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Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates
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Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in
a rotating frame, for both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization
direction, we study the profiles of the single vortex state and show how the critical rotational frequency changes
with the s-wave contact interaction strength, DDI strength, and polarization angle. In addition, we find numerically
that at the “magic angle” ϑ = arccos(

√
3/3), the critical rotational frequency is almost independent of the DDI

strength. By numerically solving the dipolar Gross-Pitaevskii equation at high rotation speed, we identify different
patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study
of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice
orientation tends to be aligned to the dipole polarization axis for positive DDI strength and to the perpendicular
direction of the dipole axis for negative DDI strength.
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I. INTRODUCTION

One of the striking features of rotating atomic Bose-Einstein
condensates (BECs) is the formation of vortices above a critical
angular velocity [1–3]. In a symmetric BEC, multiple vortices
arrange in a characteristic triangular pattern [2]. This triangular
vortex lattice minimizes the free energy of the BEC.

While the initial experiments considered atoms with local
interactions, more recently, dipolar BECs with significant
electric or magnetic dipole moment have received much
attention from both theoretical and experimental studies (for
recent reviews, see Refs. [4,5]). The dipole-dipole interac-
tion (DDI) crucially affects the ground-state properties [6,7],
stability [8–11], and dynamics of the gas [12]. Furthermore,
they offer a route for studying many-body quantum effects,
such as a superfluid-to-crystal quantum phase transition [13],
supersolids [14], or even topological quantum phases [15].
Recent advances in experimental techniques have paved the
way for a Bose-Einstein condensate (BEC) of 52Cr with a
magnetic dipole moment 6μB (Bohr magneton μB), much
larger than conventional alkali BECs [16–18]. Promising
candidates for dipolar BEC experiments are Er and Dy with
even larger magnetic moments of 7μB and 10μB , respectively,
which have been reported in experiments [19,20]. Further-
more, DDI-induced decoherence and spin textures have been
observed in alkali-metal condensates [21,22]. Dipolar effects
also play a crucial role in experiments with Rydberg atoms [23]
and heteronuclear molecules [24,25]. Bosonic heteronuclear
molecules may provide a basis for future experiments on BECs
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with dipole moments much larger than those in atomic BECs
[26].

The anisotropy of DDI dramatically affects stationary states
of the rotating dipolar BEC. In this paper, we focus on a
system of dipolar BEC confined in a quasi-two-dimensional
pancake-shaped trapping potential with the atomic magnetic
dipoles polarized by an external magnetic field. We define
the polarization angle ϑ to be the angle between the dipoles
and the normal direction of the condensate plane. Hence,
if the dipoles lie in the plane of the condensate, we have
ϑ = π/2, whereas if the dipoles are perpendicular to the plane,
we have ϑ = 0. By adjusting the external magnetic field, ϑ

can be varied smoothly between 0 and π/2. Most previous
studies of rotating dipolar BECs focused only on the limiting
cases with ϑ = 0 or π/2 [27–31]. Recently, Zhao and Gu
[32] and Malet et al. [33] studied the angular momentum
and critical rotational frequency of a two-dimensional (2D)
dipolar BEC with positive DDI strength in the intermediate
regime. Their results show that the critical rotational frequency
monotonically increases with the polarization angle ϑ , while
the relation between the critical rotational velocity and the
DDI strength is ϑ dependent. Martin et al. [34] analytically
studied the vortex lattice for the case where the dipoles are
not perpendicular to the plane of rotation, and suggested
that there is a phase transition in the lattice geometry from
triangle to square which can be measured as a function of
the DDI strength, and the vortex lattice orientation does not
depend on the polarization angle ϑ . This vortex structure
transition was observed in the numerical results of Zhao and
Gu [32] for a rotating quasi-2D dipolar BEC with positive
DDI strength; however, here we present numerical results
concerning the change of vortex lattice orientation with respect
to the polarization angle ϑ . In this paper, we further study
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the impacts of the s-wave contact interaction strength and the
polarization angle on the critical rotational frequency for both
positive and negative DDI, and focus on vortex lattice structure
with many vortices in the fast rotation limit. Different patterns
of vortex lattices are observed, which strongly depend on the
polarization direction and we characterize the vortex lattice
structure by virtue of the static structure factor [35,36]. We also
take into account negative DDI, which can be achieved with a
rotating magnetic field [37]. Simulating high vortex numbers
requires reliable numerical methods. We employed spectral
methods that are very accurate for such kinds of problems
[38–42], with less grid points needed than those of traditional
finite-difference methods.

