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a b s t r a c t

New efficient and accurate numerical methods are proposed to compute ground states and
dynamics of dipolar Bose–Einstein condensates (BECs) described by a three-dimensional
(3D) Gross–Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high
singularity in the dipolar interaction potential, it brings significant difficulties in mathe-
matical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling
the two-body dipolar interaction potential into short-range (or local) and long-range inter-
actions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated
as a Gross–Pitaevskii–Poisson type system. Based on this new mathematical formulation,
we prove rigorously existence and uniqueness as well as nonexistence of the ground states,
and discuss the existence of global weak solution and finite time blow-up of the dynamics
in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudo-
spectral method is presented for computing the ground states and a time-splitting sine
pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to
the adoption of new mathematical formulation, our new numerical methods avoid evalu-
ating integrals with high singularity and thus they are more efficient and accurate than
those numerical methods currently used in the literatures for solving the problem. Exten-
sive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of
our new numerical methods for computing the ground states and dynamics of dipolar
BECs.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Since 1995, the Bose–Einstein condensation (BEC) of ultracold atomic and molecular gases has attracted considerable
interests both theoretically and experimentally. These trapped quantum gases are very dilute and most of their properties
are governed by the interactions between particles in the condensate [31]. In the last several years, there has been a quest for
realizing a novel kind of quantum gases with the dipolar interaction, acting between particles having a permanent magnetic
or electric dipole moment. A major breakthrough has been very recently performed at Stuttgart University, where a BEC of
52Cr atoms has been realized in experiment and it allows the experimental investigations of the unique properties of dipolar
quantum gases [22]. In addition, recent experimental developments on cooling and trapping of molecules [17], on photoas-
sociation [43], and on Feshbach resonances of binary mixtures open much more exciting perspectives towards a degenerate
quantum gas of polar molecules [35]. These success of experiments have spurred great excitement in the atomic physics
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community and renewed interests in studying the ground states [36,48,20,21,23,34] and dynamics [25,30,32,50] of dipolar
BECs.

At temperature T much smaller than the critical temperature Tc, a dipolar BEC is well described by the macroscopic wave
function w = w(x, t) whose evolution is governed by the three-dimensional (3D) Gross–Pitaevskii equation (GPE) [48,36]

i�h@twðx; tÞ ¼ � �h2

2m
r2 þ VðxÞ þ U0jwj2 þ Vdip � jwj2

� �" #
w; x 2 R3; t > 0; ð1:1Þ

where t is time, x ¼ ðx; y; zÞT 2 R3 is the Cartesian coordinates, �h is the Planck constant, m is the mass of a dipolar particle and
V(x) is an external trapping potential. When a harmonic trap potential is considered, VðxÞ ¼ m

2 ðx2
x x2 þx2

yy2 þx2
z z2Þ with xx,

xy and xz being the trap frequencies in x-, y- and z-directions, respectively. U0 ¼ 4p�h2as
m describes local (or short-range) inter-

action between dipoles in the condensate with as the s-wave scattering length (positive for repulsive interaction and nega-
tive for attractive interaction). The long-range dipolar interaction potential between two dipoles is given by

VdipðxÞ ¼
l0l2

dip

4p
1� 3ðx � nÞ2=jxj2

jxj3
¼

l0l2
dip

4p
1� 3 cos2ðhÞ

jxj3
; x 2 R3; ð1:2Þ

where l0 is the vacuum magnetic permeability, ldip is permanent magnetic dipole moment (e.g. ldip ¼ 6lB for 52Cr with lB

being the Bohr magneton), n ¼ ðn1;n2;n3ÞT 2 R3 is the dipole axis (or dipole moment) which is a given unit vector, i.e.

jnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2 þ n3

3

q
¼ 1, and h is the angle between the dipole axis n and the vector x. The wave function is normalized

according to

kwk2 :¼
Z

R3
jwðx; tÞj2 dx ¼ N; ð1:3Þ

where N is the total number of dipolar particles in the dipolar BEC.
By introducing the dimensionless variables, t ! t

x0
with x0 = min{xx,xy,xz}, x ? a0x with a0 ¼

ffiffiffiffiffiffiffiffi
�h

mx0

q
, w!

ffiffiffi
N
p

w

a3=2
0

, we obtain
the dimensionless GPE in 3D from (1.1) as [48,49,31,5]:

i@twðx; tÞ ¼ �1
2
r2 þ VðxÞ þ bjwj2 þ k Udip � jwj2

� �� �
w; x 2 R3; t > 0; ð1:4Þ

where b ¼ NU0
�hx0a3

0
¼ 4pasN

a0
, k ¼

mNl0l2
dip

3�h2a0
, VðxÞ ¼ 1

2 ðc2
x x2 þ c2

yy2 þ c2
z z2Þ is the dimensionless harmonic trapping potential with

cx ¼ xx
x0

, cy ¼
xy

x0
and cz ¼ xz

x0
, and the dimensionless long-range dipolar interaction potential Udip(x) is given as

UdipðxÞ ¼
3

4p
1� 3ðx � nÞ2=jxj2

jxj3
¼ 3

4p
1� 3 cos2ðhÞ

jxj3
; x 2 R3: ð1:5Þ

From now on, we will treat b and k as two dimensionless real parameters. We understand that it may not physically
meaningful when k < 0 for modeling dipolar BEC. However, it is an interesting problem to consider the case when k < 0 at
least in mathematics and it may make sense for modeling other physical system. In fact, the above nondimensionlization
is obtained by adopting a unit system where the units for length, time and energy are given by a0, 1/x0 and ⁄x0, respectively.
Two important invariants of (1.4) are the mass (or normalization) of the wave function

Nðwð�; tÞÞ :¼ kwð�; tÞk2 ¼
Z

R3
jwðx; tÞj2 dx �

Z
R3
jwðx;0Þj2 dx ¼ 1; t P 0; ð1:6Þ

and the energy per particle

Eðwð�; tÞÞ :¼
Z

R3

1
2
jrwj2 þ VðxÞjwj2 þ b

2
jwj4 þ k

2
Udip � jwj2
� �

jwj2
� �

dx � Eðwð�;0ÞÞ; t P 0: ð1:7Þ

To find the stationary states including ground and excited states of a dipolar BEC, we take the ansatz

wðx; tÞ ¼ e�ilt/ðxÞ; x 2 R3; t P 0; ð1:8Þ

where l 2 R is the chemical potential and / :¼ /(x) is a time-independent function. Plugging (1.8) into (1.4), we get the
time-independent GPE (or a nonlinear eigenvalue problem)

l/ðxÞ ¼ �1
2
r2 þ VðxÞ þ bj/j2 þ k Udip � j/j2

� �� �
/ðxÞ; x 2 R3; ð1:9Þ

under the constraint

k/k2 :¼
Z

R3
j/ðxÞj2 dx ¼ 1: ð1:10Þ

The ground state of a dipolar BEC is usually defined as the minimizer of the following nonconvex minimization problem:
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Find /g 2 S and lg 2 R such that

Eg :¼ Eð/gÞ ¼min
/2S

Eð/Þ; lg :¼ lð/gÞ; ð1:11Þ

where the nonconvex set S is defined as

S :¼ /jk/k2 ¼ 1; Eð/Þ <1
n o

ð1:12Þ

and the chemical potential (or eigenvalue of (1.9)) is defined as

lð/Þ :¼
Z

R3

1
2
jr/j2 þ VðxÞj/j2 þ bj/j4 þ k Udip � j/j2

� �
j/j2

� �
dx � Eð/Þ þ 1

2

Z
R3

bj/j4 þ k Udip � j/j2
� �

j/j2
h i

dx: ð1:13Þ

In fact, the nonlinear eigenvalue problem (1.9) under the constraint (1.10) can be viewed as the Euler–Lagrangian equa-
tion of the nonconvex minimization problem (1.11). Any eigenfunction of the nonlinear eigenvalue problem (1.9) under the
constraint (1.10) whose energy is larger than that of the ground state is usually called as an excited state in the physics
literatures.

