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Abstract

The stability and interaction of quantized vortices in the nonlinear wave equation (NLWE) are investigated both numerically and analytically.
A review of the reduced dynamic law governing the motion of vortex centers in the NLWE is provided. The second order nonlinear ordinary
differential equations for the reduced dynamic law are solved analytically for some special initial data. Using 2D polar coordinates, the transversely
highly oscillating far field conditions can be efficiently resolved in the phase space, thus giving rise to an efficient and accurate numerical method
for the NLWE with non-zero far field conditions. By applying this numerical method to the NLWE, we study the stability of quantized vortices and
find numerically that the quantized vortices with winding number m = ±1 are dynamically stable, and resp. |m| > 1 are dynamically unstable, in
the dynamics of NLWE. We then compare numerically quantized vortex interaction patterns of the NLWE with those from the reduced dynamic
law qualitatively and quantitatively. Some conclusive findings are obtained, and discussions on numerical and theoretical results are made to
provide further understanding of vortex stability and interactions in the NLWE. Finally, the vortex motion under an inhomogeneous potential in
the NLWE is also studied.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study quantized vortex stability and
interaction in the nonlinear wave equation (NLWE) [26,22]:

∂t tψ(x, t) = ∇
2ψ +

1

ε2

(
V (x)− |ψ |

2
)
ψ, x ∈ R2,

t > 0, (1.1)

with initial conditions

ψ(x, 0) = ψ0(x), ∂tψ(x, 0) = ψ1(x), x ∈ R2 (1.2)
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and nonzero far field conditions

|ψ(x, t)| → 1, (e.g.ψ → eimθ ), t ≥ 0,

when r = |x| =

√
x2 + y2 → ∞. (1.3)

Here t is time, x = (x, y)T ∈ R2 is the Cartesian coordinate
vector, (r , θ ) is the polar coordinate system, ψ = ψ(x, t) is
a complex-valued order parameter (or wave function), V (x) is
a real-valued external potential satisfying lim|x|→∞ V (x) = 1,
m ∈ Z is a given integer and ε > 0 is a constant.

It is well known that there exist stationary vortex solutions
with the single winding number (or index) m ∈ Z of the NLWE
(1.1) with ε = 1 and V (x) ≡ 1 [25,22,14], which take the form

φm(x) = fm(r) eimθ , x = (r cos θ, r sin θ)T ∈ R2, (1.4)

where the modulus fm(r) is a real-valued function satisfying

1
r

d
dr

(
r

d fm(r)

dr

)
−

m2

r2 fm(r)+

(
1 − f 2

m(r)
)

fm(r) = 0,

http://www.elsevier.com/locate/physd
mailto:bao@math.nus.edu.sg
mailto:zengrong@tsinghua.edu.cn
mailto:yzhang@scs.fsu.edu
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://www.math.nus.edu.sg/~bao/
http://dx.doi.org/10.1016/j.physd.2008.03.026


2392 W. Bao et al. / Physica D 237 (2008) 2391–2410
0 < r < ∞, (1.5)

fm(0) = 0, fm(r) = 1, when r → ∞. (1.6)

Numerical solutions of the modulus for different winding
numbers m were reported in the literature [25,34,35] by
solving the boundary value problem (1.5)–(1.6) numerically.
In addition, the core size r0

m of a vortex state with winding
number m is defined by the condition fm(r0

m) = 0.755, and
then when m = ±1, the core size r0

1 ≈ 1.75 [34,35]. In fact,
the quantized vortex state (1.4) satisfying the nonzero far field
condition (1.3) is usually called as “bright-tail” vortex which
was also widely studied in superfluid Helium [25,12,22,23,
5,34,35], superconductors [25,22,15,34,35], etc. On the other
hand, the quantized vortex state (1.4) decaying to zero at far
field, i.e.

|ψ(x, t)| → 0, t ≥ 0,when r → ∞, (1.7)

is usually called the “dark-tail” vortex, and has been widely
studied in Bose–Einstein condensation in trapped atomic
gases at ultra-low temperatures [3,24,21,1,10,9,8,17,18,36],
nonlinear optics [31,32], etc.