This paper is organized as follows. In Sec. II, we present
a 2D model for a dipolar BEC in the rotating frame. We
also explain our approach for numerically solving this model.
In Sec. III, we show how the s-wave contact interaction
strength and the polarization angle affect the critical rotational
frequency with both attractive and repulsive DDI strengths. In
Sec. IV, we present simulation results of stationary states at
high rotation frequency for different polarization angles and
DDI strengths. Focusing on the regime with many vortices
allows us to discern characteristic vortex patterns that occur as
the polarization changes from predominantly perpendicular to
parallel. We conclude in Sec. V.

II. MODEL

We consider a polarized dipolar BEC trapped in a cylin-
drically symmetric harmonic potential Ṽ (r ) = 1

2m[ω2
r (x2 +

y2) + ω2
zz

2], with m the atomic mass and ωr , ωz the trans-
verse and axial trap frequencies, respectively. We assume
that the magnetic dipoles are polarized along an axis n =
(cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ ), where ϕ and ϑ are the az-
imuthal and polar angles, respectively. The DDI potential
between two atoms separated by the relative vector r is given
by

Udd(r ) = gd

4π

1 − 3 cos2 θ

|r|3 . (1)

Here, θ is the angle between the polarization axis n and r . For
magnetic dipoles, the interaction strength gd is given by gd =
μ0μ

2
d , where μ0 is the magnetic vacuum permeability and μd

is the dipole moment. In addition, we assume that the BEC is
rotating with frequency � around the z axis. In the remainder
of this paper, we adopt length, time, and energy units as ar =√

h̄/mωr , 1/ωr , and h̄ωr , respectively. At zero temperature,
this dipolar BEC system is described by the Gross-Pitaevskii
equation (GPE) in the rotating frame [12,43],

i∂t�(r, t ) =
[
−1

2
∇2 + V (r ) − �Lz + g|�|2

+
∫

d r ′Udd(r − r ′)|�(r ′, t )|2
]
�(r, t ). (2)

Here, Lz = i(y∂x − x∂y ) is the z component of the angu-
lar momentum operator and g = 4πNas/ar , with N be-
ing the number of atoms and as being the s-wave scat-
tering length. The dimensionless DDI strength is given by
gd = Nmμ0μ

2
d/3h̄2ar and the potential is V (r ) = 1

2 (x2 +

FIG. 1. Density of a rotating dipolar BEC around the critical
rotational frequency �c for fixed γ = 10, g = 250, gd = −100,
different polarization axis n = (sin ϑ, 0, cos ϑ ) [(a),(b) ϑ = 0; (c),(d)
ϑ = π/4; (e),(f) ϑ = π/2]. The critical rotational frequency �c is
found to be 0.356 < �c < 0.357 (top panels), 0.275 < �c < 0.276
(middle panels), 0.236 < �c < 0.237 (bottom panels), with the
corresponding lower bound of rotational frequency for the nonvortex
states and the upper bound for the vortex state.

y2) + ω2
z

2ω2
r
z2. It is noted that both the sign and the mag-

nitude of the DDI strength gd could be modified through
a rotating magnetic field [37]. In addition, a dipolar BEC
system described by Eq. (2) is stable, i.e., admits ground
states, if and only if εdd = gd

g
∈ [− 1

2 , 1] [39] and |�| < 1.
Therefore, we will focus on the typical parameters within this
range [44].

