.10)

where

µφ(t, k) ≡ µφ(tn+1,4tn) = − 1

2 4 tn
ln ‖φ(·, t−n+1)‖2, tn ≤ t ≤ tn+1.

(10.11)

Thus the GFDN (10.1)-(10.3) can be viewed as a first-order splitting

method for the gradient flow with discontinuous coefficients:

φt =
1

2
4 φ− V (x)φ − β |φ|2φ+ µφ(t, k)φ, x ∈ Ω, t ≥ 0, (10.12)

φ(x, t) = 0, x ∈ Γ, φ(x, 0) = φ0(x), x ∈ Ω. (10.13)

Let k → 0, we see that

µφ(t) := lim
k→0+

µφ(t, k)

=
1

‖φ(·, t)‖2

∫

Ω

[
1

2
|∇φ(x, t)|2 + V (x)φ2(x, t) + βφ4(x, t)

]
dx. (10.14)

This suggests us to consider the following continuous normalized gradient

flow:

φt =
1

2
4 φ− V (x)φ− β |φ|2φ+ µφ(t)φ, x ∈ Ω, t ≥ 0, (10.15)

φ(x, t) = 0, x ∈ Γ, φ(x, 0) = φ0(x), x ∈ Ω. (10.16)

In fact, the right hand side of (10.15) is the same as (9.2) if we view µφ(t)

as a Lagrange multiplier for the constraint (9.3). Furthermore for the above

CNGF, as observed in [6], the solution of (10.15) also satisfies the following

theorem:
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Theorem 10.5: Suppose V (x) ≥ 0 for all x ∈ Ω, β ≥ 0 and ‖φ0‖ = 1.

Then the CNGF (10.15)-(10.16) is normalization conservation and energy

diminishing, i.e.

‖φ(·, t)‖2 =

∫

Ω

φ2(x, t) dx = ‖φ0‖2 = 1, t ≥ 0, (10.17)

d

dt
E(φ) = −2 ‖φt(·, t)‖2 ≤ 0 , t ≥ 0, (10.18)

which in turn implies

E(φ(·, t1)) ≥ E(φ(·, t2)), 0 ≤ t1 ≤ t2 <∞.

Remark 10.6: We see from the above theorem that the energy diminishing

property is preserved in the continuous dynamic system (10.15).

Using argument similar to that in [88, 106], we may also get as t→ ∞, φ

approaches to a steady state solution which is a critical point of the energy.

In non-rotating BEC, it has a unique real valued nonnegative ground state

solution φg(x) ≥ 0 for all x ∈ Ω [87]. We choose the initial data φ0(x) ≥ 0

for x ∈ Ω, e.g. the ground state solution of linear Schrödinger equation

with a harmonic oscillator potential [5, 8]. Under this kind of initial data,

the ground state solution φg and its corresponding chemical potential µg
can be obtained from the steady state solution of the CNGF (10.15)-(10.16),

i.e.

φg(x) = lim
t→∞

φ(x, t), x ∈ Ω, µg = µβ(φg) = E(φg) +
β

2

∫

Ω

|φg(x)|4 dx.
(10.19)

10.4. Semi-implicit time discretization

To further discretize the equation (10.1), we here consider the following

semi-implicit time discretization scheme:

φ̃n+1 − φn

k
=

1

2
4 φ̃n+1 − V (x)φ̃n+1 − β |φn|2φ̃n+1 , x ∈ Ω, (10.20)

φ̃n+1(x) = 0, x ∈ Γ, φn+1(x) = φ̃n+1(x)/‖φ̃n+1‖ , x ∈ Ω .(10.21)

Notice that since the equation (10.20) becomes linear, the solution at

the new time step becomes relatively simple. In other words, in each discrete

time interval, we may view (10.20) as a discretization of a linear gradient

flow with a modified potential Ṽn(x) = V (x) + β|φn(x)|2.
We now first present the following lemma:
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Lemma 10.7: Suppose β ≥ 0 and V (x) ≥ 0 for all x ∈ Ω and ‖φn‖ = 1.

Then,∫

Ω

|φ̃n+1|2 dx ≤
∫

Ω

φn φ̃n+1 dx,

∫

Ω

|φ̃n+1|4 dx ≤
∫

Ω

|φn|2 |φ̃n+1|2 dx.
(10.22)

Proof: Multiplying both sides of (10.20) by φ̃n+1, integrating over Ω, and

applying integration by parts, we obtain
∫

Ω

(
|φ̃n+1|2 − φnφ̃n+1

)
dx = −k

∫

Ω

[
1

2
|∇φ̃n+1|2 + Ṽn(x)|φ̃n+1|2

]
dx ≤ 0 ,

which leads to the first inequality in (10.22). Similarly,
∫

Ω

|φ̃n+1|2|φn|2dx =

∫

Ω

|φ̃n+1|2
∣∣∣∣φ̃
n+1 − k

2
4 φ̃n+1 + kṼn(x)φ̃n+1

∣∣∣∣
2

dx

=

∫

Ω

|φ̃n+1|2
[
|φ̃n+1|2 − 2

k

2
φ̃n+1 4 φ̃n+1 + 2kṼn(x)|φ̃n+1|2

]
dx

+

∫

Ω

|φ̃n+1|2
∣∣∣∣
k

2
4 φ̃n+1 − kṼn(x)φ̃n+1

∣∣∣∣
2

dx

=

∫

Ω

|φ̃n+1|2
[
|φ̃n+1|2 + 3k|∇φ̃n+1|2 + 2kṼn(x)|φ̃n+1|2

]
dx

+

∫

Ω

|φ̃n+1|2
∣∣∣∣
k

2
4 φ̃n+1 − kṼn(x)φ̃n+1

∣∣∣∣
2

dx

≥
∫

Ω

|φ̃n+1|4dx . (10.23)

This implies the second inequality in (10.22). �

Given a linear self-adjoint operator A in a Hilbert space H with inner

product (·, ·), and assume that A is positive definite in the sense that for

some positive constant c, (u,Au) ≥ c(u, u) for any u ∈ H . We now present

a simple lemma:

Lemma 10.8: For any k > 0, and (I + kA)u = v, we have

(u,Au)

(u, u)
≤ (v,Av)

(v, v)
. (10.24)

Proof: Since A is self-adjoint and positive definite, by Hölder inequality,

we have for any p, q ≥ 1 with p+ q = pq, that

(u,Au) ≤ (u, u)
1/p

(u,Aqu)
1/q

,
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which leads to

(u,Au) ≤ (u, u)
1/2 (

u,A2u
)1/2

, (u,Au)
(
u,A2u

)
≤ (u, u)

(
u,A3u

)
.

Direct calculation then gives

(u,Au) ((I + kA)u, (I + kA)u)

= (u,Au) (u, u) + 2k (u,Au)
2

+ k2 (u,Au)
(
u,A2u

)

≤ (u,Au) (u, u) + 2k (u, u)
(
u,A2u

)
+ k2 (u, u)

(
u,A3u

)

= (u, u) ((I + kA)u,A(I + kA)u) . (10.25)

�

Let us define a modified energy Ẽφn as

Ẽφn(u) =

∫

Ω

[
1

2
|∇u|2 + Ṽn(x)|u|2

]
dx

=

∫

Ω

[
1

2
|∇u|2 + V (x)|u|2 + β|φn|2|u|2

]
dx ,

we then get from the above lemma that

Lemma 10.9: Suppose V (x) ≥ 0 for all x ∈ Ω, β ≥ 0 and ‖φn‖ = 1.

Then,

Ẽφn(φ̃n+1) ≤ Ẽφn(φ̃n+1)

‖φ̃n+1‖
= Ẽφn

(
φ̃n+1

‖φ̃n+1‖

)

= Ẽφn(φn+1) ≤ Ẽφn(φn) . (10.26)

Using the inequality (10.22), we in turn get:

Lemma 10.10: Suppose V (x) ≥ 0 for all x ∈ Ω and β ≥ 0, then,

Ẽ(φ̃n+1) ≤ Ẽ(φn),

where

Ẽ(u) =

∫

Ω

[
1

2
|∇u|2 + V (x)|u|2 + β|u|4

]
dx .

Remark 10.11: As we noted earlier, for β = 0, the energy diminishing

property is preserved in the GFDN (10.1)-(10.3) and semi-implicit time

discretization (10.20)-(10.21). For β > 0, the energy diminishing property

in general does not hold uniformly for all φ0 and all step size k > 0,

a justification on the energy diminishing is presently only possible for a

modified energy within two adjacent steps.
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10.5. Discretized normalized gradient flow (DNGF)

Consider a discretization for the GFDN (10.20)-(10.21) (or a fully dis-

cretization of (10.15)-(10.16))

Ũn+1 − Un

k
= −AŨn+1, Un+1 =

Ũn+1

‖Ũn+1‖
, n = 0, 1, 2, · · · ;

(10.27)

where Un = (un1 , u
n
2 , · · · , unM−1)

T , k > 0 is time step and A is an

(M − 1) × (M − 1) symmetric positive definite matrix. We adopt the in-

ner product, norm and energy of vectors U = (u1, u2, · · · , uM−1)
T and

V = (v1, v2, · · · , vM−1)
T as

(U, V ) = UTV =
M−1∑

j=1

uj vj , ‖U‖2 = UTU = (U,U), (10.28)

E(U) = UTAU = (U,AU), (10.29)

respectively. Using the finite dimensional version of the lemmas given in

the previous subsection, we have

Theorem 10.12: Suppose ‖U0‖ = 1 and A is symmetric positive definite.

Then the DNGF (10.27) is energy diminishing, i.e.

E
(
Un+1

)
≤ E (Un) ≤ · · · ≤ E

(
U0
)
, n = 0, 1, 2, · · · . (10.30)

Furthermore if I + kA is an M -matrix, then (I + kA)−1 is a nonnegative

matrix (i.e. with nonnegative entries). Thus the flow is monotone, i.e. if

U0 is a non-negative vector, then Un is also a non-negative vector for all

n ≥ 0.

Remark 10.13: If a discretization for the GFDN (10.20)-(10.21) reads

Ũn+1 − Un

k
= −BUn, Un+1 =

Ũn+1

‖Ũn+1‖
, n = 0, 1, 2, · · · . (10.31)

For symmetric, positive definite B with ρ(kB) < 1 (ρ(B) being the spectral

radius of B), (10.30) is satisfied by choosing

A =
1

k

(
(I − kB)−1 − I

)
= (I − kB)−1B.

Remark 10.14: If a discretization for the GFDN (10.20)-(10.21) reads

Ũn+1 = BUn, Un+1 =
Ũn+1

‖Ũn+1‖
, n = 0, 1, 2, · · · . (10.32)
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For symmetric, positive definite B with ρ(B) < 1, (10.30) is satisfied by

choosing

A =
1

k

(
B−1 − I

)
.

Remark 10.15: If a discretization for the GFDN (10.20)-(10.21) reads

Ũn+1 − Un

k
= −BŨn+1 − CUn, Un+1 =

Ũn+1

‖Ũn+1‖
, n = 0, 1, 2, · · · .

(10.33)

Suppose B and C are symmetric, positive definite and ρ(kC) < 1. Then

(10.30) is satisfied by choosing

A = (I − kC)
−1

(B + C).

10.6. Numerical methods

In this section, we will present two numerical methods to discretize the

GFDN (10.1)-(10.3) (or a full discretization of the CNGF (10.15)-(10.16)).

For simplicity of notation we introduce the methods for the case of one

spatial dimension (d = 1) with homogeneous periodic boundary conditions.

Generalizations to higher dimension are straightforward for tensor product

grids and the results remain valid without modifications. For d = 1, we

have

φt =
1

2
φxx − V (x)φ − β |φ|2φ,

x ∈ Ω = (a, b), tn < t < tn+1, n ≥ 0, (10.34)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖
, a ≤ x ≤ b, n ≥ 0, (10.35)

φ(x, 0) = φ0(x), a ≤ x ≤ b, φ(a, t) = φ(b, t) = 0, t ≥ 0; (10.36)

with

‖φ0‖2 =

∫ b

a

φ2
0(x) dx = 1.

We choose the spatial mesh size h = 4x > 0 with h = (b − a)/M and

M an even positive integer, the time step is given by k = 4t > 0 and define

grid points and time steps by

xj := a+ j h, tn := n k, j = 0, 1, · · · ,M, n = 0, 1, 2, · · ·
Let φnj be the numerical approximation of φ(xj , tn) and φn the solution

vector at time t = tn = nk with components φnj .
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Backward Euler finite difference (BEFD) We use backward Euler

for time discretization and second-order centered finite difference for spatial

derivatives. The detail scheme is:

φ∗j − φnj
k

=
1

2h2

[
φ∗j+1 − 2φ∗j + φ∗j−1

]
− V (xj)φ

∗
j − β

(
φnj
)2
φ∗j ,

j = 1, · · · ,M − 1,

φ∗0 = φ∗M = 0, φ0
j = φ0(xj), j = 0, 1, · · · ,M,

φn+1
j =

φ∗j
‖φ∗‖ , j = 0, · · · ,M, n = 0, 1, · · · ; (10.37)

where the norm is defined as ‖φ∗‖2 = h
∑M−1
j=1

(
φ∗j
)2

.

Time-splitting sine-spectral method (TSSP) From time t = tn to

time t = tn+1, the equation (10.34) is solved in two steps. First, one solves

φt =
1

2
φxx, (10.38)

for one time step of length k, then followed by solving

φt(x, t) = −V (x)φ(x, t) − β|φ|2φ(x, t), tn ≤ t ≤ tn+1, (10.39)

again for the same time step. Equation (10.38) is discretized in space by

the sine-spectral method and integrated in time exactly. For t ∈ [tn, tn+1],

multiplying the ODE (10.39) by φ(x, t), one obtains with ρ(x, t) = φ2(x, t)

ρt(x, t) = −2V (x)ρ(x, t) − 2βρ2(x, t), tn ≤ t ≤ tn+1. (10.40)

The solution of the ODE (10.40) can be expressed as

ρ(x, t) =





V (x)ρ(x, tn)

(V (x) + βρ(x, tn)) e2V (x)(t−tn) − βρ(x, tn)
V (x) 6= 0,

ρ(x, tn)

1 + 2βρ(x, tn)(t− tn)
, V (x) = 0.

(10.41)

Combining the splitting step via the standard second-order Strang splitting

for solving the GFDN (10.34)-(10.36), in detail, the steps for obtaining φn+1
j
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from φnj are given by

φ∗j =





√
V (xj)e−kV (xj)

V (xj) + β(1 − e−kV (xj))|φnj |2
φnj V (xj) 6= 0,

1√
1 + βk|φnj |2

φnj , V (xj) = 0,

φ∗∗j =

M−1∑

l=1

e−kµ
2
l /2 φ̂∗l sin(µl(xj − a)), j = 1, 2, · · · ,M − 1,

φ∗∗∗j =





√
V (xj)e−kV (xj)

V (xj) + β(1 − e−kV (xj))|φ∗∗j |2 φ∗∗j V (xj) 6= 0,

1√
1 + βk|φ∗∗j |2

φ∗∗j , V (xj) = 0,

φn+1
j =

φ∗∗∗j

‖φ∗∗∗‖ , j = 0, · · · ,M, n = 0, 1, · · · ; (10.42)

where Ûl are the sine-transform coefficients of a real vector U =

(u0, u1, · · · , uM )T with u0 = uM = 0 which are defined as

µl =
πl

b− a
, Ûl =

2

M

M−1∑

j=1

uj sin(µl(xj − a)), l = 1, 2, · · · ,M − 1

(10.43)

and

φ0
j = φ(xj , 0) = φ0(xj), j = 0, 1, 2, · · · ,M.

Note that the only time discretization error of TSSP is the splitting error,

which is second order in k.