Quantized vortices have a long history that begins with the
study of liquid Helium and superconductors. Their appearance
is viewed as a typical signature of superfluidity which describe
a phase of matter characterized by the complete absence
of viscosity. The examples of superfluidity can be found in
liquid Helium, Bose–Einstein condensation, superconductivity
and nonlinear optics, etc. In 1955, Feynman [13] made
the prediction that a superfluid rotation may be subject to
an array of quantized singularities, namely, the quantized
vortices. The seminal work of Abrikosov [2] in 1957 already
made predictions of the vortex lattice in superconductors a
decade before the experimental confirmation. Research on
the quantized vortex phenomena has since flourished and
it was recently highlighted by the Nobel Prizes in Physics
awarded to Cornell, Weimann and Ketterle in 2001 and
to Ginzburg, Abrikosov and Leggett in 2003, who have
made decisive contributions to Bose–Einstein condensation,
superfluidity and superconductivity and to the understanding
of the quantized vortex states. In recent years, there have been
many works on the numerical simulations and mathematical
analysis for quantized vortex states in superfluidity and
superconductivity. It is truly remarkable that many of the
phenomenological properties of quantized vortices have been
well captured by relatively simple mathematical models,
for example, the Gross–Pitaesvkii equations [29,7] and the
Ginzburg–Landau equations [11,4]. The structures of quantized
vortex states have been studied through various approaches
ranging from asymptotic analysis, numerical simulations and
rigorous mathematical analysis. Despite the great progress
made in the last decade on quantized vortex states in
superfluidity and superconductivity, it should be pointed out
that the efficient computation and rigorous mathematical
study of a large part of the subject on vortex dynamics
and interaction remains nearly non-existent. Indeed, what has
become available in the literature are primarily studies of the
various dynamical laws of well separated vortices deduced
from the Ginzburg–Landau–Schrodinger equations [25,12,23,
34,35,16,27,28,20,33] or the Gross–Pitaevskii equation with
weak interaction [19,30]. On the other hand, numerical
simulations have become useful tools that could help in
providing a more clear picture on the exotic vortex dynamics
and interaction driven by various forces, even though there
are also challenging computational issues to be tackled.
Thus understanding numerically and mathematically the
dynamics and interaction of quantized vortices in superfluidity
and superconductivity bears tremendous importance both
scientifically and technologically.

The aim of this paper is first to study numerically the
stability of quantized vortex solutions (1.4) of NLWE and
then to investigate analytically and numerically the interaction
patterns of several quantized vortices with winding number
m = ±1 in NLWE, i.e., we study (1.1) with initial conditions
in (1.2) containing several vortices, which take the form

ψ0(x) =

N∏
j=1

φm j

(
x − x0

j

)
=

N∏
j=1

φm j

(
x − x0

j , y − y0
j

)
,

x ∈ R2. (1.8)

Here N is the total number of vortices, φm j is the vortex state
in (1.4) with winding number m j = ±1 (see [25,34] for their
numerical solutions), and x0

j = (x0
j , y0

j )
T is the initial location

of the j-th (1 ≤ j ≤ N ) vortex center. That is, we consider the
interaction of N vortices by shifting their initial centers from
the origin (0, 0)T to x0

j (1 ≤ j ≤ N ). Taking m =
∑N

j=1 m j
in (1.3), we refer to vortices with the same winding numbers
as like vortices while those with different winding numbers as
opposite vortices.

In fact, vortex dynamics for NLWE is a typical model of
the “particle and field” theories of classical physics. The formal
derivation of the reduced dynamic law was done by Neu [26]
for NLWE (1.1) with ε = 1 and V (x) ≡ 1. In this case,
for N well-separated vortices of winding numbers m j = ±1
(1 ≤ j ≤ N ), he obtained asymptotically the following second
order nonlinear ordinary differential equations (ODEs) for the
reduced dynamic law governing the induced motion of the N
vortex centers x j (t) (1 ≤ j ≤ N ) in the leading order, i.e. the
adiabatic approximation [26], as

κ x′′

j (t) = 2m j

N∑
l=1,l 6= j

ml
x j (t)− xl(t)

|x j (t)− xl(t)|2
, t ≥ 0, (1.9)

x j (0) = x0
j , x′

j (0) = x1
j , 1 ≤ j ≤ N , (1.10)

where κ is a constant determined from the initial setup (1.8). He
also made an interesting connection between vortex dynamics
and the Dirac theory of electrons [26]. Later, Lin [22] gave
a rigorous mathematical proof of the reduced dynamic law
with a correction term denoting the residuals of a holomorphic
function defined away from the vortices. Here we will solve
the second order nonlinear ODEs (1.9) for some special
initial data in (1.10). These solutions will provide qualitatively
the interaction patterns of quantized vortices in NLWE. By
proposing an efficient and accurate numerical method for
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NLWE, we can also study numerically vortex interaction
patterns by directly simulating NLWE and compare them
with those from the reduced dynamic law qualitatively and
quantitatively.

