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Abstract

In this paper, we present two efficient and spectrally accurate numerical methods for computing the ground and first
excited states in Bose–Einstein condensates (BECs). We begin with a review on the gradient flow with discrete normaliza-
tion (GFDN) for computing stationary states of a nonconvex minimization problem and show how to choose initial data
effectively for the GFDN. For discretizing the gradient flow, we use sine-pseudospectral method for spatial derivatives and
either backward Euler scheme (BESP) or backward/forward Euler schemes for linear/nonlinear terms (BFSP) for temporal
derivatives. Both BESP and BFSP are spectral order accurate for computing the ground and first excited states in BEC. Of
course, they have their own advantages: (i) for linear case, BESP is energy diminishing for any time step size where BFSP is
energy diminishing under a constraint on the time step size; (ii) at every time step, the linear system in BFSP can be solved
directly via fast sine transform (FST) and thus it is extremely efficient, and in BESP it needs to be solved iteratively via FST
by introducing a stabilization term and thus it could be efficient too. Comparisons between BESP and BFSP as well as
other existing numerical methods are reported in terms of accuracy and total computational time. Our numerical results
show that both BESP and BFSP are much more accurate and efficient than those existing numerical methods in the liter-
ature. Finally our new numerical methods are applied to compute the ground and first excited states in BEC in one dimen-
sion (1D), 2D and 3D with a combined harmonic and optical lattice potential for demonstrating their efficiency and high
resolution.
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1. Introduction

The experimental realization of Bose–Einstein condensates (BECs) in magnetically trapped atomic gases at
ultra-low temperature [3,15] has spurred great excitement in the atomic physics community and renewed the
interest in studying the macroscopic quantum behavior of the atoms. Theoretical predictions of the properties
of BEC like the density profile [10], collective excitations [18], and the formation of vortices [29] can now be
compared with experimental data. This dramatic progress on the experimental front has stimulated a wave of
activity on both the theoretical and the numerical front.

The properties of a BEC at temperature T much smaller than the critical condensation temperature Tc are
well described by the macroscopic wave function w(x, t), whose evolution is governed by a self-consistent,
mean field nonlinear Schrödinger equation (NLSE), also known as the Gross–Pitaevskii equation (GPE)
[22,27]:
i�h
o

ot
wðx; tÞ ¼ � �h2

2m
r2 þ V ðxÞ þ NU 0jwðx; tÞj2

� �
wðx; tÞ; x 2 R3; t > 0; ð1:1Þ
where m is the atomic mass, �h is the Planck constant, N is the number of atoms in the condensate, V(x) is an
external trapping potential, U 0 ¼ 4p�h2as

m describes the interaction between atoms in the condensate with as (po-
sitive for repulsive interaction and negative for attractive interaction) the s-wave scattering length. It is con-
venient to normalize the wave function by requiring
kwð�; tÞk2 :¼
Z

R3

jwðx; tÞj2 dx ¼ 1: ð1:2Þ
Under such a normalization and a given trapping potential, after proper nondimensionalization and dimen-
sion reduction in some limiting trapping frequency regimes, we can get the dimensionless GPE in the d-dimen-
sions (d = 1,2,3) [5,6,26,28]:
i
o

ot
wðx; tÞ ¼ � 1

2
r2 þ V ðxÞ þ bjwðx; tÞj2

� �
wðx; tÞ; x 2 Rd ; t > 0; ð1:3Þ
where V(x) is a real-valued potential whose shape is determined by the type of system under investigation, and
positive/negative b corresponds to the repulsive/attractive interaction. In fact, in practical experiments, it is
always in three dimensions (3D), i.e., d = 3 in (1.3). For 1D and 2D GPE, the particles are tightly confined
in the other dimensions. The condensate particles occupy only the ground state in the restricted directions.
A 1D BEC can be realized in a cigar-shaped trap with two strongly confining axes and one weakly confining
axis; a 2D BEC can be realized in a disk-shaped trap with one strongly confining axis and two weakly con-
fining axes. For more details on nondimensionalization and dimension reduction for the GPE (1.1) as well
as the physical meaning of 1D and 2D GPE, we refer to [7,6,8,28]. Two important invariants of (1.3) are
the normalization of the wave function
NðwÞ ¼ kwð�; tÞk2 ¼
Z

Rd
jwðx; tÞj2 dx ¼ 1; t P 0 ð1:4Þ
and the energy per particle
E½wð�; tÞ� ¼
Z

Rd

1

2
jrwðx; tÞj2 þ V ðxÞjwðx; tÞj2 þ b

2
j/ðx; tÞj4

� �
dx: ð1:5Þ
To find a stationary solution of (1.3), we write
wðx; tÞ ¼ e�ilt/ðxÞ; ð1:6Þ

where l is the chemical potential of the condensate and / is a real function independent of time. Inserting into
(1.3) gives the equation
l/ðxÞ ¼ � 1

2
r2/ðxÞ þ V ðxÞ/ðxÞ þ bj/ðxÞj2/ðxÞ; x 2 Rd ; ð1:7Þ
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for /(x) under the normalization condition
k/k2
:¼
Z

Rd
j/ðxÞj2 dx ¼ 1: ð1:8Þ
This is a nonlinear eigenvalue problem under a constraint, and any eigenvalue l can be computed from its
corresponding eigenfunction / by
l ¼ lð/Þ ¼
Z

Rd

1

2
jr/ðxÞj2 þ V ðxÞj/ðxÞj2 þ bj/ðxÞj4

� �
dx ¼ Eð/Þ þ

Z
Rd

b
2
j/ðxÞj4 dx:
In fact, the eigenfunctions of (1.7) under the constraint (1.8) are equivalent to the critical points of the energy
functional E(/) over the unit sphere S = {/ | i/i = 1, E(/) <1}.

From mathematical point of view, the ground state of a BEC is defined as the minimizer of the following
nonconvex minimization problem:

Find (lg,/g 2 S) such that
Eg :¼ Eð/gÞ ¼ min
/2S

Eð/Þ; lg ¼ lð/gÞ ¼ Eg þ
Z

Rd

b
2
j/gðxÞj

4 dx: ð1:9Þ
When b P 0 and lim|x|!1V(x) =1, there exists a unique positive minimizer of the minimization problem
(1.9) [26]. It is easy to show that the ground state /g is an eigenfunction of (1.7). Other eigenfunctions of
(1.7) whose energies are larger than Eg are called as excited states in the physics literatures.