We consider the quasi-2D regime where ωz � ωr , and the
interactions are sufficiently weak such that no axial modes are
excited [45]. In this regime, the wave function �(r, t ) can
be separated into a transverse and a longitudinal part, that is,
�(r, t ) = ψ (ρ, t )w(z) exp(−iγ t/2), where ρ = (x, y), |ρ| =√

x2 + y2, w(z) = (γ /π )1/4 exp(−γ z2/2) is the ground mode
in the z direction, and γ = ωz/ωr . Inserting this expansion of
the wave function into Eq. (2) and integrating out the z variable
reduces Eq. (2) to [30,46]

i∂tψ (ρ, t ) =
[
−1

2
∇2

r + |ρ|2
2

− �Lz + ḡ|ψ (ρ, t )|2

+
∫

dρ ′U 2D
dd (ρ − ρ ′)|ψ (ρ ′, t )|2

]
ψ (ρ, t ). (3)

Here, ∇2
r = ∂2

x + ∂2
y and ḡ =

√
γ

2π
[g − gd (1 − 3 cos2 ϑ )] is

the effective 2D contact interaction strength that now depends
on the DDI strength and polarization direction. The effective
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FIG. 2. Density of a rotating dipolar BEC around the critical
rotation frequency �c for fixed γ = 10, g = 250, gd = 200, different
polarization axis n = (sin ϑ, 0, cos ϑ ) [(a),(b) ϑ = 0; (c),(d) ϑ =
π/4; (e),(f) ϑ = π/2]. The critical rotational frequency �c is found
to be 0.195 < �c < 0.196 (top panels), 0.232 < �c < 0.233 (middle
panels), 0.357 < �c < 0.358 (bottom panels), with the correspond-
ing lower bound of rotational frequency for the nonvortex states and
the upper bound for the vortex state.

kernel for the 2D DDI is given by

U 2D
dd (ρ ) = gdγ

3/2

8
√

2π3
eγ |ρ|2/4[{1 − 3 cos2 ϑ + γ [(x cos ϕ

+ y sin ϕ)2 sin2 ϑ − |ρ|2 cos2 ϑ]}K0(γ |ρ|2/4)

−{1 − cos2 ϑ + γ [(x cos ϕ + y sin ϕ)2(1

− 2/γ |ρ|2) sin2 ϑ − |ρ|2 cos2 ϑ]}K1(γ |ρ|2/4)],

(4)

where Kν are modified Bessel functions of the second kind. In
Fourier space, the DDI potential

∫
dρ ′U 2D

dd (ρ − ρ ′)|ψ (ρ ′)|2
becomes V̂2D(k) = Û 2D

dd (k)̂|ψ |2(k), with ̂|ψ |2(k)
being the condensate density function in momentum
space and Û 2D

dd (k) = 3gd

2 [(k̂x cos ϕ + k̂y sin ϕ)2 sin2 ϑ −
cos2 ϑ]kek2/2γ erfc(k/

√
2γ ), where k = |k|, k̂x,y = kx,y/k

are normalized components of the momentum, and
erfc(x) = 1 − erf (x) is the complementary error function.

For positive DDI gd > 0, the effective nonlocal interaction
of a quasi-2D dipolar BEC described by Eq. (4) is attractive
along the projection of the polarization axis (cos ϕ, sin ϕ)
and repulsive perpendicular to the polarization axis. For axial
polarization ϑ = 0, the nonlocal interaction is isotropic and
repulsive. In our work, without loss of generality, we assume
that the dipoles are polarized in the xz plane, such that we
can fix ϕ = 0, i.e., the dipole axis is n = (sin ϑ, 0, cos ϑ ). The
effective interaction diverges less strongly in the limit |ρ| → 0
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FIG. 3. The critical rotational frequency �c of a rotating dipolar
BEC vs the s-wave contact interaction strength g = 4πNas/ar for
fixed γ = 10, dipole axis n = (0, 0, 1), and a natural dimensionless
parameter εdd := gd/g = −0.5, 0, and 1, respectively.

than the full 3D dipole-dipole potential Udd. Furthermore, it has
a well-behaved Fourier transform, which is advantageous for
numerical computations [46]. To find the ground states, we use
the imaginary-time method [38–40], with backward Euler dis-
cretization in time and Fourier spectral discretization in space.

III. CRITICAL ROTATION FREQUENCY

In this section, we show the impacts of varying s-wave con-
tact interaction strength g, DDI strength gd , and polarization
angle ϑ on the critical rotational frequency, respectively. Malet
et al. [33] have studied the angular momentum and critical
rotational frequency of a dipolar BEC in the intermediate
regime with positive DDI strength; here we further study it for
rotating dipolar BECs with both positive and negative DDI.
We are also interested in the change of the structure of a single
vortex with different polarization angle ϑ .