The paper is organized as follows. In Section 2, based on the
second order nonlinear ODEs of the reduced dynamic law, we
prove the conservation of the mass center and mean velocity
of the N vortex centers under certain conditions, and solve
analytically the reduced dynamic law with a few types of initial
data. In Section 3, an efficient and accurate numerical method
is proposed for simulating NLWE and the stability of quantized
vortices is reported. In Section 4, the interactions of quantized
vortices in NLWE with zero initial velocity are obtained by
directly simulating (1.1) and compared with those from the
reduced dynamic law. In Section 5, the interactions of quantized
vortices with nonzero initial velocity and the dynamics of
vortex state under an inhomogeneous external potential are
reported. Finally, some conclusions are drawn in Section 6.

2. The reduced dynamic law and its solutions

In this section, we first prove the conservation of the mass
center and mean velocity of the N vortex centers in the reduced
dynamic law (1.9) under certain conditions. These conservation
properties can be used to solve the dynamic law in special cases
and to compare with the direct numerical simulation of NLWE.
We then solve the second order nonlinear ODEs (1.9)–(1.10)
analytically for several types of initial data, and such analytical
solutions can again be compared with the numerical solutions
of NLWE.

2.1. Conservation laws

Define respectively the mass center x(t) and the mean
velocity v(t) of the N vortex centers as

x(t) :=
1
N

N∑
j=1

x j (t), and

v(t) := x′(t) =
1
N

N∑
j=1

x′

j (t).

(2.1)

Then we have

Lemma 2.1. The mean velocity of the N vortex centers in the
reduced dynamic law (1.9) for NLWE is conserved, i.e.

v(t) :=
1
N

N∑
j=1

x′

j (t) ≡ v(0) :=
1
N

N∑
j=1

x′

j (0) =
1
N

N∑
j=1

x1
j ,

t ≥ 0. (2.2)

In addition, the dynamics of the mass center of the N vortices
in the reduced dynamic law (1.9) for NLWE satisfies

x(t) :=
1
N

N∑
j=1

x j (t) = x(0)+ t v(0)

=
1
N

N∑
j=1

x0
j + t

(
1
N

N∑
j=1

x1
j

)
, t ≥ 0, (2.3)
which immediately implies that the mass center is conserved if
v(0) = 0, and respectively, it moves to infinity starting from the
initial mass center x(0) along the direction of the initial mean
velocity v(0) if v(0) 6= 0.

Proof. Summing (1.9) for 1 ≤ j ≤ N and noticing (2.1), we
get for t ≥ 0,

v′(t) = x′′(t) =
1
N

N∑
j=1

x′′

j (t)

=
1
N

N∑
j=1

2m j

κ

N∑
l=1,l 6= j

ml
x j (t)− xl(t)

|x j (t)− xl(t)|2

=
2
κN

N−1∑
j=1

∑
j<l≤N

m j ml

×

[
x j (t)− xl(t)

|x j (t)− xl(t)|2
+

xl(t)− x j (t)

|xl(t)− x j (t)|2

]
= 0, t ≥ 0. (2.4)

Thus the conservation of the mean velocity in (2.2) is a
combination of the above and (1.10). Plugging (2.2) into (2.1),
we obtain

x′(t) = v(t) ≡ v(0), t ≥ 0. (2.5)

Integrating the above and noticing (1.10), we get (2.3)
immediately. �

2.2. Analytical solutions of the reduced dynamic law

Noticing (2.2) and (2.3), we can solve the second order
nonlinear ODEs (1.9) analytically for some special initial data
in (1.10). Without loss of generality, in these cases, we assume
that the initial mass center is at the origin, i.e. x(0) = (0, 0)T,
and denote θ0 as a given constant and m0 = +1 or −1.