One of the fundamental problems in numerical simulation of BEC is to find its ground state so as to com-
pare the numerical results with experimental observations and to prepare initial data for studying the dynam-
ics of BEC. In fact, a BEC is formed when the particles occupy the lowest energy state, i.e., quantum
mechanical ground state. In order to compute effectively the ground state of BEC, especially in the strong
repulsive interaction regime and with optical lattice trapping potential [28,7], an efficient and accurate numer-
ical method is one of the key issues. There has been a series of recent studies for developing numerical methods
to compute the ground states in BEC. For example, Bao and Du [5] presented a continuous normalized gra-
dient flow with diminishing energy and discretized it with a backward Euler finite difference (BEFD) and time-
splitting sine-pseudospectral method (TSSP) for computing the ground and first excited states in BEC. This
idea was extended to multi-component BEC [4] and rotating BEC [9]. Bao and Tang [8] proposed a method
by directly minimizing the energy functional via finite element approximation to obtain the ground and excited
states. Edwards and Burnett [17] presented a Runge–Kutta type method and used it to solve one and three-
dimensional ground states with spherical symmetry. Adhikari [1] used this approach to get the ground state
solution of GPE in 2D with radial symmetry. Ruprecht et al. [30] used the Crank–Nicolson finite difference
method for solving BEC ground state. Chang et al. [11,12] proposed Gauss–Seidel-type methods for comput-
ing energy states of a multi-component BEC. Other approaches include an explicit imaginary-time algorithm
used by Cerimele et al. [13] and Chiofalo et al. [14], a method based on time-independent GPE by Gammal
et al. [19], a direct inversion in the iterated subspace (DIIS) used by Schneider et al. [31], and a simple ana-
lytical type method proposed by Dodd [16]. For convergence analysis of the finite dimensional approximation
of (1.7), we refer to [33]. These numerical methods were applied to compute ground state in BEC with different
trapping potentials [7,5,28].

For a BEC in an optical lattice or in a rotational frame, due to the oscillatory nature of the trapping
potential or the appearance of quantized vortices, the ground and excited states are smooth but have mul-
tiscale structures [7]. Thus the resolution in space of a numerical method is essential for efficient compu-
tation, especially in 3D. In this case, all the numerical methods proposed in the literatures have some
drawbacks: (i) The TSSP is explicit, conditionally stable and of spectral accuracy in space [5]. It is energy
diminishing when time step satisfies a constraint. But due to the time-splitting error which does not van-
ishes at steady state, the time step must be chosen very small so as to get the ground state in high accu-
racy. Therefore, the total computational time is very large due to the small time step. (ii) The BEFD is
implicit, unconditionally stable and energy diminishing for any time step, thus the time step can be chosen
very large in practical computation. But it is only of second-order accuracy in space. When high accuracy
is required or the solution has multiscale structures, much more grid points must be taken so as to get a
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reasonable solution. Thus, the memory requirement is a big burden in this case. (iii) Other finite difference
or finite element methods are usually of low order accuracy in space and in many cases they have a very
severe constraint for time step due to stability or energy diminishing requirement [5]. Thus there are draw-
backs in both TSSP and BEFD. The aim of this paper is to develop new numerical methods which enjoy
the advantages of both TSSP and BEFD, i.e., they are spectrally accurate in space and are very efficient in
terms of computational time. The key features of our numerical methods are based on: (i) the application
of sine-pseudospectral discretization for spatial derivatives such that it is spectrally accurate; (ii) the adop-
tion of backward Euler scheme (BESP) or backward/forward Euler scheme for linear/nonlinear terms for
temporal derivatives such that they have good energy diminishing property; (iii) the introduction of a sta-
bilization term with constant coefficient in BESP for accelerating convergence rate of the iterative method
for a linear system or in BFSP for increasing upper bound of time step constraint; and (iv) the utilization
of the fast sine transform (FST) as preconditioner for solving a linear system efficiently. Our extensive
numerical results in 1D, 2D and 3D demonstrate that the methods are very accurate and efficient for com-
puting the ground and first excited states in BEC.

The paper is organized as follows. In Section 2, we review the normalized gradient flow (NGF) for com-
puting ground and first excited states, and discuss how to choose initial data for practical computation. In
Section 3, we propose backward Euler sine-pseudospectral (BESP) method and backward/forward Euler
sine-pseudospectral (BFSP) method for discretizing the NGF and discuss how to choose the ‘optimal’ stabil-
ization parameter in the two schemes. Comparisons between BESP and BFSP as well as with existing numer-
ical methods in the literature for computing ground states in BEC are reported in Section 4. Finally some
conclusions are drawn in Section 5.
2. Normalized gradient flow and chosen initial data

For the convenience of readers, in this section, we will review the gradient flow with discrete normal-
ization (GFDN) [5] for computing the minimizer of the minimization problem (1.9) and its energy dimin-
ishing property as well as how to choose initial data for computing the ground and first excited states in
BEC [5].

2.1. Normalized gradient flow

Choose a time step k = Dt > 0 and set tn = nDt for n = 0,1, 2, . . . Applying the steepest decent method to the
energy functional E(/) without constraint (1.8), and then projecting the solution back to the unit sphere at the
end of each time interval [tn, tn+1] in order to satisfy the constraint (1.8), we obtain the following gradient flow
with discrete normalization [2,5,13,14]:
o

ot
/ðx; tÞ ¼ � 1

2

dEð/Þ
d/

¼ 1

2
r2 � V ðxÞ � bj/j2

� �
/ðx; tÞ; x 2 Rd ; tn 6 t < tnþ1; n P 0; ð2:1Þ

/ðx; tnþ1Þ :¼ /ðx; tþnþ1Þ ¼
/ðx; t�nþ1Þ
k/ð�; t�nþ1Þk

; x 2 Rd ; n P 0; ð2:2Þ

/ðx; 0Þ ¼ /0ðxÞ; x 2 Rd with k/0k ¼ 1; ð2:3Þ
where /ðx; t�n Þ ¼ limt!t�n /ðx; tÞ. In fact, the gradient flow (2.1) can also be obtained from the GPE (1.3) by
changing time t to imaginary time s = it. That’s why the method is also called as imaginary time method in
the physics literature [14,2].

