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Abstract

In this paper, we present an explicit, unconditionally stable and accurate numerical method for the Maxwell-Dirac
system (MD) and use it to study dynamics of MD. As preparatory steps, we take the three-dimensional (3D) Maxwell—
Dirac system, scale it to obtain a two-parameter model and review plane wave solution of free MD. Then we present a
time-splitting spectral method (TSSP) for MD. The key point in the numerical method is based on a time-splitting
discretization of the Dirac system, and to discretize nonlinear wave-type equations by pseudospectral method for spatial
derivatives, and then solving the ordinary differential equations (ODEs) in phase space analytically under appropriate
chosen transmission conditions between different time intervals. The method is explicit, unconditionally stable, time
reversible, time transverse invariant, and of spectral-order accuracy in space and second-order accuracy in time.
Moreover, it conserves the particle density exactly in discretized level and gives exact results for plane wave solution of
free MD. Extensive numerical tests are presented to confirm the above properties of the numerical method. Further-
more, the tests also suggest the following meshing strategy (or e-resolution) is admissible in the ‘nonrelativistic’ limit
regime (0 < & < 1): spatial mesh size h = O(e) and time step At = O(¢?), where the parameter ¢ is inversely propor-
tional to the speed of light.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One of the fundamental quantum-relativistic equations is given by the Maxwell-Dirac system (MD), i.e.
the Dirac equation [16,28] for the electron as a spinor coupled to the Maxwell equations for the electro-
magnetic field. It represents the time-evolution of fast (relativistic) electrons and positrons within self-
consistent generated electromagnetic fields. In its most compact form, the Dirac equation reads [8,17,23,27]
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(iy"d, — moc + €)'4,) ¥ = 0. (1.1)

Here the unknown ¥ is the 4-vector complex wave function of the “spinorfield”: Y(¢,x) =
(P, ¥, ¥, W) e Chxg=ct,x = (xl,xz,xg)T e R? with X0, X denoting the time — resp. spatial coordinates
in Minkowski space. 0, stands for =~ -, ie. 0y = O = (k = 1,2, 3), where we consequently adopt

6}(0 - Ci‘t’
notation that Greek letter 5 denotes O 1, 2, 3 and & denotes the three spatial dimension indices 1, 2, 3. y"4,
stands for the summation Z =0 V1 Ay The physical constants are: 7 for the Planck constant, ¢ for the speed
of light, m, for the electron’s rest mass, and e for the unit charge. By " € C**, y = 0,..., 3, we denote the
4 x 4 Dirac matrices given by

o_ (0L 0 r (0 o _
Y _(0 _UZ ) Y= —Gk 0 ’ k_172a3a

where [,, (m a positive integer) is the m x m identity matrix and ¢* (k = 1,2,3) the 2 x 2 Pauli matrices, i.e.

(01 > (0 —i s (1 0
G'(lO’G'iO’G'O—l'

A4,(t,x) € R, n=0,...,3, are the components of the time-dependent electromagnetic potential, in partic-
ular V(¢,x) = —A4o(t, x) is the electric potential and A(z,x) = (4,,4,,45)" is the magnetic potential vector.
Hence the electric and magnetic fields are given by

E(1,x) =VA4)—0,A=-VV —-0A, B(t,x)=curlA=V x A. (1.2)

In order to determine the electric and magnetic potentials from fields uniquely, we have to choose a gauge.
In practice, the Lorentz gauge condition is often introduced

1 1
Thus the electric and magnetic fields are governed by the Maxwell equation:
1 1
—-0E+VxB=—1J, V-B=0, (1.4)
C C€py
1 1
-0B+VxXxE=0, V-E=—p, (1.5)
c €o

where ¢ is the permittivity of the free space. The particle density p and current density J = (ji, /2, j3)T are
defined as follows:

4
p=e|l?) = ez |ViI°, e = ec(P, 0" P) i= ecP ok, k=123, (1.6)

where f denotes the conjugate of f and

ko0 _ (0 a* _
of =9y —<0k 0 ) k=1,2,3. (1.7)
From now on, we adopt the standard notations | - |, (,-) and || - || for />-norm of a vector, inner product

and L*-norm of a function.
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Separating the time derivative associated to the ““relativistic time variable” x, = ¢t and applying y° from
left of (1.1), plugging (1.2) into (1.4) and (1.5), noticing (1.3), we have the following Maxwell-Dirac system
[26]

3
in0,W = ol (— ihcd; — edy) ¥ + eV ¥ + myc® B, (1.8)
k=1
1, 1 1, 1
— XAV =— — X -A)A=—1. 1.
(se-a)r=Lto (Go-a)a-Ly (1.9

The vector wave function ¥ is normalized as
1= [ 17eF ax= 1. (1.10)
[R3

The MD system (1.8) and (1.9) represents the time-evolution of fast (relativistic) electrons and positrons
within self-consistent generated electromagnetic fields. From the mathematical point of view, the strongly
nonlinear MD system poses a hard problem in the study of PDEs arising from quantum physics. Well
posedness and existence of solutions on all of R* but only locally in time has been proved almost 40 years
ago [11,12,21]. In particular, there are no global existence results without smallness assumptions on the
initial data [19,20]. Thus the MD system is quite involved from the numerical point of view as it poses major
open problems from analytical point of view. For solitary solution of MD, we refer [1,10,13,14,23].

The aim of this paper is to design an explicit, unconditionally stable and accurate numerical method for
the MD system and apply it to study dynamics of MD. The key point in the numerical method is based on a
time-splitting discretization of the Dirac system (1.8), which was used successfully to solve nonlinear
Schrodinger equation (NLS) [2-5] and Zakharov system [6,7], and to discretize the nonlinear wave-type
equation (1.9) by pseudospectral method for spatial derivatives, and then solving the ODEs in phase space
analytically under appropriate chosen transmission conditions between different time intervals.

The paper is organized as follows. In Section 2, we start out with the MD, scale it to get a two-parameter
model and review plane wave solution of free MD. In Section 3, we present a time-splitting spectral method
(TSSP) for the MD and show some properties of the numerical method. In Section 4, numerical tests of
MD for different cases are reported to demonstrate efficiency and high resolution of our numerical method.
In Section 5 a summary is given.