The theoretical study of dipolar BECs including ground states and dynamics as well as quantized vortices has been carried
out in recent years based on the GPE (1.1). For the study in physics, we refer to [16,18,24,33,1,19,24,27,28,44,45,47,49,52]
and references therein. For the study in mathematics, existence and uniqueness as well as the possible blow-up of solutions
were studied in [12], and existence of solitary waves was proven in [2]. In most of the numerical methods used in the lit-
eratures for theoretically and/or numerically studying the ground states and dynamics of dipolar BECs, the way to deal with
the convolution in (1.4) is usually to use the Fourier transform [25,20,34,46,10,41,51]. However, due to the high singularity in
the dipolar interaction potential (1.5), there are two drawbacks in these numerical methods: (i) the Fourier transforms of the
dipolar interaction potential (1.5) and the density function jwj2 are usually carried out in the continuous level on the whole
space R3 (see (2.3) for details) and in the discrete level on a bounded computational domain X, respectively, and due to this
mismatch, there is a locking phenomena in practical computation as observed in [34]; (ii) the second term in the Fourier
transform of the dipolar interaction potential is 0

0-type for 0-mode, i.e. when n = 0 (see (2.3) for details), and it is artificially
omitted when n = 0 in practical computation [34,21,29,50,49,46,10] thus this may cause some numerical problems too. The
main aim of this paper is to propose new numerical methods for computing ground states and dynamics of dipolar BECs
which can avoid the above two drawbacks and thus they are more accurate than those currently used in the literatures.
The key step is to decouple the dipolar interaction potential into a short-range and a long-range interaction (see (2.5) for
details) and thus we can reformulate the GPE (1.4) into a Gross–Pitaevskii–Poisson type system. In addition, based on the
new mathematical formulation, we can prove existence and uniqueness as well as nonexistence of the ground states and
discuss mathematically the dynamical properties of dipolar BECs in different parameter regimes.

The paper is organized as follows. In Section 2, we reformulate the GPE for a dipolar BEC into a Gross–Pitaevskii–Poisson
type system and study analytically the ground states and dynamics of dipolar BECs. In Section 3, a backward Euler sine
pseudospectral method is proposed for computing ground states of dipolar BECs; and in Section 4, a time-splitting sine
pseudospectral (TSSP) method is presented for computing the dynamics. Extensive numerical results are reported in Sec-
tion 5 to demonstrate the efficiency and accuracy of our new numerical methods. Finally, some conclusions are drawn in
Section 6. Throughout this paper, we adopt the standard Sobolev spaces and their corresponding norms.

2. Analytical results for ground states and dynamics

Let r ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and denote

@n ¼ n � r ¼ n1@x þ n2@y þ n3@z; @nn ¼ @nð@nÞ: ð2:1Þ

Using the equality (see [28,30] and a mathematical proof in the Appendix A)

UdipðxÞ ¼
3

4pr3 1� 3ðx � nÞ2

r2

 !
¼ �dðxÞ � 3@nn

1
4pr

� �
; x 2 R3; ð2:2Þ

with d(x) being the Dirac distribution function, it is straightforward to get the Fourier transform of Udip(x) as

dðUdipÞðnÞ ¼ �1þ 3 n � nð Þ2

jnj2
; n 2 R3: ð2:3Þ

Introducing a new function

uðx; tÞ :¼ 1
4pjxj

� �
� jwð�; tÞj2 ¼ 1

4p

Z
R3

1
jx� x0j jwðx

0; tÞj2 dx0; x 2 R3; t P 0; ð2:4Þ

we obtain
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Udip � jwð�; tÞj2 ¼ �jwðx; tÞj2 � 3 ~uðx; tÞ; x 2 R3; t P 0; ð2:5Þ

with

~uðx; tÞ ¼ @nnðuðx; tÞÞ ¼ @nn
1

4pjxj

� �� �
� jwð�; tÞj2 ¼ 1

4pjxj

� �
� @nnjwð�; tÞj2
h i

: ð2:6Þ

In fact, the above equality decouples the dipolar interaction potential into a short-range and a long-range interaction which
correspond to the first and second terms in the right hand side of (2.5), respectively. Plugging (2.5) into (1.4) and noticing
(2.4) and (2.6), we can reformulate the GPE (1.4) into a Gross–Pitaevskii–Poisson type system.

i@twðx; tÞ ¼ �1
2
r2 þ VðxÞ þ ðb� kÞjwðx; tÞj2 � 3k ~uðx; tÞ

� �
wðx; tÞ; x 2 R3; t > 0; ð2:7Þ

~uðx; tÞ ¼ @nnuðx; tÞ; �r2uðx; tÞ ¼ jwðx; tÞj2; lim
jxj!1

uðx; tÞ ¼ 0: ð2:8Þ

Note that the far-field condition in (2.8) makes the Poisson equation uniquely solvable. Using (2.8) and integration by parts,
we can reformulate the energy functional E(�) in (1.7) as

EðwÞ ¼
Z

R3

1
2
rwj j2 þ VðxÞjwj2 þ 1

2
ðb� kÞjwj4 þ 3k

2
@nruj j2

� �
dx; ð2:9Þ

where u is defined through (2.8). This immediately shows that the decoupled short-range and long-range interactions of the
dipolar interaction potential are attractive and repulsive, respectively, when k > 0; and are repulsive and attractive, respec-
tively, when k < 0. Similarly, the nonlinear eigenvalue problem (1.9) can be reformulated as

l/ðxÞ ¼ �1
2
r2 þ VðxÞ þ b� kð Þj/j2 � 3k~uðxÞ

� �
/ðxÞ; ð2:10Þ

~uðxÞ ¼ @nnuðxÞ; �r2uðxÞ ¼ j/ðxÞj2; x 2 R3; lim
jxj!1

uðxÞ ¼ 0: ð2:11Þ

2.1. Existence and uniqueness for ground states

Under the new formulation for the energy functional E(�) in (2.9), we have.

Lemma 2.1. For the energy E(�) in (2.9), we have

(i) For any / 2 S, denote q(x) = j/(x)j2 for x 2 R3, then we have

Eð/ÞP Eðj/jÞ ¼ E
ffiffiffiffi
q
pð Þ; 8/ 2 S; ð2:12Þ

so the minimizer /g of (1.11) is of the form eih0 j/g j for some constant h0 2 R.
(ii) When b P 0 and � 1

2 b 6 k 6 b, the energy Eð ffiffiffiffiqp Þ is strictly convex in q.

Proof. For any / 2 S, denote q = j/j2 and consider the Poisson equation

r2uðxÞ ¼ �j/ðxÞj2 :¼ �qðxÞ; x 2 R3; lim
jxj!1

uðxÞ ¼ 0: ð2:13Þ

Noticing (2.1) with jnj = 1, we have the estimate

k@nruk2 6 kD
2uk2 ¼ kr2uk2 ¼ kqk2 ¼ k/k

2
4; with D2 ¼ rr: ð2:14Þ

(i) Write /(x) = eih(x)j/(x)j, noticing (2.9) with w = / and (2.13), we get

Eð/Þ ¼
Z

R3

1
2
jrj/j j2 þ 1

2
j/j2jrhðxÞj2 þ VðxÞj/j2 þ 1

2
ðb� kÞj/j4 þ 3k

2
j@nruj2

� �
dx

P
Z

R3

1
2
jrj/j j2 þ VðxÞj/j2 þ 1

2
ðb� kÞj/j4 þ 3k

2
j@nruj2

� �
dx ¼ Eðj/jÞ ¼ E

ffiffiffiffi
q
pð Þ; 8/ 2 S; ð2:15Þ

and the equality holds iff rh(x) = 0 for x 2 R3, which means h(x) � h0 is a constant.
(ii) From (2.9) with w = / and noticing (2.13), we can split the energy Eð ffiffiffiffiqp Þ into two parts, i.e.