First, we study the density profiles of the condensate near
the critical rotational frequency. It is observed that for the fixed
effective 2D contact interaction strength ḡ and the DDI strength
gd , there exists a critical rotation frequency �c such that there
is no vortex if � < �c and at least one vortex if � � �c [cf.,
e.g., Figs. 1(a), 1(b), 2(e), and 2(f)]. By varying the polarization
angle ϑ from 0 (z-direction out-of-plane polarization) to π/2
(x-direction in-plane polarization), we examine the relation
between the dipole polarization axis and the critical rotational
frequency, and check how the anisotropic DDI changes the
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FIG. 4. The critical rotational frequency �c of a rotating dipo-
lar BEC vs polarization angle ϑ for fixed γ = 10, g = 250, and
εdd = −0.4, −0.2, 0, 0.4, and 0.8, respectively.
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η

k1

k2

FIG. 5. Illustration of the Bravais lattice basis vectors and the
lattice parameters.

density profile of the single vortex state. Figures 1 and 2 display
density plots of the rotating dipolar BEC near the critical
rotational frequency with representative negative and positive
DDI strength gd , respectively.

At ϑ = 0 when the dipoles are polarized perpendicular to
the xy plane, Figs. 1 and 2 show that the 2D BEC is radially
symmetric. This is expected as the 2D effective DDI and
contact interaction are isotropic in this situation. Due to the
anisotropy of the DDI, the profiles of the vortices change
and become more anisotropic when the dipole axis tilts into
the 2D BEC plane for increasing polarization angle ϑ . For
negative (positive) DDI strength gd , the Fourier transform of
U 2D

dd [Eq. (4)] shows that the DDI induces a growing attractive
(repulsive) interaction in the x direction in terms of the energy
contribution, for increasing ϑ : 0 → π/2. As a consequence,
BEC becomes more compressed (elongated) in the x direction
for negative (positive) gd compared to the y direction. This
is in accordance with the fact that positive DDI tends to
align the dipoles along the polarization axis in a head-to-tail
manner [θ = 0, π in Eq. (1), preferable along the x axis] and
negative DDI tends to align the dipoles perpendicular to the

FIG. 6. Density of a rotating dipolar BEC for different dipole
polarization direction n = (sin ϑ, 0, cos ϑ ), with ϑ = 0, arcsin(0.5),
arcsin(0.8), arcsin(0.95), arcsin(0.96), π/2. The rotational frequ-
ency is � = 0.95, γ = 10, g = 250, and gd = 250.

FIG. 7. Static structure factor S. Same parameters as in Fig. 6.

polarization axis [θ = ±π/2 in Eq. (1), preferable along the y

axis]. Moreover, the effective contact interaction ḡ in Eq. (3)
increases (decreases) for negative (positive) gd with varying
ϑ : 0 → π/2, which leads to the size change of the BEC in
Figs. 1 and 2.

Second, we investigate how the critical frequency �c

changes with interaction parameters g and gd . For the radially
symmetric case with the dipoles polarized along the z axis (i.e.,
ϑ = 0) and the varying contact interaction strength g with fixed
εdd = gd/g, where the DDI is isotropic in the xy plane, Fig. 3
illustrates the dependence of the critical rotation frequency �c

on the s-wave contact interaction strength g. The numerical
results show that �c decreases when g increases for any fixed
positive and negative DDI strength gd . Furthermore, �c → 1
as g → 0 and �c drops dramatically when g increases near
g ≈ 0. This is in accordance with the isotropic conventional
rotating condensates without DDI [1–3]. It is also clear that
when the DDI strength gd ↗, �c ↘ for any fixed s-wave
contact interaction strength g and other parameters.

When tuning the dipole orientation n = (sin ϑ, 0, cos ϑ ) by
increasing the polarization angle ϑ from 0 to π/2, DDI induces
an increasingly anisotropic interaction in the xy plane and
hence influences the critical rotational frequency �c. Figure 4
shows �c versus ϑ . It is observed that �c decreases (in-
creases) when effective contact interaction strength ḡ increases
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FIG. 8. Density of a rotating dipolar BEC for different dipole polarization angles with ϕ = 0 and ϑ = 0, arcsin(0.3), arcsin(0.8),
arcsin(0.98), arcsin(0.99), π/2 (from left to right) and for different DDI strengths with ε

dd
= −0.5, −0.2, 0.3, 0.8, 0.95, 1.0 (from bottom to

top). The rotation frequency is � = 0.99, γ = 10, and g = 250.