When b = 0 and V(x) P 0 for all x 2 Rd , it was proved that the GFDN (2.1)–(2.3) is energy diminishing for
any time step Dt > 0 and initial data /0 [5], i.e.,
Eð/ð�; tnþ1ÞÞ 6 Eð/ð�; tnÞÞ 6 � � � 6 Eð/ð�; t0ÞÞ ¼ Eð/0Þ; n ¼ 0; 1; 2; . . .
which provides a rigorous mathematical justification for the algorithm to compute ground state in linear case.
When b > 0, a similar argument is no longer valid [5]. However, letting Dt! 0 in the GFDN (2.1)–(2.3), we
obtain the following continuous normalized gradient flow (CNGF) [5]:
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ot/ðx; tÞ ¼
1

2
r2 � V ðxÞ � bj/j2 þ lð/ð�; tÞÞ

k/ð�; tÞk2

 !
/ðx; tÞ; x 2 Rd ; t P 0; ð2:4Þ

/ðx; 0Þ ¼ /0ðxÞ; x 2 Rd with k/0k ¼ 1: ð2:5Þ
This CNGF is normalization conserved and energy diminishing provided b P 0 and V(x) P 0 for all x 2 Rd

[5], i.e.,
k/ð�; tÞk2 � k/0k
2 ¼ 1;

d

dt
Eð/ð�; tÞÞ ¼ �2k/tð�; tÞk

2
6 0; t P 0;
which in turn implies that
Eð/ð�; t2ÞÞ 6 Eð/ð�; t1ÞÞ; 0 6 t1 6 t2 <1:

This provides a mathematical justification for the algorithm to compute ground state in nonlinear case at least
when the time step Dt is small.

Due to the uniqueness of the positive ground state for non-rotating BEC [26], the ground state /g(x) and its
corresponding chemical potential lg can be obtained from the steady state solution of the GFDN (2.1)–(2.3)
or CNGF (2.4) and (2.5) provided that the initial data /0(x) is chosen as a positive function, i.e., /0(x) P 0 for
x 2 Rd . Furthermore, when V(x) is an even function, the GFDN (2.1)–(2.3) can also be applied to compute the
first excited state in BEC provided that the initial data /0(x) is chosen to be an odd function [5]. In order to
compute the ground and first excited states in BEC efficiently and accurately, we will discuss how to choose
proper initial data /0(x) for different parameter regimes in the following subsection and propose BESP and
BFSP for discretizing the GFDN (2.1)–(2.3) in the following section.
2.2. Chosen initial data for the normalized gradient flow

In order to save computational cost, proper initial data for the GFDN (2.1)–(2.3) is one of the key issues for
computing the ground state. Without lose of generality, we assume the trapping potential V(x) in (1.3)
satisfying
V ðxÞ ¼ V 0ðxÞ þ W ðxÞ; V 0ðxÞ ¼
1

2
ðc2

1x2
1 þ � � � þ c2

dx2
dÞ; lim

jxj!þ1

W ðxÞ
V 0ðxÞ

¼ 0; ð2:6Þ
where x ¼ ðx1; . . . ; xdÞT 2 Rd and cj > 0 for 1 6 j 6 d. Typical example for W(x) is the optical lattice potential
[7,28]
W ðxÞ ¼ k1 sin2ðq1x2
1Þ þ � � � þ kd sin2ðqdx2

dÞ

with kj and qj (1 6 j 6 d) positive constants. In this case, when |b| is not big, e.g. |b| < 10, a possible choice of
the initial data is to choose the ground state of (1.3) with b = 0 and V(x) = V0(x) [28,6,8], i.e.,
/0ðxÞ ¼
Qd

j¼1cj

� �1=4

pd=4
exp½�ðc1x2

1 þ � � � þ cdx2
dÞ�; x 2 Rd : ð2:7Þ
On the other hand, when |b| is not small, e.g. |b| P 10, a possible choice of the initial data is to choose the
Thomas–Fermi approximation [6,7]:
/0ðxÞ ¼
/TF

g ðxÞ
k/TF

g k
; /TF

g ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTF

g �V ðxÞ
b

q
; V 0ðxÞ < lTF

g ;

0; otherwise;

(
x 2 Rd ; ð2:8Þ
where
lTF
g ¼

1

2

ð3bc1Þ
2=3
; d ¼ 1;

ð4bc1c2Þ
1=2
; d ¼ 2;

ð15bc1c2c3=4pÞ2=5
; d ¼ 3:

8><>:
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3. Efficient and accurate numerical methods

In this section, we will propose BESP and BFSP for fully discretizing the GFDN (2.1)–(2.3) and discuss
how to choose the ‘optimal’ stabilization parameter in the two schemes.

Due to the trapping potential V(x) given by (2.6), the solution /(x, t) of (2.1)–(2.3) decays to zero exponen-
tially fast when |x|!1. Thus in practical computation, we truncate the problem (2.1)–(2.3) into a bounded
computational domain with homogeneous Dirichlet boundary conditions:
o

ot
/ðx; tÞ ¼ 1

2
r2 � V ðxÞ � bj/j2

� �
/ðx; tÞ; x 2 Xx; tn 6 t < tnþ1; n P 0; ð3:1Þ

/ðx; tnþ1Þ ¼
/ðx; t�nþ1Þ
k/ð�; t�nþ1Þk

; x 2 Xx; n P 0; ð3:2Þ

/ðx; tÞ ¼ 0; x 2 C ¼ oXx; t > 0; ð3:3Þ

/ðx; 0Þ ¼ /0ðxÞ; x 2 Xx with k/0k
2

:¼
Z

Xx

j/0ðxÞj
2 dx ¼ 1; ð3:4Þ
where we choose Xx as an interval (a,b) in 1D, a rectangle (a,b) · (c,d) in 2D, and a box (a,b) · (c,d) · (e, f) in
3D, with |a|, |c|, |e|, b, d and f sufficiently large.

For simplicity of notation we shall introduce the method in 1D, i.e., d = 1 in (3.1)–(3.4). Generalization to
d > 1 is straightforward for tensor product grids and the results remain valid without modifications. For 1D,
we choose the spatial mesh size h = Dx > 0 with h = (b � a)/M for M an even positive integer, and let the grid
points be
xj :¼ aþ jh; j ¼ 0; 1; . . . ;M :
Let /n
j be the approximation of /(xj, tn) and /n be the solution vector with component /n

j .
3.1. Backward Euler sine-pseudospectral method

In order to discretize the gradient flow (3.1) with d = 1, we use backward Euler method for time discreti-
zation and sine-pseudospectral method for spatial derivatives (BESP). The detailed scheme is:
/�j � /n
j

