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Abstract

In this paper, we review the mathematical and numerical studies of ground
states and dynamics in rotating Bose-Einstein condensates (BEC). We start
from the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an
angular momentum rotation term, scale it to obtain a four-parameter model,
reduce it to a 2D GPE in the limiting regime of strong anisotropic confine-
ment and present its semiclassical scaling and geometrical optics. We discuss
existence/nonexistence problem for ground states depending on the angular
velocity. We examine the conservation of the angular momentum expectation
and the condensate width and analyze the dynamics of a stationary state with
a shift in its center. Finally, numerical methods for computing ground state
and dynamics of rotating BEC are reviewed and some numerical results are
reported.

Key Words: rotating Bose-Einstein condensate, Gross-Pitaevskii equation,
ground state, symmetric state, central vortex state, time splitting, angular
momentum rotation, continuous normalized gradient flow, energy, chemical
potential.

1 Introduction

Since its realization in dilute bosonic atomic gases [7, 23], Bose-Einstein con-
densation (BEC) of alkali atoms and hydrogen has been produced and studied
extensively in the laboratory [1], and has permitted an intriguing glimpse into
the macroscopic quantum world. In view of potential applications [38, 63, 64],
the study of quantized vortices, which are well-known signatures of super-
fluidity, is one of the key issues. In fact, bulk superfluids are distinguished
from normal fluids by their ability to support dissipationless flow. Such per-
sistent currents are intimately related to the existence of quantized vortices,
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which are localized phase singularities with integer topological charge [39].
The superfluid vortex is an example of a topological defect that is well known
in superconductors [52] and in liquid helium [33]. The occurrence of quan-
tized vortices in superfluids has been the focus of fundamental theoretical
and experimental work [33]. Different research groups have obtained quan-
tized vortices in BEC experimentally, e.g. the JILA group [35, 57], the ENS
group [56] and the MIT group [1, 32]. Currently, there are at least two typi-
cal ways to generate quantized vortices from BEC ground state: (i) impose a
laser beam rotating with an angular velocity on the magnetic trap holding the
atoms to create a harmonic anisotropic potential [51, 3, 76]; or (ii) add to the
stationary magnetic trap a narrow, moving Gaussian potential, representing
a far-blue-detuned laser [49, 50, 25, 26, 10, 12]. The recent experimental and
theoretical advances in exploration of quantized vortices in BEC have spurred
great excitement in the atomic physics community and renewed interest in
studying superfluidity.

The properties of a BEC in a rotational frame at temperatures T much
smaller than the critical condensation temperature Tc are usually well mod-
eled by a nonlinear Schrödinger equation (NLSE) for the macroscopic wave
function known as the Gross-Pitaevskii equation (GPE) [60, 61, 52], which
incorporates the trap potential, rotational frame, as well as the interactions
among the atoms. The effect of the interactions is described by a mean field
which leads to a nonlinear term in the GPE. The cases of repulsive and attrac-
tive interactions - which can both be realized in the experiment - correspond
to defocusing and focusing nonlinearities in the GPE, respectively.

There has been a series of recent analytical and numerical studies of ground
states in rotating BEC. For example, Aftalion and Du [3], Aftalion and Riv-
iere [5] studied numerically and asymptotically ground state, critical angu-
lar velocity and energy diagram in the Thomas-Fermi (TF) or semiclassical
regime, Aftalion and Danaila [6] and Modugno et al. [59] reported bent vor-
tices, e.g. S-shaped vortex and U-shaped vortex, numerically in cigar-shaped
condensation and compared with experimental results [66], Garcia-Ripoll and
Perez-Garcia [45, 44, 47], Bao and Zhang [21] studied stability of the cen-
tral vortex, Tsubota et. al [75] reported vortex lattice formation, Bao et al.
[9, 20] presented a continuous normalized gradient flow with backward Euler
finite difference discretization to compute ground state, provided asymptotics
of the energy and chemical potential of the ground state in the semiclassical
regime and showed that the ground state is a global minimizer of the energy
functional over the unit sphere and all excited states are saddle points in the
linear case. Moreover, Svidzinsky and Fetter [72] have studied dynamics of a
vortex line depending on its curvature. For an analysis of the GP-functional
in a rotational frame, we refer to [67]. For a numerical and theoretical review
of quantized vortices, we refer to [39] and the recent book [61].

In order to study effectively the dynamics of BEC, especially in the strong
repulsive interaction regime, an efficient and accurate numerical method is
one of the key issues. For non-rotating BEC, many numerical methods were
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proposed in the literatures. For example, Bao et al. [12, 17, 21] proposed a
fourth-order time-splitting sine or Fourier pseudo-spectral (TSSP) method,
and Bao and Shen [17] presented a fourth-order time-splitting Laguerre-
Hermite (TSLH) pseudo-spectral method for GPE when the external trap-
ping potential is radially or cylindrically symmetric in 2D or 3D. The key
ideas for the numerical methods in [12, 11, 21, 17, 14, 15] are based on:
(i) a time-splitting technique is applied to decouple the nonlinearity in the
GPE [12, 11, 14, 15]; (ii) proper spectral basis functions are chosen for a
linear Schrödinger equation with a potential such that the ODE system in
phase space is diagonalized and thus can be integrated exactly [12, 17]. These
methods are explicit, unconditionally stable, of spectral accuracy in space
and fourth-order accuracy in time. Thus they are very efficient and accu-
rate for computing the dynamics of non-rotating BEC in 3D [13] and for
multi-component [18], which are the very challenging problems in numerical
simulation of BEC. Some other numerical methods for non-rotating BEC in-
clude finite difference method [27, 58], particle-inspired scheme [28, 58] and
Runge-Kutta pseudo-spectral method [58]. Due to the appearance of the an-
gular momentum rotation term in the GPE, new numerical difficulties must
be overcome in designing efficient and accurate numerical methods for rotat-
ing BEC. Currently, the numerical methods used in the physics literature for
studying dynamics of rotating BEC remain limited [3, 51], and they usually
are low-order finite difference methods. Recently, some efficient and accurate
numerical methods were designed for computing dynamics of rotating BEC.
For example, Bao, Du and Zhang [10] proposed a numerical method for com-
puting dynamics of rotating BEC by applying a time-splitting technique for
decoupling the nonlinearity in the GPE and adopting the polar coordinates or
cylindrical coordinates so as to make the coefficient of the angular momentum
rotation term constant. The method is time reversible, time transverse invari-
ant, unconditionally stable, implicit in 1D but can be solved very efficiently,
and conserves the total density. It is of spectral accuracy in transverse direc-
tion, but usually of second or fourth-order accuracy in radial direction. Zhang
and Bao [77] used the leap-frog spectral method for studying vortex lattice
dynamics in rotating BEC in which the Cartesian coordinate is adopted. This
method is explicit, time reversible, of spectral accuracy in space and second
order accuracy in time. It is stable under a stability constraint for time step
[77]. Bao and Wang [19] presented a time-splitting spectral (TSSP) method
by applying a time-splitting technique for decoupling the nonlinearity and
properly using the alternating direction implicit (ADI) technique for the cou-
pling in the angular momentum rotation term in the GPE. Thus at every time
step, the GPE in rotational frame is decoupled into a nonlinear ordinary dif-
ferential equation (ODE) and two partial differential equations with constant
coefficients. This allows them to develop new TSSP methods for computing
the dynamics of BEC in a rotational frame. The new numerical method is
explicit, unconditionally stable, and of spectral accuracy in space and second
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order accuracy in time. Moreover, it is time reversible and time transverse
invariant, and conserves the position density in the discretized level.

The main aim of this paper is to review the above results and methods for
rotating BEC. The paper is organized as follows. In section 2, we take the 3D
GPE with an angular momentum term, scale it to get a four parameter model,
reduce it to a 2D problem in a limiting regime, present its semiclassical scaling
and geometrical optics. In section 3, we discuss existence/nonexistence of the
ground state in rotating BEC, provide approximate ground state in limiting
parameter regimes. In section 4, we review the continuous normalized gradi-
ent flow and its backward Euler finite difference discretization for computing
ground and vortex states of rotating BEC and report some numerical results.
Some analytical results for dynamics of rotating BEC are reviewed in section
5, and several efficient and accurate numerical methods for computing dy-
namics of rotating BEC are discussed in section 6. Finally, in section 7, some
conclusions are drawn.

2 GPE in a rotational frame

At temperatures T much smaller than the critical temperature Tc [52], a
BEC in a rotational frame is well described by the macroscopic wave function
ψ(x, t), whose evolution is governed by a self-consistent, mean field nonlinear
Schrödinger equation known as the Gross-Pitaevskii equation (GPE) with
an angular momentum rotational term [24, 36, 45], (w.l.o.g.) assuming the
rotation being around the z-axis:

ih̄
∂ψ(x, t)

∂t
=
δE(ψ)

δψ∗
:= H ψ

=

(
− h̄2

2m
∇2 + V (x) +NU0|ψ(x, t)|2 −ΩLz

)
ψ(x, t), (1)

where x = (x, y, z)T ∈ R3 is the spatial coordinate vector, m is the atomic
mass, h̄ is the Planck constant, N is the number of atoms in the condensate,
Ω is an angular velocity, V (x) is an external trapping potential. When a
harmonic trap potential is considered, V (x) = m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

with
ωx, ωy and ωz being the trap frequencies in x-, y- and z-direction respectively.