2. The Maxwell-Dirac system

Consider the Maxwell-Dirac system represents the time-evolution of fast (relativistic) electrons and
positrons within external and self-consistent generated electromagnetic fields [26]

3
70, ¥ = > o[ — ihcdy — e(di + AX) ¥ + e(V + V)W + moc® B, (2.1)

k=1

1 1 1 1
(gaf—A>V=—p, (Cjaf—A)A:—J, (2.2)

€0 C€g
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where Ve = V(s x) € R and A™(1,x) = (4,49, 49)" € R® are the external electric and magnetic
potentials, respectively.

2.1. Dimensionless Maxwell-Dirac system

We rescale the MD (2.1) and (2.2) under the normalization (1.10) by introducing a reference velocity v,
length L = €?/myt?€), time T = v/L, and strength of the electromagnetic potential A = e/Le, as

i:%,i:%, PE,R) = LY x), TE,R) = V(K x), (2.3)
ALX) = JA(1,x), A™(,X) =A™ (1,x), VU, X) = V™Y1, x). (2.4)

Plugging (2.3) and (2.4) into (2.1) and (2.2), then removing all ~, we get the following dimensionless MD:

3

i60,¥ = —ig > ooy Zoc FATYY + (V + Ve"‘)Y’+ S B, (2.5)
’ k=1

(0] =AYV =p, (£0] —A)A =eJ. (2.6)

Two important dimensionless parameters in the MD (2.5) and (2.6) are given by the ratio of the reference
velocity to the speed of light, i.e. ¢, and the scaled Planck constant, i.e. 9, as

v hegv
g:=—, 0:=

- =5 (2.7)

The position and current densities, Lorentz gauge, as well as electric and magnetic fields in dimensionless
variables are

p(t,x) = [P, X)), Jji(t,x) :%(T(t, x), " P(1,x)), k=1,2,3, (2.8)
L(t,x) =0,V (t,x) + V-A(t,x), t>0, xR’ (2.9)
E(t,x) = —e0,A(t,x) — VV(t,x), B(1,x) =V X A(t,X). (2.10)

When v = ¢ and choosing v = ¢, then ¢ = 1 in (2.7) and the MD (2.5) and (2.6) collapse to a one-parameter

model which is used in [26] to study classical limit and semiclassical asymptotics of MD. In this case, the

parameter o is the same as the canonical parameter o used in physical literatures [16,28]. When v < ¢ and

choosing v = €?/Jiey, then 6 = 1 and 0 < ¢ < 1 in (2.7), again the MD (2.5) and (2.6) collapse to a one-

parameter model which is called as ‘nonrelativistic’ limit regime and used in [8,9,18,22,24,25] to study semi-

nonrelativistic limits of MD, i.e. letting ¢ — 0 in (2.5) and (2.6). For electrons, e = 1 and ¢ ~ 10.9149 [26].
The MD system (2.5) and (2.6) together with initial data

P(0,x) = PV (x) mmumu_/ﬁw X)) dx = 1, (2.11)

V(0,x) =79(x), 8,7(0,x)=r"(x), xecR (2.12)

A0,x) =AV(x), 9,A(0,x)=A"(x) (2.13)
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is time-reversible and time-transverse invariant, i.e., if constants oy and «, are added to V@ and V'™, re-
spectively, in (2.12), then the solution ¥ get added by o + ;7 and ¥ get multiplied by e~*+4/2/° which
leaves density of each particle [y/;| (j = 1,2,3,4) unchanged. Moreover, multiplying (2.5) by ¥ and taking
imaginary parts we obtain the conservation law

dp(t,x) +V-J(t,x) =0, t>0, xcR. (2.14)
From (2.14) and (2.6), we get the Lorentz gauge of the MD system (2.5) and (2.6) satisfying

(20 —A)L(t,x) = ¢(Qp+V-J)=0, t>0, xeR’, (2.15)

L(0,x) = £d,7(0,x) + V- A(0,x) = eV V(x) + V- AV (x), (2.16)

0.L(0,x) = €0,V (0,x) + V - 0,A(0,x) = % [p(0,x) + AV (0,x)] + V - AV (x)
1

= [AV@(X) F PO X)) + eV - A<'>(x)}, x € R, (2.17)

Thus if the initial data in (2.11)—(2.13) satisfy

V) +V-AVx) =0, AVOx) 4+ YO +:V-AV(x) =0, xeR, (2.18)
which implies

L(0,x) =0, 0,L(0,x)=0, x¢cR’, (2.19)

the gauge is henceforth conserved during the time-evolution of the MD (2.5) and (2.6).

2.2. Plane wave solution

If the initial data in (2.11)—(2.13) for the MD (2.5) and (2.6) are chosen as

lP(O) (X) — q/(O)eiw-x — lp(O)ei(w]xl+(uzxz+(/)3X3), (220)

rOx)=rv9 yUx) =r" xeR’, (2.21)
A(]O) A(ll)

AVXx)=A0 = | 40 |, AVx) =AU =| 4] |, (2.22)
AgO) Agl)

where © = (@), my, w3)" with o; (j = 1,2, 3) integers, V@, V) constants, ¥¥, A®, A" constant vectors,
and

3
1 0 +im,

- NN
4n\/ﬁ\/52 ol ="/ + |l |0 |

p(0)
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then the MD (2.5) and (2.6) with e = 1, A™ = —A and V™ = —7, i.e. free MD [15], admits the following
plane wave solution:

P(1,x) = P exp (ico X — ity /07 + |w|2>, (2.23)

1
Vt,x) = -Vt =y 4 y0r 4 T £, xeR, =0, (2.24)
1
Al,x) = —A™ = AQ 1 Ay 4 EJ“’)E, (2.25)
where J = (7, /", ji")" and
R S )

8m31/072 + o

Here the normalization condition for the wave function is set as

/ / [:‘T(taxﬂzd?(:l.