Eð ffiffiffiffiqp Þ ¼ E1ð
ffiffiffiffi
q
p Þ þ E2ð

ffiffiffiffi
q
p Þ; ð2:16Þ
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where

E1ð
ffiffiffiffi
q
p Þ ¼

Z
R3

1
2
jr ffiffiffiffi

q
p j2 þ VðxÞq

� �
dx; ð2:17Þ

E2ð
ffiffiffiffi
q
p Þ ¼

Z
R3

1
2
ðb� kÞjqj2 þ 3k

2
j@nruj2

� �
dx: ð2:18Þ

As shown in [26], E1ð
ffiffiffiffiqp Þ is convex (strictly) in q. Thus we only need prove E2ð

ffiffiffiffiqp Þ is convex too. In order to do so, considerffiffiffiffiffiffiq1
p 2 S,

ffiffiffiffiffiffiq2
p 2 S, and let u1 and u2 be the solutions of the Poisson Eq. (2.13) with q = q1 and q = q2, respectively. For any

a 2 [0,1], we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq1 þ ð1� aÞq2

p
2 S, and

aE2ð
ffiffiffiffiffiffi
q1
p Þ þ ð1� aÞE2ð

ffiffiffiffiffiffi
q2
p Þ � E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aq1 þ ð1� aÞq2

q� �
¼ að1� aÞ

Z
R3

1
2
ðb� kÞðq1 � q2Þ

2 þ 3k
2
@nrðu1 �u2Þj j2

� �
dx;

ð2:19Þ

which immediately implies that E2ð
ffiffiffiffiqp Þ is convex if b P 0 and 0 6 k 6 b. If b P 0 and � 1

2 b 6 k < 0, noticing that au1 +
(1 � a)u2 is the solution of the Poisson Eq. (2.13) with q = aq1 + (1 � a)q2, combining (2.14) with u = u1 � u2 and (2.19),
we obtain E2ð

ffiffiffiffiqp Þ is convex again. Combining all the results above together, the conclusion follows. h

Now, we are able to prove the existence and uniqueness as well as nonexistence results for the ground state of a dipolar
BEC in different parameter regimes.

Theorem 2.1. Assume V(x) P 0 for x 2 R3 and limjxj?1V(x) =1 (i.e., confining potential), then we have:

(i) If b P 0 and � 1
2 b 6 k 6 b, there exists a ground state /g 2 S, and the positive ground state j/gj is unique. Moreover,

/g ¼ eih0 j/g j for some constant h0 2 R.
(ii) If b < 0, or b P 0 and k < � 1

2 b or k > b, there exists no ground state, i.e., inf
/2S

Eð/Þ ¼ �1.

Proof.

(i) Assume b P 0 and � 1
2 b 6 k 6 b, we first show E(/) is nonnegative in S, i.e.

Eð/Þ ¼
Z

R3

1
2
jr/j2 þ VðxÞj/j2 þ 1

2
ðb� kÞj/j4 þ 3k

2
j@nruj2

� �
dx P 0; 8/ 2 S: ð2:20Þ

In fact, when b P 0 and 0 6 k 6 b, noticing (2.9) with w = /, it is obvious that (2.20) is valid. When b P 0 and � 1
2 b 6 k < 0,

combining (2.9) with w = /, (2.13) and (2.14), we obtain (2.20) again as

Eð/ÞP
Z

R3

1
2
jr/j2 þ VðxÞj/j2 þ 1

2
ðb� kÞj/j4 þ 3k

2
j/j4

� �
dx ¼

Z
R3

1
2
jr/j2 þ VðxÞj/j2 þ 1

2
bþ 2kð Þj/j4

� �
dx

P 0: ð2:21Þ

Now, let f/ng1n¼0 � S be a minimizing sequence of the minimization problem (1.11). Then there exists a constant C such that

kr/nk2 6 C; k/nk4 6 C;
Z

R3
VðxÞj/nðxÞj2dx 6 C; n P 0: ð2:22Þ

Therefore /n belongs to a weakly compact set in L4, H1 = {/ j k/k2 + kr/k2 <1}, and L2
V ¼ f/ j

R
R3 VðxÞj/ðxÞj2 dx <1gwith a

weighted L2-norm given by k/kV ¼ ½
R

R3 j/ðxÞj2VðxÞdx�1=2. Thus, there exists a /1 2 H1 T L2
V

T
L4 and a subsequence (which

we denote as the original sequence for simplicity), such that

/n * /1; in L2 \ L4 \ L2
V ; r/n * r/1; in L2: ð2:23Þ

Also, we can suppose that /n is nonnegative, since we can replace them with j/nj, which also minimize the functional E. Sim-
ilar as in [26], we can obtain k/1k2 = 1 due to the confining property of the potential V(x). So, /1 2 S. Moreover, the L2-norm
convergence of /n and weak convergence in (2.23) would imply the strong convergence /n ? /1 2 L2. Thus, employing Höl-
der inequality and Sobolev inequality, we obtain

kð/nÞ2 � ð/1Þ2k2 6 C1k/n � /1k1=2
2 k/nk1=2

6 þ k/1k1=2
6

� �
6 C2 kr/nk1=2

2 þ kr/1k1=2
2

� �
k/n � /1k2 ! 0; n!1;

ð2:24Þ
which shows qn = (/n)2 ? q1 = (/1)2 2 L2. Since E2ð

ffiffiffiffiqp Þ in (2.18) is convex and lower semi-continuous in q, thus E2(/1) 6
limn?1E2(/n). For E1 in (2.17), E1(/1) 6 limn?1E1(/n) because of the lower semi-continuity of the H1- and L2

V -norm. Com-
bining the results together, we know E(/1) 6 limn?1E(/n), which proves that /1 is indeed a minimizer of the minimization
problem (1.11). The uniqueness follows from the strictly convexity of Eð ffiffiffiffiqp Þ as shown in Lemma 2.1.

(ii) Assume b < 0, or b P 0 and k < � 1
2 b or k > b. Without loss of generality, we assume n = (0,0,1)T and choose the function
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/e1 ;e2
ðxÞ ¼ 1

ð2pe1Þ1=2 �
1

ð2pe2Þ1=4 exp � x2 þ y2

2e1

� �
exp � z2

2e2

� �
; x 2 R3; ð2:25Þ

with e1 and e2 two small positive parameters (in fact, for general n 2 R3 satisfying jnj = 1, we can always choose 0 – n1 2 R3

and 0 – n2 2 R3 such that {n1,n2,n} forms an orthonormal basis of R3 and do the change of variables x = (x,y,z)T to y =
(x�n1,x�n2,x�n)T on the right hand side of (2.9), the following computation is still valid). Taking the standard Fourier trans-
form at both sides of the Poisson equation

�r2ue1 ;e2
ðxÞ ¼ j/e1 ;e2

ðxÞj2 ¼ qe1 ;e2
ðxÞ; x 2 R3; lim

jxj!1
ue1 ;e2

ðxÞ ¼ 0; ð2:26Þ

we get

jnj2 due1 ;e2
ðnÞ ¼ dqe1 ;e2

ðnÞ; n 2 R3: � ð2:27Þ

Using the Plancherel formula and changing of variables, we obtain

k@nrue1 ;e2
k2

2 ¼
1

ð2pÞ3
kðn � nÞ due1 ;e2

ðnÞk2
2 ¼

1

ð2pÞ3
Z

R3

jn3j2

jnj2
dqe1 ;e2
ðnÞ

			 			2dn

¼ 1

ð2pÞ3e1
ffiffiffiffiffi
e2
p

Z
R3

jn3j2

ðjn1j2 þ jn2j2Þ � e2
e1
þ jn3j2

dq1;1ðnÞ
		 		2 dn; e1; e2 > 0: ð2:28Þ

By the dominated convergence theorem with fixed e1
ffiffiffiffiffi
e2
p

, we get

k@nrue1 ;e2
k2

2 !
0; e2=e1 ! þ1;

1
ð2pÞ3e1

ffiffiffiffi
e2
p
R

R3 dq1;1ðnÞ
		 		2 dn ¼ kqe1 ;e2

k2
2 ¼ k/e1 ;e2

k4
4; e2=e1 ! 0þ:

(
ð2:29Þ

When fixed e1
ffiffiffiffiffi
e2
p

, the last integral in (2.28) is continuous in e2/e1 > 0. Thus, for any a 2 (0,1), by adjusting e2/e1: = Ca > 0, we
could have k@nrue1 ;e2

k2
2 ¼ ak/e1 ;e2

k4
4. Substituting (2.25) into (2.17) and (2.18) with

ffiffiffiffiqp ¼ /e1 ;e2
under fixed e2/e1 > 0, we get

E1ð/e1 ;e2
Þ ¼

Z
R3

1
2
jr/e1 ;e2

j2 þ VðxÞj/e1 ;e2
j2

� �
dx ¼ C1

e1
þ C2

e2
þOð1Þ; ð2:30Þ

E2ð/e1 ;e2
Þ ¼ 1

2

Z
R3
ðb� kþ 3akÞÞj/e1 ;e2

j4 dx ¼ b� kþ 3ak
2

� C3

e1
ffiffiffiffiffi
e2
p ; ð2:31Þ

with some constants C1,C2,C3 > 0 independent of e1 and e2. Thus, if b < 0, choose a = 1/3; if b P 0 and k < � 1
2 b, choose

1=3� b
3k < a < 1; and if b P 0 and k > b, choose 0 < a < 1

3 ð1�
b
kÞ; as e1, e2 ? 0+, we can get inf

/2S
Eð/Þ ¼

lime1 ;e2!0þE1ð/e1 ;e2
Þ þ E2ð/e1 ;e2

Þ ¼ �1, which implies that there exists no ground state of the minimization problem (1.11). h

By splitting the total energy E(�) in (2.9) into kinetic, potential, interaction and dipolar energies, i.e.

Eð/Þ ¼ Ekinð/Þ þ Epotð/Þ þ Eintð/Þ þ Edipð/Þ; ð2:32Þ

where

Ekinð/Þ ¼
1
2

Z
R3
jr/ðxÞj2dx; Epotð/Þ ¼

Z
R3

VðxÞj/ðxÞj2dx; Eintð/Þ ¼
b
2

Z
R3
j/ðxÞj4dx;

Edipð/Þ ¼
k
2

Z
R3

Udip � j/j2
� �

j/ðxÞj2dx ¼ k
2

Z
R3
j/ðxÞj2 �j/ðxÞj2 � 3@nnu

h i
dx

¼ k
2

Z
R3
�j/ðxÞj4 þ 3ðr2uÞð@nnuÞ
h i

dx ¼ k
2

Z
R3
�j/ðxÞj4 þ 3 @nruj j2
h i

dx; ð2:33Þ

with u defined in (2.11), we have the following Viral identity:

Proposition 2.2. Suppose /e is a stationary state of a dipolar BEC, i.e. an eigenfunction of the nonlinear eigenvalue problem (1.9)
under the constraint (1.10), then we have

2Ekin ð/eÞ � 2Etrap ð/eÞ þ 3Eint ð/eÞ þ 3Edip ð/eÞ ¼ 0: ð2:34Þ

Proof. Follow the analogous proof for a BEC without dipolar interaction [31] and we omit the details here for brevity. h

2.2. Analytical results for dynamics

The well-posedness of the Cauchy problem of (1.1) was discussed in [12] by analyzing the convolution kernel Udip(x) with
detailed Fourier transform. Under the new formulation (2.7) and (2.8), here we present a simpler proof for the well-posed-
ness and show finite time blow-up for the Cauchy problem of a dipolar BEC in different parameter regimes. Denote
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X ¼ u 2 H1ðR3Þ jkuk2
X ¼ kuk

2
L2 þ kruk2

L2 þ
Z

R3
VðxÞjuðxÞj2 dx <1


 �
:

Theorem 2.3. (Well-posedness) Suppose the real-valued trap potential VðxÞ 2 C1ðR3Þ such that V(x) P 0 for x 2 R3 and
DaVðxÞ 2 L1ðR3Þ for all a 2 N3

0 with jajP 2. For any initial data w(x, t = 0) = w0(x) 2 X, there exists Tmax 2 (0, +1] such that the
problem (2.7) and (2.8) has a unique maximal solution w 2 C([0,Tmax),X). It is maximal in the sense that if Tmax <1, then
kw(�, t)kX ?1 when t ! T�max. Moreover, the mass N(w(�, t)) and energy E(w(�,t)) defined in (1.6) and (1.7), respectively, are
conserved for t 2 [0,Tmax). Specifically, if b P 0 and � 1

2 b 6 k 6 b, the solution to (2.7) and (2.8) is global in time, i.e., Tmax =1.

Proof. For any / 2 X, let u be the solution of the Poisson Eq. (2.13), denote q = j/j2 and define

Gð/; �/Þ :¼ GðqÞ ¼ 1
2

Z
R3
j/ðxÞj2@nnuðxÞdx; gð/Þ ¼ dGð/; �/Þ

d�/
¼ / @nnu; ð2:35Þ

where �f denotes the conjugate of f. Noticing (2.14), it is easy to show that Gð/Þ 2 C1ðX;RÞ, g(/) 2 C(X,Lp) for some p 2 (6/5,2],
and

kgðuÞ � gðvÞkLp 6 CðkukX þ kvkXÞku� vkLr ; for some r 2 ½2;6Þ; 8u; v 2 X: ð2:36Þ

Applying the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [13,40] for the well-posedness of the nonlinear Schrödinger
equation, we can obtain the results immediately. h

Theorem 2.4. (Finite time blow-up) Let b < 0, or b P 0 and k < � 1
2 b or k > b, and assume V(x) satisfies 3V(x) + x�rV(x) P 0 for

x 2 R3. Given any initial data w(x, t = 0) = w0(x) 2 X for the problem (2.7) and (2.8), there exists finite time blow-up, i.e., Tmax <1,
if one of the following holds:

(i) E(w0) < 0;
(ii) E(w0) = 0 and Im ð

R
R3

�w0ðxÞ ðx � rw0ðxÞÞdxÞ < 0;
(iii) E(w0) > 0 and Im ð

R
R3

�w0ðxÞ ðx � rw0ðxÞÞdxÞ < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Eðw0Þ

p
kxw0kL2 ;

Table 1
Comparison for evaluating dipolar energy under different mesh sizes h.

Case I Case II Case III

DST DFT DST DFT DST DFT

M = 32 & h = 1 2.756E�2 2.756E�2 3.555E�18 1.279E�4 0.1018 0.1020
M = 64 & h = 0.5 1.629E�3 1.614E�3 9.154E�18 1.278E�4 9.788E�5 2.269E�4
M = 128 & h = 0.25 1.243E�7 1.588E�5 7.454E�17 1.278E�4 6.406E�7 1.284E�4

Table 2
Different quantities of the ground states of a dipolar BEC for b = 0.20716N and k = 0.033146N with different number of particles N.

N
1000

Eg lg Eg
kin Eg

pot Eg
int Eg

dip rg
x rg

z qg(0)

0.1 1.567 1.813 0.477 0.844 0.262 �0.015 0.796 1.299 0.06139
0.5 2.225 2.837 0.349 1.264 0.659 �0.047 0.940 1.745 0.02675
1 2.728 3.583 0.296 1.577 0.925 �0.070 1.035 2.009 0.01779
5 4.745 6.488 0.195 2.806 1.894 �0.151 1.354 2.790 0.00673
10 6.147 8.479 0.161 3.654 2.536 �0.204 1.538 3.212 0.00442
50 11.47 15.98 0.101 6.853 4.909 �0.398 2.095 4.441 0.00168
100 15.07 21.04 0.082 9.017 6.498 �0.526 2.400 5.103 0.00111

Table 3
Different quantities of the ground states of a dipolar BEC with different values of k

b with b = 207.16.

k
b

Eg lg Eg
kin Eg

pot Eg
int Eg

dip rg
x rg

z qg(0)

-0.5 2.957 3.927 0.265 1.721 0.839 0.131 1.153 1.770 0.01575
-0.25 2.883 3.817 0.274 1.675 0.853 0.081 1.111 1.879 0.01605
0 2.794 3.684 0.286 1.618 0.890 0.000 1.066 1.962 0.01693
0.25 2.689 3.525 0.303 1.550 0.950 �0.114 1.017 2.030 0.01842
0.5 2.563 3.332 0.327 1.468 1.047 �0.278 0.960 2.089 0.02087
0.75 2.406 3.084 0.364 1.363 1.212 �0.534 0.889 2.141 0.02536
1.0 2.193 2.726 0.443 1.217 1.575 �1.041 0.786 2.189 0.03630
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where Im (f) denotes the imaginary part of f.