U0 = 4πh̄2as

m describes the interaction between atoms in the condensate with
the s-wave scattering length as (positive for repulsive interaction and negative
for attractive interaction) and

Lz = xpy − ypx = −ih̄ (x∂y − y∂x) (2)

is the z-component of the angular momentum L = x×P with the momentum
operator P = −ih̄∇ = (px, py, pz)

T . The energy functional per particle E(ψ)
is defined as
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E(ψ) =

∫

R3

[
h̄2

2m
|∇ψ|2 + V (x)|ψ|2 +

NU0

2
|ψ|4 −Ωψ∗Lzψ

]
dx. (3)

Here we use f∗ denotes the conjugate of a function f . It is convenient to
normalize the wave function by requiring

∫

R3

|ψ(x, t)|2 dx = 1. (4)

2.1 Dimensionless GPE in a rotational frame

Under the normalization condition (4), by introducing the dimensionless vari-
ables: t → t/ωm with ωm = min{ωx, ωy, ωz}, x → xa0 with a0 =

√
h̄/mωm,

ψ → ψ/a
3/2
0 , Ω → Ωωm and E(·) → h̄ωmEβ,Ω(·), we get the dimensionless

GPE

i
∂ψ(x, t)

∂t
=
δEβ,Ω(ψ)

δψ∗
:= H ψ

=

(
−1

2
∇2 + V (x) + β |ψ(x, t)|2 −ΩLz

)
ψ(x, t), (5)

where β = U0N
a3
0h̄ωm

= 4πasN
a0

, Lz = −i(x∂y−y∂x), V (x) = 1
2

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)

with γx = ωx

ωm
, γy =

ωy

ωm
and γz = ωz

ωm
, and the dimensionless energy functional

per particle Eβ,Ω(ψ) is defined as

Eβ,Ω(ψ) =

∫

R3

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ|2 +

β

2
|ψ|4 −Ωψ∗ Lzψ

]
dx. (6)

In a disk-shaped condensation with parameters ωx ≈ ωy and ωz � ωx (⇐⇒
γx = 1, γy ≈ 1 and γz � 1 with choosing ωm = ωx), the 3D GPE (5) can be
reduced to a 2D GPE with x = (x, y)T [12, 8, 18]:

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + V2(x, y)ψ + β2|ψ|2ψ −ΩLzψ, (7)

where β2 ≈ βa2 = β
√
γz/2π and V2(x, y) = 1

2

(
γ2
xx

2 + γ2
yy

2
)

[12, 18, 3]. Thus
here we consider the dimensionless GPE in a rotational frame in d-dimensions
(d = 2, 3):

i
∂ψ(x, t)

∂t
= −1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ −ΩLzψ, x ∈ Rd, t ≥ 0, (8)

ψ(x, 0) = ψ0(x), x ∈ Rd; (9)

where β3 = β and V3(x, y, z) = V (x, y, z).
Two important invariants of (8) are the normalization of the wave function

N(ψ) =

∫

Rd

|ψ(x, t)|2 dx ≡
∫

Rd

|ψ(x, 0)|2 dx = 1, t ≥ 0 (10)
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and the energy

Eβ,Ω(ψ) =

∫

Rd

[
1

2
|∇ψ(x, t)|2 + Vd(x)|ψ|2 +

βd
2

|ψ|4 −Ωψ∗ Lzψ

]
dx. (11)

2.2 Stationary states

To find a stationary solution of (8), we write

ψ(x, t) = e−iµtφ(x), (12)

where µ is the chemical potential of the condensate and φ is independent of
time. Inserting (12) into (8) gives the following equation for φ(x)

µ φ(x) = −1

2
∆φ(x) + Vd(x) φ(x) + βd|φ(x)|2φ(x)−ΩLzφ(x), x ∈ Rd, (13)

under the normalization condition

‖φ‖2 =

∫

Rd

|φ(x)|2 dx = 1. (14)

This is a nonlinear eigenvalue problem with a constraint and any eigenvalue
µ can be computed from its corresponding eigenfunction φ by

µ = µβ,Ω(φ)

=

∫

Rd

[
1

2
|∇φ(x)|2 + Vd(x) |φ(x)|2 + βd |φ(x)|4 −Ωφ∗(x)Lzφ(x)

]
dx

= Eβ,Ω(φ) +

∫

Rd

βd
2

|φ(x)|4 dx. (15)

In fact, the eigenfunctions of (13) under the constraint (14) are the criti-
cal points of the energy functional Eβ,Ω(φ) over the unit sphere S = {φ ∈
C | ‖φ‖ = 1, Eβ,Ω(φ) <∞}. Furthermore (13) is the Euler-Lagrange equation
of the energy functional (11) with ψ = φ under the constraint (14).

2.3 Semiclassical scaling and geometrical optics

When βd � 1, i.e. in a strongly repulsive interacting condensation or in semi-
classical regime, another scaling (under the normalization (10) with ψ = ψε)
for the GPE (8) is also very useful in practice by choosing x → ε−1/2x and

ψ = ψε εd/4 with ε = β
−2/(d+2)
d :

iε
∂ψε(x, t)

∂t
=
δEε,Ω(ψε)

δ(ψε)∗
:= Hε ψε

= −ε
2

2
∇2ψε + Vd(x)ψε + |ψε|2ψε − εΩLzψ

ε, x ∈ Rd, (16)
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where the energy functional Eε,Ω(ψε) is defined as

Eε,Ω(ψε) =

∫

R3

[
ε2

2
|∇ψε|2 + Vd(x)|ψε|2 +

1

2
|ψε|4 − εΩ(ψε)∗Lzψ

ε

]
dx

= O(1),

assuming that ψε is ε-oscillatory and ‘sufficiently’ integrable such that all
terms have O(1)-integral. Similarly, the nonlinear eigenvalue problem (13)
(under the normalization (14) with φ = φε) reads

µεφε(x) = −ε
2

2
∆φε + Vd(x)φε + |φε|2φε − εΩLzφ

ε, x ∈ Rd, (17)

where any eigenvalue µε can be computed from its corresponding eigenfunc-
tion φε by

µε = µε,Ω(φε) =

∫

Rd

[
ε2

2
|∇φε|2 + V0(x)|φε|2 + |φε|4 − εΩ(ψε)∗Lzψ

ε

]
dx

= O(1).

Furthermore it is easy to get the leading asymptotics of the energy functional
Eβ,Ω(ψ) in (11) and the chemical potential µβ,Ω(φ) in (15) when βd � 1 from
this scaling:

Eβ,Ω(ψ) = ε−1Eε,Ω(ψε) = O
(
ε−1
)

= O
(
β

2/(d+2)
d

)
, (18)

µβ,Ω(φ) = ε−1µε,Ω(φε) = O
(
ε−1
)

= O
(
β

2/(d+2)
d

)
, βd � 1. (19)

These asymptotic results were confirmed by the numerical results in [16, 20].
When 0 < ε� 1, i.e. βd � 1, we set

ψε(x, t) =
√
ρε(x, t) exp

(
i

ε
Sε(x, t)

)
, (20)

where ρε = |ψε|2 and Sε is the phase of the wave-function. Inserting (20) into
(16) and collecting real and imaginary parts, we get the transport equation
for ρε and the Hamilton-Jacobi equation for the phase Sε:

∂tρ
ε + div (ρε∇Sε) +ΩL̂zρ

ε = 0, (21)

∂tS
ε +

1

2
|∇Sε|2 + Vd(x) + ρε +ΩL̂zS

ε =
ε2

2

1√
ρε

∇2√ρε, (22)

where the operator L̂z = (x∂y − y∂x). Eq. (21) is the transport equation
for the atom density and (22) the Hamilton-Jacobi equation for the phase.
Furthermore, by defining the current density [20, 15]

Jε = ρε∇Sε = ε Im
(
(ψε(x, t))∗ ∇ψε(x, t)

)
, (23)
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we can get the quantum-hydrodynamic Euler system with a third-order dis-
persion term:

∂tρ
ε + divJε +ΩL̂zρ

ε = 0, (24)

∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+ ∇P (ρε) + ρε∇Vd(x)

+Ω
(
L̂z + G

)
Jε =

ε2

4
∇
(
ρε∇2 ln ρε

)
, (25)

where P (ρ) = ρ2

2 is the hydrodynamic pressure and the symplectic matrix G
is defined as

G =

(
0 1
−1 0

)
, for d = 2, G =




0 1 0
−1 0 0
0 0 0



 , for d = 3. (26)

By formally passing to the limit ε→ 0+ in (21)-(22), we obtain the system

∂tρ
0 + div

(
ρ0∇S0

)
+ΩL̂zρ

0 = 0, (27)

∂tS
0 +

1

2

∣∣∇S0
∣∣2 + Vd(x) + ρ0 +ΩL̂zS

0 = 0. (28)

Similarly, letting ε → 0+ in (24)−(25), we can formally obtain the following
Euler system:

∂tρ
0 + divJ0 +ΩL̂zρ

0 = 0, (29)

∂tJ
0 + div

(
J0 ⊗ J0

ρ0

)
+ ∇P (ρ0) + ρ0∇Vd(x) +Ω

(
L̂z + G

)
J0 = 0, (30)

which is the isotropic Euler system (velocity given by v0 = ∇s0) with
quadratic pressure-density constitutive relation in the rotational frame. The
formal asymptotics is supposed to hold up to caustic onset time!

3 Ground state

The ground state wave function φg(x) := φgβ,Ω(x) of a rotating BEC is found
by minimizing the energy functional Eβ,Ω(φ) over the unit sphere S:

(I) Find (µgβ,Ω, φ
g
β,Ω ∈ S) such that

Eg := Egβ,Ω = Eβ,Ω(φgβ,Ω) = min
φ∈S

Eβ,Ω(φ), µg := µgβ,Ω = µβ,Ω(φgβ,Ω).

(31)
Any eigenfunction φ(x) of (13) under the constraint (14) whose energy
Eβ,Ω(φ) > Eβ,Ω(φgβ,Ω) is usually called as an excited state in the physical
literature [61].