Dt
¼ 1

2
Ds

xx/
�jx¼xj

� V ðxjÞ/�j � bj/n
j j

2/�j ; j ¼ 1; 2; . . . ;M � 1; ð3:5Þ

/�0 ¼ /�M ¼ 0; /0
j ¼ /0ðxjÞ; j ¼ 0; 1; . . . ;M ; ð3:6Þ

/nþ1
j ¼

/�j
k/�k ; j ¼ 0; 1; . . . ;M ; n ¼ 0; 1; . . . ð3:7Þ
where the norm is designed as k/�k2 ¼ h
PM�1

j¼1 j/
�
j j

2. Here Ds
xx, a spectral differential operator approximation of

oxx, is defined as
Ds
xxU jx¼xj

¼ � 2

M

XM�1

l¼1

l2
l ðÛÞl sinðllðxj � aÞÞ; j ¼ 1; 2; . . . ;M � 1;
where ðÛÞl ðl ¼ 1; 2; . . . ;M � 1Þ, the sine transform coefficients of the vector U = (U0,U1, . . . ,UM)T satisfying
U0 = UM = 0, are defined as
ll ¼
pl

b� a
; ðÛÞl ¼

XM�1

j¼1

Uj sinðllðxj � aÞÞ; l ¼ 1; 2; . . . ;M � 1:
In the discretization (3.5), at every time step, a linear system has to be solved. Here we present an efficient way
to solve it iteratively by introducing a stabilization term with constant coefficient and using discrete sine
transform:
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/�;mþ1
j � /n

j

Dt
¼ 1

2
Ds

xx/
�;mþ1jx¼xj

� a/�;mþ1
j þ ða� V ðxjÞ � bj/n

j j
2Þ/�;mj ; m P 0; ð3:8Þ

/�;0j ¼ /n
j ; j ¼ 0; 1; . . . ;M ; ð3:9Þ
where a P 0 is called as a stabilization parameter to be determined. Taking discrete sine transform at both
sides of (3.8), we obtain
ð d/�;mþ1Þl � ðc/nÞl
Dt

¼ � aþ 1

2
l2

l

� �
ð d/�;mþ1Þl þ ðcGmÞl; l ¼ 1; 2; . . . ;M � 1; ð3:10Þ
where ðcGmÞl are the sine transform coefficients of the vector Gm ¼ ðGm
0 ;G

m
1 ; . . . ;Gm

MÞ
T defined as
Gm
j ¼ ða� V ðxjÞ � bj/n

j j
2Þ/�;mj ; j ¼ 0; 1; . . . ;M : ð3:11Þ
Solving (3.10), we get
ð d/�;mþ1Þl ¼
2

2þ Dtð2aþ l2
l Þ
½ðc/nÞl þ DtðcGmÞl�; l ¼ 1; 2; . . . ;M � 1: ð3:12Þ
Taking inverse discrete sine transform for (3.12), we get the solution for (3.8) immediately.
In order to find the ‘optimal’ stabilization parameter a in (3.8) such that the iterative method (3.8) for solv-

ing (3.5) converges as fast as possible, we write it into a matrix form
A/�;mþ1 ¼ B/�;m þ C; m ¼ 0; 1; . . . ; ð3:13Þ

where
A ¼ ð1þ aDtÞI � Dt
2

Ds
xx; C ¼ diagð/n

1; . . . ;/n
M�1Þ; ð3:14Þ

B ¼ Dt diagða� V ðx1Þ � bj/n
1j

2
; . . . ; a� V ðxM�1Þ � bj/n

M�1j
2Þ ð3:15Þ
with I an (M � 1) · (M � 1) identity matrix. Since A is a positive definite matrix, by the standard theory for
iterative method for a linear system [20], a sufficient and necessary condition for the convergence of the iter-
ative method is
qðA�1BÞ < 1; ð3:16Þ

where q(D) is the spectral radius of the matrix D. Plugging (3.14) and (3.15) into (3.16), we obtain
qðA�1BÞ 6 kA�1Bk2 6 kA�1k2kBk2 ¼
Dtmax16j6M�1ja� V ðxjÞ � bj/n

j j
2j

1þ aDt þ Dt
2

min16l6M�1l2
l

¼ Dt maxfja� bmaxj; ja� bminjg
1þ aDt þ p2Dt

2ðb�aÞ2
; ð3:17Þ
where
bmax ¼ max
16j6M�1

ðV ðxjÞ þ bj/n
j j

2Þ; bmin ¼ min
16j6M�1

ðV ðxjÞ þ bj/n
j j

2Þ: ð3:18Þ
Therefore, if we take the stabilization parameter a as
aopt ¼
1

2
ðbmax þ bminÞ; ð3:19Þ
we get
qðA�1BÞ 6 Dt maxfjaopt � bmaxj; jaopt � bminjg
1þ aoptDt þ p2Dt

2ðb�aÞ2
6

Dtðbmin þ bmaxÞ
2þ Dtðbmin þ bmaxÞ þ p2Dt

ðb�aÞ2
< 1;
which guarantees the convergence of the iterative method (3.8) and the convergent rate is ‘optimal’ as



W. Bao et al. / Journal of Computational Physics 219 (2006) 836–854 843
RðA�1BÞ :¼ � ln qðA�1BÞP ln
2þ Dtðbmin þ bmaxÞ þ p2Dt

ðb�aÞ2

Dtðbmin þ bmaxÞ
: ð3:20Þ
For the convenience of the reader, an algorithm for implementing BESP is attached in Appendix A.
3.2. Backward/forward Euler sine-pseudospectral method

Since /n+1 in (3.7), i.e., /* in (3.5), is just an intermediate approximation for the ground state solution,
there is no need to solve the linear system (3.5) for /* very accurately. Specifically, if we only iterate (3.8)
for one step, the algorithm is significantly simplified. In fact, this is equivalent to use sine-pseudospectral
method for spatial derivatives and backward/forward Euler scheme for linear/nonlinear terms in time deriv-
atives (BFSP) for discretizing the gradient flow (3.1) with d = 1. The detailed scheme is:
/�j � /n
j

Dt
¼ 1

2
Ds

xx/
�jx¼xj

� a/�j þ ða� V ðxjÞ � bj/n
j j

2Þ/n
j ; 1 6 j < M ; ð3:21Þ

/�0 ¼ /�M ¼ 0; /0
j ¼ /0ðxjÞ; j ¼ 0; 1; . . . ;M ; ð3:22Þ

/nþ1
j ¼

/�j
k/�k ; j ¼ 0; 1; . . . ;M ; n ¼ 0; 1; . . . ð3:23Þ
where a P 0 is the stabilization parameter. This discretization is implicit, but it can be solved directly via
fast discrete sine transform. Thus it is extremely efficient in practical computation. In fact, the memory
requirement is O(M) and computational cost per time step is O(M ln(M)). Of course, there is a constraint
for time step such that the flow is energy diminishing. By Remark 2.13 in [5], the constraint for time step
Dt is
Dt <
1

max16j6M�1ja� V ðxjÞ � bj/n
j j

2j
¼ 1

maxfja� bminj; ja� bmaxjg
:

Therefore, if we take a ¼ aopt ¼ bmaxþbmin

2
, the bound in the constraint for Dt is ‘optimal’. In this case, it reads
Dt <
2

bmin þ bmax

:

Again, for the convenience of the reader, an algorithm for implementing BFSP is attached in Appendix B.
3.3. Other discretization schemes

For comparison purposes we review alternative discretization schemes for discretizing the gradient flow
(3.1)–(3.4). One is the forward Euler sine-pseudospectral (FESP) scheme:
/�j � /n
j

Dt
¼ 1

2
Ds

xx/
njx¼xj

� V ðxjÞ/n
j � bj/n

j j
2/n

j ; j ¼ 1; 2; . . . ;M � 1: ð3:24Þ
By Remark 2.13 in [5], the constraint for time step Dt is
Dt <
2

2bmax þ l2
M�1

¼ 2

2bmax þ ðM � 1Þ2p2=ðb� aÞ2
<

2h2

p2 þ 2h2bmax

:

Another one is the backward Euler finite difference (BEFD) scheme, which is unconditionally stable and pro-
posed in [5]
/�j � /n
j

Dt
¼

/�j�1 � 2/�j þ /�jþ1

2h2
� V ðxjÞ/�j � bj/n

j j
2/�j ; j ¼ 1; 2; . . . ;M � 1: ð3:25Þ
This discretization is only second order as demonstrated in [5].
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4. Numerical results

In this section, we demonstrate the spectral accuracy in space for our new methods BESP (3.5)–(3.7)
and BFSP (3.21)–(3.23) for computing the ground and first excited states in BEC, and perform numerical
comparisons between BESP and BFSP as well as existing numerical methods, e.g. BEFD, in terms of
spatial accuracy and computational time. Then we apply the methods BESP and BFSP to compute the
ground and first excited states in BEC in 1D, 2D and 3D for different trapping potential, especially in
optical lattice potential. The parameters chosen in our numerical examples are motivated from the physics
literatures [21,24,25,23] such that the GPE is valid for either describing the atomic gas or dynamics
of nonlinear optics. The main aim of the numerical study in this paper is to test and demonstrate the
spectral accuracy in space of our new numerical methods. For the validity of the GPE when a transition
from a BEC state to a Mott insulator state taking place at a certain depth of the lattice, we refer to
[21,24].
4.1. Comparisons of spatial accuracy and results in 1D

Example 1. Ground and first excited states in 1D, i.e., we take d = 1 in (1.3) and study two kinds of trapping
potentials:
Case I.
A harmonic oscillator potential V ðxÞ ¼ x2

2
and b = 400 in (1.3).
Case II.
An optical lattice potential V ðxÞ ¼ x2

2
þ 25 sin2 ðpx

4
Þ and b = 250 in (1.3).

The values of the optical lattice and nonlinearity are motivated from the physics literatures
[21,25,32,23]. The initial data (3.4) is chosen as (2.8) for computing the ground state, and, respectively,ffiffip

/0ðxÞ ¼ 2x

p1=4 e�x2=2 for computing the first excited state. We solve the problem with BESP on [�16,16],
i.e., a = �16 and b = 16, and take time step Dt = 0.05 for computing the ground state, and, respectively,
Dt = 0.001 for computing the first excited state. Here and in the next two examples, the reason for smaller
time step chosen for computing the first excited states is to suppress the round-off error in fast sine trans-
form (FST) and inverse fast sine transform (IFST) such that the numerical solution is an odd function. In
our computations in this section, the termination condition for solving the linear system (3.5) by (3.8) is
max16j6M�1 j/�;mþ1

j � /�;mj j < 10�13, and the steady state solution of BESP is reached when max16j6M�1

j/nþ1
j � /n

j j < 10�12. Let /g and /1 be the ‘exact’ ground state and first excited state which are obtained
numerically by using BESP with a very fine mesh h ¼ 1

32
and h ¼ 1

128
, respectively. We denote their energy

and chemical potential as Eg :¼ E(/g), E1 :¼ E(/1), and lg :¼ l(/g), l1 :¼ l(/1). Let /SP
g;h and /SP

1;h be the
numerical ground state and first excited state obtained by using BESP with mesh size h, respectively. Sim-
ilarly, /FD

g;h and /FD
1;h are obtained by using BEFD in a similar way. Tables 1 and 2 list the errors for Case

I, and Tables 3 and 4 for Case II. Furthermore, we also compute the energy and chemical potential for the
ground state and first excited states based on our ‘exact’ solution /g and /1. For Case I, we have
Eg :¼ E(/g) = 21.3601 and lg :¼ l(/g) = 35.5775 for ground state, and E1 :¼ E(/1) = 22.0777 and l1 :¼
l(/1) = 36.2881 for the first excited state. Similarly, for Case II, we have Eg = 26.0838, lg = 38.0692,
E1 = 27.3408 and l1 = 38.9195. Fig. 1 plots /g and /1 as well as their corresponding trapping potentials
for Cases I and II.

From Tables 1–4, Fig. 1 and additional experiments not shown here, the following observations are made:

(i) For BESP, BFSP and FESP, they are spectrally accurate in spatial discretization; where for BEFD, it is
only second-order accurate. The error in the ground and first excited states is only due to the spatial dis-
cretization. In fact, we also find how fine the mesh size h should be for the BEFD so as to achieve very
high accuracy. For Case I, we have max j/g � /FD

g;h j ¼ 1:4� 10�11 and jEg � Eð/FD
g;h Þj ¼ 8� 10�12 for

mesh size h = 1/32768; and max j/1 � /FD
1;h j ¼ 2:68� 10�10 and jE1 � Eð/FD

1;h Þj ¼ 8:30� 10�10 for mesh



Table 1
Spatial resolution of BESP and BEFD for ground state of Case I in Example 1

Mesh size h = 1 h = 1/2 h = 1/4 h = 1/8

max j/g � /SP
g;hj 1.310E � 3 7.037E � 5 1.954E � 8 <E � 12

k/g � /SP
g;hk 1.975E � 3 7.425E � 5 2.325E � 8 <E � 12

jEg � Eð/SP
g;hÞj 5.688E � 5 2.642E � 6 9E � 12 <E � 12

jlg � lð/SP
g;hÞj 1.661E � 2 8.705E � 5 9.44E � 10 4E � 12

max j/g � /FD
g;h j 2.063E � 3 1.241E � 3 2.890E � 4 7.542E � 5

k/g � /FD
g;h k 3.825E � 3 1.439E � 3 3.130E � 4 7.705E � 5

jEg � Eð/FD
g;h Þj 2.726E � 3 9.650E � 4 2.540E � 4 6.439E � 5

jlg � lð/FD
g;h Þj 2.395E � 2 6.040E � 4 2.240E � 4 5.694E � 5

Table 2
Spatial resolution of BESP and BEFD for the first excited state of Case I in Example 1

Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32

max j/1 � /SP
1;hj 2.064E � 1 6.190E � 4 2.099E � 7 <E � 12

k/1 � /SP
1;hk 1.093E � 1 3.200E � 4 1.403E � 7 <E � 12

jE1 � Eð/SP
1;hÞj 5.259E � 2 3.510E � 4 5.550E � 9 <E � 12

jl1 � lð/SP
1;hÞj 1.216E � 1 1.509E � 3 4.762E � 8 <E � 12

max j/1 � /FD
1;h j 2.348E � 1 8.432E � 3 2.267E � 3 6.040E � 4

k/1 � /FD
1;h k 1.197E � 1 4.298E � 3 1.215E � 3 2.950E � 4

jE1 � Eð/FD
1;h Þj 3.154E � 1 5.212E � 2 1.382E � 2 3.449E � 3

jl1 � lð/FD
1;h Þj 4.216E � 1 5.884E � 2 1.609E � 2 3.999E � 3

Table 3
Spatial resolution of BESP and BEFD for ground state of Case II in Example 1

Mesh size h = 1 h = 1/2 h = 1/4 h = 1/8

max j/g � /SP
g;hj 7.982E � 3 1.212E � 3 2.219E � 6 1.9E � 11

k/g � /SP
g;hk 1.304E � 2 1.313E � 3 2.431E � 6 2.8E � 11

jEg � Eð/SP
g;hÞj 4.222E � 4 1.957E � 4 4.994E � 8 <E � 12

jlg � lð/SP
g;hÞj 9.761E � 2 4.114E � 3 5.605E � 7 <E � 12

max j/g � /FD
g;h j 1.019E � 2 5.815E � 3 1.001E � 3 2.541E � 4

k/g � /FD
g;h k 1.967E � 2 7.051E � 3 1.390E � 3 3.387E � 4

jEg � Eð/FD
g;h Þj 7.852E � 2 2.961E � 2 7.940E � 3 2.027E � 3

jlg � lð/FD
g;h Þj 1.786E � 1 1.716E � 2 6.730E � 3 1.728E � 3

Table 4
Spatial resolution of BESP and BEFD for the first excited state of Case II in Example 1

Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32

max j/1 � /SP
1;hj 2.793E � 1 1.010E � 3 4.240E � 7 2E � 12

k/1 � /SP
1;hk 1.477E � 1 5.241E � 4 2.784E � 7 2E � 12

jE1 � Eð/SP
1;hÞj 1.145E � 1 8.337E � 4 1.943E � 8 <E � 12

jl1 � lð/SP
1;hÞj 1.593E � 1 2.357E � 3 1.097E � 7 5E � 12

max j/1 � /FD
1;h j 3.134E � 1 1.124E � 2 3.231E � 3 8.450E � 4

k/1 � /FD
1;h k 1.599E � 1 5.779E � 3 1.701E � 3 4.122E � 4

jE1 � Eð/FD
1;h Þj 6.011E � 1 1.002E � 1 2.688E � 2 6.707E � 3

jl1 � lð/FD
1;h Þj 6.315E � 1 9.887E � 2 2.742E � 2 6.827E � 3

W. Bao et al. / Journal of Computational Physics 219 (2006) 836–854 845



0 8 16
0

(a)

(b)

0.1

0.2

0.3

0.4

φ g(x
)

0 8 16
0

35

70

105

140

V
(x

)

x
0 8 16

0

0.2

0.4

φ 1(x
)

x
0 8 16

0

35

70

105

140

V
(x

)

0 8 16
0

0.1

0.2

0.3

0.4

φ g(x
)

0 8 16
0

35

70

105

140
V

(x
)

x
0 8 16

0

0.2

0.4

φ 1(x
)

x
0 8 16

0

35

70

105

140

V
(x

)

Fig. 1. Ground state /g (left column, solid lines) and first excited state /1 (right column, solid lines) as well as trapping potentials (dashed
lines) in Example 1: (a) for Case I; (b) for Case II.
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size h = 1/65536. Similarly, for Case II, we have max j/g � /FD
g;h j ¼ 2:3� 10�11 and jEg � Eð/FD

g;h Þj ¼
1:23� 10�10 for mesh size h = 1/32768. Thus when high accuracy is required or the solution has multi-
scale structure [7], BESP and BFSP are much better than BEFD in terms that they need much less grid
points. Therefore BESP and BFSP can save a lot of memory and computational time, especially in 2D
and 3D.

(ii) Interior layers are observed in the first excited state when b is large (cf. Fig. 1 ‘right column’). When an
optical lattice potential is applied, multiscale structures are observed in both ground and first excited
states (cf. Fig. 1b).

(iii) In both the two different potentials, we observed numerically
Eð/gÞ < Eð/1Þ; lð/gÞ < lð/1Þ for any b P 0;

lim
b!1

Eð/1Þ
Eð/gÞ

¼ 1; lim
b!1

lð/1Þ
lð/gÞ

¼ 1:
These results agree with the observation in [5,7,8] very well.
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4.2. Comparisons of computational time and results in 2D

Example 2. Ground and first excited states in 2D under a combined harmonic and optical lattice potential,
i.e., we take d = 2 and V ðx; yÞ ¼ 1

2 ðx2 þ y2Þ þ j sin2ðpx
4 Þ þ sin2ðpy

4 Þ
	 


in (1.3). The choice of the optical lattice
depth and nonlinearity is motivated from the physics literatures [21,25,23]. The initial data (3.4) is chosen as
(2.8) for computing ground state /g, and as /0ðx; yÞ ¼

ffiffi
2
p

x
p1=2 e�ðx

2þy2Þ=2 for the first excited state in x-direction
/10, and as /0ðx; yÞ ¼

ffiffi
2
p

y
p1=2 e�ðx

2þy2Þ=2 for the first excited state in y-direction /01, and as /0ðx; yÞ ¼ 2xy
p1=2 e�ðx

2þy2Þ=2

for the first excited state in both x- and y-directions /11. The problem is solved on Xx = [�16,16]2 with mesh
size h ¼ 1

16. For comparison of different methods and different time step size, the termination condition for

steady state solution is uniformly chosen as maxj;k
j/nþ1

jk �/n
jk j

Dt < 10�6. Tables 5 and 6 show the computational
time taken to get the ground state by using different methods and different time step sizes with j = 100 for
b = 100 and b = 1000, respectively. Furthermore, Fig. 2 visualizes the ground and first excited states for
b = 500 and j = 50 by using BESP with time step Dt = 0.1 and Dt = 0.001, respectively. We also compute their
energy and chemical potential as Eg = 32.2079, lg = 41.7854; E10 :¼ E(/10) = E01 :¼ E(/01) = 34.6044,
l10 :¼ l(/10) = l01 :¼ l(/01) = 43.8228; and E11 :¼ E(/11) = 37.0849, l11 :¼ l(/11) = 46.1402.