(decreases) with ϑ varying from 0 to π/2 for any fixed negative
(positive) DDI strength gd . Moreover, the curves of �c as
functions of ϑ with both negative and positive DDI strength
gd almost intersect with each other at the “magic angle” ϑ =
arccos(

√
3/3). This can be understood as follows. At this angle,

the effective 2D contact interaction in Eq. (3) is independent
of the DDI strength gd , while the long-range interaction part
(the convolution term) in Eq. (3) is much weaker compared to
the effective contact interaction part (cubic term), and thus has
very little impact on the critical rotational frequency.

IV. VORTEX LATTICE PATTERNS
UNDER FAST ROTATION

In this section, we show different vortex lattices that emerge
as stationary states for varying polarization angles under fast

rotation. To characterize the structure of the vortex lattice, we
define the static structure factor [35,36]

S(k) = 1

N2
v

∣∣∣∣∣∣
∑

j

eik·ρj

∣∣∣∣∣∣
2

, (5)

where Nv is the number of vortices and ρj are the vortex core
positions. The structure factor exhibits peaks at the reciprocal
lattice sites, which reveal the frequencies and orientation of
the vortex lattice. The reciprocal lattice is defined by two basis
vectors k1 and k2. Here we choose k1 as the one closest to
the y axis and use the parameter η = ∠(k1, k2) to characterize
the orientation of the vortex lattice (cf. Fig. 5). η = π/2 for a
rectangular vortex lattice and π/3 for a triangular lattice.

We start with the impact of the polarization direction on
the vortex lattice geometry. We compute the ground states
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of the dipolar BEC for different polarization angles ϑ at
strong DDI gd = g and high rotation frequency � = 0.95
by imaginary-time propagation. As shown in Fig. 6, for
polarization predominantly perpendicular to the 2D BEC plane
(i.e., ϑ ≈ 0), the vortices form a regular triangular lattice
[cf. Figs. 6(a)–6(c)]. The corresponding structure factor in
Figs. 7(a)–7(c) reveals a hexagonal reciprocal primitive cell,
characteristic of the triangular lattice. As the polarization axis
rotates into the plane of the BEC, the vortex lattice aligns with
the polarization axis [cf. Figs. 6(d)–6(f)]. Parallel polarization
(i.e., ϑ ≈ π/2) is observed in Figs. 6(e) and 6(f), and the vortex
lattice becomes nearly rectangular. In the extreme case with
ϑ = π/2, the vortices align on a central 1D line that splits the
BEC into two fragments. The elongation in each BEC fragment
is caused by magnetostriction, which tends to align dipoles
in a head-to-tail configuration (for positive DDI). From the
Fourier transform Û 2D

dd , the DDI between the two fragments
is repulsive but drops exponentially in momentum for short
wavelength [47,48]. The distance between the fragments is
�2.5ar , which is of the order of μm. For polarization angles
which are slightly less than π/2, instead of a single split we
observe that the whole condensate splits into several fragments
[cf. Fig. 6(e)]. The effective contact interaction ḡ = 0 for

ϑ = π/2 and ḡ = 3
√

γ

2π
g(1 − sin2 ϑ ) � 0.29g for other ϑ

shown in Figs. 6(a)–6(e). For increasing ϑ , the dominant
contact interaction strength ḡ is decreasing and the number of
vortices is decreasing (similar to the conventional BEC system
without DDI [1–3]), which shows that larger interactions result
in more vortices under the same rotational frequency.