Existence/nonexistence results of ground state, depending on the magni-
tude |Ω| of the angular velocity relative to the trapping frequencies are known
and can be found [67].
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3.1 Existence of the ground state when |Ω| < γxy := min{γx, γy}

To study the existence of the ground state in rotating BEC, we first present
some properties of the energy functional [20]

Lemma 1. i) In 2D, we have

Eβ,−Ω(φ(x,−y)) = Eβ,Ω(φ(x, y)),

Eβ,−Ω(φ(−x, y)) = Eβ,Ω(φ(x, y)), φ ∈ S. (32)

ii) In 3D, we have

Eβ,−Ω(φ(x,−y, z)) = Eβ,Ω(φ(x, y, z)),

Eβ,−Ω(φ(−x, y, z)) = Eβ,Ω(φ(x, y, z)), φ ∈ S. (33)

iii) In 2D and 3D, we have
∫

Rd

[
1 − |Ω|

2
|∇φ(x)|2 +

(
Vd(x) −

|Ω|

2
(x2 + y

2)

)
|φ|2 +

βd

2
|φ|4
]
dx ≤ Eβ,Ω(φ)

≤

∫

Rd

[
1 + |Ω|

2
|∇φ(x)|2 +

(
Vd(x) +

|Ω|

2
(x2 + y

2)

)
|φ|2 +

βd

2
|φ|4
]
dx. (34)

From this lemma, since γy ≥ γx = γxy and γz > 0, when βd ≥ 0 and
|Ω| < γxy, we know that the energy functional Eβ,Ω(φ) is positive, coercive
and weakly lower semicontinuous on S. Thus the existence of a minimum
follows from the standard theory [73] and we have

Theorem 1. i) In 2D, if φβ,Ω(x, y) ∈ S is a ground state of the energy func-
tional Eβ,Ω(φ), then φβ,Ω(x,−y) ∈ S and φβ,Ω(−x, y) ∈ S are ground states
of the energy functional Eβ,−Ω(φ). Furthermore

Egβ,Ω = Egβ,−Ω, µgβ,Ω = µgβ,−Ω. (35)

ii) In 3D, if φβ,Ω(x, y, z) ∈ S is a ground state of the energy functional
Eβ,Ω(φ), then φβ,Ω(x,−y, z) ∈ S and φβ,Ω(−x, y, z) ∈ S are ground states of
the energy functional Eβ,−Ω(φ), and (35) is also valid.

iii). When βd ≥ 0 and |Ω| < γxy, there exists a minimizer for the mini-
mization problem (31), i.e. there exist ground state.

For understanding the uniqueness question, note that Eβ,Ω(αφgβ,Ω) =

Eβ,Ω(φgβ,Ω) for all α ∈ C with |α| = 1. Thus an additional constraint has
to be introduced to show uniqueness. For non-rotating BEC, i.e. Ω = 0, the
unique positive minimizer is usually taken as the ground state. In fact, the
ground state is unique up to a constant α with |α| = 1, i.e. density of the
ground state is unique, when Ω = 0. For rotating BEC under |Ω| < γxy, sev-
eral numerical methods were proposed in the literature [3, 20] for computing
a minimizer of the minimization problem (31). From the numerical results
[3, 20], the density of the ground state may no longer unique when |Ω| > Ωc

with Ωc a critical angular rotation speed.
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3.2 Nonexistence of ground states when |Ω| > γxy := max{γx, γy}

Denote γr := γxy and notice 1
2 (γ2

xx
2 + γ2

yy
2) ≤ 1

2γ
2
rr

2 with r =
√
x2 + y2, we

have

Eβ,Ω(φ) ≤ 1

2

∫ 2π

0

∫ ∞

0

[
|∂rφ|2 +

1

r2
|∂θφ|2 + γ2

rr
2|φ|2

+β2|φ|4 + 2iΩφ∗∂θφ
]
r drdθ, d = 2, (36)

Eβ,Ω(φ) ≤ 1

2

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

[
|∂rφ|2 +

1

r2
|∂θφ|2 + |∂zφ|2 + (γ2

rr
2 + γ2

zz
2)|φ|2

+β2|φ|4 + 2iΩφ∗∂θφ

]
r drdθdz, d = 3, (37)

where (r, θ) and (r, θ, z) are polar (in 2D), and resp., cylindrical coordinates
(in 3D). In 2D, let

φm(x) = φm(r, θ) = φm(r) eimθ, with φm(r) =
γ

(|m|+1)/2
r√
π|m|!

r|m|e−
γrr2

2 , (38)

where m is an integer. In fact, φm(x) is the central vortex state with winding
number m of the GPE (8) with d = 2, βd = 0 and Ω = 0. It is very easy to
check that φm satisfies

‖φm‖ = 2π

∫ ∞

0

|φm(r)|2 r dr = 1, m ∈ Z, (39)

1

2

[
−1

r

d

dr

(
r
d

dr

)
+ r2 +

m2

r2

]
φm(r) = (|m| + 1)γrφm(r), 0 < r <∞. (40)

Thus φm ∈ S and we compute

Eβ,Ω(φm(x)) ≤ (|m| + 1)γr −Ωm+ β2π

∫ ∞

0

|φm(r)|4r dr

= (|m| + 1)γr −Ωm+
β2γr(2|m|)!

4π(2|m|(|m|!))2 . (41)

Thus when |Ω| > γr, we have

inf
φ∈S

Eβ,Ω(φ) ≤
{

limm→∞Eβ,Ω(φm) Ω > 0,
limm→∞Eβ,Ω(φ−m) Ω < 0

= lim
m→∞

(γr − |Ω|)|m| + γr +
β2γr(2|m|)!

4π(2|m|(|m|!))2 = −∞. (42)

This implies that there is no minimizer of the minimization problem (31) when
|Ω| > γxy in 2D.
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Similarly, in 3D, the argument proceeds with the central vortex line state
with winding number m of the GPE (8) with d = 3, βd = 0 and Ω = 0

φm(x) = φm(r, θ, z) = φm(r, z) eimθ,

φm(r, z) =
γ

(|m|+1)/2
r γ

1/4
z

π3/4
√
|m|!

r|m|e−
γrr2+γzz2

2 , (43)

and we conclude that there is no minimizer of the minimization problem (31)
when |Ω| > γxy in 3D.

Remark 1. When γxy < |Ω| ≤ γxy in an anisotropic trap, although no rigorous
mathematical justification, the numerical results in [20] show that there is no
ground state of the energy functional Eβ,Ω(φ).

3.3 Stationary states as minimizer/saddle points in the linear case

For the stationary states of (13), we have the following lemma, valid in the
linear case βd = 0:

Lemma 2. Suppose βd = 0, |Ω| < γxy and Vd(x) ≥ 0 for x ∈ Rd, we have
(i). The ground state φg is a global minimizer of E0,Ω(φ) over S.
(ii). Any excited state φe is a saddle point of E0,Ω(φ) over S.

Proof: Let φe be an eigenfunction of the eigenvalue problem (13) and (14).
The corresponding eigenvalue is µe. For any function φ such that E0,Ω(φ) <∞
and ‖φe + φ‖ = 1, notice (14), we have that

‖φ‖2 = ‖φ+ φe‖2 − ‖φe‖2 −
∫

Rd

(φ∗φe + φφ∗e) dx

= −
∫

Rd

(φ∗φe + φφ∗e) dx. (44)

From (11) with ψ = φe +φ, notice (14) and (44), integration by parts, we get

E0,Ω(φe + φ)

=

∫

Rd

[
1

2
|∇φe + ∇φ|2 + Vd(x)|φe + φ|2 −Ω(φe + φ)∗Lz(φe + φ)

]
dx

=

∫

Rd

(
1

2
|∇φe|2 + Vd(x)|φe|2 −Ωφ∗eLzφe

)
dx

+

∫

Rd

(
1

2
|∇φ|2 + Vd(x)|φ|2 −Ωφ∗Lzφ

)
dx

+

∫

Rd

(
−1

2
∆φe + Vd(x)φe − ΩLzφe

)∗

φ dx
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+

∫

Rd

(
−1

2
∆φe + Vd(x)φe − ΩLzφe

)
φ∗ dx

= E0,Ω(φe) + E0,Ω(φ) − µe‖φ‖2

= E0,Ω(φe) + [E0,Ω(φ/‖φ‖) − µe] ‖φ‖2. (45)

(i) Taking φe = φg and µe = µg in (45) and noticing E0,Ω(φ/‖φ‖) ≥
E0,Ω(φg) = µg for any φ 6= 0, we get immediately that φg is a global minimizer
of E0,Ω over S.

(ii). Taking φe = φj and µe = µj in (45), since E0,Ω(φg) < E0,Ω(φj) and
it is easy to find an eigenfunction φ of (13) such that E0,Ω(φ) > E0,Ω(φj), we
get immediately that φj is a saddle point of the functional E0,Ω(φ) over S.

3.4 Approximate ground state

When βd = 0 and Ω = 0, the ground state solution is given explicitly [18]

µg0,0 =
1

2

{
γx + γy, d = 2,
γx + γy + γz, d = 3,

φg0,0(x) =
1

πd/4





(γxγy)

1/4e−
γxx2+γyy2

2 , d = 2,

(γxγyγz)
1/4e−

γxx2+γyy2+γzz2

2 , d = 3.
(46)

In fact, this solution can be viewed as an approximation of the ground state
for a weakly interacting slowly rotating condensate, i.e. |βd| � 1 and |Ω| ≈ 0.