3. Numerical method

In this section we present an explicit, unconditionally stable and accurate numerical method for the MD
(2.5) and (2.6). We shall introduce the method in 3D on a box with periodic boundary conditions. For 3D
in a box Q = [a1,b1] X [az, by] X [a3,b3], the problem with initial and boundary conditions become

i60,¥ = —ig ;31 oo — ; FAp + ATYY + (V + V)Y + 81—2[3'1”, (3.1)
(&0 —A)V(t,x) =p, (0 —A)A(t,x) =), x€Q, >0, (3.2)
P(0,x) = PO(x), V(0,x)=V9(x), 8V (0,x)=r"(x), (3.3)
A(0,x) = AV(x), 9,A(0,x)=A"(x), xeQ (3.4)
with periodic boundary conditions for ¥, 7, A on 02, (3.5)

where V) and A satisfy
Vx)+V-APx) =0, xeQ (3.6)

and the normalization condition for the wave function is set as

()| ::/Q|'I/(t,x)|2dx:/Q|'I/(0)(x)|2dx: 1. (3.7)
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Moreover, integrating the first equation in (3.2) we obtain

d2

SZ—Z/V(t,x) dx:/p(t,x) dx:/|‘1’(t,x)|2dx:1, £>0. (3.8)
dt Q Q Q

This implies that

2
Mean(V(1,-)) = Mean(V'®) + tMean(VV) + % >0, (3.9)
&

where

Mean(f) := /Qf(x) dx.

3.1. Time-splitting spectral discretization

bi—a;
M;

We choose the spatial mesh size h; =
At. Denote the grid points as

(j = 1,2,3) in x,-direction with M; given integer and time step

T
Xp‘q.,r = (xl,paxlq;xlr) (p7 q, V) € ‘—/1/7
where

N ={(p,q,r) |0< p< My, 0<g <My, 0<r<Ms},
X1p = ai +ph17 Xoq = 2 + qh27 X3, = as —|—Vh’; (Py%”) eN

and time step as
th=nlt, tp=Mm+1/2)At, n=0,1,...

Let ¥, .. V), and A} be the numerical approximation of ¥(t,,X,q,), V(tn,Xpq,) and A(t,,Xp,), re-

spectively. Furthermore, let ¥”, V" and A” be the solution vector at time ¢ = ¢, with components ‘P;}q:r, Vs
and A7, respectively.

From time ¢t = ¢, to ¢t = t,1, we discretize the MD (3.1) and (3.2) as follows: The nonlinear wave-type
equations (3.2) are discretized by pseudospectral method for spatial derivatives and then solving the ODEs
in phase space analytically under appropriate chosen transmission conditions between different time in-
tervals, and the Dirac equation (3.1) is solved in two splitting steps. For the nonlinear wave-type equations

(3.2), we assume

VLX) = Y Vet X e Q 1, <1<y, (3.10)
(ke

where / denotes the Fourier coefficients of / and

. M M M M M Y
a=funn e e o)
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K ap
Hiki = ,u,(c2> , A= | &
3
,“5 ) as
with
1) 27'[] ) 27k 3) 2nl kol
S — = = € M.
,uj bl_al, luk bz—dz, :ul b3—a3’ (./a 7)

Plugging (3.10) and (2.8) into (3.2), noticing the orthogonality of the Fourier series, we get the following
ODE:s for n = 0:

20 ~ N
‘2é’—tl;l+ ‘.u,xk.l|2 I/j',lkﬁl(t) = pj,kAl(tn) = (|an|2)]“1¢,17 by SES g, (3.11)
~ Vo). =0
Vi) = U e =0 e (3.12)
Vi (t,), n>0,

As noticed in [6], for each fixed (j,k,!) € #, Eq. (3.11) is a second-order ODE. It needs two initial
conditions such that the solution is unique. When n = 0 in (3.11) and (3.12), we have the initial condition
(3.12) and we can pose the other initial condition for (3.11) due to the initial condition (3.3) for the MD
(3.1) and (3.2)

d ~ d ~ —
a Vj?k,l(to) = a Vj(,)kj(o) = (V(l))j,k,r (3~13)

Then the solution of (3.11), (3.12) and (3.13) for ¢ € [0,#] is

(VO) oy + 1)+ (POP),, 228, j=k=1=0,

kwmmfwwmﬁmmwmﬂwwwNw>

+(V<l))j,k,l sin(#{w;4,1/¢) m

I~/,'(,)/c,z(t) =

2 2 )
+(| 5”<0)| )/,k.//|/‘j,k,1| otherwise.

But when n > 0, we only have one initial condition (3.12). One cannot simply pose the continuity between

%Wk,l(t) and %ij’kf,l () across the time ¢ = ¢, due to the right-hand side in (3.11) is usually different in two

adjac'ent time intervals '[tn',l,t,,} and [t,, t,41], 1.€. ’ﬁ]:‘k,,(t,,‘,l) = (|SU”*1'|2)]._’,(‘, # (|'{"”|2)j‘k‘l = pjﬁkﬂl(t,,'). Siqce our
goal is to develop explicit scheme and we need linearize the nonlinear term in (3.2) in our discretization
(3.11), in general,

o d, d- d _
a Vi () = lim AT Vi (6) # tlgtr} @ Vi) = a4 Vi), n=1... (jkl)e.a. (3.14)

Unfortunately, we do not know the jump %Z’fkvl(tj ) — %?jf’kfll(t; ) across the time ¢ =1,. In order to get a

unique solution of (3.11) and (3.12) for n > 0, here we pose an additional condition:
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Viea(tn1) = 17;,]:[1 (ta-1) (k1) €. (3.15)

The condition (3.15) is equivalent to pose the solution I~/jf’k,,(t) on the time interval [t,,#,.1] of (3.11) and
(3.12) is also continuity at the time ¢ = ¢,_;. After a simple computation, we get the solution of (3.11), (3.12)
and (3.15) for n > 0

V,kz(n)"'p;kz(n)( ta)’ /262
5 [T ) = P ) + Pt 802/22], j=k=1=0,
sz(t) B |:AV;J¢,I = Pka () /115,41 } cos((¢ — t,,)I,uj‘k?,2|/s)~
*{(1 — o[ a|A /)P s (6) /110" = Vit (1a1)
e )cos<|ujk,\m/s>} A
Pt () |10 otherwise.