For comparison purposes we review a few other numerical methods

which are currently used for solving the GFDN (10.34)-(10.36). One is the
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Crank-Nicolson finite difference (CNFD) scheme:

φ∗j − φnj
k

=
1

4h2

[
φ∗j+1 − 2φ∗j + φ∗j−1 + φnj+1 − 2φnj + φnj−1

]

−V (xj)

2

[
φ∗j + φnj

]
−
β
∣∣φnj
∣∣2

2

[
φ∗j + φnj

]
, j = 1, · · · ,M − 1,

φ∗0 = φ∗M = 0, φ0
j = φ0(xj), j = 0, 1, · · · ,M,

φn+1
j =

φ∗j
‖φ∗‖ , j = 0, · · · ,M, n = 0, 1, · · · . (10.44)

Another one is the forward Euler finite difference (FEFD) method:

φ∗j − φnj
k

=
1

2h2

[
φnj+1 − 2φnj + φnj−1

]
− V (xj)φ

n
j − β

∣∣φnj
∣∣2 φnj ,

j = 1, · · · ,M − 1,

φ∗0 = φ∗M = 0, φ0
j = φ0(xj), j = 0, 1, · · · ,M,

φn+1
j =

φ∗j
‖φ∗‖ , j = 0, · · · ,M, n = 0, 1, · · · ; (10.45)

10.7. Energy diminishing of DNGF

First we analyze the energy diminishing of the different numerical methods

for linear case, i.e. β = 0 in (10.34). Introducing

Φn =
(
φn1 , φ

n
2 , · · · , φnM−1

)T
,

D = (djl)(M−1)×(M−1) , with djl =
1

2h2





2, j = l,

−1, |j − l| = −1,

0, otherwise,

E = diag (V (x1), V (x2), · · · , V (xM−1)) ,

F (Φ) = diag
(
φ2

1, φ
2
2, · · · , φ2

M−1

)
, with Φ = (φ1, φ2, · · · , φM−1)

T
,

G = (gjl)(M−1)×(M−1) , with gjl =
2

M

M−1∑

m=1

sin
πmj

M
sin

πml

M
e−kµ

2
m/2,

H = diag
(
e−kV (x1)/2, e−kV (x2)/2, · · · , e−kV (xM−1)/2

)
.

Then the BEFD discretization (10.37) (called as BEFD normalized flow)

with β = 0 can be expressed as

Φ∗ − Φn

k
= −(D + E)Φ∗, Φn+1 =

Φ∗

‖Φ∗‖ , n = 0, 1, · · · . (10.46)
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The TSSP discretization (10.42) (called as TSSP normalized flow) with

β = 0 can be expressed as

Φ∗∗∗ = HΦ∗∗ = HGΦ∗ = HGHΦn, Φn+1 =
Φ∗

‖Φ∗‖ , n = 0, 1, · · · .
(10.47)

The CNFD discretization (10.44) (called as CNFD normalized flow) with

β = 0 can be expressed as

Φ∗ − Φn

k
= −1

2
(D+E)Φ∗−1

2
(D+E)Φn, Φn+1 =

Φ∗

‖Φ∗‖ , n = 0, 1, · · · .
(10.48)

The FEFD discretization (10.45) (called as FEFD normalized flow) with

β = 0 can be expressed as

Φ∗ − Φn

k
= −(D + E)Φn, Φn+1 =

Φ∗

‖Φ∗‖ , n = 0, 1, · · · . (10.49)

It is easy to see that D and G are symmetric positive definite matrices.

Furthermore D is also an M -matrix and ρ(D) =
(
1 + cos π

M

)
/h2 < 2/h2

and ρ(G) = e−kµ
2
1/2 < 1. Applying the theorem 10.12 and remarks 10.13,

10.14 and 10.15, we have

Theorem 10.16: Suppose V ≥ 0 in Ω and β = 0. We have that

(i). The BEFD normalized flow (10.37) is energy diminishing and

monotone for any k > 0.

(ii). The TSSP normalized flow (10.42) is energy diminishing for any

k > 0.

(iii). The CNFD normalized flow (10.44) is energy diminishing and

monotone provided that

k ≤ 2

2/h2 + maxj V (xj)
=

2h2

2 + h2 maxj V (xj)
. (10.50)

(iv). The FEFD normalized flow (10.45) is energy diminishing and

monotone provided that

k ≤ 1

2/h2 + maxj V (xj)
=

h2

2 + h2 maxj V (xj)
. (10.51)

For nonlinear case, i.e. β > 0, we only analyze the energy between two

steps of BEFD flow (10.37). In this case, consider

Φ̃n+1 − Φn

k
= − (D + E + βF (Φn)) Φ̃n+1, Φn+1 =

Φ̃n+1

‖Φ̃n+1‖
. (10.52)
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Lemma 10.17: Suppose V ≥ 0, β > 0 and ‖Φn‖ = 1. Then for the flow

(10.52), we have

Ẽ
(
Φ̃n+1

)
≤ Ẽ (Φn) , ẼΦn

(
Φn+1

)
≤ ẼΦn (Φn) (10.53)

where

Ẽ (Φ) = (Φ, (D + E + βF (Φ))Φ) = ΦT (D + E)Φ + β

M−1∑

j=1

φ4
j , (10.54)

ẼΦn (Φ) = (Φ, (D + E + βF (Φn))Φ)

= ΦT (D + E)Φ + β

M−1∑

j=1

φ2
j

(
φnj
)2

. (10.55)

Proof: Combining (10.52), (10.27) and Theorem 10.12, we have

(
Φ̃n+1, (D + E + βF (Φn))Φ̃n+1

)
≤

(
Φ̃n+1, (D + E + βF (Φn))Φ̃n+1

)

(
Φ̃n+1, Φ̃n+1

)

≤ (Φn, (D + E + βF (Φn))Φn)

(Φn,Φn)
= Ẽ (Φn) . (10.56)

Similar to the proof of (10.22), we have

M−1∑

j=1

(
φnj
)2 (

φ̃n+1
j

)2

≥
M−1∑

j=1

(
φ̃n+1
j

)4

. (10.57)

The required result (10.53) is a combination of (10.57), and (10.56). �

10.8. Numerical results

Here we report the ground state solutions in BEC with different potentials

by the method BEFD. Due to the ground state solution φg(x) ≥ 0 for

x ∈ Ω in non-rotating BEC [87], in our computations, the initial condition

(10.3) is always chosen such that φ0(x) ≥ 0 and decays to zero sufficiently

fast as |x| → ∞. We choose an appropriately large interval, rectangle and

box in 1d, 2d and 3d, respectively, to avoid that the homogeneous periodic

boundary condition (10.36) introduce a significant (aliasing) error relative

to the whole space problem. To quantify the ground state solution φg(x),

we define the radius mean square

αrms = ‖αφg‖L2(Ω) =

√∫

Ω

α2φ2
g(x) dx, α = x, y, or z. (10.58)
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Example 1 Ground state solution of 1d BEC with harmonic oscillator

potential

V (x) =
x2

2
, φ0(x) =

1

(π)1/4
e−x

2/2, x ∈ R.

The CNGF (10.15)-(10.16) with d = 1 is solved on Ω = [−16, 16] with

mesh size h = 1/8 and time step k = 0.1 by using BEFD. The steady state

solution is reached when max
∣∣Φn+1 − Φn

∣∣ < ε = 10−6. Fig. 1 shows the

ground state solution φg(x) and energy evolution for different β. Tab. 1

displays the values of φg(0), radius mean square xrms, energy E(φg) and

chemical potential µg.

β φg(0) xrms E(φg) µg = µβ(φg)

0 0.7511 0.7071 0.5000 0.5000

3.1371 0.6463 0.8949 1.0441 1.5272

12.5484 0.5301 1.2435 2.2330 3.5986

31.371 0.4562 1.6378 3.9810 6.5587

62.742 0.4067 2.0423 6.2570 10.384

156.855 0.3487 2.7630 11.464 19.083

313.71 0.3107 3.4764 18.171 30.279

627.42 0.2768 4.3757 28.825 48.063

1254.8 0.2467 5.5073 45.743 76.312

Tab. 1: Maximum value of the wave function φg(0), root mean square size

xrms, energy E(φg) and ground state chemical potential µg verus the inter-

action coefficient β in 1d.

The results in Fig. 1. and Tab. 1. agree very well with the ground state

solutions of BEC obtained by directly minimizing the energy functional [5].

Example 2 Ground state solution of BEC in 2d. Two cases are consid-

ered:

I. With a harmonic oscillator potential [5, 8, 44], i.e.

V (x, y) =
1

2

(
γ2
xx

2 + γ2
yy

2
)
.

II. With a harmonic oscillator potential and a potential of a stirrer

corresponding a far-blue detuned Gaussian laser beam [27] which is used

to generate vortices in BEC [27], i.e.

V (x, y) =
1

2

(
γ2
xx

2 + γ2
yy

2
)

+ w0e
−δ((x−r0)

2+y2).
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Fig. 1: Ground state solution φg in Example 1. (a). For β =

0, 3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8 (with de-

creasing peak). (b). Energy evolution for different β.

The initial condition is chosen as

φ0(x, y) =
(γxγy)

1/4

π1/2
e−(γxx

2+γyy
2)/2.

For the case I, we choose γx = 1, γy = 4, w0 = δ = r0 = 0, β = 200

and solve the problem by BEFD on Ω = [−8, 8] × [−4, 4] with mesh size

hx = 1/8, hy = 1/16 and time step k = 0.1. We get the following results

from the ground state solution φg:

xrms = 2.2734, yrms = 0.6074, φ2
g(0) = 0.0808,

E(φg) = 11.1563, µg = 16.3377.

For case II, we choose γx = 1, γy = 1, w0 = 4, δ = r0 = 1, β = 200 and

solve the problem by TSSP on Ω = [−8, 8]2 with mesh size h = 1/8 and

time step k = 0.001. We get the following results from the ground state

solution φg:

xrms = 1.6951, yrms = 1.7144, φ2
g(0) = 0.034,

E(φg) = 5.8507, µg = 8.3269.

In addition, Fig. 2 shows surface plots of the ground state solution φg.

Example 3 Ground state solution of BEC in 3d. Two cases are consid-

ered:

I. With a harmonic oscillator potential [5, 8, 44], i.e.

V (x, y, z) =
1

2

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
.
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Fig. 2: Ground state solutions φ2
g in Example 2, case I (a), and case II (b).

II. With a harmonic oscillator potential and a potential of a stirrer

corresponding a far-blue detuned Gaussian laser beam [27] which is used

to generate vortex in BEC [27], i.e.

V (x, y, z) =
1

2

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)

+ w0e
−δ((x−r0)

2+y2).

The initial condition is chosen as

φ0(x, y, z) =
(γxγyγz)

1/4

π3/4
e−(γxx

2+γyy
2+γzz

2)/2.

For case I, we choose γx = 1, γy = 2, γz = 4, w0 = δ = r0 = 0, β = 200

and solve the problem by TSSP on Ω = [−8, 8]× [−6, 6]× [−4, 4] with mesh

size hx = 1
8 , hy = 3

32 , hz = 1
16 and time step k = 0.001. The ground state

solution φg gives:

xrms = 1.67, yrms = 0.87, zrms = 0.49,

φ2
g(0) = 0.052, E(φg) = 8.33, µg = 11.03.

For case II, we choose γx = 1, γy = 1, γz = 2, w0 = 4, δ = r0 = 1,

β = 200 and solve the problem by TSSP on Ω = [−8, 8]3 with mesh size

h = 1
8 and time step k = 0.001. The ground state solution φg gives:

xrms = 1.37, yrms = 1.43, zrms = 0.70,

φ2
g(0) = 0.025, E(φg) = 5.27, µg = 6.71.

Furthermore, Fig. 3 shows surface plots of the ground state solution

φ2
g(x, 0, z). BEFD gives similar results with k = 0.1.
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Fig. 3: Ground state solutions φ2
g(x, 0, z) in Example 3. (a). For case I. (b).

For case II.

Example 4 2d central vortex states in BEC, i.e.

V (x, y) = V (r) =
1

2

(
m2

r2
+ r2

)
, φ0(x, y) = φ0(r) =

1√
πm!

rm e−r
2/2, 0 ≤ r.

The CNGF (10.15)-(10.16) is solved in polar coordinate with Ω = [0, 8] with

mesh size h = 1
64 and time step k = 0.1 by using BEFD. Fig. 4a shows the

ground state solution φg(r) with β = 200 for different index of the central

vortex m. Tab. 2 displays the values of φg(0), radius mean square rrms,

energy E(φg) and chemical potential µg.

Index m φg(0) rrms E(φg) µg = µβ(φg)

1 0.0000 2.4086 5.8014 8.2967

2 0.0000 2.5258 6.3797 8.7413

3 0.0000 2.6605 7.0782 9.3160

4 0.0000 2.8015 7.8485 9.9772

5 0.0000 2.9438 8.6660 10.6994

6 0.0000 3.0848 9.5164 11.4664

Tab. 2: Numerical results for 2d central vortex states in BEC.

Example 5. The first excited state solution of BEC in 1d with a har-

monic oscillator potential, i.e.

V (x) =
x2

2
, φ0(x) =

√
2

(π)1/4
x e−x

2/2, x ∈ R.
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Fig. 4: (a). 2d central vortex states φg(r) in Example 4. β =

200 for m = 1 to 6 (with decreasing peak). (b). First excited

state solution φ1(x) (an odd function) in Example 5. For β =

0, 3.1371, 12.5484, 31.371, 62.742, 156.855, 313.71, 627.42, 1254.8 (with

decreasing peak).

The CNGF (10.15)-(10.16) with d = 1 is solved on Ω = [−16, 16] with mesh

size h = 1/64 and time step k = 0.1 by using BEFD. Fig. 4b shows the first

excited state solution φ1(x) for different β. Tab. 3 displays the radius mean

square xrms = ‖xφ1‖L2(Ω), ground state and first excited state energies

E(φg) and E(φ1), ratio E(φ1)/E(φg), chemical potentials µg = µβ(φg) and

µ1 = µβ(φ1), ratio µ1/µg.

β xrms E(φg) E(φ1)
E(φ1)
E(φg) µg µ1

µ1

µg

0 1.2247 0.500 1.500 3.000 0.500 1.500 3.000

3.1371 1.3165 1.044 1.941 1.859 1.527 2.357 1.544

12.5484 1.5441 2.233 3.037 1.360 3.598 4.344 1.207

31.371 1.8642 3.981 4.743 1.192 6.558 7.279 1.110

62.742 2.2259 6.257 6.999 1.119 10.38 11.089 1.068

156.855 2.8973 11.46 12.191 1.063 19.08 19.784 1.037

313.71 3.5847 18.17 18.889 1.040 30.28 30.969 1.023

627.42 4.4657 28.82 29.539 1.025 48.06 48.733 1.014

1254.8 5.5870 45.74 46.453 1.016 76.31 76.933 1.008

Tab. 3: Numerical results for the first excited state solution in 1d in Example

5.
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From the results in Tab. 3 and Fig. 4b, we can see that the BEFD can be

applied directly to compute the first excited states in BEC. Furthermore,

we have

lim
β→+∞

E(φ1)

E(φg)
= 1, lim

β→+∞

µ1

µg
= 1.

These results are confirmed with the results in [5] where the ground and first

excited states are computed by directly minimizing the energy functional

through the finite element discretization.

11. Numerical methods for dynamics of NLSE

In this section we present time-splitting sine pseudospectral (TSSP) meth-

ods for the problem (4.1), (4.2) with/without external driven field with

homogeneous Dirichlet boundary conditions. For the simplicity of notation

we shall introduce the method for the case of one space dimension (d = 1).

Generalizations to d > 1 are straightforward for tensor product grids and

the results remain valid without modifications. For d = 1, the problem with

an external driven field becomes

i∂tψ = −1

2
∂xxψ + V (x)ψ +W (x, t)ψ + β|ψ|2ψ, a < x < b, t > 0, (11.1)

ψ(x, t = 0) = ψ0(x), a ≤ x ≤ b, ψ(a, t) = ψ(b, t) = 0, t ≥ 0; (11.2)

where W (x, t) is an external driven field. Typical external driven fields used

in physical literatures include a far-blued detuned Gaussian laser beam

stirrer [27]

W (x, t) = Ws(t) exp

[
−
( |x − xs(t)|2

ws/2

)]
, (11.3)

with Ws the height, ws the width, and xs(t) the position of the stirrer; or

a Delta-kicked potential [77]

W (x, t) = K cos(kx)

∞∑

n=−∞

δ(t− nτ), (11.4)

with K the kick strength, k the wavenumber, τ the time interval between

kicks, and δ(τ) is the Dirac delta function.

11.1. General high-order split-step method

As preparatory steps, we begin by introducing the general high-order split-

step method [53] for a general evolution equation

i ∂tu = f(u) = A u+B u, (11.5)
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where f(u) is a nonlinear operator and the splitting f(u) = Au + Bu can

be quite arbitrary, in particular, A and B do not need to commute. For

a given time step k = ∆t > 0, let tn = n k, n = 0, 1, 2, . . . and un be

the approximation of u(tn). A second-order symplectic time integrator (cf.