For a condensate with strong repulsive interaction, i.e. βd � 1, |Ω| ≈ 0,
γx = O(1), γy = O(1) and γz = O(1), the ground state can be approximated
by the TF approximation in this regime [12, 18, 3, 21]:

φTF
β (x) =

{√
(µTF
β − Vd(x))/βd, Vd(x) < µTF

β ,

0, otherwise,
(47)

µTF
β =

1

2

{
(4β2γxγy/π)1/2 d = 2,

(15β3γxγyγz/4π)2/5 d = 3.
(48)

Clearly φTF
β is not differentiable at Vd(x) = µTF

β , thus Eβ,Ω(φTF
β ) = ∞ and

µβ,Ω(φTF
β ) = ∞ [12, 21]. This shows that one can’t use (11) to define the

energy of the TF approximation (47). How to define the energy of the TF ap-
proximation is not clear in the literature. Using (15), (48) and (47), following
[21] for non-rotating BEC, here we use the way to define the energy of the TF
approximation (47) [21]:

ETF
β,Ω = µTF

β,Ω −
∫

Rd

βd
2
|φTF
β (x)|4 dx =

d+ 2

d+ 4
µTF
β , d = 2, 3. (49)

The numerical results in [20] show that the TF approximation (47) is very
accurate for the density of the ground state, except at the vortex core, when
βd � 1 and |Ω| < γxy, and (48) and (49) converge to the chemical potential
and energy respectively only when |Ω| ≈ 0, but diverge when |Ω| is near γxy.
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3.5 Critical angular velocity in symmetric trap

In 2D with radial symmetry and in 3D with cylindrical symmetry, for any
βd ≥ 0, when Ω = 0, the ground state satisfies φgβ,0(x) = φ0

β,0(r) in 2D and

φgβ,0(x) = φ0
β,0(r, z) in 3D with φ0

β,0(r) and φ0
β,0(r, z) the symmetric state

of the problem (13)-(14) in 2D and 3D respectively, i.e. the ground state
is radially symmetric. When Ω increases to a critical angular velocity, Ωcβ ,
defined as

Ωc := Ωcβ = max
{
Ω | Eβ,Ω(φgβ,Ω) = Eβ,Ω(φ0

β,Ω) = Eβ,0(φ
0
β,0)
}
,

the energy of the ground state will be less than that of the symmetric state,
i.e. symmetry breaking occurs in the ground state [67, 68]. Ωcβ is also called
as critical angular velocity for symmetry breaking in the ground state.

From the discussions and numerical results in the literatures [20, 3], we
have

Ωc0 = γr := γx = γy, 0 ≤ Ωcβ < Ωvβ ≤ γr, for βd > 0.

4 Numerical methods and results for ground states

In this section, we review the continuous normalized gradient flow and its
backward Euler finite difference discretioznation for computing ground state
of rotating BEC.

4.1 Gradient flow with discrete normalization(GFDN)

Various algorithms, e.g. imaginary time method [30, 3, 5], Sobolev gradient
method [46, 45], finite element approximation [18], iterative method [29] etc.,
for finding the minimizer of the minimization problem (31) have been stud-
ied in the literatures. Perhaps one of the more popular technique for dealing
with the normalization constraint (14) is through the splitting (or projection)
scheme: (i). Apply the steepest decent method to an unconstrained minimiza-
tion problem; (ii) project the solution back to the unit sphere S. This suggests
us to consider gradient flow with discrete normalization (GFDN):

φt = −δEβ,Ω(φ)

δφ∗
=

1

2
∆φ− Vd(x)φ − βd |φ|2φ+Ω Lzφ, tn < t < tn+1, (50)

φ(x, tn+1)
4
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Rd, n ≥ 0, (51)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1; (52)

where 0 = t0 < t1 < t2 < · · · < tn < · · · with ∆tn = tn+1 − tn > 0 and
k = maxn≥0 ∆tn, and φ(x, t±n ) = limt→t±n

φ(x, t). In fact, the gradient flow
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(50) can be viewed as applying the steepest descent method to the energy
functional Eβ,Ω(φ) without constraint and (51) then projects the solution
back to the unit sphere in order to satisfy the constraint (14). From the
numerical point of view, the gradient flow (50) can be solved via traditional
techniques and the normalization of the gradient flow is simply achieved by a
projection at the end of each time step.

Let

φ̃(·, t) =
φ(·, t)

‖φ(·, t)‖ , tn ≤ t ≤ tn+1, n ≥ 0. (53)

For the gradient flow (50), it is easy to establish the following basic facts [20]:

Lemma 3. Suppose Vd(x) ≥ 0 for all x ∈ Rd, βd ≥ 0 and ‖φ0‖ = 1, then
(i). ‖φ(·, t)‖ ≤ ‖φ(·, tn)‖ = 1 for tn ≤ t < tn+1, n ≥ 0.
(ii). For any βd ≥ 0, and all t′, t with tn ≤ t′ < t < tn+1:

Eβ,Ω(φ(·, t)) ≤ Eβ,Ω(φ(·, t′)), n ≥ 0. (54)

(iii). For βd = 0,

E0,Ω(φ̃(·, t)) ≤ E0,Ω(φ̃(·, tn)), tn ≤ t ≤ tn+1, n ≥ 0. (55)

From Lemma 3, we get immediately [20]

Theorem 2. Suppose Vd(x) ≥ 0 for all x ∈ Rd and ‖φ0‖ = 1. For βd = 0,
GFDN (50)-(52) is energy diminishing for any time step k and initial data
φ0, i.e.

E0,Ω(φ(·, tn+1)) ≤ E0,Ω(φ(·, tn)) ≤ · · · ≤ E0,Ω(φ(·, 0)) = E0,Ω(φ0), n ≥ 0.
(56)

4.2 Continuous normalized gradient flow (CNGF)

In fact, the normalized step (51) is equivalent to solve the following ODE
exactly

φt(x, t) = µφ(t, k)φ(x, t), x ∈ Rd, tn < t < tn+1, n ≥ 0, (57)

φ(x, t+n ) = φ(x, t−n+1), x ∈ Rd; (58)

where

µφ(t, k) ≡ µφ(tn+1, ∆tn) = − 1

2 ∆tn
ln ‖φ(·, t−n+1)‖2, tn ≤ t ≤ tn+1. (59)

Thus the GFDN (50)-(52) can be viewed as a first-order splitting method for
the gradient flow with discontinuous coefficients:
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φt =
1

2
∆φ− Vd(x)φ− β |φ|2φ+ΩLzφ+ µφ(t, k)φ, x ∈ Rd, t ≥ 0, (60)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1. (61)

Letting k → 0 and noticing that φ(x, tn+1) on the right hand side of (58) is
the solution of (50) at tn+1 = t+∆tn, we obtain

µφ(t) := lim
k→0+

µφ(t, k) = lim
∆tn→0+

1

−2 ∆tn
ln ‖φ(·, t−n+1)‖2

= lim
∆tn→0+

1

−2 ∆tn
ln ‖φ(·, (t+∆tn)−)‖2

= lim
∆tn→0+

d
dτ ‖φ(·, t+ τ)‖2

∣∣
τ=∆tn

−2‖φ(·, t+∆tn)‖2

= lim
∆tn→0+

µβ,Ω(φ(·, t+∆tn)

‖φ(·, t+∆tn)‖2
=
µβ,Ω(φ(·, t))
‖φ(·, t)‖2

. (62)

This suggests us to consider the following CNGF:

φt =
1

2
∆φ− Vd(x)φ− βd |φ|2φ+ΩLzφ+ µφ(t)φ, x ∈ Rd, t ≥ 0, (63)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1. (64)

In fact, the right hand side of (63) is the same as (13) if we view µφ(t) as a
Lagrange multiplier for the constraint (14). Furthermore for the above CNGF,
as observed in [9] for non-rotating BEC, the solution of (63) also satisfies the
following theorem [20]:

Theorem 3. Suppose Vd(x) ≥ 0 for all x ∈ Rd, βd ≥ 0 and ‖φ0‖ = 1. Then
the CNGF (63)-(64) is normalization conserving and energy diminishing, i.e.

‖φ(·, t)‖2 =

∫

Rd

|φ(x, t)|2 dx = ‖φ0‖2 = 1, t ≥ 0, (65)

d

dt
Eβ,Ω(φ) = −2 ‖φt(·, t)‖2 ≤ 0 , t ≥ 0, (66)

which in turn implies

Eβ,Ω(φ(·, t1)) ≥ Eβ,Ω(φ(·, t2)), 0 ≤ t1 ≤ t2 <∞.

4.3 Fully numerical discretization

We now present a numerical method to discretize the GFDN (50)-(52) (or
a full discretization of CNGF (63)-(64)). For simplicity of notation we in-
troduce the method for the case of 2D over a rectangle Ωx = [a, b] × [c, d]
with homogeneous Dirichlet boundary conditions. Generalizations to 3D are
straightforward for tensor product grids and the results remain valid without
modifications.
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We choose the spatial mesh sizes hx = ∆x > 0, hy = ∆y > 0 with
hx = (b − a)/M , hy = (d − c)/N and M , N even positive integers, the time
step is given by k = ∆t > 0 and define grid points and time steps by

xj := a+ j hx, j = 0, 1, · · · ,M, yl = c+ l hy, l = 0, 1, · · · , N,
tn := n k, n = 0, 1, 2, · · ·

Let φnj,l be the numerical approximation of φ(xj , yl, tn) and φn the solution
vector at time t = tn = nk with components φnj,l.

We use backward Euler for time discretization and second-order centered
finite difference for spatial derivatives. The detail scheme is:

φ̃j,l − φnj,l
k

=
1

2h2
x

[
φ̃j+1,l − 2φ̃j,l + φ̃j−1,l

]
+

1

2h2
y

[
φ̃j,l+1 − 2φ̃j,l + φ̃j,l−1

]

−V2(xj , yl)φ̃j,l − β2

∣∣φnj,l
∣∣2 φ̃j,l + iΩyl

φ̃j+1,l − φ̃j−1,l

2hx

−iΩxj
φ̃j,l+1 − φ̃j,l−1

2hy
, j = 1, · · · ,M − 1, l = 1, · · · , N − 1,

φ̃0,l = φ̃M,l = φ̃j,0 = φ̃j,N = 0, j = 0, · · · ,M, l = 0, · · · , N,

φn+1
j,l =

φ̃j,l

‖φ̃‖
, j = 0, 1, · · · ,M, l = 0, · · · , N, n = 0, 1, · · · , (67)

φ0
j,l = φ0(xj , yl), j = 0, 1, · · · ,M ; l = 0, · · · , N,

where the norm is defined as ‖φ̃‖2 = hxhy
∑M−1

j=1

∑N−1
l=1 |φ̃j,l|2.