Discretization for the equation of A in (3.2) can be done in a similar way.
For the Dirac equation (3.1), we solve it in two splitting steps. One solves first

. OC 1
i00,%(1,%) = —i ;ukak‘l’+8—2ﬂ'}’, X€Q, t,<t<ty (3.16)
for the time step of length At, followed by solving
3
100, W (t,x) = (V + V)W =) o (4 + A7) Y = G(1,x) ¥ (3.17)
=1
for the same time step with
’%
G(t,x) = [(V(t, X) + V(¢ x)) Zoc" Ap(t,X) + A2, X))] (3.18)
=1

For each fixed x € Q, integrating (3.17) from ¢, to ¢,,;, and then approximating the integral on [t,,,.1] via
the Simpson rule, one reads

n+1
P(ty1,X) =e€xp | — iS / G(t,x) dt} P(t,,X)
tn

At
rexp | —i— (G(ts,X) + 4G (112, X) + G(t,21,X)) /6| P(1,, X)

[ A
=exp | — iFtG”“/z(x)] Y (t,,X). (3.19)

Since G"*'/2(x) is a U-matrix, i.e. (G"*/2(x))" = G**'/2(x), it is diagonalizable (see detail in Appendix A),
i.e. there exist a diagonal matrix D"*'/?(x) and a complex orthogonormal matrix P"'/2(x), i.e.
(P12(x))" = (P™'%(x))"", such that

G2 (x) = PVA(x) DA (x) (PA(x)T, x e Q. (3.20)
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Plugging (3.20) into (3.19), we obtain
Y (t,1,X) = P2 (x) exp {— iAétD"“/z(x)] (P2(x) ¥ (1,,x), x€Q. (3.21)

For discretizing (3.16), we assume

¥(t,X) = Z V()5 x € Q0 4, <t <ty (3.22)

(ke Dye.u

Substituting (3.22) into (3.16), we have

d¥ .t i -
72{}1( )_ —i it ini(t),  t<t<ty (k1) € M, (323)

where the matrix
My, = 'uj(l)ocl + ,u,(cz)rxz + /,L53)O£3 +els!, (3.24)

Since M, is a U-matrix, again it is diagonalizable (see detail in Appendix B), i.e. there exist a diagonal
matrix D;;; and a complex orthogonormal matrix P;;; such that

Mt = PiyiDiss(Praa)' (k1) € . (3.25)

Thus the solution of (3.23) is

i
¥ki(t) = exp [—g(f - t,,)M,-,k,;] ¥ini(tn)

i _ ~
= Pasexp | = (0= )| )" Tias). <o < (3.26)

From time ¢ = ¢, to t = ¢t,,;, we combine the splitting steps via the standard Strang splitting:

Viad = > Vit e, (3.27)
Gk D)ed

Al = T A () e (pog ) € (3.28)
(ke

* IAt D W i (Xpg,r—a
v = Z Py €Xp [ _ ZDMJ} (Pj‘k,l)T(']l )MJe Wit (Spgr=a)
(ke

P P’

At -
pr Pn+l/2(XpAqAr) eXp [ — IFDYH—I/Z(X[),(],V)] (PrH—l/z(X[?,qAr))TlI/* (3.29)
n+1 1At = T /gy i (Xpgr—a)
'Ilp,t]:r = Z Piriexp | — 2—Dj.,k,1 (Pj.,kJ) (¥ )j,k,/e it Ko=)
(ke e

where the formula for I7jflk7,(t,,+1) and Zik‘l(t,,ﬂ) are given in Appendix C and U i« the discrete Fourier
transform coefficients of the vector {U,,,, (p,q,r) € A"} are defined as
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~ 1 .
U, = § ( U, etisr o) (; | Iy e 4 3.30
IR M MM, (paTe2 par® Uik, 1) ’ (3:30)

where
QZ{(pvar)|0<p<M1 - 13 qugMZ* 1, O<F<M371}

The initial conditions (3.3) and (3.4) are discretized as

par =0 e =V de(‘)q"‘(O)— ) 0 _ A0
leAq,r— b 4 (vaq,r)7 V,'m,q,r— V (Xpsq,r)v T_ Vv (Xpyqﬁr)7 Ap,q.r_A (Xp,q,r)7
dA® (o0

”(’1+():A<1)(xpvq7,), (p,q,7) € N

Remark 3.1. We use the Simpson quadrature rule to approximate the integration in (3.19) instead of the
trapezodial rule which was used in [6,7] for a similar integration. The reason is that we want the quadrature
is exact when the MD system (2.5) and (2.6) admits the plane wave solution (2.23)—(2.25). In this case, the
integrand G(¢,x) is quadratic in ¢. Thus the algorithm (3.27)—(3.29) gives exact results when the MD system
admits plane wave solution.

3.2. Properties of the numerical method

1. Plane wave solution: If the initial data in (3.3) and (3.4) are chosen as in (2.20)—(2.22), and the external
electric and magnetic fields, i.e. V' and A®™, are chosen as in (2.24) and (2.25), then the MD system (3.1)—
(3.5) admits the plane wave solution (2.23)—(2.25). It is easy to see that in this case our numerical method
(3.27)—(3.29) gives exact results provided that M; > 2(|w;| + 1) (j = 1,2, 3).

2. Time transverse invariant: If constants oy and «; are added to V®© and V1), respectively, in (3.3), then
the solution V" get added by o) + a2, and ¥" get multiplied by e~ (0+*1%/2)/9 which leaves density of each
particle [/}| (j = 1,2,3,4) unchanged.

3. Conmservation: Let U = {U,,,, (p,q,r) € A"} and f(x) a periodic function on the box @, and let || - || 2
be the usual discrete /2-norm on the box @, i.e.

[UN1%: = haks > Upgol’, (3.31)
(p,q.r)€2
DMean(U) = hnhohs Y Upgs, (3.32)
(p.gr)e2
1F 1% = mhohs Y~ 1 (%) (333)
(p.q.r)€2

Then we have:

Theorem 3.1. The time splitting spectral method (3.27)—(3.29) for the M D conserves the following quantities in
the discretized level:

||'Ijn||l2 = H'PO“ﬂ = H'P«))lev n= 07 1727" i) (334)
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2
n (0),2
5 DMean(|P™[7). (3.39)

DMean (V") = DMean(V'?) 4 t,DMean(V' ") + e

Proof. See Appendix D. O

4. Unconditional stability: By the standard Von Neumann analysis for (3.27) and (3.28), noting (3.34), we
get the method (3.27)-(3.29) is unconditionally stable. In fact, setting ¥" =0 and plugging

Vi ,(t,.,H) = uf/jf’h () =12 f/}’;} (t,-1) into (C.3) with |u| the amplification factor, we obtain the characteristic
equation:

12 = 2qucos(|i . |At/e) + 1 =0, (j,k,0) € . (3.36)
This implies
= cos(|u;,,|At/e) isin(|w;,,|At/e). (3.37)

Thus the amplification factor

Gra = ] = /052 (e |A/e) + sin (g [Ar/e) = 1 (k1) € 4. (3.38)

Similar results can be obtained for (3.28). These together with (3.34) imply the method (3.27)—(3.29) is
unconditionally stable. This is confirmed by our numerical results in the next section.