In Fig. 8, we show densities of the rotating dipolar BEC
for different polarization angles ϑ and different DDI strength
with a very fast rotational frequency � = 0.99, which nearly
equals its ultimate limit � = 1.0. It is observed that the
change of a triangular vortex lattice structure to a rectangular
vortex lattice structure occurs when both the polarization
angle ϑ and the natural dimensionless parameter εdd := gd/g

are close to their limits ϑ = π/2 and εdd = 1.0. For dipoles
oriented along the z axis (ϑ = 0), the 2D system described
by Eq. (3) is invariant under the axis rotation, i.e., if φg (ρ)
is a ground state, φg (Rρ ) [R ∈ SO(2)] is also a ground state.
Moreover, for any polarization angle ϑ , Eq. (3) possesses the
symmetry that if φg (x, y) is a ground state, then φg (−x, y) and
φg (x,−y) are also ground states. Therefore, for ϑ = 0, the
vortex lattice state plotted in Fig. 8(a) will still be a possible
configuration after arbitrary rotation and/or reflection about
the x axis. For the other dipole orientations partially or fully
lying in the xy plane, the rotational invariant symmetry of
the 2D BEC breaks and only the reflection symmetry about
the x and the y axes remains; the vortex lattice density plots
shown in Fig. 8 with ϑ ∈ (0, π/2] are the only possible
configurations.

For the negative DDI strength, there are more vortices
found in the condensate for in-plane polarization of the DDI
(ϑ = π/2) rather than off-plane polarizations (ϑ = 0), which
is in contrast with the positive DDI strength case but agrees
well with the behavior of effective contact interaction ḡ. This
evidence implies that the number of vortices is still mainly
determined by the effective contact interaction ḡ. On the
other hand, the DDI significantly affects the distribution of

0 π/6 π/4 π/3 arcsin(0.95) π/2

ϑ (rad)

π/4

π/3

3π/8

π/2

η
(r

ad
)

εdd=1
εdd=-0.5

FIG. 9. Lattice orientation parameter η vs ϑ . Same parameters as
in Fig. 6.

the vortices (cf. Figs. 7 and 8). As discussed earlier, for
such ϑ ∈ (0, π/2], positive DDI aligns the dipoles along the
in-plane polarization x axis, while negative DDI aligns the
dipoles along the y axis perpendicular to the polarization x

axis, resulting in a very different vortex lattice orientation,
as shown in Fig. 8. We find that the vortices are arranged in
a similar way, i.e., the vortices with negative DDI strengths
are aligned perpendicular to the polarization x axis, while the
vortices with positive DDI strengths are aligned parallel to the
polarization x axis.

In Fig. 9, we show the angle η = ∠(k1, k2) between the
basis vectors k1 and k2 of the reciprocal lattice defined through
the structure factor in Eq. (5). For positive DDI strength, as ϑ

increases from 0, η starts from π/3 and varies rather slowly
initially; at a critical angle around arcsin(0.95), η exhibits
a jump to the value of π/2, indicating a structural change
to a rectangular vortex lattice. In contrast, for negative DDI
strength, η stays near π/3 as ϑ changes from 0 to π/2, and
hence the vortex lattice remains roughly triangular independent
of the polarization angle.

V. CONCLUSIONS

We have studied the change of the critical rotational fre-
quency versus the s-wave contact interaction strength, the
DDI strength, and the varying polarization direction n =
(sin ϑ, 0, cos ϑ ). We find that the critical rotational frequency is
monotonically decreasing with growing s-wave contact inter-
action strength g, and identically approaches the confinement
frequency limit for g, gd ≈ 0. The critical rotation frequency
drops rapidly near g = 0 and then decreases more and more
slowly for large g. In contrast to previous works, our results
cover both the case of gd > 0 and gd < 0, and it is observed
that the effect of the polarization angle ϑ to the critical rotation
frequency depends on the sign of gd . Specifically, the critical
rotational frequency increases (decreases) with varying ϑ from
0 to π/2 for fixed positive (negative) DDI gd . In addition, we
find numerically that at the magic angle ϑ = arccos(

√
3/3) ≈

54.7◦, the critical rotational frequency is almost independent
of the value of the DDI strength.

We have numerically simulated the dipolar GPE under fast
rotation limit and show different patterns of vortex lattices
which strongly depend on the polarization direction. When the
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polarization angle ϑ changes from perpendicular to parallel to
the condensate plane, a structural phase transition in the vortex
geometry from triangle to square is observed for positivegd , but
not for negative gd . This result is consistent with the analytical
results of Martin et al. [34]. Meanwhile, by plotting the static
structure factor and the orientation parameter η of the vortex
lattice, we find evidence that the lattice orientation varies with
the polarization angle ϑ .
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