MA5250 Homework 2

(Due date: 6:00pm, March 21, 2014 (Friday))

1. Consider the Poisson equation in 1d:

$$u_{xx} = f(x), \qquad a < x < b, \tag{1}$$

with boundary condition

$$u(a) = \alpha, \qquad u(b) = \beta.$$
 (2)

- a). Write down a second order centered difference scheme for the problem on a uniform mesh.
 - b). Express the difference equations in linear system form.
 - c). What is the best algorithm to solve the linear system.
 - d). Derive a fast Poisson solver for solving the linear system.
 - e). Design a 4th-order compact scheme for the problem.
 - 2. Consider the difference equations:

$$\frac{u_j^{n+1} - u_j^n}{k} = \frac{\nu}{2} \left[\frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} + \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \right] + \frac{a}{2} \left[\frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2h} + \frac{u_{j+1}^n - u_{j-1}^n}{2h} \right], \quad 1 \le j \le M - 1, \tag{3}$$

(4)

$$u_0^{n+1} = u_M^{n+1} = 0, (5)$$

$$u_j^0 = u_0(x_j), \qquad j = 0, 1, \dots, M;$$
 (6)

where ν and a are constants, and k is time step, h is mesh size.

- a). Find the accuracy of the method to the equation $u_t = \nu u_{xx} + a u_x$.
- b). Find the stability condition
- c). Write down the difference equation in linear system form.
- 3. Consider

$$a u_x + \nu u_{xx} = 0, \qquad a < x < b,$$
 (7)

$$u(a) = 0, u(b) = 1,$$
 (8)

where $\nu > 0$ and a are two constants.

- a). Find the exact solution.
- b). Discuss the boundary layer effect when $\nu \to 0^+$.
- 4. Consider the Stokes equations:

$$\vec{\mathbf{u}}_t + \nabla p = \nu \triangle \vec{\mathbf{u}}, \quad \text{in} \quad \Omega, \tag{9}$$

$$\nabla \cdot \vec{\mathbf{u}} = 0. \tag{10}$$

a). Obtain the Poisson equation for pressure p from this system:

$$\Delta p = 0. \tag{11}$$

- b). Write down the projection method for this system.
- c). Obtain the equation for pressure p from the discretization of the projection method:

$$(I - k\nu\triangle) \triangle p^{n+1} = 0; \tag{12}$$

where k is time step and p^{n+1} is the approximation of p at time $t = t_{n+1}$.

- d). What conclusion can you get from a) and c)?
- 5. Consider incompressible viscous flows in vorticity-streamfunction formulation

$$\omega_t + (\vec{\mathbf{u}} \cdot \nabla) \,\omega = \nu \,\triangle \,\omega,\tag{13}$$

$$\Delta \psi = -\omega, \qquad \text{in} \quad \Omega, \tag{14}$$

$$u = \psi_v, \qquad v = -\psi_x, \tag{15}$$

$$\Delta \psi = -\omega, \qquad \text{in } \Omega, \qquad (14)$$

$$u = \psi_y, \qquad v = -\psi_x, \qquad (15)$$

$$\psi = 0, \qquad \frac{\partial \psi}{\partial \vec{n}} = 0, \qquad \text{on } \partial \Omega; \qquad (16)$$

where \vec{n} is outward normal vector. Derive the vorticity boundary condition via using forward difference for $\frac{\partial \psi}{\partial \vec{n}}$ and 2nd centered difference for the equations.

6. Consider the Poisson equation

$$\triangle u = f$$
, in $\Omega = [a, b] \times [c, d]$,

with boundary condition

$$u = u_b(x, y),$$
 on $\Gamma = \partial \Omega$.

Choose $h_x = \frac{b-a}{M}$, $h_y = \frac{d-c}{N_{-1}}$ be the mesh sizes and (x_i, y_j) with $x_i = a+i$ h_x , $y_j = c+j$ h_y , $i=0,1,\cdots,M, j=0,1,\cdots,N$ be grid points.

- a). Write down the second order central difference discretization for the above problem.
- b). Develop a code to implement the fast Poisson solver for the above problem.
- c). Apply your code to solve the following problem

$$\triangle u = -5\sin(2x)\sin y + 4,$$
 in $\Omega = [0, 2\pi] \times [0, 2\pi],$ $u = x^2 + y^2,$ on $\partial\Omega$.

Draw the contour plot and surface plot of your numerical solution under $h_x = h_y = \frac{\pi}{64}$. The exact solution of the problem is

$$u(x,y) = x^2 + y^2 + \sin(2x)\sin y$$

Test the second order convergence rate by compute $\frac{\|u-u_h\|}{h^2}$ for $h=\frac{\pi}{16}, \frac{\pi}{32}, \frac{\pi}{64}$ and $\frac{\pi}{128}$.

d). Repeat a) and b) by replacing the Dirichlet boundary condition with Neumann

boundary condition

$$\frac{\partial u}{\partial \vec{n}} = u_n(x, y), \quad \text{on} \quad \Gamma = \partial \Omega.$$

Apply your code to solve the following problem

$$\Delta u = -5\cos x \cos(2y), \quad \text{in} \quad \Omega = [0, 2\pi] \times [0, 2\pi],$$

$$\frac{\partial u}{\partial y}(x, 0) = \frac{\partial u}{\partial y}(x, 2\pi) = x, \quad 0 \le x \le 2\pi,$$

$$\frac{\partial u}{\partial x}(0, y) = \frac{\partial u}{\partial x}(2\pi, y) = y, \quad 0 \le y \le 2\pi.$$

Draw the contour plot and surface plot of your numerical solution under $h_x = h_y = \frac{\pi}{64}$.

- P.S. You can download fast Sine and Cosine transform from http://www.netlib.org/cgibin/search.pi via searching for sint or cost.
 - 7. Consider the incompressible viscous flow:

$$u_t + u u_x + v u_y + p_x = \nu \triangle u,$$

$$v_t + u v_x + v v_y + p_y = \nu \triangle v,$$

$$u_x + v_y = 0,$$

- a). Write down the first-order (backward Euler) projection method.
- b). Write down fully discretization with central difference for spatial discretization.
- c). Develop a code to implement your discretization with a fast Poisson solver.
- d). Use your code to simulate the time-dependent flow with $\nu=10^{-2}$. Display the velocity field at different times.
- e). Use your code to find steady state solution for $\nu = 1, 10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4} . Draw the velocity fields of the steady state solutions.
 - 8. Consider the incompressible viscous flow:

$$\omega_t + u \,\omega_x + v \,\omega_y = \nu \, \triangle \,\omega,$$

$$\Delta \psi = -\omega,$$

$$u = \psi_y, \qquad v = -\psi_x,$$

- a). Develop a code to implement a numerical method for this problem.
- b). Apply your code to simulate the time dependent flow for $\nu = 10^{-2}$.
- c). Apply your code to find the steady state solution for $\nu = 10^{-1}$, 10^{-2} and 10^{-3} .