Lemma 2.2. If the initial data in (1.10) satisfies for 1 ≤ j ≤ N

x0
j = a

(
cos

(
2 jπ

N
+ θ0

)
, sin

(
2 jπ

N
+ θ0

))T

,

x1
j = (0, 0)T, m j = m0, (2.6)

i.e. the N (N ≥ 2) like vortices are uniformly located on a
circle and there is no initial velocity (denoted as Pattern I), then
the solutions of (1.9)–(1.10) can be given, for 1 ≤ j ≤ N with
N ≥ 2, by

x j (t) = cN (t)

(
cos

(
2 jπ

N
+ θ0

)
, sin

(
2 jπ

N
+ θ0

))T

=
cN (t)

a
x0

j , t ≥ 0, (2.7)

where cN (t) satisfies the following second order ODE

c′′

N (t)cN (t) =
N − 1
κ

, t ≥ 0, cN (0) = a,

c′

N (0) = 0; (2.8)
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Fig. 1. Numerical solutions of the ODE (2.8) with κ = 1 for: (a) different a with N = 2, and (b) different N with a = 2.
or the following first order ODE

c′

N (t) =
√

2(N − 1)/κ
√

ln [cN (t)/a], t ≥ 0,

cN (0) = a. (2.9)

Proof. For simplicity, we first consider the case of N = 2. By
conservation of the mass center, we have

x1(t) = −x2(t), t ≥ 0. (2.10)

Plugging (2.10) into (1.9) with N = 2, we get for 1 ≤ j ≤ 2

κx′′

j (t) =
x j (t)

|x j (t)|2
, t ≥ 0,with x j (0) = x0

j ,

x′

j (0) = x1
j = (0, 0)T. (2.11)

Based on the structure of the ODEs (2.11), we take the ansatz
for the solution as

x j (t) =
c2(t)

a
x0

j , t ≥ 0, 1 ≤ j ≤ 2, (2.12)

where c2(t) is a function of time t satisfying c2(0) = a and
c′

2(0) = 0. Substituting (2.12) into (2.11) and applying the dot-
product at both sides by x0

j , noticing (2.6) with N = 2, we get
(2.8) for N = 2 immediately. For the cases of N > 2, we can
generalize the solution (2.12) as

x j (t) =
cN (t)

a
x0

j , t ≥ 0, 1 ≤ j ≤ N , (2.13)

where cN (t) is a function of time t satisfying cN (0) = a and
c′

N (0) = 0. Substituting (2.13) into (1.9) and applying dot-
product at both sides by x0

j , noticing (2.6), we get

c′′

N (t) =
2

κcN (t)

N∑
l=1,l 6= j

m j ml
(x0

j − x0
l ) · x0

j

|x0
j − x0

l |
2

=
2

κcN (t)

N∑
l=1,l 6= j

a2
− x0

l · x0
j

2a2 − 2x0
l · x0

j

=
N − 1
κcN (t)

, t ≥ 0. (2.14)

Thus, the solution (2.7) is a combination of (2.13), (2.14) and
(2.6). �
Fig. 1 shows numerical results of the second order ODE (2.8)
with κ = 1 for different N and a by using the standard second
order finite difference discretization for (2.8). From the results
in Lemma 2.2 and Fig. 1, we can see that, when the N vortices
are uniformly located on a circle with zero velocity initially, by
the reduced dynamic law, each vortex moves outside along the
line passing through its initial location and the origin, and these
N vortices are located on a circle at any time t with its radius
increasing with time as cN (t) in (2.8). In addition, from our
numerical results, for any δ > 0, we observe that (cf. Fig. 1)

C1
N − 1

a2κ
t1−δ

≤ cN (t) ≤ C2
N − 1

a2κ
t1+δ, t � 1,

where C1 and C2 are two generic positive constants
independent of N and a.

Lemma 2.3. If the initial data in (1.10) satisfies

x0
N = (0, 0)T , x1

N = (0, 0)T, m N = m0, (2.15)

and for 1 ≤ j ≤ N − 1,

x0
j = a

(
cos

(
2 jπ

N − 1
+ θ0

)
, sin

(
2 jπ

N − 1
+ θ0

))T

,

x1
j = (0, 0)T, m j = m0, (2.16)

i.e. the N (N ≥ 3) like vortices are uniformly located on a
circle and its center and there is no initial velocity (denoted as
Pattern II), then the solutions of (1.9) and (1.10) are:

xN (t) ≡ (0, 0)T, t ≥ 0, (2.17)

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

x j (t) = dN (t)