[111]) for (11.5) is as follows:

u(1) = e−ik A/2 un;

u(2) = e−ik B u(1);

un+1 = e−ik A/2 u(2). (11.6)

A fourth-order symplectic time integrator (cf. [120]) for (11.5) is as follows:

u(1) = e−i2w1k A un;

u(2) = e−i2w2k B u(1);

u(3) = e−i2w3k A u(2);

u(4) = e−i2w4k B u(3);

u(5) = e−i2w3k A u(4);

u(6) = e−i2w2k B u(5);

un+1 = e−i2w1k A u(6); (11.7)

where

w1 = 0.33780 17979 89914 40851, w2 = 0.67560 35959 79828 81702,

w3 = −0.08780 17979 89914 40851, w4 = −0.85120 71979 59657 63405.

11.2. Fourth-order TSSP for GPE without external driving

field

We choose the spatial mesh size h = 4x > 0 with h = (b − a)/M for M

an even positive integer, and let xj := a + j h, j = 0, 1, · · · ,M . Let ψnj
be the approximation of ψ(xj , tn) and ψn be the solution vector at time

t = tn = nk with components ψnj .

We now rewrite the GPE (11.1) without external driven field, i.e.

W (x, t) ≡ 0, in the form of (11.5) with

Aψ = V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), Bψ = −1

2
∂xxψ(x, t). (11.8)

Thus, the key for an efficient implementation of (11.7) is to solve efficiently

the following two subproblems:

i ∂tψ(x, t) = Bψ = −1

2
∂xxψ, (11.9)
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and

i ∂tψ(x, t) = V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t). (11.10)

Equation (11.9) will be discretized in space by the sine pseudospectral

method and integrated in time exactly. For t ∈ [tn, tn+1], the ODE (11.10)

leaves |ψ| invariant in t [11, 10] and therefore becomes

iψt(x, t) = V (x)ψ(x, t) + β|ψ(x, tn)|2ψ(x, t) (11.11)

and thus can be integrated exactly.

From time t = tn to t = tn+1, we combine the splitting steps via the

fourth-order split-step method and obtain a fourth-order time-splitting sine-

spectral (TSSP4) method for the GPE (10.34). The detailed method is

given by

ψ
(1)
j = e−i2w1k(V (xj)+β|ψ

n
j |2) ψnj ,

ψ
(2)
j =

M−1∑

l=1

e−iw2kµ
2
l ψ̂

(1)
l sin(µl(xj − a)),

ψ
(3)
j = e−i2w3k(V (xj)+β|ψ

(2)
j |2) ψ

(2)
j ,

ψ
(4)
j =

M−1∑

l=1

e−iw4kµ
2
l ψ̂

(3)
l sin(µl(xj − a)), j = 1, 2, · · · ,M − 1,

ψ
(5)
j = e−i2w3k(V (xj)+β|ψ

(4)
j |2) ψ

(4)
j ,

ψ
(6)
j =

M−1∑

l=1

e−iw2kµ
2
l ψ̂

(5)
l sin(µl(xj − a)),

ψn+1
j = e−i2w1k(V (xj)+β|ψ

(6)
j |2) ψ

(6)
j , (11.12)

where Ûl, the sine-transform coefficients of a complex vector U =

(U0, U1, · · · , UM ) with U0 = UM = 0, are defined as

µl =
πl

b− a
, Ûl =

2

M

M−1∑

j=1

Uj sin(µl(xj−a)), l = 1, 2, · · · ,M−1, (11.13)

with

ψ0
j = ψ(xj , 0) = ψ0(xj), j = 0, 1, 2, · · · ,M. (11.14)

Note that the only time discretization error of TSSP4 is the splitting error,

which is fourth order in k for any fixed mesh size h > 0.
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This scheme is explicit, time reversible, just as the IVP for the GPE.

Also, a main advantage of the time-splitting method is its time-transverse

invariance, just as it holds for the GPE itself. If a constant α is added to the

potential V1, then the discrete wave functions ψn+1
j obtained from TSSP4

get multiplied by the phase factor e−iα(n+1)k, which leaves the discrete

quadratic observables unchanged. This property does not hold for finite

difference schemes.

11.3. Second-order TSSP for GPE with external driving

field

We now rewrite the GPE (11.1) with an external driven field

Aψ = −1

2
∂xxψ(x, t),

Bψ = V (x)ψ(x, t) +W (x, t)ψ(x, t) + β|ψ(x, t)|2ψ(x, t). (11.15)

Due to the external driven field could be vary complicated, e.g. it may be

a Delta-function [77], here we only use a second-order split-step scheme

in time discretization. More precisely, from time t = tn to t = tn+1, we

proceed as follows:

ψ∗
j =

M−1∑

l=1

e−ikµ
2
l /4 (̂ψn)l sin(µl(xj − a)), j = 1, 2, · · · ,M − 1,

ψ∗∗
j = exp

[
−ik(V (xj) + β|ψnj |2) − i

∫ tn+1

tn

W (xj , t)dt

]
ψ∗
j ,

ψn+1
j =

M−1∑

l=1

e−ikµ
2
l /4 (̂ψ∗∗)l sin(µl(xj − a)). (11.16)

Remark 11.1: If the integral in (11.16) could not be evaluated analyti-

cally, one can use numerical quadrature to evaluate, e.g.

∫ tn+1

tn

W (xj , t)dt ≈
k

6
[W (xj , tn) + 4W (xj , tn + k/2) +W (xj , tn+1)] .

11.4. Stability

Let U = (U0, U1, · · · , UM )T with U0 = UM = 0, f(x) a homogeneous

periodic function on the interval [a, b], and let ‖ · ‖l2 be the usual discrete
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l2-norm on the interval (a, b), i.e.,

‖U‖l2 =

√√√√b− a

M

M−1∑

j=1

|Uj|2, ‖f‖l2 =

√√√√b− a

M

M−1∑

j=1

|f(xj)|2. (11.17)

For the stability of the second-order time-splitting spectral approxima-

tions TSSP2 (11.16) and fourth-order scheme (11.12), we have the following

lemma, which shows that the total charge is conserved.

Lemma 11.2: The second-order time-splitting sine pseudospectral scheme

(11.16) and fourth-order scheme (11.12) are unconditionally stable. In fact,

for every mesh size h > 0 and time step k > 0,

‖ψn‖l2 = ‖ψ0‖l2 = ‖ψ0‖l2 , n = 1, 2, · · · (11.18)

Proof: For the scheme TSSP2 (11.16), noting (10.43) and (11.17), one has

1

b− a
‖ψn+1‖2

l2 =
1

M

M−1∑

j=1

∣∣ψn+1
j

∣∣2

=
1

M

M−1∑

j=1

∣∣∣∣∣

M−1∑

l=1

e−ikµ
2
l /4 (̂ψ∗∗)l sin(µl(xj − a))

∣∣∣∣∣

2

=
1

M

M−1∑

j=1

∣∣∣∣∣

M−1∑

l=1

e−ikµ
2
l /4 (̂ψ∗∗)l sin(jlπ/M)

∣∣∣∣∣

2

=
1

2

M−1∑

l=1

∣∣∣e−ikµ
2
l /4 (̂ψ∗∗)l

∣∣∣
2

=
1

2

M−1∑

l=1

∣∣∣(̂ψ∗∗)l

∣∣∣
2

. (11.19)

Plugging (10.43) into (11.19), we obtain

1

b− a
‖ψn+1‖2

l2 =
1

2

M−1∑

l=1

∣∣∣∣∣∣
2

M

M−1∑

j=1

ψ∗∗
j sin(µl(xj − a))

∣∣∣∣∣∣

2

=
1

2

M−1∑

l=1

∣∣∣∣∣∣
2

M

M−1∑

j=1

ψ∗∗
j sin(ljπ/M)

∣∣∣∣∣∣

2

=
1

M

M−1∑

j=1

∣∣ψ∗∗
j

∣∣2

=
1

M

M−1∑

j=1

∣∣∣∣exp

[
−ik(V (xj) + β|ψnj |2) − i

∫ tn+1

tn

W (xj , t)dt

]
ψ∗
j

∣∣∣∣
2

=
1

M

M−1∑

j=1

∣∣ψ∗
j

∣∣2 =
1

M

M−1∑

j=1

∣∣ψnj
∣∣2 =

1

b− a
‖ψn‖2

l2 . (11.20)
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Here we used the identities

M−1∑

j=1

sin(ljπ/M) sin(kjπ/M) =

{
0, k = l,

M/2, k 6= l.
(11.21)

For the scheme TSSP4 (11.12), using (10.43), (11.17) and (11.21), we

get similarly

1

b− a
‖ψn+1‖2

l2 =
1

M

M−1∑

j=0

∣∣ψn+1
j

∣∣2

=
1

M

M−1∑

j=0

∣∣∣e−i2w1k(V (xj)+β|ψ
(6)
j |2) ψ

(6)
j

∣∣∣
2

=
1

M

M−1∑

j=0

∣∣∣ψ(6)
j

∣∣∣
2

=
1

M

M−1∑

j=0

∣∣∣∣∣

M−1∑

l=1

e−iw2kµ
2
l ψ̂

(5)
l sin(µl(xj − a))

∣∣∣∣∣

2

=
1

M

M−1∑

j=0

∣∣∣∣∣

M−1∑

l=1

e−iw2kµ
2
l ψ̂

(5)
l sin(ljπ/M)

∣∣∣∣∣

2

=
1

2

M−1∑

l=1

∣∣∣e−iw2kµ
2
l ψ̂

(5)
l

∣∣∣
2

=
1

2

M−1∑

l=1

∣∣∣ψ̂(5)
l

∣∣∣
2

. (11.22)

Plugging (10.43)) into (11.22), we have

1

b− a
‖ψn+1‖2

l2 =
1

2

M−1∑

l=1

∣∣∣∣∣∣
2

M

M−1∑

j=1

ψ
(5)
j sin(µl(xj − a))

∣∣∣∣∣∣

2

=
1

2

M−1∑

l=1

∣∣∣∣∣∣
2

M

M−1∑

j=1

ψ
(5)
j sin(jlπ/M)

∣∣∣∣∣∣

2

=
1

M

M−1∑

j=1

∣∣∣ψ(5)
j

∣∣∣
2

=
1

M

M−1∑

j=1

∣∣∣ψ(4)
j

∣∣∣
2

=
1

M

M−1∑

j=1

∣∣∣ψ(3)
j

∣∣∣
2

=
1

M

M−1∑

j=1

∣∣∣ψ(2)
j

∣∣∣
2

=
1

M

M−1∑

j=1

∣∣∣ψ(1)
j

∣∣∣
2

=
1

M

M−1∑

j=1

∣∣ψnj
∣∣2

=
1

b− a
‖ψn‖2

l2 . (11.23)
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Thus the equality (11.18) can be obtained from (11.19) for the scheme

TSSP2 and (11.22) for the scheme TSSP4 by induction. �

11.5. Crank-Nicolson finite difference method (CNFD)

Another scheme used to disretize the NLSE (11.1) is the Crank-Nicolson fi-

nite difference method (CNFD). In this method one uses the Crank-Nicolson

scheme for time derivative and the second order central difference scheme

for spatial derivative. The detailed method is:

i
ψn+1
j − ψnj

k
= − 1

4h2

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1 + ψnj+1 − 2ψnj + ψnj−1

)

+
V (xj)

2

(
ψn+1
j + ψnj

)
+
β

2

(
|ψn+1
j |2 + |ψnj |2

) (
ψn+1
j + ψnj

)
,

j = 1, 2, · · · ,M − 1, n = 0, 1, · · · , (11.24)

ψn+1
0 = ψn+1

M = 0, n = 0, 1, · · · ,
ψ0
j = ψ0(xj), j = 0, 1, 2, · · · ,M.

11.6. Numerical results

In this subsection we present numerical results to confirm spectral accuracy

in space and fourth order accuracy in time of the numerical method (11.12),

and then apply it to study time-evolution of condensate width in 1D, 2D

and 3D.

Example 6 1d Gross-Pitaevskii equation, i.e. in (4.1) we choose d = 1

and γx = 1. The initial condition is taken as

ψ0(x) =
1

π1/4
e−x

2/2, x ∈ R.

We solve on the interval [−32, 32], i.e. a = −32 and b = 32 with ho-

mogeneous Dirichlet boundary condition (11.2). We compute a numerical

solution by using TSSP4 with a very fine mesh, e.g. h = 1
128 , and a very

small time step, e.g. k = 0.0001, as the ‘exact’ solution ψ. Let ψh,k denote

the numerical solution under mesh size h and time step k.

First we test the spectral accuracy of TSSP4 in space. In order to do

so, for each fixed β1, we solve the problem with different mesh size h but a

very small time step, e.g. k = 0.0001, such that the truncation error from

time discretization is negligible comparing to that from space discretization.

Tab. 4 shows the errors ‖ψ(t) − ψh,k(t)‖l2 at t = 2.0 with k = 0.0001 for

different β1 and h.
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mesh h = 1 h = 1
2 h = 1

4 h = 1
8 h = 1

16

β1 = 10 0.2745 1.081E-2 1.805E-6 3.461E-11

β1 = 20
√

2 1.495 0.1657 7.379E-4 7.588E-10

β1 = 80 1.603 1.637 6.836E-2 3.184E-5 3.47E-11

Tab. 4: Spatial error analysis: Error ‖ψ(t) − ψh,k(t)‖l2 at t = 2.0 with

k = 0.0001 in Example 6.

Then we test the fourth-order accuracy of TSSP4 in time. In order to

do so, for each fixed β1, we solve the problem with different time step k but

a very fine mesh, e.g. h = 1
64 , such that the truncation error from space

discretization is negligible comparing to that from time discretization. Tab.

5 shows the errors ‖ψ(t)−ψh,k(t)‖l2 at t = 2.0 with h = 1
64 for different β1

and k.

time step k = 1
20 k = 1

40 k = 1
80 k = 1

160 k = 1
320

δ = 10.0 1.261E-4 8.834E-6 5.712E-7 3.602E-8 2.254E-9

δ = 20
√

2 1.426E-3 9.715E-5 6.367E-6 4.034E-7 2.529E-8

δ = 80 4.375E-2 1.693E-3 8.982E-5 5.852E-6 3.706E-7

Tab. 5: Temporal error analysis: ‖ψ(t) − ψh,k(t)‖l2 at t = 2.0 with h = 1
64

in Example 6.

As shown in Tabs. 4&5, spectral order accuracy for spatial derivatives

and fourth-order accuracy for time derivative of TSSP4 are demonstrated

numerically for 1d GPE, respectively. Another issue is how to choose mesh

size h and time step k in the strong repulsive interaction regime or semi-

classical regime, i.e. βd � 1, in order to get “correct” physical observables.

In fact, after a rescaling in (4.1) under the normalization (4.3): x → ε−1/2x

and ψ → εd/4ψ with ε = β
−2/(d+2)
d , then the GPE (4.1) can be rewritten

as

iε ∂tψ(x, t) = −ε
2

2
∇2ψ + Vd(x)ψ + |ψ|2ψ, x ∈ Rd. (11.25)

As demonstrated in [10, 11], the meshing strategy to capture ‘correct’ phys-
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Fig. 5: Numerical results for Example 7: a) Condensate width σx (

‘—’ ) and central density |ψ(0, t)|2 ( ‘- - - ’ ). b) Evolution of the density

function |ψ|2.

ical observables for this this problem is

h = O(ε), k = O(ε).

Thus the admissible meshing strategy for the GPE with strong repulsive

interaction is

h = O(ε) = O
(
1/β

2/(d+2)
d

)
, k = O(ε) = O

(
1/β

2/(d+2)
d

)
, d = 1, 2, 3.

(11.26)

Example 7 1d Gross-Pitaevskii equation, i.e. in (4.1) we choose d = 1.

The initial condition is taken as the ground-state solution of (4.1) under

d = 1 with γx = 1 and β1 = 20.0 [6, 5], i.e. initially the condensate is

assumed to be in its ground state. When t = 0, we double the trap frequency

by setting γx = 2.

We solve this problem on the interval [−12, 12] under mesh size h = 3
64

and time step k = 0.005 with homogeneous Dirichlet boundary condition.