Proof. Define the variance

rV ðtÞ :¼ rV ðwð�; tÞÞ ¼
Z

R3
jxj2jwðx; tÞj2 dx ¼ dxðtÞ þ dyðtÞ þ dzðtÞ; t P 0; ð2:37Þ

where

raðtÞ :¼ raðwð�; tÞÞ ¼
Z

R3
a2jwðx; tÞj2 dx; a ¼ x; y; z: ð2:38Þ

For a = x, or y or z, differentiating (2.38) with respect to t, noticing (2.7) and (2.8), integrating by parts, we get

Fig. 1. Surface plots of j/g(x,0,z)j2 (left column) and isosurface plots of j/g(x,y,z)j = 0.01 (right column) for the ground state of a dipolar BEC with
b = 401.432 and k = 0.16b for harmonic potential (top row), double-well potential (middle row) and optical lattice potential (bottom row).
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d
dt

raðtÞ ¼ �i
Z

R3
a�wðx; tÞ@awðx; tÞ � awðx; tÞ@a �wðx; tÞ
� 


dx; t P 0: ð2:39Þ

Similarly, we have

d2

dt2 raðtÞ ¼
Z

R3
2j@awj2 þ ðb� kÞjwj4 þ 6kjwj2a@a@nnu� 2ajwj2@aVðxÞ
h i

dx: ð2:40Þ

Noticing (2.8) and

�
Z

R3
r2u x � r@nnuð Þdx ¼ 3

2

Z
R3
j@nruj2 dx;

summing (2.40) for a = x, y and z, using (2.37) and (1.7), we get

Fig. 2. Isosurface plots of the ground state j/g(x)j = 0.08 of a dipolar BEC with the harmonic potential VðxÞ ¼ 1
2 ðx2 þ y2 þ z2Þ and b = 207.16 for different

values of k
b: (a) k

b ¼ �0:5; (b) k
b ¼ 0; (c) k

b ¼ 0:25; (d) k
b ¼ 0:5; (e) k

b ¼ 0:75; (f) k
b ¼ 1.
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d2

dt2 rV ðtÞ ¼ 2
Z

R3
jrwj2 þ 3

2
ðb� kÞjwj4 þ 9

2
kj@nrwj2 � jwj2ðx � rVðxÞÞ

� �
dx

¼ 6EðwÞ �
Z

R3
jrwðx; tÞj2 � 2

Z
R3
jwðx; tÞj2 3VðxÞ þ x � rVðxÞð Þdx 6 6EðwÞ � 6Eðw0Þ; t P 0: ð2:41Þ

Thus,

rV ðtÞ 6 3Eðw0Þt2 þ r0V ð0Þt þ rV ð0Þ; t P 0;

and the conclusion follows in the same manner as those in [40,13] for the standard nonlinear Schrödinger equation. h

Fig. 3. Time evolution of different quantities and isosurface plots of the density function q(x, t): = jw(x, t)j2 = 0.01 at different times for a dipolar BEC when
the dipolar direction is suddenly changed from n = (0,0,1)T to (1,0,0)T at time t = 0.
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3. A numerical method for computing ground states

Based on the new mathematical formulation for the energy in (2.9), we will present an efficient and accurate backward
Euler sine pseudospectral method for computing the ground states of a dipolar BEC.

In practice, the whole space problem is usually truncated into a bounded computational domain X = [a,b] � [c,d] � [e, f]
with homogeneous Dirichlet boundary condition. Various numerical methods have been proposed in the literatures for com-
puting the ground states of BEC (see [37,15,4,3,7,14,11] and references therein). One of the popular and efficient techniques
for dealing with the constraint (1.10) is through the following construction [4,8,3]: Choose a time step Dt > 0 and set tn = nDt
for n = 0, 1, . . . Applying the steepest decent method to the energy functional E(/) in (2.9) without the constraint (1.10), and

Fig. 4. Time evolution of different quantities and isosurface plots of the density function q(x, t): = jw(x, t)j2 = 0.01 at different times for a dipolar BEC when
the trap potential is suddenly changed from from 1

2 ðx2 þ y2 þ 25z2Þ to 1
2 ðx2 þ y2 þ 25

4 z2Þ at time t = 0.
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then projecting the solution back to the unit sphere S at the end of each time interval [tn, tn+1] in order to satisfy the con-
straint (1.10). This procedure leads to the function /(x, t) is the solution of the following gradient flow with discrete
normalization:

@t/ðx; tÞ ¼
1
2
r2 � VðxÞ � ðb� kÞj/ðx; tÞj2 þ 3k ~uðx; tÞ

� �
/ðx; tÞ; ð3:1Þ

~uðx; tÞ ¼ @nnuðx; tÞ; �r2uðx; tÞ ¼ j/ðx; tÞj2; x 2 X; tn 6 t < tnþ1; ð3:2Þ

Fig. 5. Time evolution of different quantities and isosurface plots of the density function q(x, t): = jw(x, t)j2 = 0.01 at different times for a dipolar BEC when
the dipolar interaction constant is suddenly changed from k = 0.8 b = 82.864 to k = 4 b = 414.32 at time t = 0.
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/ðx; tnþ1Þ :¼ /ðx; tþnþ1Þ ¼
/ðx; t�nþ1Þ
k/ð�; t�nþ1Þk

; x 2 X; n P 0; ð3:3Þ

/ðx; tÞjx2@X ¼ uðx; tÞjx2@X ¼ 0; t P 0; ð3:4Þ
/ðx;0Þ ¼ /0ðxÞ; with k/0k ¼ 1; ð3:5Þ

where /ðx; t	n Þ ¼ limt!t	n
/ðx; tÞ.

Let M, K and L be even positive integers and define the index sets

Fig. 6. Time evolution of different quantities and isosurface plots of the density function q(x, t): = jw(x, t)j2 = 0.01 at different times for a dipolar BEC when
the interaction constant b is suddenly changed from b = 103.58 to b = �569.69 at time t = 0.
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T MKL ¼ fðj; k; lÞjj ¼ 1;2; . . . ;M � 1; k ¼ 1;2; . . . ;K � 1; l ¼ 1;2; . . . ; L� 1g;
T 0

MKL ¼ fðj; k; lÞ j j ¼ 0;1; . . . ;M; k ¼ 0;1; . . . ;K; l ¼ 0;1; . . . ; Lg:

Choose the spatial mesh sizes as hx ¼ b�a
M , hy ¼ d�c

K and hz ¼ f�e
L and define

xj :¼ aþ j hx; yk ¼ c þ k hy; zl ¼ eþ l hz; ðj; k; lÞ 2 T 0
MKL:

Denote the space

YMKL ¼ spanfUjklðxÞ; ðj; k; lÞ 2 T MKLg;

with

UjklðxÞ ¼ sin lx
j ðx� aÞ

� �
sinðly

kðy� cÞÞ sinðlz
l ðz� eÞÞ; x 2 X; ðj; k; lÞ 2 T MKL;

lx
j ¼

pj
b� a

; ly
k ¼

pk
d� c

; lz
l ¼

pl
f � e

; ðj; k; lÞ 2 T MKL;

and PMKL:Y = {u 2 C(X) ju(x)jx2@X = 0} ? YMKL be the standard project operator [38], i.e.