4.4 Numerical results

Many numerical results were reported in [20] for ground and central vortex
states of rotating BEC in 2D and 3D. Here we only present some ground
state solutions in 2D of rotating BEC for completeness. We take d = 2 and
γx = γy = 1 in (8). Figures 1 and 2 plot surface and contour of the ground
state φg(x, y) := φgβ,Ω(x, y) with β2 = 100 for different Ω, respectively.

5 Dynamics of a rotating BEC

In this section, we provide some analytical results on the conservation of the
angular momentum expectation in a symmetric trap, i.e. γx = γy in (8),
derive a second-order ODE for time-evolution of the condensate width, and
then present some dynamic laws of a stationary state with a shifted center in
a rotating BEC.
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Fig. 1. Surface plots of ground state density function |φg(x, y)|2 in 2D with γx =
γy = 1 and β2 = 100 for different Ω.

5.1 Dynamics of angular momentum expectation and condensate
width

As a measure of the vortex flux, we define the angular momentum expectation:
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Fig. 2. Contour plots of ground state density function |φg(x, y)|2 in 2D with γx =
γy = 1 and β2 = 100 for different Ω.

〈Lz〉(t) :=

∫

Rd

ψ∗(x, t)Lzψ(x, t) dx = i

∫

Rd

ψ∗(x, t)(y∂x − x∂y)ψ(x, t)dx,

(68)
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for any t ≥ 0. For the dynamics of angular momentum expectation in rotating
BEC, we have the following lemma [10]:

Lemma 4. Suppose ψ(x, t) is the solution of the problem (8)-(9), then we
have

d〈Lz〉(t)
dt

=
(
γ2
x − γ2

y

)
δxy(t), where δxy(t) =

∫

Rd

xy|ψ(x, t)|2dx, t ≥ 0 .

(69)
Consequently, the angular momentum expectation and energy for non-rotating
part are conserved, that is, for any given initial data ψ0(x) in (9),

〈Lz〉(t) ≡ 〈Lz〉(0), Eβ,0(ψ) ≡ Eβ,0(ψ0), t ≥ 0 (70)

at least for radially symmetric trap in 2D or cylindrically symmetric trap in
3D, i.e. γx = γy.

Another quantity characterizing the dynamics of rotating BEC is the con-
densate width defined as

σα(t) =
√
δα(t), where δα(t) = 〈α2〉(t) =

∫

Rd

α2|ψ(x, t)|2dx, (71)

for t ≥ 0 and α being either x, y or z. For the dynamics of condensate widths,
we have the following lemmas [10]:

Lemma 5. Suppose ψ(x, t) is the solution of problem (8)-(9), then we have

d2δα(t)

dt2
=

∫

Rd

[
(∂yα− ∂xα)

(
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

)

+2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α(Vd(x))

]
dx, t ≥ 0, (72)

δα(0) = δ(0)α =

∫

Rd

α2|ψ0(x)|2dx, α = x, y, z, (73)

δ̇α(0) = δ(1)α = 2

∫

Rd

α
[
−Ω|ψ0|2 (x∂y − y∂x)α+ Im (ψ∗

0∂αψ0)
]
dx, (74)

where Im(f) denotes the imaginary part of f .

From Lemma 5, we have [10]

Lemma 6. (i) In 2D with a radial symmetric trap, i.e. d = 2 and γx = γy :=
γr in (8), for any initial data ψ0 = ψ0(x, y), we have for any t ≥ 0,

δr(t) =
Eβ,Ω(ψ0) +Ω〈Lz〉(0)

γ2
r

[1 − cos(2γrt)] + δ(0)r cos(2γrt) +
δ
(1)
r

2γr
sin(2γrt),

(75)
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where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0), and δ

(1)
r := δ̇x(0) + δ̇y(0).

Furthermore, when the initial condition ψ0(x, y) in (9) satisfies

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m 6= 0, (76)

we have, for any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t)

=
Eβ,Ω(ψ0) +mΩ

2γ2
x

[1 − cos(2γxt)] + δ(0)x cos(2γxt) +
δ
(1)
x

2γx
sin(2γxt). (77)

This and (71) imply that

σx = σy =

√
Eβ,Ω(ψ0) +mΩ

2γ2
x

[1 − cos(2γxt)] + δ
(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).

(78)
Thus in this case, the condensate widths σx(t) and σy(t) are periodic functions
with frequency doubling the trapping frequency.

(ii) For all other cases, we have, for any t ≥ 0

δα(t) =
Eβ,Ω(ψ0)

γ2
α

+

(
δ(0)α − Eβ,Ω(ψ0)

γ2
α

)
cos(2γαt) +

δ
(1)
α

2γα
sin(2γαt) + fα(t), (79)

where fα(t) is the solution of the following second-order ODE:

d2fα(t)

dt2
+ 4γ2

α fα(t) = Fα(t), fα(0) =
dfα(0)

dt
= 0, (80)

with

Fα(t) =

∫

Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2
αα

2 − 4Vd(x)
)
|ψ|2 + 4Ωψ∗Lzψ

+(∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx.

5.2 Dynamics of a stationary state with its center shifted

Let φe(x) be a stationary state of the GPE (8) with a chemical potential µe
[20], i.e. (µe, φe) satisfying

µeφe(x) = −1

2
∆φe + Vd(x)φe + βd|φe|2φe −ΩLzφe, ‖φe‖2 = 1. (81)

If the initial data ψ0(x) in (9) is chosen as a stationary state with a shift
in its center, one can construct an exact solution of the GPE (8) with a
harmonic oscillator potential. This kind of analytical construction can be used,
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in particular, in the benchmark and validation of numerical algorithms for
GPE. In [40], a similar kind of solution was constructed for GPE and a second
order ODE system was derived for the dynamics of the center, but the results
there were valid only for non-rotating BEC, i.e. Ω = 0. Modifications must
be made for the rotating BEC, i.e. Ω 6= 0. Later, in [22], similar results were
extended to the case of a general Hamiltonian but without specifying the
initial data for the ODE system. Here we present the dynamic laws for the
rotating BEC [10]:

Lemma 7. If the initial data ψ0(x) in (9) is chosen as

ψ0(x) = φe(x − x0), x ∈ Rd, (82)

where x0 is a given point in Rd, then the exact solution of (8)-(9) satisfies:

ψ(x, t) = φe(x − x(t)) e−iµet eiw(x,t), x ∈ Rd, t ≥ 0, (83)

where for any time t ≥ 0, w(x, t) is linear for x, i.e.

w(x, t) = c(t) · x + g(t), c(t) = (c1(t), · · · , cd(t))T , x ∈ Rd, t ≥ 0, (84)

and x(t) satisfies the following second-order ODE system:

ẍ(t) − 2Ωẏ(t) +
(
γ2
x −Ω2

)
x(t) = 0, (85)

ÿ(t) + 2Ωẋ(t) +
(
γ2
y −Ω2

)
y(t) = 0, t ≥ 0, (86)

x(0) = x0, y(0) = y0, ẋ(0) = Ωy0, ẏ(0) = −Ωx0 . (87)

Moreover, if in 3D, another ODE needs to be added:

z̈(t) + γ2
zz(t) = 0, z(0) = z0, ż(0) = 0. (88)

5.3 Analytical solutions for the center of mass

Without loss of generality, in this subsection, we assume γx = 1 and γx ≤ γy
in (85)-(88). From (81) and (83), changing of variables, we get

〈x〉(t) :=

∫

Rd

x|ψ(x, t)|2 dx =

∫

Rd

x|φe(x − x(t))|2 dx

=

∫

Rd

(x + x(t))|φe(x)|2 dx = x(t), t ≥ 0. (89)

This immediately implies that the dynamics of the center of mass is the same
as that of x(t), i.e. satisfying the ODE system (85)-(88). It is easy to see that
the solution of (88) is

z(t) = z0 cos(γzt), t ≥ 0, (90)
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thus, z(t) is a periodic function with period Tz = 2π/γz. Furthermore, when
Ω 6= 0, dividing both sides of (85) by 2Ω, we get

ẏ(t) =
1

2Ω

(
ẍ(t) +

(
γ2
x −Ω2

)
x(t)

)
, t ≥ 0. (91)

Differentiating (86) with respect to t, we obtain

y(3)(t) + 2Ωẍ(t) +
(
γ2
y −Ω2

)
ẏ(t) = 0, t ≥ 0. (92)

Plugging (91) into (92), we get the following fourth-order ODE for x(t)

x(4)(t) +
(
γ2
x + γ2

y + 2Ω2
)
ẍ(t) +

(
γ2
x −Ω2

) (
γ2
y −Ω2

)
x(t) = 0, t ≥ 0. (93)

The characteristic equation of (93) is

λ4 +
(
γ2
x + γ2

y + 2Ω2
)
λ2 +

(
γ2
x −Ω2

) (
γ2
y −Ω2

)
= 0. (94)

In the following, we will discuss the solutions of the ODE system (85)-(87)
in different parameter regimes of trapping frequencies and angular rotation
speed Ω.

For a non-rotating BEC, i.e. Ω ≡ 0 in GPE (8), the second-order ODE
system (85)-(87) collapses to

ẍ(t) + γ2
xx(t) = 0, ÿ(t) + γ2

yy(t) = 0, t ≥ 0, (95)

x(0) = x0, y(0) = y0, ẋ(0) = ẏ(0) = 0. (96)

It is straightforward to see that the solution of (95)-(96) is

x(t) = x0 cos(γxt), y(t) = y0 cos(γyt), t ≥ 0, (97)

which implies that both x(t) and y(t) are periodic functions with periods
Tx = 2π/γx and Ty = 2π/γy, respectively.