Fig. 5 plots the condensate width and central density |ψ(0, t)|2 as functions

of time, as well as evolution of the density |ψ|2 in space-time. One can

see from this figure that the sudden change in the trap potential leads to

oscillations in the condensate width and the peak value of the wave function.

Note that the condensate width contracts in an oscillatory way (cf. Fig. 5a),

which agrees with the analytical results in (4.43).

Example 8 2d Gross-Pitaevskii equation, i.e. in (4.1) we choose d = 2.

The initial condition is taken as the ground-state solution of (4.1) under
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Fig. 6: Numerical results for Example 8: a) Condensate width. b) Sur-

face plot of the density |ψ|2 at t = 5.4.

d = 2 with γx = 1, γy = 2 and β2 = 20.0 [6, 5], i.e. initially the condensate

is assumed to be in its ground state. When at t = 0, we double the trap

frequency by setting γx = 2 and γy = 4.

We solve this problem on [−8, 8]2 under mesh size h = 1
32 and time step

k = 0.005 with homogeneous Dirichlet boundary condition. Fig. 6 shows

the condensate widths σx and σy as functions of time and the surface of

the density |ψ|2 at time t = 5.4. Fig. 7 the contour plots of the density |ψ|2
at different times. Again, the sudden change in the trap potential leads

to oscillations in the condensate width. Due to γy = 2γx, the oscillation

frequency of σy is roughly double that of σx and the amplitudes of σx are

larger than those of σy in general (cf. Fig. 6a). Again this agrees with the

analytical results in (4.43).

Example 9 3d Gross-Pitaevskii equation, i.e. in (4.1) we choose d = 3.

We present computations for two cases:

Case I. Intermediate ratio between trap frequencies along different axis

(data for 87Rb used in JILA [3]). The initial condition is taken as the

ground-state solution of (4.1) under d = 3 with γx = γy = 1, γz = 4 and

β3 = 37.62 [6, 5]. When at t = 0, we four times the trap frequency by setting

γx = γy = 4 and γz = 16.

Case II. High ratio between trap frequencies along different axis (data for
23Na used in MIT (group of Ketterle) [38]). The initial condition is taken

as the ground-state solution of (4.1) under d = 3 with γx = γy = 360
3.5 ,
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Fig. 7: Contour plots of the density |ψ|2 at different times in Example 8.

a). t = 0, b). t = 0.9, c). t = 1.8, d). t = 2.7, e). t = 3.6, f). t = 4.5.

γz = 1 and β3 = 3.083 [6, 5]. When at t = 0, we double the trap frequency

by setting γx = γy = 720
3.5 and γz = 2.

For case I, we solve the problem on [−6, 6]× [−6, 6]× [−3, 3] under mesh

size hx = hy = 3
32 and hz = 3

64 , and time step k = 0.0025 with homoge-
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Fig. 8: Numerical results for Example 9: Left column: Condensate width;

right column: Surface plot of the density in xz-plane, |ψ(x, 0, z, t)|2. Case

I: a) and b) at t = 1.64. Case II: c) and d) at t = 4.5.

neous Dirichlet boundary condition. For case II, we solve the problem on

[−0.5, 0.5]× [−0.5, 0.5]× [−8, 8] under mesh size hx = hy = 1
128 and hz = 1

8 ,

and time step k = 0.0005 with homogeneous Dirichlet boundary condition

along their boundaries.

Fig. 8 shows the condensate widths σx = σy and σz as functions of

time, as well as the surface of the density in xz-plane |ψ(x, 0, z, t)|2. Similar

phenomena in case I in 3d is observed as those in Example 8 which is in

2d (cf. Fig. 6a). The ratio between the condensate widths increases with

increasing the ratio between trap frequencies along different axis, i.e. it

becomes more difficult to excite oscillations for large trap frequencies. In

case II, the curves of the condensate widths are very well separated. This



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

Nonlinear Schrödinger Equations and Applications 201

behavior is one of the basic assumptions allowing the reduction of GPE to

2d and 1d in the cases one or two of the trap frequencies are much larger

than the others [85, 5, 8].

12. Derivation of the vector Zakharov system

In this section, we derive VZS from the two-fluid model [113] for ion-electron

dynamics in plasma physics. Here we will use a more formal approach based

on the multiple-scale modulation analysis. Following from [113], we will

consider a plasma as two interpenetrating fluids, an electron fluid and an

ion fluid, and denote the mass, number density (number of particles per

unit volume) and velocity of the electrons (respectively of the ions), by me,

Ne(x, t) and ve(x, t) (respectively mi, Ni(x, t) and vi(x, t)). The continuity

equations for these fluids read

∂tNe + ∇ · (Neve) = 0, (12.1)

∂tNi + ∇ · (Nivi) = 0, x ∈ R3, t > 0 (12.2)

and the momentum equations read

meNe(∂tve + ve · ∇ve) = −∇pe − eNe

(
E +

1

c
ve × B

)
, (12.3)

miNi(∂tvi + vi · ∇vi) = −∇pi + eNi

(
E +

1

c
vi × B

)
, (12.4)

where −e and e represent the charge of the electron and the ions assumed

to reduce to protons, respectively; pe and pi are the pressure. For small

fluctuations, we write ∇pe = γe Te∇Ne and ∇pi = γi Ti∇Ni, where γe and

γi denote the specific heat ratios of the electrons and the ions and Te and

Ti their respective temperatures in energy units. The electric field E and

magnetic field B are provided by the Maxwell equations

−1

c
∂tE + ∇× B =

4π

c
j, ∇ · E = 4πρ, (12.5)

1

c
∂tB + ∇× E = 0, ∇ · B = 0, (12.6)

where ρ = −e(Ne−Ni) and j = −e(Neve −Nivi) are the densities of total

charge and total current, respectively.

Equations (12.5) and (12.6) yield

1

c2
∂ttE + ∇× (∇× E) +

4π

c2
∂tj = 0, (12.7)
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and using equations (12.1)-(12.4), we have

∂tj = e(∇ · (Neve)ve +Neve · ∇ve +
1

me
∇pe +

eNe
me

(E +
1

c
ve × B))

−e(∇ · (Nivi)vi +Nivi · ∇vi +
1

mi
∇pi +

eNi
mi

(E +
1

c
vi × B)). (12.8)

In order to get VZS from the two-fluid model just mentioned, as in [113],

we consider a long-wavelength small-amplitude Langmuir oscillation of the

form

E =
ε

2
(E(X, T )e−iωet + c.c.) + ε2Ê(X, T ) + · · · , (12.9)

where the complex amplitude E depends on the slow variables X = εx and

T = ε2t, the notation c.c. stands for the complex conjugate and Ê(X, T )

denotes the mean complex amplitude. It induces fluctuations for the density

and velocity of the electrons and of the ions whose dynamical time will be

seen to be τ = εt, thus shorter than T . We write

Ne = N0 +
ε2

2
(Ñe(X, τ)e

−iωet + c.c.) + ε2N̂e(X, τ) + · · · , (12.10)

Ni = N0 +
ε2

2
(Ñi(X, τ)e

−iωet + c.c.) + ε2N̂i(X, τ) + · · · , (12.11)

ve =
ε

2
(ṽe(X, τ)e

−iωet + c.c.) + ε2v̂e(X, τ) + · · · , (12.12)

vi =
ε

2
(ṽi(X, τ)e

−iωet + c.c.) + ε2v̂i(X, τ) + · · · , (12.13)

where N0 is the unperturbed plasma density.

From the momentum equation (12.3), considering the leading order and

noting that the magnetic field B is of order ε2, we can easily get

meNe

(
iωeṽe

ε

2
e−iωet

)
= eNe

(
E
ε

2
e−iωet

)
,

thus the amplitude of the electron velocity oscillations is given by

ṽe = − ie

meωe
E. (12.14)

Neglecting the velocity oscillations of the ions due to their large mass, we

take

ṽi = 0. (12.15)
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Applying (12.14) and (12.15) into the continuity equations (12.1) and

(12.2), at the order of ε2, we have

−iωeÑe
ε2

2
e−iωet +N0∇ · ṽe

ε2

2
e−iωet = 0,

thus the density fluctuations are obtained as

Ñe = −iN0

ωe
∇ · ṽe = − eN0

meω2
e

∇ ·E, (12.16)

Ñi = 0. (12.17)

At leading order, the equation for the electric field (12.7) with j =

−e(Neve −Nivi) becomes

− 1

c2
ω2
eE

ε

2
e−iωet +

4π

c2
iωeeN0ṽe

ε

2
e−iωet = 0,

from which, with (12.14), we finally get the electron plasma frequency

ωe =

√
4πe2N0

me
. (12.18)

At the order of ε3, if no large-scale magnetic field is generated, then the

equation (12.7) with (12.8) implies that

−2i
ωe
c2
∂TE

ε3

2
e−iωet + ∇× (∇× E)

ε3

2
e−iωet

−4πe2N0γeTe
c2m2

eω
2
e

∇(∇ ·E)
ε3

2
e−iωet +

4πe2N̂eE

c2me

ε3

2
e−iωet = 0,

and thus

−2i
ωe
c2
∂TE + ∇× (∇× E) − γeTe

mec2
∇(∇ ·E) +

4πe2

c2me
N̂eE = 0, (12.19)

where, resulting from (12.15) and (12.17), the contribution of the ions is

negligible.

We rewrite the amplitude equation (12.19) as

i∂TE− c2

2ωe
∇× (∇× E) +

3v2
e

2ωe
∇(∇ ·E) =

ωe
2

N̂e
N0

E, (12.20)

where the electron thermal velocity ve is defined by

ve =

√
Te
me

(12.21)
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and γe is taken to be 3 [113].

It is seen from (12.3), (12.4) and (12.15) that the mean electron velocity

v̂e and the mean ion velocity v̂i satisfy

me

(
∂τ v̂e +

1

4
(ṽe · ∇ṽ∗

e + ṽ∗
e · ∇ṽe)

)
= −γeTe

N0
∇N̂e − eÊ , (12.22)

mi∂τ v̂i = −γiTi
N0

∇N̂i + eÊ , (12.23)

where

1

4
(ṽe · ∇ṽ∗

e + ṽ∗
e · ∇ṽe) =

e2

4m2
eω

2
e

∇|E|2, (12.24)

and ṽe denotes the conjugate of ṽe and me∂τ v̂e is negligible because of the

small mass of the electron. Furthermore, Ê denotes the leading contribution

(of order ε3) of the mean electron field. We thus replace (12.22) by

e2

4meω2
e

∇|E|2 = −γeTe
N0

∇N̂e − eÊ . (12.25)

The system is closed by using the quasi-neutrality of the plasma in the

form

N̂e = N̂i, (12.26)

v̂e = v̂i, (12.27)

which we denote by N and v, respectively. Then from the continuity equa-

tions, one gets

∂τN +N0∇ · v = 0. (12.28)

Adding (12.25) to (12.23) and noting (12.28), we have

∂τv = − c2s
N0

∇N − 1

16πmiN0
∇|E|2, (12.29)

with the speed of sound cs,

c2s = η
Te
mi

, η =
γeTe + γiTi

Te
. (12.30)

Finally, we obtain the VZS [113] from equations (12.20), (12.28) and

(12.29) as

i∂TE− c2

2ωe
∇× (∇× E) +

3v2
e

2ωe
∇(∇ ·E) =

ωe
2

N

N0
E, (12.31)

ε2∂TTN − c2s 4N =
1

16πmi
4 |E|2. (12.32)
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This VZS governs the coupled dynamics of the electric-field amplitude and

of the low-frequency density fluctuations of the ions and describes the dy-

namics of the complex envelope of the electric field oscillations near the

electron plasma frequency and the slow variations of the density perturba-

tions.

In order to obtain a dimensionless form of the system (12.31)-(12.32),

we define the normalized variables

t′ =
2η

3
µm ωe T, x′ =

2

3
(ηµm)

1/2 X

ζd
, (12.33)

N ′ =
3

4η

1

µm

N

N0
, E′ =

1

η

1

µ
1/2
m

(
3

64πN0Te

)1/2

E. (12.34)

with

ζd =

√
Te

4πe2N0
, µm =

me

mi
, (12.35)

where ζd is the Debye length and µm is the ratio of the electron to the ion

masses. Then defining

a =
c2

3v2
e

=
c2

3ω2
eζ

2
d

(12.36)

and plugging (12.33)-(12.34) into (12.31)-(12.32), and then removing all

primes, we get the following dimensionless vector Zakharov system in three

dimension

i∂tE − a∇× (∇× E) + ∇(∇ ·E) = N E, (12.37)

ε2∂ttN −4N = 4|E|2, x ∈ R3, t > 0. (12.38)

In fact, the equation (12.37) is equalivent to

i∂tE + a4E + (1 − a)∇(∇ ·E) = N E. (12.39)

13. Generalization and simplification of ZS

The VZS (12.37), (12.38) can be easily generalized to a physical situation

when the dispersive waves interact with M different acoustic modes, e.g. in

a multi-component plasma, which may be described by the following VZSM

[113, 72, 73]:

i ∂tE + a 4 E + (1 − a) ∇(∇ · E) − E

M∑

J=1

NJ = 0, x ∈ Rd, t > 0, (13.1)

ε2J ∂ttNJ −4NJ + νJ 4 |E|2 = 0, J = 1, · · · ,M; (13.2)
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where the real unknown function NJ is the Jth-component deviation of

the ion density from its equilibrium value, εJ > 0 is a parameter inversely

proportional to the acoustic speed of the Jth-component, and νJ are real

constants.

The VZSM (13.1), (13.2) is time reversible and time transverse invariant,

and preserves the following three conserved quantities. They are the wave

energy

DV ZSM =

∫

Rd

|E(x, t)|2 dx, (13.3)

the momentum

PV ZSM =

∫

Rd


 i

2

d∑

j=1

(
Ej ∇E∗

j − E∗
j ∇Ej

)
−

M∑

J=1

ε2J
νJ
NJVJ


 dx (13.4)

and the Hamiltonian

HV ZSM =

∫

Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ · E|2 +

M∑

J=1

NJ |E|2

−1

2

M∑

J=1

(
ε2J
νJ

|VJ |2 +
1

νJ
N2
J

)]
dx; (13.5)

where the flux vector VJ = ((vJ )1, · · · , (vJ )d)
T for the Jth-component is

introduced through the equations

∂tNJ = −∇ ·VJ , ∂tVJ = − 1

ε2J
∇(NJ − νJ |E|2), J = 1, · · · ,M.