From Tables 5, 6, Fig. 2 and additional experiments not shown here, the following observations are made:

(i) BESP and BEFD are implicit method, and energy diminishing is observed for both the linear and
the nonlinear cases under any time step Dt > 0; where FESP is explicit and BFSP is implicit but
can be solved explicitly, energy diminishing is observed only when the time step Dt satisfies a
constraint.

(ii) For BESP, the computational time is almost constant in the example for different b and different
time step 0.005 6 Dt 6 0.5. Thus there is no need to bother on how to choose the time step. One
can always choose Dt = 0.5 or Dt = 0.1 in practical computation. For FESP, only very small time
step is allowed. When time step is decreased by half, the computational time is doubled. For BFSP,
intermediate large time step is allowed. The introduction of the stabilization term allows larger time
step to be chosen in practical computation. When the time step is chosen near the largest allowable
time step, the computational time is much smaller than that in BESP. Furthermore, the growing rate
of computational time with respect to time step size by using BFSP is faster than that of using
BESP.
Table 5
Computational times for computing ground state in Example 2 by using different numerical schemes for b = 100

Numerical scheme Dt Computational time (s) Eg lg

BESP 0.5 597.6 26.92580539 33.292591
0.25 622.6 26.92580539 33.292586
0.1 637.3 26.92590539 33.292585
0.05 661.8 26.92580539 33.292584
0.01 805.9 26.92580539 33.292584
0.0025 1290 26.92580539 33.292584

BFSP 0.1 52.1 26.9357459 33.410725
0.05 56.4 26.9348784 33.405024
0.025 63.7 26.9334524 33.395124
0.01 84.9 26.9307326 33.373672
0.005 117.2 26.9285960 33.352679
0.001 372.3 26.9261198 33.312119

FESP 0.001 – – –
0.0005 643.9 26.92580539 33.29258356
0.00025 1304 26.92580539 33.29258357
0.0001 3295 26.92580539 33.29258357



Table 6
Computational times for computing ground state in Example 2 by using different numerical schemes for b = 1000

Numerical scheme Dt Computational time (s) Eg lg

BESP 0.5 593.9 51.22028604 66.249024
0.25 608.1 51.22028604 66.249017
0.1 620.6 51.22028604 66.249013
0.05 635.7 51.22028604 66.249011
0.01 743.3 51.22028604 66.249010
0.0025 1144 51.22028604 66.249010

BFSP 0.025 – – –
0.01 79.9 51.2283083 66.376381
0.005 106.1 51.2248581 66.344476
0.0025 165.8 51.2223469 66.312619
0.001 345.3 51.2208091 66.280800
0.0005 648.6 51.2204428 66.266346
0.00025 1251 51.2203292 66.258089

FESP 0.001 – – –
0.0005 606.8 51.22028604 66.2490096
0.00025 1306 51.22028604 66.2490096
0.0001 3331 51.22028604 66.2490094
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(iii) From the numerical values of energy and chemical potential calculated, BESP performs better than
BFSP in terms of accuracy. In fact, for BESP, the energy and chemical potential are almost independent
of the time step size, while for BFSP, better results are obtained when smaller time step is used.

(iv) Interior layers are observed in the first excited state when b is large (cf. Fig. 2). Multiscale structures are
observed in both ground and first excited states. Furthermore, we also observed numerically
Eð/gÞ < Eð/10Þ ¼ Eð/01Þ < Eð/11Þ; lð/gÞ < lð/10Þ ¼ lð/01Þ < lð/11Þ; b P 0;

lim
b!1

Eð/10Þ
Eð/gÞ

¼ lim
b!1

Eð/11Þ
Eð/gÞ

¼ 1; lim
b!1

lð/10Þ
lð/gÞ

¼ lim
b!1

lð/11Þ
lð/gÞ

¼ 1:
The relations /10(x,y) = /01(y,x), E(/10) = E(/01) and l(/10) = l(/01) are due to V(x,y) = V(y,x).

4.3. Results in 3D

Example 3. Ground and first excited states in 3D under a combined harmonic and optical lattice potential,
i.e., we take d = 3 and V ðx; y; zÞ ¼ 1

2 ðx2 þ y2 þ z2Þ þ 50 sin2ðpx
4 Þ þ sin2ðpy

4 Þ þ sin2ðpz
4 Þ

	 

in (1.3). The choice of the

optical lattice depth and nonlinearity is motivated from the physics literatures [21,23]. The initial data (3.4) is

chosen as (2.8) for computing ground state /g, and as /0ðx; y; zÞ ¼
ffiffi
2
p

x
p3=4 e�ðx

2þy2þz2Þ=2 for the first excited state in

x-direction /100, and as /0ðx; y; zÞ ¼ 2xy
p3=4 e�ðx

2þy2þz2Þ=2 for the first excited state in x- and y-directions /110, and

as /0ðx; y; zÞ ¼ 23=2xyz
p3=4 e�ðx

2þy2þz2Þ=2 for the first excited state in x-, y- and z-directions /111. The problem is solved
on Xx = [�8,8]3 by using BESP with mesh size h ¼ 1

8. The time step is chosen as Dt = 0.1 for computing ground
state and Dt = 0.001 for computing the first excited states. Fig. 3 plots the isosurfaces of the ground state for
b = 100, 800 and 6400. Fig. 4 shows the isosurfaces of the first excited states for b = 100. Table 7 lists the
energy and chemical potential for ground state and first excited states for different b. In fact, BFSP gives
similar results when Dt = 0.01 for computing the ground state and Dt = 0.001 for computing the first excited
states.

From Table 7, Figs. 3, 4 and additional experiments not shown here, the following observations are made:

(i) The BESP and BFSP are capable for computing ground and first excited states in BEC in 3D when the
solutions have multiscale structures.