For a rotating BEC with a symmetric trap, i.e. Ω 6= 0 in (8) and γx ≡ γy,
we have the following solution for the second order ODE system (85)-(87)
[77]:

Lemma 8. When Ω 6= 0 and γx ≡ γy in (85)-(87), the solutions of x(t) and
y(t) for the motion of the center are

x(t) =
x0

2
[cos(at) + cos(bt)] +

|Ω|y0
2Ω

[sin(at) − sin(bt)] , (98)

y(t) =
y0
2

[cos(at) + cos(bt)] +
|Ω|x0

2Ω
[− sin(at) + sin(bt)] , t ≥ 0, (99)

where

a = γx + |Ω|, b = γx − |Ω|.
Furthermore, we can get the distance between the center of mass and the trap
center is a periodic function with period T = π/γx, i.e.

|x(t)| :=
√
x2(t) + y2(t) =

√
x2

0 + y2
0 | cos(γxt)|, t ≥ 0. (100)
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For a rotating BEC with an anisotropic trap, i.e. Ω 6= 0 in (8) and γx < γy,
we will present the analytical solutions in four different cases: (a). |Ω| = γx;
(b). |Ω| = γy; (c). 0 < |Ω| < γx or |Ω| > γy; and (d). γx < Ω < γy.

For |Ω| = γx, we have [77]

Lemma 9. When |Ω| = γx < γy in (85)-(87), the solutions of x(t) and y(t)
for the motion of the center are

x(t) =
x0

a2

[
(γ2

y +Ω
2) + 2Ω2 cos(at)

]
+
Ωy0

a2

[
−(γ2

y −Ω
2)t+

2(γ2
y +Ω2)

a
sin(at)

]
,

(101)

y(t) =
y0

a2

[
2Ω2 + (γ2

y +Ω
2) cos(at)

]
−
Ωx0

a
sin(at), t ≥ 0; (102)

where a =
√
γ2
y + 3Ω2. This implies that the center moves on an ellipse when

y0 = 0, and moves to infinity when y0 6= 0.

Similarly for γx < |Ω| = γy, we have [77]

Lemma 10. When γx < γy = |Ω| in (85)-(87), the solutions of x(t) and y(t)
for the motion of the center are

x(t) =
x0

a2

[
2Ω2 + (γ2

x +Ω
2) cos(at)

]
+
Ωy0

a
sin(at), t ≥ 0, (103)

y(t) =
y0

a2

[
(γ2

x +Ω
2) + 2Ω2 cos(at)

]
+
Ωx0

a2

[
(γ2

x −Ω
2)t−

2(γ2
x +Ω2)

a
sin(at)

]
,

(104)

where a =
√
γ2
x + 3Ω2. Again this implies that the center moves on an ellipse

when x0 = 0, and moves to infinity when x0 6= 0.

IfΩ 6= 0, γx or γy, let δ1 = (γ2
x+γ

2
y+2Ω2)/2, δ2 =

√
δ21 − (γ2

x −Ω2)
(
γ2
y −Ω2

)
,

a =
√
|δ1 − δ2| and b =

√
δ1 + δ2. When 0 < |Ω| < γx or |Ω| > γy, we have

0 < δ2 < δ1. Thus we get the four roots for the characteristic equation (94)

λ1,2 = ±i
√
δ1 − δ2 = ±a i, λ3,4 = ±i

√
δ1 + δ2 = ±b i. (105)

Following the procedure in the proof of Lemma 2.1, after a detailed compu-
tation, we get the solution of the ODE system (85)-(87) in this case

Lemma 11. When γx < γy, and 0 < |Ω| < γx or |Ω| > γy, we have the
solution x(t) and y(t) of the ODE system (85)-(87)

x(t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt), (106)

y(t) = c5 cos(at) + c6 sin(at) + c7 cos(bt) + c8 sin(bt), t ≥ 0, (107)

where
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c1 =

(
γ2
x +Ω2 − b2

)
x0

a2 − b2
, c2 =

aΩ
(
γ2
x −Ω2 + b2

)
y0

(γ2
x −Ω2) (a2 − b2)

,

c3 = −
(
γ2
x +Ω2 − a2

)
x0

a2 − b2
, c4 = −bΩ

(
γ2
x −Ω2 + a2

)
y0

(γ2
x −Ω2) (a2 − b2)

,

c5 = −
(
γ2
x −Ω2 − a2

) (
γ2
x −Ω2 + b2

)
y0

2 (γ2
x −Ω2) (a2 − b2)

,

c6 =

(
γ2
x −Ω2 − a2

) (
γ2
x +Ω2 − b2

)
x0

2aΩ (a2 − b2)
,

c7 =

(
γ2
x −Ω2 + a2

) (
γ2
x −Ω2 − b2

)
y0

2 (γ2
x −Ω2) (a2 − b2)

,

c8 = −
(
γ2
x −Ω2 − b2

) (
γ2
x +Ω2 − a2

)
x0

2bΩ (a2 − b2)
.

This implies that the graph of the trajectory is a bounded set.

Similarly, when γx < |Ω| < γy, we have δ2 > δ1. Thus we get the four
roots for the characteristic equation (94)

λ1,2 = ±
√
δ2 − δ1 = ±a, λ3,4 = ±i

√
δ1 + δ2 = ±b i. (108)

Following the procedure in the proof of Lemma 2.1, after a detailed compu-
tation, we get the solution of the ODE system (85)-(87) in this case

Lemma 12. When γx < |Ω| < γy, we have the solution x(t) and y(t) of the
ODE system (85)-(87)

x(t) = d1e
at + d2e

−at + d3 cos(bt) + d4 sin(bt), (109)

y(t) = d5e
at + d6e

−at + d7 cos(bt) + d8 sin(bt), t ≥ 0, (110)

where

d1 =
1

2
(c1 − c2), d2 = −1

2
(c1 + c2), d3 = c3,

d4 = c4, d7 = c7, d8 = c8,

d5 =

(
γ2
x −Ω2 + a2

)

4aΩ
(c1 − c2), d6 =

(
γ2
x −Ω2 + a2

)

4aΩ
(c1 + c2),

with c1, . . . , c8 constants defined in Lemma 2.4. From the above solution, we

can see that if c1 = c2, i.e. y0 =
(γ2

x−Ω
2)(γ2

x+Ω2−b2)x0

aΩ(γ2
x−Ω

2+b2) , the graph of the trajec-

tory is a bounded set; otherwise, the center will move to the infinity exponen-
tially fast and satisfies

lim
t→∞

y(t)

x(t)
=
c5
c1

=

(
γ2
x −Ω2 + a2

)

2aΩ
. (111)
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5.4 Dynamics of the total density in the presence of dissipation

Consider a more general GPE of the form:

(i− λ)∂tψ(x, t) = −1

2
∆ψ + V (x, t)ψ + βd|ψ|2ψ −ΩLzψ, x ∈ Rd, (112)

ψ(x, 0) = ψ0(x), x ∈ Rd; (113)

where λ ≥ 0 is a real parameter that models a dissipation mechanism [4, 10]
and V (x, t) = Vd(x)+W (x, t) withW (x, t) an external driven field [25, 26, 50].
Typical external driven fields used in physics literatures include a Delta kicked
potential [50]

W (x, t) = Ks cos(ksx)
∞∑

n=−∞

δ(t− nτ), (114)

with Ks being the kick strength, ks the wavenumber, τ the time interval be-
tween kicks, and δ(τ) the Dirac delta function; or a far-blue detuned Gaussian
laser beam stirrer [10, 25, 26]

W (x, t) = Ws(t) exp

[
−
( |x− xs(t)|2

ws/2

)]
, (115)

with Ws(t) being the height, ws the width and xs(t) the position of the stirrer.
In addition, we note that to study the onset of energy dissipation in a BEC
stirred by a laser field, another possibility is to view the beam as an translating
obstacle [4] instead of introducing the Gaussian potential.

While the total density remains constant with λ = 0, in the more general
case, we have the following lemma for the dynamics of the total density [10]:

Lemma 13. Let ψ(x, t) be the solution of (112)- (113), then the total density
satisfies

Ṅ(ψ)(t) =
d

dt

∫

Rd

|ψ(x, t)|2 dx = − 2λ

1 + λ2
µβ,Ω(ψ), t ≥ 0, (116)

where

µβ,Ω(ψ) =

∫

Rd

[
1

2
|∇ψ|2 + V (x, t)|ψ|2 + βd|ψ|4 −ΩRe(ψ∗Lzψ)

]
dx.

Consequently, the total density decreases when λ > 0 and |Ω| ≤ γxy :=
min{γx, γy}.

6 Numerical methods for computing dynamics in

rotating BEC

In this section, we review the efficient and accurate numerical methods pro-
posed recently to solve the following GPE for dynamics of rotating BEC.
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Due to the trapping potential Vd(x), the solution ψ(x, t) of (112)-(113) de-
cays to zero exponentially fast when |x| → ∞. Thus in practical computation,
we truncate the problem (112)-(113) into a bounded computational domain
with the homogeneous Dirichlet boundary condition:

(i− λ)∂tψ(x, t) = −1

2
∆ψ + V (x, t)ψ + βd|ψ|2ψ −ΩLzψ, x ∈ Ωx, (117)

ψ(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0, (118)

ψ(x, 0) = ψ0(x), x ∈ Ω̄x; (119)

where Ωx is a bounded computational domain to be specified later. The use of
more sophisticated radiation boundary conditions is an interesting topic that
remains to be examined in the future.

6.1 Time-splitting

We choose a time step size ∆t > 0. For n = 0, 1, 2, · · ·, from time t = tn = n∆t
to t = tn+1 = tn + ∆t, the GPE (117) is solved in two splitting steps. One
solves first

(i− λ) ∂tψ(x, t) = −1

2
∆ψ −ΩLzψ (120)

for the time step of length ∆t, followed by solving

(i− λ) ∂tψ(x, t) = V (x, t)ψ + βd|ψ|2ψ, (121)

for the same time step. Equation (120) will be discretized in detail in the next
two subsections. For t ∈ [tn, tn+1], after dividing (121) by (i−λ), multiplying
it by ψ∗ and adding with its complex conjugate, we obtain the following ODE
for ρ(x, t) = |ψ(x, t)|2:

∂tρ(x, t) = − 2λ

1 + λ2

[
V (x, t)ρ(x, t) + βdρ

2(x, t)
]
, x ∈ Ωx, tn ≤ t ≤ tn+1.