(13.6)

13.1. Reduction from VZSM to GVZS

In the VZSM (13.1)-(13.2), if we choose M = 2, and assume that 1/ε22 �
1/ε21, i.e. the acoustic speed of the second component is much faster than

the first component, then formally the fast nondispersive component N2

can be excluded by means of the relation

N2 = ν2 |E|2 + ε22 4−1 ∂ttN2 ≈ ν2 |E|2 +O(ε22), when ε2 → 0. (13.7)

Plugging (13.7) into (13.1), then the VZSM (13.1), (13.2) is reduced to

GVZS with N = N1, ν = ν1, ε = ε1, λ = −ν2 and α = 1:

i ∂tE + a 4E + (1 − a) ∇(∇ ·E) − α N E + λ |E|2E = 0, (13.8)

ε2∂ttN −4N + ν 4 |E|2 = 0, x ∈ Rd, t > 0. (13.9)
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The GVZS (13.8), (13.9) is time reversible, time transverse invariant

and preserves the following three conserved quantities, i.e. the wave energy,

momentum and Hamiltonian:

DGV ZS =

∫

Rd

|E(x, t)|2 dx, (13.10)

PGV ZS =

∫

Rd


 i

2

d∑

j=1

(
Ej ∇E∗

j − E∗
j ∇Ej

)
− αε2

ν
NV


 dx, (13.11)

HGV ZS =

∫

Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ ·E|2 + αN |E|2 − λ

2
|E|4

− α

2ν
N2 − αε2

2ν
|V|2

]
dx; (13.12)

where the flux vector V = (v1, · · · , vd)T is introduced through the equations

∂tN = −∇ ·V, ∂tV = − 1

ε2
∇(N − ν|E|2). (13.13)

In the case of M = 2, ν = ν1 and ε = ε1, N = N1 and V = V1 in

(13.4) and (13.5), and λ = −ν2, α = 1 in (13.11), (13.12), letting ε2 → 0 and

noting (13.7), we get formally quadratic convergence rate of the momentum

and Hamiltonian from VZSM to GVZS in the ‘subsonic limit’ regime of the

second component, i.e., 0 < ε2 � 1:

PV ZSM =

∫

Rd


 i

2

d∑

j=1

(
Ej ∇E∗

j − E∗
j ∇Ej

)
− ε21
ν1
N1V


 dx

−ε
2
2

ν2

∫

Rd

N2V2 dx

≈ PGV ZS +O(ε22), (13.14)

HV ZSM =

∫

Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ ·E|2 +N1|E|2 − 1

2ν1
N2

1

− ε21
2ν1

|V1|2
]
dx +

∫

Rd

[
N2|E|2 − 1

2ν2
N2

2 − ε22
2ν2

|V2|2
]
dx

≈ HGV ZS +O(ε22). (13.15)

Choosing a = 1, α = 1, ν = −1 and λ = 0 in the GVZS (13.8)-(13.9), it

collapses to the standard VZS [113]

i ∂tE + 4E−NE = 0, x ∈ Rd, t > 0, (13.16)

ε2 ∂ttN −4N −4|E|2 = 0. (13.17)
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13.2. Reduction from GVZS to GZS

In the case when E2 = · · · = Ed = 0 and a = 1 in the GVZS (13.8), (13.9),

it reduces to the scalar GZS [113, 15],

i ∂tE + 4E − α N E + λ |E|2E = 0, x ∈ Rd, t > 0, (13.18)

ε2 ∂ttN −4N + ν 4 |E|2 = 0. (13.19)

The GZS (13.18), (13.19) is time reversible, time transverse invariant

and conserved the following wave energy, momentum and Hamiltonian:

DGZS =

∫

Rd

|E(x, t)|2 dx, (13.20)

PGZS =

∫

Rd

[
i

2
(E∇E∗ − E∗∇E) − ε2α

ν
NV

]
dx, (13.21)

HGZS =

∫

Rd

[
|∇E|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
|V|2

]
dx;(13.22)

where the flux vector V = (v1, · · · , vd)T is introduced through the equations

Nt = −∇ · V, Vt = − 1

ε2
∇(N − ν|E|2). (13.23)

Choosing α = 1, ν = −1, ε = 1 and λ = 0 in the GZS (13.18)-(13.19), it

collapses to the standard ZS [113, 15, 121]. When λ 6= 0, a cubic nonlinear

term is added to the standard ZS.

Proof of the conservation laws in GZS: Multiplying (13.18) by E, the

conjugate of E, we get

iEtE
∗ + E∗ 4 E − αN |E|2 + λ |E|4 = 0. (13.24)

Then calculating the conjugate of (13.24) and multiplying it by E, one finds

−iE∗
t E + E 4 E∗ − αN |E|2 + λ |E|4 = 0. (13.25)

Subtracting (13.25) from (13.24) and then multiplying both sides by −i,
one gets

Et E
∗ + E∗

t E + i(E 4 E∗ − E∗ 4E) = 0. (13.26)

Integrating over Rd, integration by parts, (13.26) leads to the conservation

of the wave energy

d

dt
DGZS =

d

dt

∫

Rd

|E(x, t)|2 dx = 0.
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From (13.21), noting (13.23), (13.18), one has the conservation of the

momentum

d

dt
PGZS =

i

2

∫

Rd

(Et∇E∗ + E∇E∗
t − E∗∇Et − E∗

t∇E) dx

−ε
2α

ν

∫

Rd

(NtV +NVt) dx

= i

∫

Rd

(Et∇E∗ − E∗
t∇E) dx − ε2α

ν

∫

Rd

(NtV +NVt) dx

= i

∫

Rd

∇E∗(i4E − iαNE + iλ|E|2E)dx

−ε
2α

ν

∫

Rd

(NtV +NVt) dx

−i
∫

Rd

∇E(−i4E∗ + iαNE∗ − iλ|E|2E∗) dx

= α

∫

Rd

N∇|E|2 dx +
ε2α

ν

∫

Rd

V∇ ·V dx

+
α

ν

∫

Rd

∇(N − ν|E|2)N dx = 0.

Noting (13.23), (13.19) and multiplying (13.18) by E∗
t , the conjugate of

Et, we write it

T =

∫

Rd

[
i|Et|2 + E∗

t 4E − αNEE∗
t + λ|E|2EE∗

t

]
dx = 0. (13.27)

Then the real part of T is

0 = Re(T ) = Re

∫

Rd

[
E∗
t 4E − αNEE∗

t + λ|E|2EE∗
t

]
dx

= Re

∫

Rd

[
−∇E∇E∗

t −
α

2
(N |E|2)t +

α

2
Nt|E|2 +

λ

4
(|E|4)t

]
dx

= −1

2

∫

Rd

[(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

+
α

2
Nt|E|2

]
dx

= −1

2

∫

Rd

[(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

− α

2
|E|2∇ ·V

]
dx

= −1

2

∫

Rd

[(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

+
α

2
∇|E|2 ·V

]
dx

= −1

2

∫

Rd

[(
|∇E|2 + αN |E|2 − λ

2
|E|4

)

t

+
α

2
(
ε2

ν
Vt +

1

ν
∇N) ·V

]
dx.
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Thus we have,

0 = −1

2

∫

Rd

(
|∇E|2 + αN |E|2 − λ

2
|E|4

)
dx

+
αε2

2ν

∫

Rd

1

2
(|V|2)t dx − α

2ν

∫

Rd

N∇ ·V dx

= −1

2

∫

Rd

∂t

(
|∇E|2 + αN |E|2 − λ

2
|E|4

)
dx

+
αε2

2ν

∫

Rd

1

2
(|V|2)t dx +

α

2ν

∫

Rd

N∂tN dx

= −1

2

∫

Rd

∂t

(
|∇E|2 + αN |E|2 − λ

2
|E|4 − α

2ν
N2 − αε2

2ν
|V|2)

)
dx,

which implies the conservation of Hamiltonian

d

dt
HGZS = 0.

13.3. Reduction from GVZS to VNLS

In the “subsonic limit”, i.e. ε→ 0 in GVZS (13.8), (13.9), which corresponds

to that the density fluctuations are assumed to follow adiabatically the

modulation of the Langmuir wave, it collapses to the VNLS equation. In

fact, letting ε→ 0 in (13.9), we get formally

N = ν |E|2 + ε2 4−1 ∂ttN = ν |E|2 +O(ε2), when ε→ 0. (13.28)

Plugging (13.28) into (13.8), we obtain formally the VNLS:

i ∂tE + a 4E + (1 − a) ∇(∇ ·E) + (λ− αν)|E|2E = 0, x ∈ Rd, t > 0.

(13.29)

The VNLS (13.29) is time reversible, time transverse invariant and preserves

the following wave energy, momentum and Hamiltonian:

DV NLS =

∫

Rd

|E(x, t)|2 dx, (13.30)

PV NLS =

∫

Rd

i

2

d∑

j=1

(
Ej ∇E∗

j − E∗
j ∇Ej

)
dx, (13.31)

HV NLS =

∫

Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ ·E|2 +
αν − λ

2
|E|4

]
dx. (13.32)

Letting ε → 0 in (13.11), (13.12), noting (13.28), we get formally

quadratic convergence rate of the momentum and Hamiltonian from GVZS



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

Nonlinear Schrödinger Equations and Applications 211

to VNLS in the ‘subsonic limit’ regime, i.e., 0 < ε� 1:

PGV ZS =

∫

Rd

i

2

d∑

j=1

(
Ej ∇E∗

j − E∗
j ∇Ej

)
dx − αε2

ν

∫

Rd

NV dx

≈ PV NLS +O(ε2),

HGV ZS =

∫

Rd

[
a ‖∇E‖2

l2 + (1 − a)|∇ ·E|2 +
αν − λ

2
|E|4

]
dx

−αε
2

2ν

∫

Rd

|V|2 dx

≈ HV NLS +O(ε2).

13.4. Reduction from GZS to NLSE

Similarly, in the “subsonic limit”, i.e. ε → 0 in GZS (13.18), (13.19), it

collpases to the well-known NLSE with a cubic nonlinearity. In fact, letting

ε→ 0 in (13.19), we get formally

N = ν |E|2 + ε2 4−1 ∂ttN = ν |E|2 +O(ε2), when ε→ 0. (13.33)

Plugging (13.33) into (13.18), we obtain formally the NLS equation:

i Et + 4 E + (λ− αν)|E|2 E = 0, x ∈ Rd, t > 0. (13.34)

The NLSE (13.34) is time reversible, time transverse invariant, and pre-

serves the following wave energy, momentum and Hamiltonian:

DNLS =

∫

Rd

|E(x, t)|2 dx, (13.35)

PNLS =

∫

Rd

[
i

2
(E∇E∗ − E∗∇E)

]
dx, (13.36)

HNLS =

∫

Rd

[
|∇E|2 +

αν − λ

2
|E|4

]
dx. (13.37)

Similarly, letting ε→ 0 in (13.21), (13.22), noting (13.33), we get formally

the quadratic convergence rate of the momentum and Hamiltonian from

GZS to NLSE in the ‘subsonic limit’ regime, i.e., 0 < ε� 1:

PGZS =

∫

Rd

i

2
(E∇E∗ − E∗∇E) dx − ε2α

ν

∫

Rd

NV dx

≈ PNLS +O(ε2), (13.38)

HGZS =

∫

Rd

[
|∇E|2 +

αν − λ

2
|E|4

]
dx − αε2

2ν

∫

Rd

|V|2 dx

≈ HNLS +O(ε2). (13.39)
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13.5. Add a linear damping term to arrest blowup

When d ≥ 2 and initial Hamiltonian HGZS < 0 in the GZS (13.18), (13.19),

mathematically, it will blowup in finite time [113]. However, the physical

quantities modeled by E and N do not become infinite which implies the

validity of (13.18), (13.19) breaks down near singularity. Additional physical

mechanisms, which were initially small, become important near the singular

point and prevent the formation of singularity. In order to arrest blowup, in

physical literatures, a small linear damping (absorption) term is introduced

into the GZS [64]:

i ∂tE + 4E − α N E + λ |E|2E + i γ E = 0, (13.40)

ε2 ∂ttN −4N + ν 4 |E|2 = 0, x ∈ Rd, t > 0; (13.41)

where γ > 0 is a damping parameter. The decay rate of the wave energy

DGZS of the damped GZS (13.40), (13.41) is

DGZS(t) =

∫

Rd

|E(x, t)|2 dx = e−2γt

∫

Rd

|E(x, 0)|2 dx

= e−2γtDGZS(0), t ≥ 0. (13.42)

Similarly, when d ≥ 2 and initial Hamiltonian HGV ZS < 0 in the GVZS

(13.8), (13.9) (or HV ZSM < 0 in the VZSM (13.1), (13.2)), mathematically,

it will blowup in finite time too. In order to arrest blowup, in physical

literatures, a small linear damping (absorption) term is introduced into the

GVZS (or VZSM):

i ∂tE + a 4 E + (1 − a) ∇(∇ · E) − α N E + λ |E|2E + i γ E = 0,(13.43)

ε2∂ttN −4N + ν 4 |E|2 = 0, x ∈ Rd, t > 0; (13.44)

where γ > 0 is a damping parameter. The decay rate of the wave energy

DGV ZS of the damped GVZS (13.43), (13.44) is

DGV ZS(t) =

∫

Rd

|E(x, t)|2 dx = e−2γt

∫

Rd

|E(x, 0)|2 dx

= e−2γtDGV ZS(0), t ≥ 0. (13.45)

14. Well-posedness of ZS

Based on the conservation laws, the wellposedness for the standard ZS

(13.16)-(13.17) were proven [113, 112, 23, 24]

Theorem 14.1: In one dimension, for initial conditions, E0 ∈ Hp(R),

N0 ∈ Hp−1(R), and N (1) ∈ Hp−2(R) with p ≤ 3, there exists a unique

solution E ∈ L∞(R+, Hp(R)), N ∈ L∞(R+, Hp−1(R)) for (13.16)-(13.17).
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Theorem 14.2: In dimensions 2 and 3, for initial conditions E0 ∈
Hp(Rd), N0 ∈ Hp−1(Rd), and N (1) ∈ Hp−2(Rd) with p ≤ 3, there exists a

unique solution E ∈ L∞([0, T ∗), Hp(Rd)), N ∈ L∞([0, T ∗), Hp−1(Rd)) for

(13.16)-(13.17), where time T ∗ depends on the initial conditions.

15. Plane wave and soliton wave solutions of ZS

In one spatial dimension (1D), the GZS (13.40)- (13.41) collapses to

i Et + Exx − αN E + λ|E|2 E + iγ E = 0, a < x < b, t > 0, (15.1)

ε2Ntt −Nxx + ν(|E|2)xx = 0, a < x < b, t > 0, (15.2)

which admits plane wave and soliton wave solutions.

Firstly, it is instructive to examine some explicit solutions to (15.1)

and (15.2). The well-known plane wave solutions [97] can be given in the

following form:

N(x, t) = d, a < x < b, t ≥ 0, (15.3)

E(x, t) =

{
c ei(

2πrx
b−a −ω1t), γ = 0,

c e−γte
i
“

2πrx
b−a −ω2t−

λc2

2γ (e−2γt−1)
”

, γ 6= 0,
(15.4)

where r is an integer, c, d are constants and

ω1 = αd+
4π2r2

(b− a)2
− λc2, ω2 = αd+

4π2r2

(b − a)2
.

Secondly, as is well known, the standard ZS is not exactly integrable.

Therefore the generalized ZS cannot be exactly integrable, either. However,

it has exact one-soliton solutions to (15.1) and (15.2) for γ = 0 [72] for

x ∈ R and t ≥ 0:

Es(x, t; η, V, ε, ν) =

[
λ

2
− αν

2ε2
(1/ε2 − V 2)−1

]−1/2

Us, (15.5)

Us ≡ 2iη sech[2η(x− V t)] exp
[
iV x/2 + i(4η2 − V 2/4)t+ iΦ0

]
, (15.6)

Ns(x, t; η, V, ε, ν) =
ν

ε2
(1/ε2 − V 2)−1|Es|2, (15.7)

where η and V are the soliton’s amplitude and velocity, respectively, and

Φ0 is a trivial phase constant.

Finally, we will consider the periodic soliton solution with a period L

in 1d of the standard ZS, that is, d = 1, ε = 1, α = 1, λ = 0, γ = 0 and
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ν = −1 in (13.40)-(13.41). The analytic solution of the ZS (15.1)-(15.2)

was derived [100] and used to test different numerical methods for the ZS

in [100, 28]. The solution can be written as

Es(x, t; v,Emax) = F (x− vt) exp[iφ(x− ut)], (15.8)

Ns(x, t; v,Emax) = G(x− vt), (15.9)

where

F (x − vt) = Emax · dn(w, q), G(x− vt) =
|F (x − vt)|2
v2 − 1

+N0,

w =
Emax√

(2(1 − v2))
· (x− vt), q =

√
(E2

max − E2
min)

Emax
,

φ = v/2,
v

2
L = 2πm, m = 1, 2, 3 · · · , u =

v

2
+

2N0

v
− E2

max + E2
min

v(1 − v2)
,

L =
2
√

2(1 − v2)

Emax
K(q) =

2
√

2(1 − v2)

Emax
K ′

(
Emin

Emax

)
,

with dn(w, q) a Jacobian elliptic function, L the period of the Jaco-

bian elliptic functions, K and K ′ the complete elliptic integrals of the

first kind satisfying K(q) = K ′
(√

1 − q2
)
, and N0 chosen such that

〈Ns〉 = 1
L

∫ L

0

Ns(x, t) dx = 0.

16. Time-splitting spectral method for GZS

In this section we present new numerical methods for the GZS (13.40),

(13.41). For simplicity of notations, we shall introduce the method in one

space dimension (d = 1) of the GZS with periodic boundary conditions.