Fig. 2. Top views of numerical results in Example 2 for b = 500: (a) ground state /g; (b) first excited state in x-direction /10; (c) first
excited state in y-direction /01; (d) first excited state in both x- and y-directions /11.
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(ii) Interior layers are observed in the first excited state when b is large (cf. Fig. 4). Multiscale structures are
observed in both ground and first excited states under an optical lattice potential. Furthermore, we also
observed numerically:
Eð/gÞ < Eð/100Þ ¼ Eð/010Þ ¼ Eð/001Þ < Eð/110Þ ¼ Eð/101Þ ¼ Eð/011Þ < Eð/111Þ;

lð/gÞ < lð/100Þ ¼ lð/010Þ ¼ lð/001Þ < lð/110Þ ¼ lð/101Þ ¼ lð/011Þ < lð/11Þ; b P 0;

lim
b!1

Eð/100Þ
Eð/gÞ

¼ lim
b!1

Eð/110Þ
Eð/gÞ

¼ lim
b!1

Eð/111Þ
Eð/gÞ

¼ 1;

lim
b!1

lð/100Þ
lð/gÞ

¼ lim
b!1

lð/110Þ
lð/gÞ

¼ lim
b!1

lð/111Þ
lð/gÞ

¼ 1:
The relations E(/100) = E(/010) and l(/100) = l(/010) are due to V(x,y,z) = V(y,x,z).



Fig. 3. Isosurfaces (left column) and their corresponding slice views (right column) for ground states in Example 3 for different b:
(a) b = 100; (b) b = 800; (c) b = 6400.
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5. Conclusion

We have presented two efficient and spectrally accurate numerical methods for computing the ground and
first excited states in BEC. The methods are based on applying sine-pseudospectral discretization for spatial
derivatives and backward Euler (BESP) for backward/forward Euler for linear/nonlinear terms for time deriv-



Fig. 4. Isosurfaces (left column) and their corresponding slice views (right column) for the first excited states in Example 3 for b = 100: (a)
first excited state in x-direction /100; (b) first excited state in x- and y-directions /110; (c) first excited state in x-, y- and z-directions /111.
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atives in a normalized gradient flow. Both BESP and BFSP are demonstrated to be spectrally accurate for
computing the ground and first excited states in BEC. Furthermore, BESP is energy diminishing for any time
step Dt > 0, where BFSP is under a constraint on the time step Dt. Thus larger mesh size and time step can be
chosen in practical computation when high accuracy is required. Therefore, the computational memory and
computational time can be saved significantly, especially in 2D and 3D.



Table 7
Energy and chemical potential of ground and first excited states in Example 3 for different b

b Eg, lg E(/100), l(/100) E(/110), l(/110) E(/111), l(/111)

0 11.6439, 11.6439 19.2450, 19.2450 26.8462, 26.8462 34.4473, 34.4473
10 15.9852, 19.1506 21.0720, 22.5140 27.8833, 28.6755 35.1742, 35.7086
25 18.6574, 21.3997 22.9316, 25.6428 28.9665, 30.6305 35.7780, 36.8161

100 23.2356, 27.4757 27.1939, 30.4217 31.2498, 34.3400 36.7368, 38.4113
200 26.1956, 30.6831 29.7009, 33.8039 33.7883, 38.0816 38.2237, 40.9526
800 33.8023, 40.4476 36.7106, 42.9200 39.6478, 45.3623 42.6474, 47.8224

3200 45.2035, 54.9862 47.4672, 56.8902 50.3045, 60.2456 52.7426, 62.3855
6400 52.4955, 63.7149 54.8717, 66.3303 58.0720, 70.5760 60.3200, 72.5372
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Based on our extensive comparisons in terms of accuracy and computational time, we make the following
suggestions on how to choose numerical methods:

(i) If high accuracy is crucial in computing ground states in BEC, e.g. under an optical lattice potential or in
a rotational frame, we always recommend to use BESP or BFSP. If one does not want to be bothered on
how to choose the time step, BESP with time step Dt = 0.5 or Dt = 0.1 is a very good choice. Of course, if
one can find the largest allowable time step for BFSP, then BFSP is a much better choice since it needs
much less computational time.

(ii) For computing first excited states in BEC, in order to suppress the round-off error in FST and IFST such
that the numerical solution is an odd function, small time step is required. Thus we recommend BFSP for
computation.

(iii) Here we also suggest a combined method of BESP and BFSP which enjoys high efficiency of BFSP and
better resolution of BESP: First apply BFSP for the gradient flow evolution to reach a steady state solu-
tion, followed by applying BESP at a later stage to refine the solution. This scheme gives a highly accu-
rate solution as BESP does, with much less computational time taken as compared with applying BESP
for the whole procedure.
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Appendix A. An algorithm for implementing BESP

(i) Compute /0
j ¼ /0ðxjÞ (j = 0,1, . . . ,M). Let n = 0.

(ii) Repeat n: until convergence.
(iii) Compute bmax and bmin via (3.18) and a = aopt via (3.19). Take discrete sine transform (DST) for

f/n
jg

M�1
j¼1 and obtain fðc/nÞlg

M�1
l¼1 . Let m = 0 and set /�;mj ¼ /n

j (j = 0,1, . . . ,M).
(iv) Repeat m: until convergence.
(v) Compute Gm

j via (3.11) and take DST for fGm
j g

M�1
j¼1 and obtain fðcGmÞlg

M�1
l¼1 .

(vi) Compute ð d/�;mþ1Þl via (3.12).
(vii) Take inverse discrete sine transform (IDST) for fð d/�;mþ1Þlg

M�1
l¼1 and obtain f/�;mþ1

j gM�1
j¼1 .

(viii) If max16j6M�1j/�;mþ1
j � /�;mj j > �0 (e.g. 10�8), set m :¼ m + 1, go to step (v); otherwise go to next step.

(ix) Compute /nþ1
j via (3.7) with /�j ¼ /�;mþ1

j .
(x) If max16j6M�1j/nþ1

j � /n
j j > �1 (e.g. 10�6), set n :¼ n + 1, go to step (iii); otherwise stop and f/nþ1

j g
M�1
j¼1 is

the result.
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Appendix B. An algorithm for implementing BFSP

(i) Compute /0
j ¼ /0ðxjÞ (j = 0,1, . . . ,M). Let n = 0.

(ii) Repeat n: until convergence.
(iii) Compute bmax and bmin via (3.18) and a = aopt via (3.19). Take DST for f/n

jg
M�1
j¼1 and obtain fðc/nÞlg

M�1
l¼1 .

(iv) Compute Gn
j via (3.11) with m = n and take DST for fGn

jg
M�1
j¼1 and obtain fðcGnÞlg

M�1
l¼1 .

(v) Compute ð d/�;nþ1Þl via (3.12) with m = n.

(vi) Take IDST for fð d/�;nþ1Þlg
M�1
l¼1 and obtain f/�;nþ1

j gM�1
j¼1 .

(vii) Compute /nþ1
j via (3.7) with /�j ¼ /�;nþ1

j .
(viii) If max16j6M�1j/nþ1

j � /n
j j > �1 (e.g. 10�6), set n :¼ n + 1, go to step (iii); otherwise stop and f/nþ1

j g
M�1
j¼1 is

the result.
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