5. e-resolution in the ‘nonrelatistic’ limit regime (0 < ¢ < 1): As our numerical results in the next section
suggest: The meshing strategy (or e-resolution) which guarantees ‘good’ numerical results in the ‘nonrel-
atistic’ limit regime, i.e. 0 < ¢ < 1, is

h= max{hl,hg,h3} = 0(8), At = 0(62) (339)

3.3. For homogeneous Dirichlet boundary conditions

In some cases, the periodic boundary conditions (3.5) may be replaced by the following homogeneous
Dirichlet boundary conditions:

P(t,x)=V(t,x) =0, A(t,x)=0, xe0Q, t=0. (3.40)

In this case, the method designed above is still valid provided that we replace the Fourier basis functions by
sine basis functions. Let

M= )| 1<j<M -1, 1<k<My—1, 1<I< M — 1},

1 Tfj 2 nk 3 n/
lé ) 2 'ug )

(k1) € M. (3.41)

= [u = =
b1—a17 k bz—dzj b3—a3
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The detailed scheme is:

1% / km rim
Vn+1 — V,, l‘n . pjTl', . q
P4 Z ./ﬁk,z( 1) sin <—M1 sin _Mz sin M3 ,

Gkl
n+1 n p]TC 3 qkTC 1 I"ZTC
Ap:;‘r: Z Ajkl n+1 sin (ﬁl) S (M) Sm (E) (PaCIa”)E%,
(ke
. iAt T, . (pim\ . [qgkn\ . [(rin
V= Z P; 1 €xp [— ZD/vk.,l:| (Piss) (¥ ),:k,/ Sin (M) sin (Vz sin )
(ke
. . At = x
lFp,q,r =P +1/2(Xp,q<,r> €Xp l: B IFD H/z(xp.,‘”)] (P H/Z(Xp’q‘r)) lqur’
a1 PITY i (K7 i (1
gl _ P..e ——D; P pr sin sin | —— | sin (| —
e (11%;// L EXP 26 M ( j’“) ( >jkl M, ' M, M)’

where the formula for V”k ,(tu1) and A’ 7 41(ts11) are given in Appendix C with p; ; is replaced by (3.41), and
U, the discrete sine transform coefficients of the vector {U,yr (P,q,7) € N} are defined as

~ 8 . (pjin\ . [(qgkn\ . [rin )
U1 =——— U,yr - — — ], k1) e M. 3.42
SV VAV (pz g ST ( M > sin ( YA sin L (j,k, 1) € (3.42)

\q.r)EM

4. Numerical results

In this section, we present numerical results to demonstrate ‘good’ properties of our numerical method
for MD and apply it to study dynamics of MD.
In Examples 1 and 3, the initial data in (3.3) and (3.4) are chosen as

1/4
Y1V2Y .
0000 = VI expl (3,28 4925+ 922)/2) explicz /o) (@)

rOx)y=0, rYx) =0, A%x)=0 xcR. (4.2)

They, together with AV, decay to zero sufficient fast as |x| — oo. This Gaussian-type initial data is often
used to study wave motion and interaction in physical literatures. We always compute on a box, which is
large enough such that the periodic boundary conditions (3.5) do not introduce a significant aliasing error
relative to the problem in the whole space. In our computations, we always choose uniform mesh, i.e.
h=hy =hy=h;.

4.1. Numerical accuracy

Example 1. Accuracy test and meshing strategy, i.e. we choose 6 = 1, V**'(¢,x) = 0, A™(¢,x) = 0 in (3.1),
n=m=p=5and ¢, =c;=c3=c4 =1 in (4.1) and AV (x) = 0 in (3.4).

We solve the MD (3.1)—(3.5) on a box Q = [—4,4]3 by using our numerical method (3.27)—(3.29), and
present results for two different regimes of velocity, i.e. 1/e:

Case I. O(1)-velocity speed, i.e. we choose ¢ =1 in (3.1), (3.2) and (4.1). Here we test the spatial and
temporal discretization errors. Let ¥, V and A be the ‘exact’ solutions which are obtained numerically by
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using our numerical method with a very fine mesh and time step, e.g. & = é and Az = 0.0001, and P"&, pha
and A" be the numerical solution obtained by using our method with mesh size 4 and time step Az. To
quantify the numerical method, we define the error functions as

e‘l’(t) = ||1P(t7 ) - lPh’At(tv ')H/Z’ eA(t> = ||A(t7 ) - Ah?At(L ')”127 eV(t) = HV(t’ ) - Vh’At(tv ')”12

First, we test the discretization error in space. In order to do this, we choose a very small time step, e.g.
At = 0.0001, such that the error from time discretization is negligible comparing to the spatial discretization
error. Table 1 lists the numerical errors of ey (), ey () and e, (¢) at ¢ = 0.4 with different mesh sizes .

Second, we test the discretization error in time. Table 2 shows the numerical errors of ey(?), ey (¢) and
ea(t) at t = 0.4 under different time step A¢ and mesh size & = 1/4.

Third, we test the density conservation in (3.34). Table 3 shows || || . at different times.

Case II: ‘nonrelativistic’ limit regime, i.e. 0 < ¢ < 1. Here we test the ¢-resolution of our numerical
method. Fig. 1 shows the numerical results at = 0.4 when we choose the meshing strategy: e = 1, h = 1/2,
At=02; ¢e=1/2, h=1/4, At=0.05; ¢e=1/4, h=1/8, At =0.0125; which corresponds to meshing
strategy h = O(¢), At = O(&?).

From Tables 1-3 and Fig. 1, we can draw the following observations:

Our numerical method for MD is of spectral order accuracy in space and second order accuracy in time,
and conserves the density up to 12-digits. In the ‘nonrelativistic’ limit regime, i.e. 0 < ¢ < 1, the e-resolution
is: h = O(e) and At = O(¢?). Furthermore, our additional numerical experiments confirm that the method is
unconditionally stable, and show that meshing strategy: 2 = O(¢) and At = O(¢) gives ‘incorrect’ numerical
results in ‘nonrelativistic’ limit regime.