Generalizations to d > 1 are straightforward for tensor product grids and

the results remain valid without modifications. For d = 1, the problem

becomes

i ∂tE + ∂xxE − αN E + λ|E|2 E + iγ E = 0, a < x < b, t > 0, (16.1)

ε2∂ttN − ∂xx(N − ν |E|2) = 0, a < x < b, t > 0, (16.2)

E(x, 0) = E(0)(x), N(x, 0) = N (0)(x), ∂tN(x, 0) = N (1)(x), (16.3)

E(a, t) = E(b, t), ∂xE(a, t) = ∂xE(b, t), t ≥ 0, (16.4)

N(a, t) = N(b, t), ∂xN(a, t) = ∂xN(b, t), t ≥ 0. (16.5)
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Moreover, we supplement (16.1)-(16.5) by imposing the compatibility con-

dition

E(0)(a) = E(0)(b), N (0)(a) = N (0)(b),

N (1)(a) = N (1)(b),

∫ b

a

N (1)(x) dx = 0. (16.6)

As is well known, the GZS has the following property

DGZS(t) =

∫ b

a

|E(x, t)|2 dx = e−2γt

∫ b

a

|E(0)(x)|2 dx

= e−2γtDGZS(0), t ≥ 0. (16.7)

When γ = 0, DGZS(t) ≡ DGZS(0), i.e., it is an invariant of the GZS [28].

When γ > 0, it decays to 0 exponentially. Furthermore, the GZS also has

the following properties for t ≥ 0
∫ b

a

∂tN(x, t) dx = 0,

∫ b

a

N(x, t) dx =

∫ b

a

N (0)(x) dx = const. (16.8)

In some cases, the boundary conditions (16.4) and (16.5) may be re-

placed by

E(a, t) = E(b, t) = 0, N(a, t) = N(b, t) = 0, t ≥ 0. (16.9)

We choose the spatial mesh size h = 4x > 0 with h = (b− a)/M for M

being an even positive integer, the time step k = 4t > 0 and let the grid

points and the time step be

xj := a+j h, j = 0, 1, · · · ,M ; tm := m k, m = 0, 1, 2, · · · .
Let Emj and Nm

j be the approximations of E(xj , tm) and N(xj , tm), re-

spectively. Furthermore, let Em and Nm be the solution vector at time

t = tm = mk with components Emj and Nm
j , respectively.

From time t = tm to t = tm+1, the first NLS-type equation (16.1) is

solved in two splitting steps. One solves first

i ∂tE + ∂xxE = 0, (16.10)

for the time step of length k, followed by solving

i ∂tE = αN E − λ|E|2 E − iγ E, (16.11)

for the same time step. Equation (16.10) will be discretized in space by the

Fourier spectral method and integrated in time exactly. For t ∈ [tm, tm+1],

multiplying (16.11) by E, we get

i ∂tE E∗ = αN |E|2 − λ|E|4 − iγ|E|2. (16.12)
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Then calculating the conjugate of the ODE (16.11) and multiplying it by

E, one finds

−i ∂tE∗ E = αN |E|2 − λ|E|4 + iγ|E|2. (16.13)

Subtracting (16.13) from (16.12) and then multiplying both sides by −i,
one gets

∂t(|E(x, t)|2) = ∂tE(x, t)E(x, t)∗ + ∂tE(x, t)∗E(x, t)

= −2γ|E(x, t)|2 (16.14)

and therefore

|E(x, t)|2 = e−2γ(t−tm)|E(x, tm)|2, tm ≤ t ≤ tm+1. (16.15)

Substituting (16.15) into (16.11), we obtain

i∂tE(x, t) = αN(x, t)E(x, t) − λe−2γ(t−tm)|E(x, tm)|2E(x, t)

−iγE(x, t). (16.16)

Integrating (16.16) from tm to tm+1, and then approximating the integral

of N on [tm, tm+1] via the trapezoidal rule, one obtains

E(x, tm+1) = e−i
R tm+1

tm
[αN(x,τ)−λe−2γ(τ−tm)|E(x,tm)|2−iγ] dτ E(x, tm)

≈
{
e−ik[α(N(x,tm)+N(x,tm+1))/2−λ|E(x,tm)|2] E(x, tm), γ = 0,

e−γk−i[kα(N(x,tm)+N(x,tm+1))/2+λ|E(x,tm)|2(e−2γk−1)/2γ] E(x, tm), γ 6= 0.

16.1. Crank-Nicolson leap-frog time-splitting spectral

discretizations (CN-LF-TSSP) for GZS

The second wave-type equation (16.2) in the GZS is discretized by pseudo-

spectral method for spatial derivatives, and then applying Crank-Nicolson

/leap-frog for linear/nonlinear terms for time derivatives:

ε2
Nm+1
j − 2Nm

j +Nm−1
j

k2
−Df

xx

[(
βNm+1 + (1 − 2β)Nm + βNm−1

)

−ν|Em|2
]
x=xj

= 0, j = 0, · · · ,M, m = 1, 2, · · · , (16.17)

where 0 ≤ β ≤ 1 is a constant, Df
xx, a spectral differential operator approx-

imation of ∂xx, is defined as

Df
xxU

∣∣
x=xj

= −
M/2−1∑

l=−M/2

µ2
l Ũl e

iµl(xj−a) (16.18)
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and Ũl, the Fourier coefficients of a vector U = (U0, U1, U2, · · · , UM )T with

U0 = UM , are defined as

µl =
2πl

b− a
, Ũl =

1

M

M−1∑

j=0

Uj e
−iµl(xj−a), l = −M

2
, · · · , M

2
− 1.

(16.19)

When β = 0 in (16.17), the discretization (16.17) to the wave-type equa-

tion (16.2) is explicit and was used in [15, 114]. When 0 < β ≤ 1, the

discretization is implicit, but can be solved explicitly. In fact, suppose

Nm
j =

M/2−1∑

l=−M/2

(Ñm)l e
iµl(xj−a), j = 0, · · · ,M ; m = 0, 1, · · · ,

(16.20)

Plugging (16.20) into (16.17), using the orthogonality of the Fourier basis,

we obtain for m ≥ 1

ε2
˜(Nm+1)l − 2(̃Nm)l +

˜(Nm−1)l
k2

+ µ2
l

[
β ˜(Nm+1)l + (1 − 2β)(̃Nm)l

+β ˜(Nm−1)l − ν ˜(|Em|2)l
]

= 0, l = −M
2
, · · · , M

2
− 1. (16.21)

Solving the above equation, we get

˜(Nm+1)l =

(
2 − k2µ2

l

ε2 + βk2µ2
l

)
(̃Nm)l − (Ñm−1)l +

νk2µ2
l

ε2 + βk2µ2
l

˜(|Em|2)l,

l = −M/2, · · · ,M/2 − 1; m = 1, 2, · · · . (16.22)

From time t = tm to t = tm+1, we combine the splitting steps via the

standard Strang splitting for m ≥ 0:

Nm+1
j =

M/2−1∑

l=−M/2

˜(Nm+1)l e
iµl(xj−a), (16.23)

E∗
j =

M/2−1∑

l=−M/2

e−ikµ
2
l /2(Ẽm)l e

iµl(xj−a),

E∗∗
j =

{
e−ik[α(Nm

j +Nm+1
j )/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j )/2+λ|E∗
j |

2(e−2γk−1)/2γ] E∗
j , γ 6= 0,

Em+1
j =

M/2−1∑

l=−M/2

e−ikµ
2
l /2(Ẽ∗∗)l e

iµl(xj−a), 0 ≤ j ≤M − 1; (16.24)
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where ˜(Nm+1)l is given in (16.22) for m > 0 and (16.27) for m = 0. The

initial conditions (16.3) are discretized as

E0
j = E(0)(xj), N

0
j = N (0)(xj),

N1
j −N−1

j

2k
= N

(1)
j , j = 0, 1, 2, · · · ,M−1,

(16.25)

where

N
(1)
j =





N (1)(xj), 0 ≤ j ≤M − 2,

−
M−2∑

l=0

N (1)(xl), j = M − 1.
(16.26)

This implies that

(̃N1)l =

(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)
(̃N (0))l + k (̃N (1))l

+
νk2µ2

l

2(ε2 + βk2µ2
l )

˜(|E(0)|2)l, l = −M
2
, · · · , M

2
− 1. (16.27)

This type of discretization for the initial condition (16.3) is equivalent to

use the trapezoidal rule for the periodic function N (1) and such that (16.8)

is satisfied in discretized level. The discretization error converges to 0 ex-

ponentially fast as the mesh size h goes to 0.

Note that the spatial discretization error of the method is of spectral-

order accuracy in h and time discretization error is demonstrated to be

second-order accuracy in k from our numerical results.

16.2. Phase space analytical solver + time-splitting spectral

discretizations (PSAS-TSSP)

Another way to discretize the second wave-type equation (16.2) in GZS

is by pseudo-spectral method for spatial derivatives, and then solving the

ODEs in phase space analytically under appropriate chosen transmission

conditions between different time intervals. From time t = tm to t = tm+1,

assume

N(x, t) =

M/2−1∑

l=−M/2

Ñm
l (t) eiµl(x−a), a ≤ x ≤ b, tm ≤ t ≤ tm+1.

(16.28)
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Plugging (16.28) into (16.2) and noticing the orthogonality of the Fourier

series, we get the following ODEs for m ≥ 0:

ε2
d2Ñm

l (t)

d t2
+ µ2

l

[
Ñm
l (t) − ν ˜(|E(tm)|2)l

]
= 0, tm ≤ t ≤ tm+1, (16.29)

Ñm
l (tm) =

{
(̃N (0))l, m = 0,

Ñm−1
l (tm), m > 0,

l = −M/2, · · · ,M/2 − 1. (16.30)

For each fixed l (−M/2 ≤ l ≤M/2−1), Eq. (16.29) is a second-order ODE.

It needs two initial conditions such that the solution is unique. When m = 0

in (16.29), (16.30), we have the initial condition (16.30) and we can pose

the other initial condition for (16.29) due to the initial condition (16.3) for

the GZS (16.1)-(16.5):

d

dt
Ñ0
l (t0) =

d

dt
Ñ0
l (0) = (̃N (1))l, l = −M/2, · · · ,M/2 − 1. (16.31)

Then the solution of (16.29), (16.30) with m = 0 and (16.31) is:

Ñ0
l (t) =





(̃N (0))0 + t (̃N (1))0, l = 0,

[
(̃N (0))l − ν ˜(|E(0)|2)l

]
cos(µl t/ε) + ν ˜(|E(0)|2)l

+ ε
µl

(̃N (1))l sin(µl t/ε), l 6= 0,

(16.32)

0 ≤ t ≤ t1, l = −M/2, · · · ,M/2 − 1.

But when m > 0, we only have one initial condition (16.30). One can’t sim-

ply pose the continuity between d
dtÑ

m
l (t) and d

dtÑ
m−1
l (t) across the time

t = tm due to the last term in (16.29) is usually different in two adjacent

time intervals [tm−1, tm] and [tm, tm+1], i.e. ˜(|E(tm−1)|2)l 6= ˜(|E(tm)|2)l.
Since our goal is to develop explicit scheme and we need linearize the non-

linear term in (16.2) in our discretization (16.29), in general,

d

dt
Ñm−1
l (t−m) = lim

t→t−m

d

dt
Ñm−1
l (t) 6= lim

t→t+m

d

dt
Ñm
l (t) =

d

dt
Ñm
l (t+m), (16.33)

m = 1, · · · , l = −M/2, · · · ,M/2 − 1.

Unfortunely, we don’t know the jump d
dtÑ

m
l (t+m)− d

dtÑ
m−1
l (t−m) across the

time t = tm. In order to get a unique solution of (16.29), (16.30) for m > 0,

here we pose an additional condition:

Ñm
l (tm−1) = Ñm−1

l (tm−1), l = −M/2, · · · ,M/2 − 1. (16.34)



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

220 W. Bao

The condition (16.34) is equivalent to pose the solution Ñm
l (t) on the time

interval [tm, tm+1] of (16.29), (16.30) is also continuity at the time t = tm−1.

After a simple computation, we get the solution of (16.29), (16.30) and

(16.34) for m > 0:

Ñm
l (t) =





Ñm−1
0 (tm) + t−tm

k

[
Ñm−1

0 (tm) − Ñm−1
0 (tm−1)

]
, l = 0,

[
Ñm−1
l (tm) − ν ˜(|Em|2)l

]
cos(µl(t− tm)/ε)

+ν ˜(|Em|2)l +
sin(µl(t−tm)/ε)

sin(kµl/ε)

[
Ñm−1
l (tm) cos(kµl/ε)

−Ñm−1
l (tm−1) + ν [1 − cos(kµl/ε)] ˜(|Em|2)l

]
, l 6= 0,

(16.35)

tm ≤ t ≤ tm+1, l = −M/2, · · · ,M/2 − 1.

From time t = tm to t = tm+1, we combine the splitting steps via the

standard Strang splitting for m ≥ 0:

Nm+1
j =

M/2−1∑

l=−M/2

Ñm
l (tm+1) e

iµl(xj−a), (16.36)

E∗
j =

M/2−1∑

l=−M/2

e−ikµ
2
l /2(Ẽm)l e

iµl(xj−a),

E∗∗
j =

{
e−ik[α(Nm

j +Nm+1
j )/2−λ|E∗

j |
2] E∗

j , γ = 0,

e−γk−i[kα(Nm
j +Nm+1

j )/2+λ|E∗
j |

2(e−2γk−1)/2γ] E∗
j , γ 6= 0,

Em+1
j =

M/2−1∑

l=−M/2

e−ikµ
2
l /2(Ẽ∗∗)l e

iµl(xj−a), 0 ≤ j ≤M − 1; (16.37)

where

Ñm
l (tm+1) =





(̃N (0))0 + k (̃N (1))0, l = 0, m = 0,

(̃N (0))l cos(kµl/ε) + ε
µl

(̃N (1))l sin(kµl/ε) l 6= 0, m = 0,

+ν [1 − cos(kµl/ε)] ˜(|E(0)|2)l,

2Ñm−1
l (tm) cos(kµl/ε) − Ñm−1

l (tm−1) m ≥ 1,

+2ν [1 − cos(kµl/ε)] ˜(|Em|2)l,

(16.38)

The initial conditions (16.3) are discretized as

E0
j = E(0)(xj), N

0
j = N (0)(xj), (∂tN)0j = N

(1)
j , j = 0, 1, 2, · · · ,M − 1.

(16.39)



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

Nonlinear Schrödinger Equations and Applications 221

Note that the spatial discretization error of the above method is again of

spectral-order accuracy in h and time discretization error is demonstrated

to be second-order accuracy in k from our numerical results.

16.3. Properties of the numerical methods

(1). Plane wave solution: If the initial data in (16.3) is chosen as

E(0)(x) = c ei2πlx/(b−a), N (0)(x) = d, N (1)(x) = 0, a ≤ x ≤ b,

(16.40)

where l is an integer and c, d are constants, then the GZS (16.1)-(16.5)

admits the plane wave solution [97]

N(x, t) = d, a < x < b, t ≥ 0, (16.41)

E(x, t) =

{
c ei(

2πlx
b−a −ω1t), γ = 0,

c e−γte
i
“

2πlx
b−a −ω2t−

λc2

2γ (e−2γt−1)
”

, γ 6= 0.
(16.42)

where

ω1 = αd+
4π2l2

(b− a)2
− λc2, ω2 = αd+

4π2l2

(b − a)2
.

It is easy to see that in this case our numerical methods CN-LF-TSSP

(16.23), (16.24) and PAAS-TSSP (16.36), (16.37) give exact results pro-

vided that M ≥ 2(|l| + 1).

(2). Time transverse invariant: A main advantage of CN-LF-TSSP and

PAAS-TSSP is that if a constant r is added to the initial data N0(x) in

(16.3) when γ = 0 in (16.1), then the discrete functions Nm+1
j obtained

from (16.23) or (16.36) get added by r and Em+1
j obtained from (16.24)

or (16.37) get multiplied by the phase factor e−ir(m+1)k, which leaves the

discrete function |Em+1
j |2 unchanged. This property also holds for the exact

solution of GZS, but does not hold for the finite difference schemes proposed

in [62, 28] and the spectral method proposed in [100].

(3). Conservation: Let U = (U0, U1, · · · , UM )T with U0 = UM , f(x) a

periodic function on the interval [a, b], and let ‖ · ‖l2 be the usual discrete

l2-norm on the interval (a, b), i.e.,

‖U‖l2 =

√√√√b− a

M

M−1∑

j=0

|Uj|2, ‖f‖l2 =

√√√√b− a

M

M−1∑

j=0

|f(xj)|2. (16.43)

Then we have
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Theorem 16.1: The CN-LF-TSSP (16.23), (16.24) and PSAS-TSSP

(16.36), (16.37) for GZS possesses the following properties (in fact, they

are the discretized version of (16.7) and (16.8)):

‖Em‖2
l2 = e−2γtm‖E0‖2

l2 = e−2γtm‖E(0)‖2
l2 , m = 0, 1, 2, · · · , (16.44)

b− a

M

M−1∑

j=0

Nm+1
j −Nm

j

k
= 0, m = 0, 1, 2, · · · (16.45)

and

b− a

M

M−1∑

j=0

Nm
j =

b− a

M

M−1∑

j=0

N0
j =

b− a

M

M−1∑

j=0

N (0)(xj), m ≥ 0.