(122)
The ODE for the phase angle φ(x, t) (determined as ψ =

√
ρeiφ) is given by

φt = − 1

1 + λ2
[V (x, t) + βdρ(x, t)] , x ∈ Ωx, tn ≤ t ≤ tn+1. (123)

For λ 6= 0, by (122), the above is equivalent to

φt =
1

2λ
∂t ln ρ , x ∈ Ωx, tn ≤ t ≤ tn+1. (124)

Denote Vn(x, t) =
∫ t
tn
V (x, τ)dτ , we can solve (122) to get,

ρ(x, t) =
ρ(x, tn) exp[−2λVn(x,t)

1+λ2 ]

1 + ρ(x, tn)
2λβd

1+λ2

∫ t
tn

exp[−2λVn(x,τ)
1+λ2 ] dτ

. (125)
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Consequently, in the special case V (x, t) = V (x), we have some exact analyt-
ical solutions given by

ρ(x, t) =






ρ(x, tn), λ = 0,

(1 + λ2)ρ(x, tn)

(1 + λ2) + 2λβd(t− tn)ρ(x, tn)
, V (x) = 0,

V (x)ρ(x, tn) exp[−2λV (x)(t−tn)
1+λ2 ]

V (x) +
(
1 − exp[−2λV (x)(t−tn)

1+λ2 ]
)
βdρ(x, tn)

, V (x) 6= 0.

(126)

Plugging (125) into (123), we get for t ∈ [tn, tn+1],

ψ(x, t) = ψ(x, tn)
√
Un(x, t) exp

[
− i

1 + λ2

(
Vn(x, t) + βd

∫ t

tn

ρ(x, τ)dτ

)]
,

(127)
where

Un(x, t) =
exp[−2λVn(x,t)

1+λ2 ]

1 + |ψ(x, tn)|2 2λβd

1+λ2

∫ t
tn

exp[−2λVn(x,τ)
1+λ2 ] dτ

. (128)

Again, with V (x, t) = V (x), we can integrate exactly to get

ψ(x, t) = ψ(x, tn)






exp
[
−i(βd|ψ(x, tn)|2 + V (x))(t − tn)

]
, λ = 0,

√
Ûn(x, t) exp[ i2λ ln Ûn(x, t)], λ 6= 0;

(129)

where

Ûn(x, t) =






1 + λ2

1 + λ2 + 2λβd(t− tn)|ψ(x, tn)|2 , V (x) = 0,

V (x) exp[− 2λ(t−tn)V (x)
1+λ2 ]

V (x) +
(
1 − exp[− 2λ(t−tn)V (x)

1+λ2 ]
)
βd|ψ(x, tn)|2

, V (x) 6= 0.

Remark 2. If the function Vn(x, t) as well as other integrals in (125), (127),
and (128) can not be evaluated analytically, numerical quadrature can be
used, e.g.

Vn(x, tn+1) =

∫ tn+1

tn

V (x, τ) dτ

≈ ∆t

6
[V (x, tn) + 4V (x, tn +∆t/2) + V (x, tn+1)] .
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6.2 Discretization by using polar/cylindrical coordinate

To solve (120), we choose Ωx = {(x, y), r =
√
x2 + y2 < R} in 2D, and

respectively Ωx = {(x, y, z), r =
√
x2 + y2 < R, a < z < b} in 3D, with

R, |a| and b sufficiently large, and try to formulate the equation in a variable
separable form. When d = 2, we use the polar coordinate (r, θ), and discretize
in the θ-direction by a Fourier pseudo-spectral method, in the r-direction by a
finite element method (FEM) and in time by a Crank-Nicolson (C-N) scheme.
Assume

ψ(r, θ, t) =

L/2−1∑

l=−L/2

ψ̂l(r, t) e
ilθ, (130)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for
the l-th mode. Plugging (130) into (120), noticing the orthogonality of the
Fourier functions, we obtain for −L

2 ≤ l ≤ L
2 − 1 and 0 < r < R:

(i− λ) ∂tψ̂l(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
+

(
l2

2r2
− lΩ

)
ψ̂l(r, t), (131)

ψ̂l(R, t) = 0 (for all l), ψ̂l(0, t) = 0 (for l 6= 0). (132)

Let P k denote all polynomials with degree at most k, M > 0 be a chosen
integer, 0 = r0 < r1 < r2 < · · · < rM = R be a partition for the interval [0, R]
with a mesh size h = max0≤m<M {rm+1 − rm}. Define a FEM subspace by

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(R) = 0
}

for l = 0, and for l 6= 0,

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(0) = uh(R) = 0
}
,

then we obtain the FEM approximation for (131)-(132): Find ψ̂hl = ψ̂hl (·, t) ∈
Uh such that for all φh ∈ Uh and tn ≤ t ≤ tn+1,

(i− λ)
d

dt
A(ψ̂hl (·, t), φh) = B(ψ̂hl (·, t), φh)+l2C(ψ̂hl , φ

h)−lΩA(ψ̂hl , φ
h), (133)

where

A(uh, vh) =

∫ R

0

r uh(r) vh(r) dr, B(uh, vh) =

∫ R

0

r

2

duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) =

∫ R

0

1

2r
uh(r) vh(r) dr, uh, vh ∈ Uh.

The ODE system (133) is then discretized by the standard Crank-Nicolson
scheme in time. Although an implicit time discretization is applied for (133),
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the 1D nature of the problem makes the coefficient matrix for the linear system
band-limited. For example, if the piecewise linear polynomial is used, i.e. k = 1
in Uh, the matrix is tridiagonal. Fast algorithms can be applied to solve the
resulting linear systems.

In practice, we always use the second-order Strang splitting [71], i.e. from
time t = tn to t = tn+1: i) first evolve (121) for half time step ∆t/2 with initial
data given at t = tn; ii) then evolve (120) for one time step ∆t starting with
the new data; iii) and evolve (121) for half time step ∆t/2 with the newer
data. Other ways to discretize (131) were also proposed in [10]. This method
was demonstrated to be spectral accuracy in transverse direction, second or
fourth-order accuracy in radial direction and second accuracy in time [10]

6.3 Discretization by using ADI technique

To solve (120) in another way, we choose Ωx = [a, b]× [c, d] in 2D, and resp.,
Ωx = [a, b]× [c, d]× [e, f ] in 3D, with |a|, b, |c|, d, |e| and f sufficiently large.
For simplicity of notation, here we assume λ = 0 and V (x, t) = V (x) in (117).

When d = 2 in (120), we choose mesh sizes ∆x > 0 and ∆y > 0 with
∆x = (b − a)/M and ∆y = (d − c)/N for M and N even positive integers,
and let the grid points be

xj = a+ j∆x, j = 0, 1, 2, · · · ,M ; yk = c+ k∆y, k = 0, 1, 2, · · · , N.

Let ψnjk be the approximation of ψ(xj , yk, tn) and ψn be the solution vector
with component ψnjk.

From time t = tn to t = tn+1, we solve (120) first

i ∂tψ(x, t) = −1

2
∂xxψ(x, t) − iΩy∂xψ(x, t), (134)

for the time step of length ∆t, followed by solving

i ∂tψ(x, t) = −1

2
∂yyψ(x, t) + iΩx∂yψ(x, t), (135)

for the same time step.
For each fixed y, the operator in the equation (134) is in x-direction with

constant coefficients and thus we can discretize it in x-direction by a Fourier
pseudospectral method. Assume

ψ(x, y, t) =

M/2−1∑

p=−M/2

ψ̂p(y, t) exp[iµp(x − a)], (136)

where µp = 2pπ
b−a and ψ̂p(y, t) is the Fourier coefficient for the p-th mode in x-

direction. Plugging (136) into (134), noticing the orthogonality of the Fourier
functions, we obtain for −M

2 ≤ p ≤ M
2 − 1 and c ≤ y ≤ d:
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i ∂tψ̂p(y, t) =

(
1

2
µ2
p +Ωyµp

)
ψ̂p(y, t), tn ≤ t ≤ tn+1. (137)

The above linear ODE can be integrated in time exactly and we obtain

ψ̂p(y, t) = exp

[
−i
(

1

2
µ2
p +Ωyµp

)
(t− tn)

]
ψ̂p(y, tn), tn ≤ t ≤ tn+1.

(138)
Similarly, for each fixed x, the operator in the equation (135) is in y-direction
with constant coefficients and thus we can discretize it in y-direction by a
Fourier pseudospectral method. Assume

ψ(x, y, t) =

N/2−1∑

q=−N/2

ψ̂q(x, t) exp[iλq(y − c)], (139)

where λq = 2qπ
d−c and ψ̂q(x, t) is the Fourier coefficient for the q-th mode in y-

direction. Plugging (139) into (135), noticing the orthogonality of the Fourier
functions, we obtain for −N

2 ≤ q ≤ N
2 − 1 and a ≤ x ≤ b:

i ∂tψ̂q(x, t) =

(
1

2
λ2
q −Ωxλq

)
ψ̂q(x, t), tn ≤ t ≤ tn+1. (140)

Again the above linear ODE can be integrated in time exactly and we obtain

ψ̂q(x, t) = exp

[
−i
(

1

2
λ2
q −Ωxλq

)
(t− tn)

]
ψ̂q(x, tn), tn ≤ t ≤ tn+1.