Table 1
Spatial discretization error analysis: at time # = 0.4 under A¢ = 0.0001
Mesh h=1 h=0.5 h=0.25 h=0.125
ey (1) 0.76250 5.8928E —2 7.7029E — 6 2.2164E — 11
ey (1) 6.4937E — 3 3.9210E — 4 8.8440F — 5 7.6842F — 13
ea(?) 7.0499E — 3 4.6114E — 4 1.1609E — 6 7.6508E — 13
Table 2
Temporal discretization error analysis: at time ¢ = 0.4 under » = 1/4
Time step At =0.05 At =0.025 At =0.0125 At = 0.00625
ey (1) 7.7643E — 5 1.9592E — 5 4.9041E — 6 1.2063E — 6
er(t) 2.9906F — 4 74114E -5 1.8405E — 5 4.5103E - 6
ea(t) 3.5809E — 4 8.8633E — 5 2.2004E — 5 5.381E -6
Table 3

Density conservation test

Time t=0 t=1 t=2
1P, ) 0.9999999999999 0.9999999999998 0.9999999999996




(@)

hy, (%,,0,0)1°

(b)

2
hy,(%,0,0)

()

hy, (x,,0,0)1%

W. Bao, X.-G. Li | Journal of Computational Physics 199 (2004) 663-687

0.25

0.2

0.15

0.1

0.05 |

-4 -2 0 2

0.25

-4 -2 0 2 4

0.25

0.2}

0.15

0.1

0.05 |

-4 2 0 2 4

A,(,0.0)

(d)

0

A,(x,0,0)

0.005 |

(U]

.025

0.02

0.015

0.01

-2

X o

-2

671

Fig. 1. Meshing strategy test in Example 1 for wave function |¥,(z,x;,0,0)|* (left column) and magnetic potential 4, (z,x;,0,0) (right
column) at time ¢ = 0.4. (-) ‘exact’ solutions; (+++) numerical solutions. (a) & (d)e =1, h=1land At =0.2; (b) & (e) e =1/2,h=1/2

and At = 0.05; (¢) & (f) e = 1/4, h = 1/4 and At = 0.0125; which corresponds to meshing strategy: # = O(¢) and Az = O(¢?).
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4.2. Applications

Example 2. Exact results for plane wave solution of free MD, i.e. we choose ¢ = 1, 6 = 12.97 in (3.1), (3.2).
The external electromagnetic potentials are chosen as in (2.24), and the initial data is taken as in (2.20)—
(2.22) with w; =3, 0, = w3 =5, VO =1/, ¥ = —1/273, AY =0 and AV = (0,—1/77%,0)". Thus the
plane wave solution of free MD is given in (2.23)—(2.25)

We solve (3.1)~(3.5) on @ = [—x, 1]’ by our numerical method (3.27)~(3.29) with # = /8 and time step
At = 0.01. Fig. 2 shows the numerical results at different times.

From Fig. 2, we can see that our method really gives exact results for plane wave solution of free MD.

0.04 — - - - - - - x107
0.03 | 1 2r t t t t t t t t t t t
2
Iy i
0.02
= 15
S, oot 5
=< Iy i
e 0 — V¥
= 2
= 1 lhy I
© -0.01f : LA —AA A A A A
o
-0.02 1 05}
-0.03 |
lhy, 1%
of @ ©
-0.04 : : ! :
-3 =2 - 0 1 2 3 0 0.2 0.4 0.6 0.8 1
(a) X5 (c) t
0.04
01t
0.03 |
0.02 |
&)
XE\‘ 001 L 4 005 i
e
= 0
©
g 001
g 0 -
-0.02 |
-0.03 |
-0.04 L— : : - - - - -0.05 - . - -
3 2 A 0 1 2 3 0 2 4 6 8
(b) X5 (d) t

Fig. 2. Numerical results for Example 2 of wave function ¥, (¢, 0,x,,0) (left column) at 7 = 1.0, time-evolution of position density and
electromagnetic potentials (right column). (-) exact solutions; (+++) numerical solutions.
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V(3,%,0)

V(xx,0)

(c) X -4 -4 x Xy -4 -4 X

Fig. 3. Surface plots of the wave function | ¥, (¢,x,x,,0)|* (left column) and electro potential ¥ (z,x,x,,0) (right column) at different
times in Example 3 for Case 1. (a) 1 =0, (b) t = 0.25, (c) t = 0.5.
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Fig. 4. Time-evolution of position densities in Example 3. (a) Case 1; (b) Case 2.

Example 3. Dynamics of MD, i.e. we choose ¢ = 1, § = 10.9149, V*'(¢,x) = 0, A*'(z,x) =0 in (3.1) and
(3.2), and 4\ (x) = e 61 #35) (1 <k < 3) in (3.4).

We present results for two sets of parameters in (4.1):

Case I:y, =3, 7, =4, 73=5c1=c=c3=c=—1,
Case2:y, =2, 7,=4,73=8,c1=8, ca=4c3=—4,cs = 1.

We solve this problem on a box [—8, 8]° by our method with mesh size # = 1/8 and time step Az = 0.002.
Fig. 3 shows the surfaces plots of \Tl(t,xl,x270)|2 and V(¢,x1,x,,0) at different times for Case 1. Fig. 4
shows time-evolution of particle densities ||¥;(¢,-)||> (j = 1,2,3,4) for Cases 1 and 2.

From Fig. 4, we can see that the total density | ¥||” is conserved in the two cases. In case 1, the density
for the first two components decreases for a period, attains their minimum, and then increases; where the
time-evolution of the density for the other two components is in an opposite way in order to keep the
conservation of the total density. Similar time-evolution pattern of density is formed in case 2 except more
oscillation due to the nonuniform initial phase in the wave-function (cf. (4.1)). An interesting phenomenon
in Fig. 4 is that after some time period, the density for each component almost keeps as a constant, i.e. there
is no mass exchange between different components.