(16.46)

Proof: From (16.43), (16.37) and (16.19), using the orthogonality of the

discrete Fourier series and noticing the Pasavel equality, we have

M

b − a
‖Em+1‖2

l2 =

M−1∑

j=0

|Em+1
j |2 = M

M/2−1∑

l=−M/2

∣∣∣e−ikµ
2
l /2(Ẽ∗∗)l

∣∣∣
2

= M

M/2−1∑

l=−M/2

|(Ẽ∗∗)l|2 =
M−1∑

j=0

|E∗∗
j |2

= e−2γk
M−1∑

j=0

|E∗
j |2 = e−2γk

M−1∑

j=0

|Emj |2

= e−2γk M

b− a
‖Em‖2

l2 , m ≥ 0. (16.47)

Thus (16.44) is obtained from (16.47) by induction. The equalities (16.45)

and (16.46) can be obtained in a similar way.

(4). Unconditional stability: By the standard Von Neumann analysis for

(16.23) and (16.36), noting (16.44), we get PSAS-TSSP and CN-LF-TSSP

with 1/4 ≤ β ≤ 1 are unconditionally stable, and CN-LF-TSSP with 0 ≤
β < 1/4 is conditionally stable with stability constraint k ≤ 2hε

π
√
d(1−4β)

in

d-dimensions ( d = 1, 2, 3). In fact, for PSAS-TSSP (16.36), (16.37), setting

˜(|Em|2)l = 0 and plugging Ñm
l (tm+1) = µÑm−1

l (tm) = µ2Ñm−1
l (tm−1)

into (16.38) with |µ| the amplification factor, we obtain the characteristic

equation:

µ2 − 2 cos(kµl/ε)µ+ 1 = 0. (16.48)
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This implies

µ = cos(kµl/ε) ± i sin(kµl/ε). (16.49)

Thus the amplification factor

Gl = |µ| =

√
cos2(kµl/ε) + sin2(kµl/ε) = 1, l = −M/2, · · ·M/2 − 1.

This together with (16.44) imply that PSAS-TSSP is unconditionally stable.

Similarly for CN-LF-TSSP (16.23), (16.24), noting (16.22), we have the

characteristic equation:

µ2 −
(

2 − k2µ2
l

ε2 + βk2µ2
l

)
µ+ 1 = 0. (16.50)

This implies

µ = 1 − k2µ2
l

2(ε2 + βk2µ2
l )

±

√(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)2

− 1. (16.51)

When 1/4 ≤ β ≤ 1, we have
∣∣∣∣1 − k2µ2

l

2(ε2 + βk2µ2
l )

∣∣∣∣ ≤ 1, k > 0, l = −M/2, · · ·M/2 − 1.

Thus

µ = 1 − k2µ2
l

2(ε2 + βk2µ2
l )

± i

√

1 −
(

1 − k2µ2
l

2(ε2 + βk2µ2
l )

)2

. (16.52)

This implies the amplification factor

Gl = |µ| =

√(
1 − k2µ2

l

2(ε2 + βk2µ2
l )

)2

+ 1 −
(

1 − k2µ2
l

2(ε2 + βk2µ2
l )

)2

= 1, l = −M/2, · · ·M/2 − 1.

This together with (16.44) imply that CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 is

unconditionally stable. On the other hand, when 0 ≤ β < 1/4, we need the

stability condition
∣∣∣∣1 − k2µ2

l

2(ε2 + βk2µ2
l )

∣∣∣∣ ≤ 1 =⇒ k ≤ min
−M/2≤l≤M/2−1

2ε√
(1 − 4β)µ2

l

=
2hε

π
√

1 − 4β
.

This together with (16.44) imply that CN-LF-TSSP with 0 ≤ β < 1/4 is

conditionally stable in one dimension with stability condition

k ≤ 2hε

π
√

1 − 4β
. (16.53)
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All above stability results are confirmed by our numerical experiments.

(5). ε-resolution in the ‘subsonic limit’ regime (0 < ε � 1): As our

numerical results suggest: The meshing strategy (or ε-resolution) which

guarantees good numerical approximations of our new numerical methods

PSAS-TSSP and CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 in the ‘subsonic limit’

regime, i.e. 0 < ε� 1, is: i). for initial data with O(ε)-wavelength: h = O(ε)

and k = O(ε); ii). for initial data with O(1)-wavelength: h = O(1) and

k = O(1). Where the meshing strategy for CN-LF-TSSP with 0 ≤ β < 1/4

is: h = O(ε) & k = O(hε) = O(ε2); h = O(1) & k = O(ε), respectively.

Remark 16.2: If the periodic boundary conditions (16.4) and (16.5) are

replaced by the homogeneous Dirichlet boundary condition (16.9), then

the Fourier basis used in the above algorithm can be replaced by the sine

basis [15] or the algorithm in section 4 for VZSM. Similarly, if homogeneous

Neumann conditions are used, then cosine series can be applied in designing

the algorithm.

16.4. Extension TSSP to GVZS

The idea to construct the numerical methods CN-LF-TSSP and PSAS-
TSSP for GZS (16.1)-(16.5) can be easily extended to the VZSM [114] in
three dimensions for M different acoustic modes in a box Ω = [a1, b1] ×
[a2, b2] × [a3, b3] with homogeneous Dirichlet boundary conditions:

i∂tE + a 4 E + (1 − a) ∇(∇ · E) − αE

MX

J=1

NJ + λ|E|2E + iγE = 0, (16.54)

ε2
J∂ttNJ −4NJ + νJ 4 |E|2 = 0, J = 1, · · · ,M, x ∈ Ω, t > 0, (16.55)

E(x, 0) = E
(0)(x), NJ (x, 0) = N

(0)
J (x), ∂tNJ (x, 0) = N

(1)
J (x), x ∈ Ω, (16.56)

E(x, t) = 0, NJ (x, t) = 0 (J = 1, · · · ,M), x ∈ ∂Ω; (16.57)

where x = (x, y, z)T and E(x, t) = (E1(x, t), E2(x, t), E3(x, t))
T . Moreover,

we supplement (16.54)-(16.57) by imposing the compatibility condition

E(0)(x) = 0, N
(0)
J (x) = N

(1)
J (x) = 0, x ∈ ∂Ω, J = 1, · · · ,M. (16.58)

In some cases, the homogeneous Dirichlet boundary condition (16.57)

may be replaced by periodic boundary conditions:

With periodic boundary conditions for E, NJ(J = 1, · · · ,M) on ∂Ω.

(16.59)

We choose the spatial mesh sizes h1 = b1−a1

M1
, h2 = b2−a2

M2
and h3 = b3−a3

M3

in x-, y- and z-direction respectively, with M1, M2 and M3 given positive
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integers; the time step k = 4t > 0. Denote grid points and time steps as

xj := a1 + jh1, j = 0, 1, · · · ,M1; yp := a2 + ph2, p = 0, 1, · · · ,M2;

zs := a3 + sh3, s = 0, 1, · · · ,M3; tm := mk, m = 0, 1, 2, · · · .

Let Em
j,p,s and (NJ)mj,p,s be the approximations of E(xj , yp, zs, tm) and

NJ(xj , yp, zs, tm), respectively.
For simplicity, here we only extend PSAS-TSSP from GZS (16.1)-(16.5)

to VZSM (16.54)-(16.57) with homogeneous Dirichlet conditions. For peri-
odic boundary conditions (16.59) or extension of CN-LF-TSSP can be done
in a similar way. Following the idea of constructing PSAS-TSSP for GZS
and the TSSP for VZSM in [114] here we only present the numerical algo-
rithm. From time t = tm to t = tm+1, the PSAS-TSSP method for VZSM
(16.54)-(16.57) reads:

(NJ )m+1
j,p,s =

X

(l,g,r)∈N

(̃NJ )
m

l,g,r(tm+1) sin

„
ljπ

M1

«
sin

„
pgπ

M2

«
sin

„
srπ

M3

«
,

E
∗
j,p,s =

X

(l,g,r)∈N

Bl,g,r(k/2) (gEm)l,g,r sin

„
ljπ

M1

«
sin

„
pgπ

M2

«
sin

„
srπ

M3

«
,

E
∗∗
j,p,s =

8
><
>:

e−ik[α
PM

J=1((NJ )m
j,p,s+(NJ)m+1

j,p,s)/2−λ|E∗
j,p,s|

2]
E
∗
j,p,s, γ = 0,

e−γk−i[kα
PM

J=1((NJ )m
j,p,s+(NJ)m+1

j,p,s)/2+λ|E∗
j,p,s|

2(e−2γk−1)/2γ]
E
∗
j,p,s, γ 6= 0,

E
m+1
j,p,s =

X

(l,g,r)∈N

Bl,g,r(k/2) (gE∗∗)l,g,r sin

„
ljπ

M1

«
sin

„
pgπ

M2

«
sin

„
srπ

M3

«
,

where

N = {(l, g, r) | 1 ≤ l ≤ M1 − 1, 1 ≤ g ≤ M2 − 1, 1 ≤ r ≤ M3 − 1}.

(̃NJ )
m

l,g,r(tm+1) =

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

˜
(N

(0)
J )

0,0,0
+ k

˜
(N

(1)
J )

0,0,0
, Rl,g,r = 0, m = 0,

˜
(N

(0)
J )

l,g,r
cos(kRl,g,r/εJ ) Rl,g,r 6= 0, m = 0,

+ εJ
Rl,g,r

˜
(N

(1)
J )

l,g,r
sin(kRl,g,r/εJ )

+νJ
ˆ
1 − cos(kRl,g,r/εJ )

˜ ˜(|E(0)|2)l,g,r,

2(̃NJ )
m−1

l,g,r (tm) cos(kRl,g,r/εJ ) m ≥ 1,

+2νJ
ˆ
1 − cos(kRl,g,r/εJ )

˜
˜(|Em|2)l,g,r

−(̃NJ )
m−1

l,g,r (tm−1),
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and

Bl,g,r(τ) =





I3, l = g = r = 0,

e−iaτR
2
l,g,r

[
I3 +

e−i(1−a)τR
2
l,g,r − 1

R2
l,g,r

Al,g,r

]
, otherwise,

with

R2
l,g,r = κ2

l + ζ2
g + η2

r , Al,g,r =




κ2
l κlζg κlηr

κlζg ζ2
g ζgηr

κlηr ζgηr η2
r


 =



κl
ζg
ηr


(κl ζg ηr

)
;

where I3 is the 3 × 3 identity matrix, and Ũl,g,r, the sine-transform coeffi-

cients, are defined as

Ũl,g,r =
8

M1M2M3

M1−1∑

j=1

M2−1∑

p=1

M3−1∑

s=1

Uj,p,s sin

(
ljπ

M1

)
sin

(
pgπ

M2

)
sin

(
srπ

M3

)
,

(16.60)

with

κl =
πl

b1 − a1
, l = 1, . . . ,M1 − 1, ζg =

πg

b2 − a2
, g = 1, . . . ,M2 − 1,

ηr =
πr

b3 − a3
, r = 1, . . . ,M3 − 1.

The initial conditions (16.56) are discretized as

E0
j,p,s = E(0)(xj , yp, zs),

(NJ)0j,p,s = N
(0)
J (xj , yp, zs), j = 0, · · · ,M1, p = 0, · · · ,M2, s = 0, · · · ,M3,

(∂tNJ)0j,p,s = N
(1)
J (xj , yp, zs), J = 1, · · · ,M.

The properties of the numerical method for GZS in section 3 are still valid

here.

17. Crank-Nicolson finite difference (CNFD) method for

GZS

Another method for the GZS (13.40)-(13.41) is to use centered finite dif-
ference for spatial derivatives and Crank-Nicolson for time derivative. For
simplicity of notations , here we only present the CNFD method for the
standard ZS [28] with homogeneous Dirichlet boundary condition (16.9),
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i.e., in (16.1)-(16.2) with ε = 1, ν = −1, α = 1, λ = 0 and γ = 0:

i
Em+1
j − Emj

k
+

1

2

 
Em+1
j+1 − 2Em+1

j + Em+1
j−1

h2 +
Emj+1 − 2Emj + Emj−1

h2

!

=
1

4
(Nm

j + Nm+1
j )(Em+1

j + Emj ), j = 1, 2, · · · , M − 1,

Nm+1
j − 2Nm

j + Nm−1
j

k2
− θ

Nm+1
j+1 − 2Nm+1

j + Nm+1
j−1

h2

−θ
Nm−1
j+1 − 2Nm−1

j + Nm−1
j−1

h2
− (1 − 2θ)

Nm
j+1 − 2Nm

j + Nm
j−1

h2

=
|Emj+1|

2 − 2|Emj |2 + |Emj−1|
2

h2
,

Em+1
0 = Em+1

M = 0, Nm+1
0 = Nm+1

0 = 0, m = 0, 1 · · · .

where 0 ≤ θ ≤ 1 is a parameter. The initial conditions are discretized as:

E0
j = E0(xj), N0

j = N0(xj), j = 0, 1, · · · ,M, (17.1)

N1
j = N0

j + kN1(xj) +
k2

2

[N0
j+1 − 2N0

j +N0
j−1

h2

+
|E0
j+1|2 − 2|E0

j |2 + |E0
j−1|2

h2

]
. (17.2)

When θ = 0, the discretization (17.1) for wave-type equation is ex-

plicit; when θ > 0, it is implicit but can be solved explicitly when periodic

boundary conditions are applied. Generalization of the method to GZS are

straightforward. In our computations in next subsection, we choose θ = 0.5.

Remark 17.1: In [62, 63], convergence and error estimate of the CNFD

discretization (17.1), (17.1) are proved.

18. Numerical results of GZS

In this section, we present numerical results of GZS with a solitary wave so-

lution in one dimension to compare the accuracy, stability and ε-resolution

of different methods. We also present numerical examples solitary-wave col-

lisions in one dimension GZS.

In our computation, the initial conditions for (16.3) are always chosen

such that |E0|, N0 and N (1) decay to zero sufficiently fast as |x| → ∞. We

always compute on a domain, which is large enough such that the periodic
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boundary conditions do not introduce a significant aliasing error relative to

the problem in the whole space.

Example 10 The standard ZS with a solitary-wave solution, i.e., we

choose d = 1, α = 1, λ = 0, γ = 0 and ν = −1 in (13.40)-(13.41). The well-

known solitary-wave solution (15.5)-(15.7) of the ZS in this case is given in

[97, 73]

E(x, t) =
√

2B2(1 − ε2C2) sech(B(x− Ct)) ei[(C/2)x−((C/2)2−B2)t], (18.1)

N(x, t) = −2B2 sech2(B(x − Ct)), −∞ < x <∞, t ≥ 0, (18.2)

where B, C are constants. The initial condition is taken as

E(0)(x) = E(x, 0), N (0)(x) = N(x, 0), N (1)(x, 0) = ∂tN(x, 0), (18.3)

where E(x, 0), N(x, 0) and ∂tN(x, 0) are obtained from (18.1), (18.2) by

setting t = 0.

We present computations for two different regimes of the acoustic speed,

i.e. 1/ε:

Case I. O(1)-acoustic speed, i.e. we choose ε = 1, B = 1, C = 0.5 in

(18.1), (18.2). Here we test the spatial and temporal discretization errors,

conservation of the conserved quantities as well as the stability constraint

of different numerical methods. We solve the problem on the interval [-32,

32], i.e., a = −32 and b = 32 with periodic boundary conditions. Let Eh,k
and Nh,k be the numerical solution of (16.1), (16.5) in one dimension with

the initial condition (18.3) by using a numerical method with mesh size h

and time step k. To quantify the numerical methods, we define the error

functions as

e1 = ‖E(·, t) − Eh,k(t)‖l2 , e2 = ‖N(·, t) −Nh,k(t)‖l2 ,

e =
‖E(·, t) − Eh,k(t)‖l2

‖E(·, t)‖l2
+

‖N(·, t) −Nh,k(t)‖l2
‖N(·, t)‖l2

=
e1

‖E(·, t)‖l2
+

e2
‖N(·, t)‖l2

and evaluate the conserved quantities DGZS , PGZS and HGZS by using the

numerical solution, i.e. replacing E and N by their numerical counterparts

Eh,k and Nh,k respectively, in (13.20)-(13.22).