ðPMKLvÞðxÞ ¼
XM�1

p¼1

XK�1

q¼1

XL�1

s¼1

bv pqs UpqsðxÞ; x 2 X; 8v 2 Y ;

with

bv pqs ¼
Z

X
vðxÞ UpqsðxÞ dx; ðp; q; sÞ 2 T MKL: ð3:6Þ

Then a backward Euler sine spectral discretization for (3.1)–(3.5) reads:
Find /n+1(x) 2 YMKL (i.e. /+(x) 2 YMKL) and un(x) 2 YMKL such that

/þðxÞ � /nðxÞ
Dt

¼ 1
2
r2/þðxÞ � PMKL VðxÞ þ ðb� kÞj/nðxÞj2 þ 3k ~unðxÞ

h i
/þðxÞ

n o
; x 2 X; ð3:7Þ

~unðxÞ ¼ @nnunðxÞ; �r2unðxÞ ¼ PMKL j/nðxÞj2
� �

; /nþ1ðxÞ ¼ /þðxÞ
k/þðxÞk2

; n P 0; ð3:8Þ

where /0(x) = PMKL(/0(x)) is given.
The above discretization can be solved in phase space and it is not suitable in practice due to the difficulty of computing

the integrals in (3.6). We now present an efficient implementation by choosing /0(x) as the interpolation of /0(x) on the grid
points fðxj; yk; zlÞ; ðj; k; lÞ 2 T 0

MKLg, i.e. /0(xj,yk,zl) = /0(xj,yk,zl) for ðj; k; lÞ 2 T 0
MKL, and approximating the integrals in (3.6) by a

quadrature rule on the grid points. Let /n
jkl and un

jkl be the approximations of /(xj,yk,zl, tn) and u(xj,yk,zl, tn), respectively,
which are the solution of (3.1)–(3.5); denote qn

jkl ¼ j/
n
jklj

2 and choose /0
jkl ¼ /0ðxj; yk; zlÞ for ðj; k; lÞ 2 T 0

MKL. For n = 0, 1, . . ., a
backward Euler sine pseudospectral discretization for (3.1)–(3.5) reads:

/þjkl � /n
jkl

Mt
¼ 1

2
r2

s /
þ

� �			
jkl
� Vðxj; yk; zlÞ þ ðb� kÞ /n

jkl

			 			2 þ 3k~unjjkl

� �
/þjkl; ðj; k; lÞ 2 T MKL; ð3:9Þ

~unjjkl ¼ ð@
s
nnu

nÞjjkl; �ðr2
s u

nÞjjkl ¼ j/
n
j;k;lj

2 ¼ qn
jkl; /nþ1

jkl ¼
/þjkl

k/þkh

; ð3:10Þ

/nþ1
0kl ¼ /nþ1

Mkl ¼ /nþ1
j0l ¼ /nþ1

jKl ¼ /nþ1
jk0 ¼ /nþ1

jkL ¼ 0; ðj; k; lÞ 2 T 0
MKL; ð3:11Þ

un
0kl ¼ un

Mkl ¼ un
j0l ¼ un

jKl ¼ un
jk0 ¼ un

jkL ¼ 0; ðj; k; lÞ 2 T 0
MKL; ð3:12Þ

where r2
s and @s

nn are sine pseudospectral approximations of r2 and @nn, respectively, defined as

r2
s /

n
� �			

jkl
¼ �

XM�1

p¼1

XK�1

q¼1

XL�1

s¼1

ðlx
pÞ

2 þ ðly
qÞ

2 þ ðlz
sÞ

2
h i gð/nÞpqs sin

jpp
M

� �
sin

kqp
K

� �
sin

lsp
L

� �
;

~unjjkl ¼
XM�1

p¼1

XK�1

q¼1

XL�1

s¼1

gðqnÞpqs

ðlx
pÞ

2 þ ðly
qÞ2 þ ðlz

sÞ
2 ð@nnUpqsðxÞÞjðxj ;yk ;zlÞ; ðj; k; lÞ 2 T MKL; ð3:13Þ

with gð/nÞpqs (ðp; q; sÞ 2 T MKLÞ the discrete sine transform coefficients of the vector /n as

gð/nÞpqs ¼
8

MKL

XM�1

j¼1

XK�1

k¼1

XL�1

l¼1

/n
jkl sin

jpp
M

� �
sin

kqp
K

� �
sin

lsp
L

� �
; ðp; q; sÞ 2 T MKl; ð3:14Þ

and the discrete h-norm is defined as
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k/þk2
h ¼ hxhyhz

XM�1

j¼1

XN�1

k¼1

XL�1

l¼1

j/þjklj
2
:

Similar as those in [6], the linear system (3.9)–(3.12) can be iteratively solved in phase space very efficiently via discrete
sine transform and we omitted the details here for brevity.

4. A time-splitting sine pseudospectral method for dynamics

Similarly, based on the new Gross–Pitaevskii–Poisson type system (2.7) and (2.8), we will present an efficient and accu-
rate time-splitting sine pseudospectral (TSSP) method for computing the dynamics of a dipolar BEC.

Again, in practice, the whole space problem is truncated into a bounded computational domain X = [a,b] � [c,d] � [e, f]
with homogeneous Dirichlet boundary condition. From time t = tn to time t = tn+1, the Gross–Pitaevskii–Poisson type system
(2.7) and (2.8) is solved in two steps. One solves first

i@twðx; tÞ ¼ �
1
2
r2wðx; tÞ; x 2 X; wðx; tÞjx2@X ¼ 0; tn 6 t 6 tnþ1; ð4:15Þ

for the time step of length Dt, followed by solving

i@twðx; tÞ ¼ VðxÞ þ ðb� kÞjwðx; tÞj2 � 3k~uðx; tÞ
h i

wðx; tÞ; ð4:16Þ

~uðx; tÞ ¼ @nnuðx; tÞ; r2uðx; tÞ ¼ �jwðx; tÞj2; x 2 X; tn 6 t 6 tnþ1; ð4:17Þ
uðx; tÞjx2@X ¼ 0; wðx; tÞjx2@X ¼ 0; tn 6 t 6 tnþ1; ð4:18Þ

for the same time step. Eq. (4.15) will be discretized in space by sine pseudospectral method and integrated in time exactly
[9]. For t 2 [tn, tn+1], the equations (4.16)–(4.18) leave jwj and u invariant in t [5,9] and therefore they collapses to

i@twðx; tÞ ¼ VðxÞ þ ðb� kÞjwðx; tnÞj2 � 3k ~uðx; tnÞ
h i

wðx; tÞ; x 2 X; tn 6 t 6 tnþ1; ð4:19Þ

~uðx; tnÞ ¼ @nnuðx; tnÞ; �r2uðx; tnÞ ¼ jwðx; tnÞj2; x 2 X: ð4:20Þ

Again, Eq. (4.20) will be discretized in space by sine pseudospectral method [9,38] and the linear ODE (4.19) can be inte-
grated in time exactly [5,9].

Let wn
jkl and un

jkl be the approximations of w(xj,yk,zl, tn) and u(xj,yk,zl, tn), respectively, which are the solution of (2.7) and
(2.8); and choose w0

jkl ¼ w0ðxj; yk; zlÞ for ðj; k; lÞ 2 T 0
MKL. For n = 0, 1, . . ., a second-order TSSP method for solving (2.7) and (2.8)

via the standard Strang splitting is [39,5,9]

wð1Þjkl ¼
XM�1

p¼1

XK�1

q¼1

XL�1

s¼1

e�iMt ðlx
pÞ

2þðly
qÞ

2þðlz
s Þ

2½ �=4 gðwnÞpqr sin
jpp
M

� �
sin

kqp
K

� �
sin

lsp
L

� �
;

wð2Þjkl ¼ e
�iMt Vðxj ;yk ;zlÞþðb�kÞjwð1Þ

jkl
j2�3k ~uð1Þ jjkl

h i
wð1Þjkl ; ðj; k; lÞ 2 T 0

MKL; ð4:21Þ

wnþ1
jkl ¼

XM�1

p¼1

XK�1

q¼1

XL�1

s¼1

e�iMt ðlx
pÞ

2þðly
qÞ

2þðlz
s Þ

2½ �=4 gðwð2ÞÞpqr sin
jpp
M

� �
sin

kqp
K

� �
sin

lsp
L

� �
;

where gðwnÞpqs and gðwð2ÞÞpqs (ðp; q; sÞ 2 T MKL) are the discrete sine transform coefficients of the vectors wn and w(2), respectively
(defined similar as those in (3.14)); and ~uð1Þjjkl can be computed as in (3.13) with qn

jkl ¼ qð1Þjkl :¼ jwð1Þjkl j
2 for ðj; k; lÞ 2 T 0

MKL.
The above method is explicit, unconditionally stable, the memory cost is O(MKL) and the computational cost per time step

is O(MKL ln (MKL)). In fact, for the stability, we have.