5. Conclusion

An explicit, unconditionally stable and accurate time-splitting spectral method (TSSP) is designed for the
Maxwell-Dirac system (MD). The method is explicit, unconditionally stable, time reversible, time trans-
verse invariant, and of spectral-order accuracy in space and second-order accuracy in time. Moreover, it
conserves the total position density exactly in discretized level and gives exact results for plane wave so-
lution of free MD. Extensive numerical tests are presented to confirm the above properties of the numerical
method. Our numerical tests also suggest the following meshing strategy (or ¢-resolution) is admissible in
the ‘nonrelativistic’ limit regime (0 < ¢ < 1): spatial mesh size h = O(¢) and time step At = O(¢?). The
method is also applied to study dynamics of MD. In the future, we plan to use this state-of-the-art
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numerical method to study more complicated time-evolution of fast (relativistic) electrons and positrons
within external and self-generated electromagnetic fields.
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Appendix A. Diagnolize the matrix G"*'/%(x) in (3.19) and computation

From (3.19), notice (3.18), we have

1
Gn+1/2(x) = 8 [G(tm X) + 4G(tn+1/27 ) + G( n+1; X )]

Vn+1/2(x) 0 ”H/Z(X) _A,i+l/2(x)
o0 e a4 Al
| _yntl2 _gn+1/2 n+1/2 ( ’ )
Ay 7(x) —ATE(x) VA (x) 0
_Ai+1/2(x) A;+1/2(X) 0 Vn+1/2(x)
with
AP () = A7 () £ iy (),
1
Vn+l/2(x) 6 [V(l,,,X) + Vem(tm X) + 4(V<tn+l/27 X) + Vex{(tn-%—l/% X)) + V(tn+l7x> + Vem(tnﬁ—bx)}?
T
An+1/z(x) (A'f+l/2(x),AZH/Z(X),A;H/Z(X)) C xeQ,
n 1 €X
Ak+1/2(X) == 6 [Ak(tmx) +A t(tnax) + 4(Ak( n+1/23 )
+ Aix (tn+l/27 X)) +Ak(tn+17 X) +A2Xt(tn+la X)] ) k = 11 21 3
Since G"*'/2(x) is a U-matrix, it is diagonalizable. The characteristic polynomial of G"*'/2(x) is
A — V() 0 Agﬂ/z(x) A2 (x)
_ pntl)2 n+1/2 o ntl/2
det (/IU4 — Gn+]/2(x)> = n+192 Z Vl 5 (X) A+ 1()2() A3 (X)
A3 (x) A2(x) L= VA (x) 0
ATV (x) —AT(x) 0 A — V2 (x)
- 2
= [(=ym) = )| <o, (A.2)

Thus the eigenvalues of G"*!/2(x) are
/1:!:%—1/2()()7 /lrjr-%—l/Z(X)’ }VTH/Z(X), /*Ln7+l/2(x)

with
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/1'::1/2()() _ Vn+1/2(x) + |An+1/2(x)| — Vn+l/2(X) +

and the corresponding eigenvectors are

A’f’l/z(x) A§+1/2(X)
n+1/2 n
V'11+1/2(X) _ _‘43+ / (x) VZH/Z(X) _ A++]/2(x)
0 |An+1/2(x)|
|An+1/2(x)| 0
0 _|An+l/2(x>|
n+1/2
T Il BTN S |
AT (x) A7 ()
—AgH/Z(X) ATl/z(x)

Let
Dn+1/2( ) dlag( n+]/2( ),;L:+]/2(X),;L’7+1/2(X),;Ln+1/2(x)),

1 n n n n
P"H/z( X) = \/_|An+]/2( )| <V +l/2( X) V2+1/2(X) V3+l/2(X) V4+I/Z(X)).

Thus D"*/2(x) is a diagonal matrix, P"*'/?(x) is a complex orthogonormal matrix, and they diagonalize the
matrix G"1/2(x), i.e.

G2 (x) = PV(x)DA(x) (P2 (x) T, x e Q. (A.3)

In order to compute G"*'/2(x,4,) ((p,¢,r) € ) used in (A.1), we need V (ty,X,q,) = V)'\ oo V(tus1, Xpgsr) =

Vp";“rl, Aty Xpgr) = Ay o A1, Xpq,) = ALtV (tus1/2Xpgr) and A(f12,Xp,). The first four terms are

given in (3.27) and (3.28). The last two terms can be computed as following:

V(tn+1/27 XP:‘IJ) = Z I/}’fk,l(tn+l/2) em/',"]«xﬂq"yia%
(ke

A(tn+l/27 qu,r) = Z A;'ﬁk,l(tn-f—l/z) ei/‘/,k.l(xp,q,r*ﬁ)’
(ke

where for n = 0:

(V(O))j,k,l +% (VU))]'J(J + (|Y’(O>|2)j,k,1(At)2/832, Jj=k=1=0,
[<V<°>>A,-,k4, - <|av<°>|2>,Ak,,/|u,-,k,,|2] cos(Atliy 1/ 26)
+(rt ))/leIH(At|#jk1|/28)

+(|POP )j,k_,l/|:uj,k«,l| otherwise.

Vj(,)kj(tl/z) =

111
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(0 FO)y 2 .
(A(()))jkl 5 (A<1))/k71 + (J<O))j,k,l(At) /8¢, J=k=1=0,
~0 (A(O)),',k,z - (J(O))j,k,1/|ﬂj,k,1|2 COS(At|ﬂj,k,l|/28)
Aj,k,l(tl/z) = —_
+(A" ))/klsm Alpral /28) ]
+(J© )j,k,l/':ujk,ll otherwise.
and for n > 0:
Tn Trn— n|2 2 .
378 (0) = AT () + 3(P'P) (A /86, =k =1=0,
7= 02l cos(l /20
1744 = a2 2
Vikaltns12) + [(1 — o8|, |At/)) (19" ),/ 1t 1
= V10 60m0) 5 Vs 1) 08t 181/9)]
n 2 .
X 2005(\/tf.1k,1\At/26) + (|IP | )j,k,//|uj4k,l| otherwise.
JAL () — AT () +3(07) (A0 /822, =k =1=0,
n n 2
[As, = ) 0] cos(Adl l/2)
At = 4 [0 = 08l 8e/2)) (37 /1y
A;kll( 1)+ A]k 1 (1) cos(|; 4, |At /)
n 2 .
X 42005(\;5-L,|At/28) + (J¢ )jﬁk$,/|ujﬁk7,| otherwise.
The discretized current density J™ is computed as
T
J1(7nqr - ((]<l )>p,q,r7 (.](2 ))p,q,r7 (]g )>p4q,r) ’
‘1(€n>)p,qr_<g1;7qr7 kl{l;qr> k:172737 n>0 (p3qﬂr)em
Appendix B. Diagnolize the matrix M;;, in (3.24)
From (3.24), notice (1.7), we have
g 1ot 0 ,u53) ,u(-l) — i,u,iz)
J
—15-1 n (2 3)
W1 @2, ()3 s 0 &0 + iy —H
M= o +p o +p o0 0 =
ikl = W Hy Hy #53) ‘uﬁl) _ i/l/iz) el 0
”E_U + i,l,(l((z) —,ng3) 0 8—15*1
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The characteristic polynomial of M, is