First, we test the discretization error in space. In order to do this, we

choose a very small time step, e.g., k = 0.0001 such that the error from time

discretization is negligible comparing to the spatial discretization error, and

solve the ZS with different methods under different mesh sizes h. Tab. 6
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lists the numerical errors of e1 and e2 at t = 2.0 with different mesh sizes

h for different numerical methods.

Mesh h = 1.0 h = 1
2 h = 1

4

PSAS-TSSP
e1
e2

9.810E-2

0.143

1.500E-4

1.168E-3

8.958E-9

6.500E-8

CN-LF-TSSP

(β = 0)

e1
e2

9.810E-2

0.143

1.500E-4

1.168E-3

7.409E-9

3.904E-8

CN-LF-TSSP

(β = 1/4)

e1
e2

9.810E-2

0.143

1.500E-4

1.168E-3

8.628E-9

6.521E-8

CN-LF-TSSP

(β = 1/2)

e1
e2

9.810E-2

0.143

1.500E-4

1.168E-3

1.098E-8

6.326E-8

CNFD
e1
e2

0.491

0.889

0.120

0.209

2.818E-2

4.726E-2

Tab. 6: Spatial discretization error analysis: e1, e2 at time t=2 under k =

0.0001.

Secondly, we test the discretization error in time. Tab. 7 shows the

numerical errors of e1 and e2 at t = 2.0 under different time steps k and

mesh sizes h for different numerical methods.

Thirdly, we test the conservation of conserved quantities. Tab. 8 presents

the quantities and numerical errors at different times with mesh size h = 1
8

and time step k = 0.0001 for different numerical methods.

Case II: ‘Subsonic limit’ regime, i.e. 0 < ε � 1, we choose B = 1

and C = 1/2ε in (18.1), (18.2). Here we test the ε-resolution of different

numerical methods. We solve the problem on the interval [-8, 120], i.e.,

a = −8 and b = 120 with periodic boundary conditions. Fig. 9 shows the

numerical results of PSAS-TSSP at t = 1 when we choose the meshing

strategy h = O(ε) and k = O(ε): T0 = (ε0, h0, k0) = (0.125, 0.5, 0.04),

T0/4, T0/16; and h = O(ε) and k = 0.04-independent of ε: T0 = (ε0, h0) =

(0.125, 0.5), T0/4, T0/16. CN-LF-TSSP with β = 1/4 or β = 1/2 gives

similar numerical results at the same meshing strategies, where CN-LF-

TSSP with β = 0 gives correct numerical results at meshing strategy h =

O(ε) and k = O(ε2) and incorrect results at h = O(ε) and k = O(ε) [15].

Furthermore, our additional numerical experiments confirm that PSAS-

TSSP and CN-LF-TSSP with 1/4 ≤ β ≤ 1/2 are unconditionally stable and

CN-LF-TSSP with β = 0 is stable under the stability constraint (16.53).

From Tabs. 6-8 and Fig. 9, we can draw the following observations:
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h Error k = 1
100 k = 1

400 k = 1
1600 k = 1

6400

PSAS-TSSP 1
4 e1 4.968E-5 3.109E-6 1.944E-7 1.226E-8

e2 1.225E-4 7.664E-6 4.797E-7 3.871E-8

1
8 e1 4.968E-5 3.109E-6 1.944E-7 1.172E-8

e2 1.225E-4 7.664E-6 4.797E-7 3.157E-8

CN-LF-TSSP 1
4 e1 4.829E-5 3.022E-6 1.888E-7 1.156E-8

(β = 0) e2 1.032E-4 6.456E-6 4.041E-7 3.673E-8

1
8 e1 4.829E-5 3.022E-6 1.888E-7 1.100E-8

e2 1.032E-4 6.456E-6 4.043E-7 2.946E-8

CN-LF-TSSP 1
4 e1 5.679E-5 3.556E-6 2.224E-7 1.425E-8

(β = 1/4) e2 1.623E-4 1.015E-5 6.351E-7 4.970E-8

1
8 e1 5.679E-5 3.556E-6 2.224E-7 1.377E-8

e2 1.623E-4 1.015E-5 6.351E-7 4.356E-8

CN-LF-TSSP 1
4 e1 7.468E-5 4.678E-6 2.924E-7 1.868E-8

(β = 1/2) e2 2.232E-4 1.396E-5 8.732E-7 6.360E-8

1
8 e1 7.468E-5 4.678E-6 2.924E-7 1.841E-8

e2 2.232E-4 1.396E-5 8.732E-7 5.942E-8

CNFD 1
4 e1 0.802 3.480E-2 2.855E-2 2.820E-2

e2 0.674 9.012-2 5.005E-2 4.743E-2

1
8 e1 0.809 1.753E-2 7.363E-3 6.961E-3

e2 0.656 5.491E-2 1.427E-2 1.167E-2

Tab. 7: Time discretization error analysis: e1, e2 at time t=2.

In O(1)-acoustic speed regime, our new methods PSAS-TSSP and CN-

LF-TSSP with β = 1/2 or 1/4 give similar results as the old method,

i.e. CN-LF-TSSP with β = 0, proposed in [15]: they are of spectral order

accuracy in space discretization and second-order accuracy in time, conserve

DGZS exactly and PGZS , HGZS very well (up to 8 digits). However, they

are improved in two aspects: (i) They are unconditionally stable where

the old method is conditionally stable under the stability condition k ≤
2hε

π
√
d(1−4β)

in d-dimensions (d = 1, 2 or 3); (ii) In the ‘subsonic limit’ regime

for initial data with O(ε)-wavelength, i.e. 0 < ε � 1, the ε-resolution of

our new methods is improved to h = O(ε) and k = O(ε), where the old
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Time DGZS PGZS HGZS

PSAS-TSSP 1.0 3.0000000000 3.41181556 0.510202736

2.0 3.0000000000 3.41181562 0.510202765

β = 0 1.0 3.0000000000 3.41181557 0.510202736

2.0 3.0000000000 3.41181562 0.510202766

β = 1/4 1.0 3.0000000000 3.41181556 0.510202740

2.0 3.0000000000 3.41181564 0.510202779

β = 1/2 1.0 3.0000000000 3.41181556 0.510202737

2.0 3.0000000000 3.41181562 0.510202768

CNFD 1.0 3.0000000000 3.394829741 0.510115589

2.0 3.0000000000 3.394791238 0.510076710

Tab. 8: Conserved quantities analysis: k = 0.0001 and h = 1
8 .

method required h = O(ε) and k = O(εh) = O(ε2). Thus in the following,

we only present numerical results by PSAS-TSSP. In fact, CN-LF-TSSP

with 1/4 ≤ β ≤ 1 gives similar numerical results at the same mesh size and

time step for all the following numerical examples.

Example 11 Soliton-soliton collisions in one dimension GZS, i.e., we

choose d = 1, ε = 1, α = −2 and γ = 0 in (13.40)-(13.41). We use the

family of one-soliton solutions (15.5)-(15.7) in [72] to test our new numerical

method PSAS-TSSP.

The initial data is chosen as

E(x, 0) = Es(x+ p, 0, η1, V1, ε, ν) + Es(x− p, 0, η2, V2, ε, ν),

N(x, 0) = Ns(x+ p, 0, η1, V1, ε, ν) +Ns(x− p, 0, η2, V2, ε, ν),

∂tN(x, 0) = ∂tNs(x + p, 0, η1, V1, ε, ν) + ∂tNs(x− p, 0, η2, V2, ε, ν),

where x = ∓p are initial locations of the two solitons.

In all the numerical simulations reported in this example, we set λ = 2,

and Φ0 = 0. We only simulated the symmetric collisions, i.e., the collisions

of solitons with equal amplitudes η1 = η2 = η and opposite velocities

V1 = −V2 ≡ V . Here, we present computations for two cases:

I. Collision between solitons moving with the subsonic velocities, V <

1/ε = 1, i.e. we take ν = 0.2, η = 0.3 and V = 0.5;

II. Collision between solitons in the transonic regime, V > 1/ε = 1, i.e.

we take ν = 2.0, η = 0.3 and V = 3.0.

We solve the problem on the interval [-128,128], i.e., a = -128 and b =

128 with mesh size h = 1
4 and time step k = 0.005. We take p = 10. Fig.
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Fig. 9: Numerical solutions of the electric field |E(x, t)|2 at t = 1 for Exam-

ple 10 in the ‘subsonic limit’ regime by PSAS-TSSP. ‘—’: exact solution,

‘+ + +’: numerical solution. Left column corresponds to h = O(ε) and

k = O(ε): a). T0 = (ε0, h0, k0) = (0.125, 0.5, 0.04); c). T0/4; e). T0/16.

Right column corresponds to h = O(ε) and k = 0.04-independent ε: b).

T0 = (ε0, h0) = (0.125, 0.5); d). T0/4; f). T0/16.

10 shows the evolution of the dispersive wave field |E|2 and the acoustic

(nondispersive) field N .

Case I corresponds to a soliton-soliton collision when the ratio ν/λ is

small, i.e., the GZS (16.1), (16.2) is close to the NLSE. As is seen, the
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Fig. 10: Evolution of the wave field |E|2 (left column) and acoustic field N

(right column) in Example 11. a). For case I; b). For case II.

collision seems quite elastic (cf. Fig. 10a). This also validates the formal

reduction from GZS to NLSE in section 2.5. Case II corresponds to the

collision of two transonic solitons. Note that the emission of the sound

waves is inconspicuous at this value of V (cf. Fig. 10b).

From Figs. 9&10, we can see that the unconditionally stable numerical

method PSAS-TSSP can really be applied to solve solitary-wave collisions

of GZS.
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Théor, 46 (1987), pp. 113-129.
82. M. Landman, G. Papanicolaou, C. Sulem and P. Sulem, Rate of blowup for

solutions of the nonlinear Schrödinger equation at critical dimension, Phys.
Rev. A, 38 (1988), pp. 3837-3843.

83. M. Landman, G. Papanicolaou, C. Sulem, P. Sulem and X. Wang, Stability
of isotropic singularities for the nonlinear Schrödinger equation, Physica D,
47 (1991), pp. 393-415.

84. L. Laudau and E. Lifschitz, Quantum Mechanics: non-relativistic theory,
Pergamon Press, New York, 1977.

85. P. Leboeuf and N. Pavloff, Phys. Rev. A 64, 033602 (2001); V. Dunjko,
V. Lorent, and M. Olshanii, Phys. Rev. Lett., 86 (2001), pp. 5413.

86. A. J. Leggett, Bose-Einstein condensation in the alkali gases: some funda-
mental concepts, Rev. Mod. Phys., 73 (2001), pp. 307-356.

87. E. H. Lieb, R. Seiringer, J. Yugvason, Bosons in a trap: a rigorous derivation
of the Gross-Pitaevskii energy functional, Phys. Rev. A, 61 (2000), pp. 3602.

88. F. Lin and T. C. Lin, Vortices in two-dimensional Bose-Einstein condensates,
Geometry and nonlinear partial differential equations (Hangzhou, 2001), pp.
87–114, AMS/IP Stud. Adv. Math., 29, Amer. Math. Soc., Providence, RI,
2002.

89. M.J. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Sta-
bility of isotropic singularities for the nonlinear Schrödinger equation, Phys.
D, 47 (1991), pp. 393–415.

90. A. G. Lisi, A solitary wave solution of the Maxwell-Dirac equations, J. Phys.
A: Math. Gen., 28 (1995), pp. 5385-5392.

91. P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach
to semiclassical limits: electrons in a periodic potential, J. Math. Phys., 35
(1994), pp. 1066-1094.

92. P.A. Markowich, P. Pietra and C. Pohl, Numerical approximation of
quadratic observables of Schrödinger-type equations in the semi-classical
limit, Numer. Math., 81 (1999), pp. 595-630.

93. N. Masmoudi and N. J. Mauser, The selfconsistent Pauli equaiton, Monatsh.
Math., 132 (2001), pp. 19-24.

94. R. McLachlan, Symplectic integration of Hamiltonian wave equations, Nu-
mer. Math., 66 (1994), pp. 465.

95. V. Masselin, A result of the blow-up rate for the Zakharov system in dimen-
sion 3, SIAM J. Math. Anal., 33 (2001), pp. 440-447.

96. B. Najman, The nonrelativstic limit of the nonlinear Dirac equaiton, Ann.
Inst. Henri Poincare Non Lineaire, 9 (1992), pp. 3-12.

97. P.K. Newton, Wave interactions in the singular Zakharov system, J. Math.
Phys., 32 (1991), pp. 431-440.

98. G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, Singular solutions of
the Zakharov equations for Langmuir turbulence, Phys. Fluids B, 3 (1991),
pp. 969-980.

99. A.S. Parkins and D.F. Walls, Physics Reports, 303 (1998), pp. 1.
100. G.L. Payne, D.R. Nicholson, and R.M. Downie, Numerical solution of the

Zakharov equations, J. Comput. Phys., 50 (1983), pp. 482-498.



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

Nonlinear Schrödinger Equations and Applications 239

101. N.R. Pereira, Collisions between Langmuir solitons, The Physics of Fluids,
20 (1977), pp. 750-755.

102. C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases,
Cambridge University Press, 2002.

103. L.P. Pitaevskii, Zh. Eksp. Teor. Fiz., 40 (1961), pp. 646. (Sov. Phys. JETP,
13 (1961), pp. 451).

104. L. Pitaevskii and S. Stringari, Bose-Einstein condensation, Oxford Univer-
sity Press, Oxford, 2002.

105. D. S. Rokhsar, Phys. Rev. Lett., 79 (1997), pp. 2164; R. Dum, J.I. Cirac,
M. Lewenstein, and P. Zoller, Phys. Rev. Lett., 80 (1998), pp. 2972;
P. O. Fedichev, and G. V. Shlyapnikov, Phys. Rev. A, 60 (1999), pp. 1779.

106. L. Simon, Asymptotics for a class of nonlinear evolution equations, with
applications to geometric problems, Annals of Math., 118 (1983), pp. 525-
571.

107. E.I. Schulman, Dokl. Akad. Nauk. SSSR, 259 (1981), pp.579 [Sov. Phys.
Dokl., 26 (1981), pp. 691].

108. C. Sparber and P. Markowich, Semiclassical asymptotics for the Maxwell-
Dirac system, J. Math. Phys., 44 (2003), pp. 4555–4572.

109. H. Spohn, Semiclassical limit of the Dirac equaiton and spin precession,
Ann. Phys., 282 (2000), pp. 420-431.

110. L. Stenflo, Phys. Scr., 33 (1986), pp. 156.
111. G. Strang, On the construction and comparison of differential schemes,

SIAM J. Numer. Anal., 5 (1968), pp. 506.
112. C. Sulem and P.L. Sulem, Regularity properties for the equations of Lang-

muir turbulence, C. R. Acad. Sci. Paris Sér. A Math., 289 (1979), pp. 173-
176.

113. C. Sulem and P.L. Sulem, The nonlinear Schrödinger equation, Springer,
1999.

114. F.F. Sun, Numerical studies on the Zakharov system, Master thesis, Na-
tional University of Singapore, 2003.

115. T.R. Taha and M.J. Ablowitz, Analytical and numerical aspects of certain
nonlinear evolution equations, II. Numerical, nonlinear Schrödinger equa-
tion, J. Comput. Phys., 55 (1984), pp. 203.

116. B. Thaller, The Dirac equation, New York, Springer, 1992.
117. M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation es-

timates, Comm. Math. Phys., 87 (1983), pp. 567-576.
118. M. Weinstein, Modulational stability of ground states of nonlinear

Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472-490.
119. M. Weinstein, The nonlinear Schrödinger equations-singularity formation,

stability and dispersion, Contemporary mathematics, 99 (1989), pp. 213-
232.

120. H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett.
A., 150 (1990), pp. 262-268.

121. V.E. Zakharov, Zh. Eksp. Teor. Fiz., 62 (1972), pp. 1745 [Sov. Phys. JETP,
35 (1972), pp. 908].



April 19, 2007 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) mrv-main

240 W. Bao