Lemma 4.1. The TSSP method (4.21) is normalization conservation, i.e.

kwnk2
h :¼ hxhyhz

XM�1

j¼1

XK�1

k¼1

XL�1

l¼1

jwn
jklj

2 � hxhyhz

XM�1

j¼1

XK�1

k¼1

XL�1

l¼1

jw0
jklj

2 ¼ kw0k2
h; n P 0: ð4:22Þ

Proof. Follow the analogous proof in [5,9] and we omit the details here for brevity. h

5. Numerical results

In this section, we first compare our new methods and the standard method used in the literatures [49,46,41,10] to eval-
uate numerically the dipolar energy and then report ground states and dynamics of dipolar BECs by using our new numerical
methods.
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5.1. Comparison for evaluating the dipolar energy

Let

/ :¼ /ðxÞ ¼ p�3=4c1=2
x c1=4

z e�
1
2 cxðx2þy2Þþczz2ð Þ; x 2 R3: ð5:1Þ

Then the dipolar energy Edip(/) in (2.33) can be evaluated analytically as [42]

Edipð/Þ ¼ �
kcx

ffiffiffiffifficz
p

4p
ffiffiffiffiffiffiffi
2p
p

1þ2j2

1�j2 �
3j2 arctan

ffiffiffiffiffiffiffiffiffi
j2�1
p� �

ð1�j2Þ
ffiffiffiffiffiffiffiffiffi
j2�1
p ; j > 1;

0; j ¼ 1;

1þ2j2

1�j2 � 1:5j2

ð1�j2Þ
ffiffiffiffiffiffiffiffiffi
1�j2
p ln 1þ

ffiffiffiffiffiffiffiffiffi
1�j2
p

1�
ffiffiffiffiffiffiffiffiffi
1�j2
p

� �
; j < 1;

8>>>>><>>>>>:
ð5:2Þ

with j ¼
ffiffiffiffi
cz
cx

q
. This provides a perfect example to test the efficiency of different numerical methods to deal with the dipolar

potential. Based on our new formulation (2.33), the dipolar energy can be evaluated via discrete sine transform (DST) as

Edipð/Þ 

khxhyhz

2

XM�1

j¼1

XK�1

k¼1

XL�1

l¼1

j/ðxj; yk; zlÞj2 �j/ðxj; yk; zlÞj2 � 3 ~ujjkl

h i
;

where ~ujjkl is computed as in (3.13) with qn
jkl ¼ j/ðxj; yk; zlÞj2 for ðj; k; lÞ 2 T 0

MKL. In the literatures [49,41,46,10], this dipolar
energy is usually calculated via discrete Fourier transform (DFT) as

Edipð/Þ 

khxhyhz

2

XM�1

j¼0

XK�1

k¼0

XL�1

l¼0

j/ðxj; yk; zlÞj2 F�1
jkl

dðUdipÞð2lx
p;2ly

q;2lz
sÞ � F pqsðj/j2Þ

� �h i
;

where F and F�1 are the discrete Fourier and inverse Fourier transforms over the grid points fðxj; yk; zlÞ; ðj; k; lÞ 2 T 0
MKLg,

respectively [46]. We take k = 24p, the bounded computational domain X = [�16,16]3, M = K = L and thus
h ¼ hx ¼ hy ¼ hz ¼ 32

M . Table 1 lists the errors e :¼ jEdipð/Þ � Eh
dipj with Eh

dip computed numerically via either (5.3) or (5.3) with
mesh size h for three cases:

� Case I. cx = 0.25 and cz = 1 which implies j = 2.0 and Edip(/) = 0.0386708614;
� Case II. cx = cz = 1 which implies j = 1.0 and Edip(/) = 0;
� Case III. cx = 2 and cz = 1 which implies j ¼

ffiffiffiffiffiffiffi
0:5
p

and Edip(/) = �0.1386449741.

From Table 1 and our extensive numerical results not shown here for brevity, we can conclude that our new method via
discrete sine transform based on a new formulation is much more accurate than that of the standard method via discrete
Fourier transform in the literatures for evaluating the dipolar energy.

5.2. Ground states of dipolar BECs

By using our new numerical method (3.9)–(3.12), here we report the ground states of a dipolar BEC (e.g., 52Cr [30]) with
different parameters and trapping potentials. In our computation and results, we always use the dimensionless quantities.
We take M = K = L = 128, time step Dt = 0.01, dipolar direction n = (0,0,1)T and the bounded computational domain
X = [�8,8]3 for all cases except X = [�16,16]3 for the cases N

10000 ¼ 1; 5; 10 and X = [�20,20]3 for the cases
N

10000 ¼ 50; 100 in Table 2. The ground state /g is reached numerically when k/nþ1 � /nk1 :¼
max

06j6M; 06k6K; 06l6L
j/nþ1

jkl � /n
jklj 6 e :¼ 10�6 in (3.9)–(3.12). Table 2 shows the energy Eg :¼ E(/g), chemical potential lg :¼ l(/g),

kinetic energy Eg
kin :¼ Ekinð/gÞ, potential energy Eg

pot :¼ Epotð/gÞ, interaction energy Eg
int :¼ Eintð/gÞ, dipolar energy

Eg
dip :¼ Edipð/gÞ, condensate widths rg

x :¼ rxð/gÞ and rg
z :¼ rzð/gÞ in (2.38) and central density qg(0) :¼ j/g(0,0,0)j2 with har-

monic potential Vðx; y; zÞ ¼ 1
2 ðx2 þ y2 þ 0:25z2Þ for different b = 0.20716N and k = 0.033146N with N the total number of par-

ticles in the condensate; and Table 3 lists similar results with b = 207.16 for different values of �0:5 6 k
b 6 1. In addition,

Fig. 1 depicts the ground state /g(x), e.g. surface plots of j/g(x,0,z)j2 and isosurface plots of j/g(x)j = 0.01, of a dipolar BEC
with b = 401.432 and k = 0.16b for harmonic potential VðxÞ ¼ 1

2 ðx2 þ y2 þ z2Þ, double-well potential

VðxÞ ¼ 1
2 ðx2 þ y2 þ z2Þ þ 4e�z2=2 and optical lattice potential VðxÞ ¼ 1

2 ðx2 þ y2 þ z2Þ þ 100½sin2 p
2 x
� �

þ sin2 p
2 y
� �

þ sin2 p
2 z
� �
�;

and Fig. 2 depicts the ground state /g(x), e.g. isosurface plots of j/g(x)j = 0.08, of a dipolar BEC with the harmonic potential
VðxÞ ¼ 1

2 ðx2 þ y2 þ z2Þ and b = 207.16 for different values of �0:5 6 k
b 6 1.

From Tables 2 and 3 and Figs. 1 and 2, we can draw the following conclusions: (i) For fixed trapping potential V(x) and
dipolar direction n = (0,0,1)T, when b and k increase with the ratio k

b fixed, the energy Eg, chemical potential lg, potential en-
ergy Eg

pot, interaction energy Eg
int, condensate widths rg

x and rg
z of the ground states increase; and resp., the kinetic energy Eg

kin,
dipolar energy Eg

dip and central density qg(0) decrease (cf. Table 2). (ii) For fixed trapping potential V(x), dipolar direction
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n = (0,0,1)T and b, when the ratio k
b increases from �0.5 to 1, the kinetic energy Eg

kin, interaction energy Eg
int, condensate

widths rg
z and central density qg(0) of the ground states increase; and resp., the energy Eg, chemical potential lg, potential

energy Eg
pot, dipolar energy Eg

dip and condensate widths rg
x decrease (cf. Table 3). (iii) Our new numerical method can compute

the ground states accurately and efficiently (cf. Figs. 1 and 2).