J—e 1! 0 —_—" —u" + i
0 d—ete Wl JE)
det (Als — Mjxs) = 3) a @ g 1 /fkl g
_/"l _/“‘/ + l,uk /1 + & 6 0
,'uj(}) _ i'ul(f) /153) 0 J4els!
2
- (;,2 g2 |ujﬁk,,|2) —0. (B.1)
Thus the eigenvalues of M, are

likls,  Aigds  —Ajkis  —Ajkr With 4 = £20 + |,uj.kﬁ1|2

and the corresponding eigenvectors are

;uj,kJ —+ 8_1571 0
| 0 5 )bj,k,l + 871571
Vikt = u R IO
'
n, .
!+ i —)
3 n .
—4;” — + i
.
s | =i . _ !
Viki = R Viki =
)\-j,kJ + & 6 0
0 )bj‘k.,l + 871571

Let
Dy = diag(Aig, Ajpts — Aigis — i)

1

— 1 2 3 4

Pirr = > ol (Vj.,k,l Vikt Vi V/:kal)-
V20 a6 )

Thus D;,; is a diagonal matrix, P;;; is a complex orthogonormal matrix, and they diagonalize the matrix
Alj,k‘la le

Migs = PiiDjst(Prs)' (k1) € . (B.2)

Appendix C. Computation of V7, ,(t,.1) and V7, ,(t,.1) in (3.27) and (3.28)

For n=0:

(V) + AV D)+ (1POF) (A28, =k =1=0,

[<V<°>>,.,kﬁz - <|av<°>|2>j,k,,|u,-,kﬁz|2] cos(Atli;1/¢)

+(V(1))j,k,l sin(At‘.uj,k,lVS) T

14 411

Via(n) = (C.1)

012 2 -
+(1P )t/ 1| otherwise.



W. Bao, X.-G. Li | Journal of Computational Physics 199 (2004) 663-687

(AD) o+ AAD) L+ (3O (A28, j=k=1=0,

~0. ( ) ( (0) )j’k[ B (J( ))]v f71/|‘ j:k71|2 :S(A‘ |‘ j¢k,l|/((‘)
ik, 1 —
( ( ))j~k:l ( |l j,kJ'/g)

_&
\H_,;k./\

4—(J(O))j,k?,/|,uj_’k,,\2 otherwise.

and for n > 0:

2z7k,/(tr1) - fl;jtlk_,ll (tnfl) + (‘lpn|2)j«,k,l(At)2/827 J=k=1=0,

Trn _ Trn n12 2
e 2[V PP ] cos(Atlue1/¢)

n— n|2 2 .
- Vj"k‘,l(tn,l) + 201" s/ 154 otherwise.

2A%, (1) = Al () + (3 (A0, j=k=1=0,
Al i(tasr) = 4 2 X?kl - (J(H>)A/,k4//|uj,k,l|2:| cos(At|u;,/¢)

—Zﬁll(tn,l) + Z(J(n))j,k,l/luj,k,l'z otherwise.

Appendix D. Proof of Theorem 3.1

Proof. From (3.29), notice (3.30), (3.20) and (3.25), Parseval’s equality, we have

1 3 11
el LA R S L G
hihohs oaTes
1At - — .
= Y Psexp {_ 2_D./:k,l] (Pisa) T (077)  geMns Crae2)
(par)e? | Gkle é
iAt o g [
= M\MoMs Y|Py exp = 55 Dot | Bra) (F7) s
(ke Dye.u
— 2
= M, MM, Z (IP**)W‘
Gk Dye.u
1 2
MiM>M; (et | (pgr)e2 e (pgr)e2
At _
= PHI/Z(Xp,W) exp {_ iFDnHﬂ(XP‘q")] (P’Hl/z (Xp-,q,r))TlP*
(pg,r)€2
2 2 1
I L D S e e L)
(p.q.r)€2 - (p,q.r)€2 - h1h2h3

Thus the equality (3.34) is obtained by induction.
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(C.2)

(C4)

(D.1)
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From (3.27), notice (C.1), (C.3), (3.30), we have
FI;o’fo‘o(th) = 2?0'?0,0(%) - ﬁorfoié (ta1) + (|'Pn|2)0,0,0(At)2/82

~ ~ Ar)? 2
—2pn t) — anl foe (— lI/(O)
04040( ) o,o,o( 1) +M1M2M382 (qu)eJ| MJ'

— ol — ] (Ar)? PO 2
- ototo(tn) o,o,o(tn—l)"‘ 2 Z | p,q,r|

M1M2M382 (rgre?
S S (1+2)(A)° 2
= 3Vo0 (ta1) = 2V500(tn2) + MMoMaeE Z Ravmis (D.2)
’ (p,g,r)€E2

By induction, we get

- - - n(n+1)(Ar)*
Vo,o,o(tnﬂ) =Mn+1) Vo?o,o(tl) - ”Vo(,)o,o(t()) T o Z |"”§;(24r|2

2
2M1M2M36 (pgr)e?
2

_ 70 O oy 0 12

= Vyoo(to) + tar1 Vooo(to) + ML E)€£|‘I’p‘q,| , n=0. (D.3)

From (3.27), notice (D.3), (3.30) and (3.32), we get

1 n+1 n+1 (pera)
h1h2h3DMean(V ): Z K?qr = Z Z n+1 ek (Xpgr—a

(pg.r)€2 (pg.r)E2 (ke
- Z Vi (tas1) Z M Brar =) :M1M2M3i;070,0(1n+1)

(jk, et (p.g.r)€2

f, 2
_M1M2M3[V000(t0) + li Vo(())o(to)} "‘27221 Z |III1<70¢;V‘
(pg,r)€2
n+l (0) 2
= Y Vtte Do WS YT W n>0. (D.4)
(pg,r)€2 (pg,r)€2 (pg,r)€2

Thus the desired equality (3.35) is a combination of (3.32) and (D.4). O
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