(141)
From time t = tn to t = tn+1, we combine the splitting steps via the standard
second order Strang splitting [71, 19]:

ψ
(1)
jk =

M/2−1∑

p=−M/2

e−i∆t(µ
2
p+2Ωykµp)/4 (̂ψnk )p e

iµp(xj−a), 0 ≤ j ≤M, 0 ≤ k ≤ N,

ψ
(2)
jk =

N/2−1∑

q=−N/2

e−i∆t(λ
2
q−2Ωxjλq)/4 (̂ψ

(1)
j )

q
eiλq(yk−c), 0 ≤ k ≤ N, 0 ≤ j ≤M,

ψ
(3)
jk = e−i∆t[V (xj,yk)+β2|ψ

(2)

jk
|2] ψ

(2)
jk ,

ψ
(4)
jk =

N/2−1∑

q=−N/2

e−i∆t(λ
2
q−2Ωxjλq)/4 (̂ψ

(3)
j )

q
eiλq(yk−c), 0 ≤ k ≤ N, 0 ≤ j ≤M,

ψn+1
jk =

M/2−1∑

p=−M/2

e−i∆t(µ
2
p+2Ωykµp)/4 (̂ψ

(4)
k )p e

iµp(xj−a), (142)

where for each fixed k, (̂ψαk )p (p = −M/2, · · · ,M/2− 1) with α an index, the

Fourier coefficients of the vector ψαk = (ψα0k, ψ
α
1k, · · ·, ψα(M−1)k)

T , are defined
as
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(̂ψαk )p =
1

M

M−1∑

j=0

ψαjk e
−iµp(xj−a), p = −M

2
, · · · , M

2
− 1; (143)

similarly, for each fixed j, (̂ψαj )
q

(q = −N/1, · · · , N/2− 1), the Fourier coeffi-

cients of the vector ψαj = (ψαj0, ψ
α
j1, · · ·, ψαj(N−1))

T , are defined as

(̂ψαj )
q

=
1

N

N−1∑

k=0

ψαjk e
−iλq(yk−c), q = −N

2
, · · · , N

2
− 1. (144)

For the above algorithm (142), the total memory requirement is O(MN)
and the total computational cost per time step is O(MN ln(MN)). The
scheme is time reversible when W (x) ≡ 0, just as it holds for the GPE (8),
i.e. the scheme is unchanged if we interchange n ↔ n + 1 and ∆t ↔ −∆t in
(142). Also, a main advantage of the numerical method is its time-transverse
invariance when W (x) ≡ 0, just as it holds for the GPE (8) itself. If a constant
α is added to the external potential V , then the discrete wave functions ψn+1

jk

obtained from (142) get multiplied by the phase factor e−iα(n+1)∆t, which
leaves the discrete quadratic observable |ψn+1

jk |2 unchanged. This method was
demonstrated to be spectral accuracy in space and second accuracy in time
[19]

6.4 The leap-frog spectral method

Another way to discretize (117) is the leap-frog spectral method. we choose
Ωx = [a, b]× [c, d] in 2D, and resp., Ωx = [a, b]× [c, d]× [e, f ] in 3D, with |a|,
b, |c|, d, |e| and f sufficiently large. Again, for simplicity of notation, here we
assume λ = 0 and V (x, t) = V (x) in (117). When d = 2, choose spatial mesh
sizes ∆x = (b − a)/J and ∆y = (d − c)/K with J , K and L even integers,
denote the grid points as

xj = a+ j∆x, j = 0, 1, · · · , J, yk = c+ k∆y, k = 0, 1, · · · ,K.

let ψnj,k be the approximation of ψ(xj , yk, tn). For n = 1, 2, · · ·, from time
t = tn−1 = (n − 1)∆t to t = tn+1 = tn + ∆t, the GPE (112) is discretized
in space by the Fourier pseudospectral method and in time by the leap-frog
scheme, i.e. for j = 0, 1, · · · , J and k = 0, 1, · · · ,K

i
ψn+1
j,k − ψn−1

j,k

2∆t
= −1

2

(
∇2
hψ

n
)∣∣
j,k

+V2(xj , yk)ψ
n
j,k+β2|ψnj,k|2ψnj,k−Ω (Lhψ

n)|j,k ,
(145)

where ∇2
h and Lh, the pseudospectral differential operator approximating the

operators ∇2 and Lz respectively, are defined as
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(
∇2
hψ

n
)∣∣
j,k

= −
J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

(
µ2
p + λ2

q

)
(̂ψn)p,q e

iµp(xj−a) eiλq(yk−c),

(Lhψ
n)|j,k = xj

(
Dh
yψ

n
)∣∣
j,k

− yk
(
Dh
xψ

n
)∣∣
j,k
, 0 ≤ j ≤ J, 0 ≤ k ≤ K,

(
Dh
xψ

n
)∣∣
j,k

=

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

µp (̂ψn)p,q e
iµp(xj−a) eiλq(yk−c),

(
Dh
yψ

n
)∣∣
j,k

=

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

λq (̂ψn)p,q e
iµp(xj−a) eiλq(yk−c),

with

µp =
2pπ

b− a
, p = −J

2
, · · · , J

2
− 1; λq =

2qπ

d− c
, q = −K

2
, · · · , K

2
− 1,

(̂ψn)p,q =
1

JK

J−1∑

j=0

K−1∑

k=0

ψnj,k e
−iµp(xj−a) e−iλq(yk−c).

As stated in the introduction, here we use the leap-frog scheme for time dis-
cretization since we want to have an explicit and time reversible time integra-
tor. In order to compute ψ1

j,k, we apply the modified trapezoidal rule in time

on the interval [t0, t1]:

i
ψ

(1)
j,k − ψ0

j,k

∆t
= −

1

2

(
∇2

hψ
0
)∣∣

j,k
+ V2(xj, yk)ψ0

j,k + β2|ψ
0
j,k|

2
ψ

0
j,k −Ω

(
Lhψ

0
)∣∣

j,k
,

i
ψ

(2)
j,k

− ψ
(1)
j,k

∆t
= −

1

2

(
∇2

hψ
(1)
)∣∣

j,k
+ V2(xj , yk)ψ

(1)
j,k

+ β2|ψ
(1)
j,k

|2ψ
(1)
j,k

−Ω
(
Lhψ

(1)
)∣∣

j,k
,

ψ
1
j,k =

1

2

(
ψ

(1)
j,k + ψ

(2)
j,k

)
, j = 0, 1, · · · , J, k = 0, 1, · · · ,K. (146)

The initial data (119) is discretized as

ψ0
j,k = ψ0(xj , yk), j = 0, 1, · · · , J, k = 0, 1, · · · ,K. (147)

The leap-frog Fourier pseudospectral discretization (145) is explicit and
time reversible. The total memory requirement is O(JK) and the total com-
putational cost per time step is O(JK ln(JK)). Following the standard von
Neumann analysis and coefficient frozen technique, the stability condition for
(145) is

∆t <
2(∆x)2

π2

[
1 +

(
∆x
∆y

)2]
+ maxx∈Ωx

[
π

(
|x|∆x+ |y| (∆x)2

∆y

)
+ V2(x) + β2|ψ(x, t)|2

] .

This method was demonstrated to be spectral accuracy in space and second
accuracy in time [77]
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6.5 Numerical results

Many numerical results were reported in [10, 19, 77] to demonstrate the ef-
ficiency and accuracy of the above numerical methods. Here we only report
the dynamics of a quantized vortex lattice with 81 vortices in rotating BEC.
We take d = 2, β2 = 2000, Ω = 0.9. The initial condition in (119) is taken as
the ground state [20, 10, 6] of the GPE computed numerically with the the
same parameter values and γx = γy = 1. Then at t = 0, we change the trap
frequency by setting γx = γy = 1.5, or γx = 1.2 and γy = 1.5 respectively. We
take Ωx = [−24, 24] × [−24, 24] and choose mesh size ∆x = ∆y = 3/64 and
time step ∆ = 0.0001. Figures 3-4 show contour plots of the density function
|ψ(x, t)|2 at different times.

t = 0 t = 2

t = 4 t = 8

−10 −5 0 5 10

−10

−5

0

5

10

Fig. 3. The contour plots of the density function |ψ(x, t)| of the vortex lattices at
different time for changing from γx = γy = 1 to γx = γy = 1.5.

From Figs. 3-4, at t = 0, there are 81 quantized vortices in the ground
state. During the time evolution, the lattice is rotated due to the angular
momentum term (cf. Fig. 4), and shrunk or expanded due to the changing
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t = 0 t = 1

t = 3.5 t = 6

t = 9 t = 13
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Fig. 4. The contour plots of the density function |ψ(x, t)| of the vortex lattices at
different time for changing from γx = γy = 1 to γx = 1.2 and γy = 1.5.

of the trapping frequencies (cf. Fig. 3). This clearly demonstrates the high
resolution of the LFFP method for rotating BEC.
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7 Conclusion

We have reviewed our recent works for the ground state and dynamics of
the Gross-Pitaevskii equation with an angular momentum rotation term for
rotating BECs. Along the analytical front, we provided asymptotics of the
energy and chemical potential of the ground state in the semiclassical regime,
showed that the ground state is a global minimizer of the energy functional
over the unit sphere and all excited states are saddle points in the linear case.
We proved the conservation of the angular momentum expectation when the
external trapping potential is radially symmetric in 2D, and respectively cylin-
drically symmetric in 3D. A second-order ODE was also derived to describe the
time-evolution of the condensate width as a periodic function with/without a
perturbation, and the frequency of the periodic function doubles the trapping
frequency. We also presented an ODE system with a complete initial data that
governs the dynamics of a stationary state with a shifted center and we also
illustrated the decrease in the total density when a damping term is applied
in the GPE. On the numerical side, we reviewed the continuous normalized
gradient flow with backward Euler finite difference discretization for comput-
ing ground state in rotating BEC and three efficient and accurate numerical
method for computing the dynamics of rotating BEC. Finally the dynamics
of a quantized vortex lattice with 81 vortices is reported to demonstrate the
spectral resolution of our numerical methods.
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