5.3. Dynamics of dipolar BECs

Similarly, by using our new numerical method (4.21), here we report the dynamics of a dipolar BEC (e.g., 52Cr [30]) under
different setups. Again, in our computation and results, we always use the dimensionless quantities. We take the bounded
computational domain X = [�8,8]2 � [�4,4], M = K = L = 128, i.e. h = hx = hy = 1/8,hz = 1/16, time step Dt = 0.001. The initial
data w(x,0) = w0(x) is chosen as the ground state of a dipolar BEC computed numerically by our numerical method with
n = (0,0,1)T, VðxÞ ¼ 1

2 ðx2 þ y2 þ 25z2Þ, b = 103.58 and k = 0.8b = 82.864.
The first case to study numerically is the dynamics of suddenly changing the dipolar direction from n = (0,0,1)T to n =

(1,0,0)T at t = 0 and keeping all other quantities unchanged. Fig. 3 depicts time evolution of the energy E(t) :¼ E(w(�, t)), chem-
ical potential l(t) = l(w(�, t), kinetic energy Ekin(t) :¼ Ekin(w(�,t)), potential energy Epot(t) :¼ Epot(w(�, t)), interaction energy
Eint(t) :¼ Eint(w(�, t)), dipolar energy Edip(t) :¼ Edip(w(�, t)), condensate widths rx(t) :¼ rx(w(�, t)), rz(t) :¼ rz(w(�, t)), and central
density q(t) :¼ jw(0, t)j2, as well as the isosurface of the density function q(x, t) :¼ jw(x, t)j2 = 0.01 for different times. In addi-
tion, Fig. 4 show similar results for the case of suddenly changing the trapping potential from VðxÞ ¼ 1

2 ðx2 þ y2 þ 25z2Þ to
VðxÞ ¼ 1

2 ðx2 þ y2 þ 25
4 z2Þ at t = 0, i.e. decreasing the trapping frequency in z-direction from 5 to 5

2, and keeping all other quan-
tities unchanged; Fig. 5 show the results for the case of suddenly changing the dipolar interaction from k = 0.8 b = 82.864 to
k = 4 b = 414.32 at t = 0 while keeping all other quantities unchanged, i.e. collapse of a dipolar BEC; and Fig. 6 show the re-
sults for the case of suddenly changing the interaction constant b from b = 103.58 to b = �569.69 at t = 0 while keeping all
other quantities unchanged, i.e. another collapse of a dipolar BEC.

From Figs. 3–6, we can conclude that the dynamics of dipolar BEC can be very interesting and complicated. In fact, global
existence of the solution is observed in the first two cases (cf. Figs. 3 and 4) and finite time blow-up is observed in the last
two cases (cf. Figs. 5 and 6). The total energy is numerically conserved very well in our computation when there is no blow-
up (cf. Figs. 3 and 4) and before blow-up happens (cf. Figs. 5 and 6). Of course, it is not conserved numerically near or after
blow-up happens because the mesh size and time step are fixed which cannot resolve the solution. In addition, our new
numerical method can compute the dynamics of dipolar BEC accurately and efficiently.

6. Conclusions

Efficient and accurate numerical methods were proposed for computing ground states and dynamics of dipolar Bose–Ein-
stein condensates based on the three-dimensional Gross–Pitaevskii equation (GPE) with a nonlocal dipolar interaction po-
tential. By decoupling the dipolar interaction potential into a short-range and a long-range part, the GPE for a dipolar BEC
is re-formulated to a Gross–Pitaevskii–Poisson type system. Based on this new mathematical formulation, we proved rigor-
ously the existence and uniqueness as well as nonexistence of the ground states, and discussed the dynamical properties of
dipolar BEC in different parameter regimes. In addition, the backward Euler sine pseudospectral method and time-splitting
sine pseudospectral method were proposed for computing the ground states and dynamics of a dipolar BEC, respectively. Our
new numerical methods avoided taking the Fourier transform of the nonlocal dipolar interaction potential which is highly
singular and causes some numerical difficulties in practical computation. Comparison between our new numerical methods
and existing numerical methods in the literatures showed that our numerical methods perform better. Applications of our
new numerical methods for computing the ground states and dynamics of dipolar BECs were reported. In the future, we will
use our new numerical methods to simulate the ground states and dynamics of dipolar BEC with experimental relevant set-
ups and extend our methods for rotating dipolar BECs.
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Appendix A. Proof of the equality (2.2)

Let

/ðxÞ ¼ 3
4pr3 1� 3ðx � nÞ2

r2

 !
; r ¼j x j; x 2 R3: ðA:1Þ
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For any n 2 R3 satisfies jnj = 1, in order to prove (2.2) holds in the distribution sense, it is equivalent to prove the following:Z
R3

/ðxÞf ðxÞdx ¼ �f ð0Þ � 3
Z

R3
f ðxÞ @nn

1
4pr

� �
dx; 8f ðxÞ 2 C10 ðR3Þ: ðA:2Þ

For any fixed e > 0, let Be ¼ fx 2 R3 j jxj < eg and Bc
e ¼ fx 2 R3 j jxjP eg. It is straightforward to check that

/ðxÞ ¼ �3@nn
1

4pr

� �
; 0 – x 2 R3: ðA:3Þ

Using integration by parts and noticing (A.3), we getZ
Bc
e

/ðxÞf ðxÞdx ¼ �3
Z

Bc
e

f ðxÞ @nn
1

4pr

� �
dx ¼ 3

Z
Bc
e

@n
1

4pr

� �
@nðf ðxÞÞ dxþ 3

Z
@Be

f ðxÞ n � x
r

@n
1

4pr

� �
dS

¼ �3
Z

Bc
e

1
4pr

@nnðf ðxÞÞ dxþ Ie1 þ Ie2; ðA:4Þ

where

Ie1 :¼ 3
Z
@Be

f ðxÞ n � x
r

@n
1

4pr

� �
dS; Ie2 :¼ �3

Z
@Be

n � x
4pr2 @nðf ðxÞÞdS: ðA:5Þ

From (A.5), changing of variables, we get

Ie1 ¼ �3
Z
@Be

ðn � xÞ2

4pr4 f ðxÞdS ¼ � 3
4p

Z
@B1

ðn � xÞ2

e2 f ðexÞe2dS

¼ � 3
4p

Z
@B1

ðn � xÞ2f ð0ÞdS� 3
4p

Z
@B1

ðn � xÞ2½f ðexÞ � f ð0Þ�dS: ðA:6Þ

Choosing 0 – n1 2 R3 and 0 – n2 2 R3 such that {n1,n2,n} forms an orthornormal basis of R3, by symmetry, we obtain

A :¼ 3
4p

Z
@B1

ðn � xÞ2 dS ¼ 1
4p

Z
@B1

ðn � xÞ2 þ ðn1 � xÞ2 þ ðn2 � xÞ2
h i

dS ¼ 1
4p

Z
@B1

jxj2dS ¼ 1
4p

Z
@B1

dS ¼ 1; ðA:7ÞZ
@B1

ðn � xÞ2 f ðexÞ � f ð0Þð ÞdS
				 				 ¼ Z

@B1

ðn � xÞ2e x � rf ðhexÞ½ �dS
				 				 6 ekrfkL1ðBeÞ

Z
@B1

dS 6 4pekrfkL1ðBeÞ; ðA:8Þ

where 0 6 h 6 1. Plugging (A.7) and (A.8) into (A.6), we have

Ie1 ! �f ð0Þ; e! 0þ: ðA:9Þ

Similarly, for e ? 0+, we get

jIe2j 6 3krfkL1ðBeÞ

Z
@Be

1
4pe

dS ¼ 3ekrfkL1ðBeÞ ! 0; ðA:10ÞZ
Be

3
4pr

@nnðf ðxÞÞdx
				 				 6 kD2fkL1ðBeÞ

Z
Be

3
4p

dx 6
3
2
e2 kD2fkL1ðBeÞ ! 0: ðA:11Þ

Combining (A.9), (A.10) and (A.11), taking e ? 0+ in (A.4), we obtainZ
R3

/ðxÞf ðxÞdx ¼ �f ð0Þ � 3
Z

R3

1
4pr

@nnðf ðxÞÞdx; 8f ðxÞ 2 C10 ðR3Þ: ðA:12Þ

Thus (A.2) follows from (A.12) and the definition of the derivative in the distribution sense, i.e.Z
R3

f ðxÞ @nn
1

4pr

� �
dx ¼

Z
R3

1
4pr

@nnðf ðxÞÞdx; 8f ðxÞ 2 C10 ðR3Þ; ðA:13Þ

and the equality (2.2) is proven. h
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