(
cos

(
2 jπ

N − 1
+ θ0

)
, sin

(
2 jπ

N − 1
+ θ0

))T

=
dN (t)

a
x0

j , t ≥ 0, (2.18)

where dN (t) satisfies the following second order ODE

d ′′

N (t)dN (t) =
N

κ
, t ≥ 0, dN (0) = a, d ′

N (0) = 0; (2.19)

or the following first order ODE

d ′

N (t) =
√

2N/κ
√

ln [dN (t)/a], t ≥ 0, dN (0) = a. (2.20)
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Fig. 2. Numerical solutions of the ODE (2.19) with κ = 1 for: (a) different a with N = 3, and (b) different N with a = 2.
Proof. Due to symmetry of the ODEs (1.9), the initial data
(2.15)–(2.16), and the conservation of mass center (2.3) and
mean velocity (2.2), we can get the solution (2.17) immediately.
Similar as in the proof of Lemma 2.2, we assume

x j (t) =
dN (t)

a
x0

j , t ≥ 0, 1 ≤ j ≤ N − 1, (2.21)

where dN (t) is a function of time t satisfying dN (0) = a and
d ′

N (0) = 0. Substituting (2.21) into (1.9) and applying dot-
product at both sides by x0

j , noticing (2.16), we get

d ′′

N (t) =
2

κdN (t)

[
m j m N

(x0
j − x0

N ) · x0
j

|x0
j − x0

N |2

+

N−1∑
l=1,l 6= j

m j ml
(x0

j − x0
l ) · x0

j

|x0
j − x0

l |
2

]

=
2

κdN (t)

[
m2

0 +

N−1∑
l=1,l 6= j

a2
− x0

l · x0
j

2a2 − 2x0
l · x0

j

]

=
2

κdN (t)

[
1 +

N − 2
2

]
=

N

κdN (t)
, t ≥ 0. (2.22)

Thus, the solution (2.18) is a combination of (2.21), (2.22) and
(2.16). �

Fig. 2 shows numerical results of the second order ODE
(2.19) with κ = 1 for different N and a. From the results
in Lemma 2.3 and Fig. 2, we can see that, for the dynamics
of (1.9)–(1.10) in Pattern II, by the reduced dynamic law, the
vortex initially at the center of the circle does not move for any
time t ≥ 0, each of the other N − 1 vortices moves outside
along the line passing through its initial location and the origin,
and these N − 1 vortices are located on a circle at any time t
with its radius increasing with time as dN (t) in (2.19). Again,
from our numerical results, for any δ > 0, we observe that (cf.
Fig. 2)

C1
N

a2κ
t1−δ

≤ dN (t) ≤ C2
N

a2κ
t1+δ, t � 1.
Lemma 2.4. If the initial data in (1.10) satisfies the same as
(2.15) and (2.16) except m N = −m0 for the center vortex,
i.e. the N (N ≥ 3) opposite vortices are uniformly located on a
circle and its center and there is no initial velocity (denoted as
Pattern III), then the solutions of (1.9)–(1.10) are:

xN (t) ≡ (0, 0)T, t ≥ 0, (2.23)

and for 1 ≤ j ≤ N − 1 with N ≥ 3,

x j (t) = gN (t)

(
cos

(
2 jπ

N − 1
+ θ0

)
, sin

(
2 jπ

N − 1
+ θ0

))T

=
gN (t)

a
x0

j , t ≥ 0, (2.24)

where gN (t) satisfies the following second order ODE

g′′

N (t)gN (t) =
N − 4
κ

, t ≥ 0, gN (0) = a,

g′

N (0) = 0; (2.25)

or the following first order ODE

g′

N (t) = αN
√

ln [dN (t)/a], t ≥ 0, cN (0) = a, (2.26)

with

αN =

−
√

2/κ, N = 3,
0, N = 4,√

2(N − 4)/κ, N ≥ 5.

The proof follows the analogous results in Lemma 2.3. Fig. 3
shows numerical results of the second order ODE (2.25) with
κ = 1 for different N and a. From the results in Lemma 2.4 and
Fig. 3, we can see that, for the dynamics of (1.9) and (1.10) in
Pattern III, by the reduced dynamic law: (i) the vortex initially
at the origin does not move during the interaction, each of the
other N − 1 vortices moves along the line passing through
its initial location and the origin, and these N − 1 vortices
are located on a circle at any time t ; (ii) when N = 3, the
two vortices with the same index move towards each other and
collide with the vortex having opposite index at the origin at
finite time t = tc; (iii) when N = 4, all the four vortices do
not move and stay at their initial locations for any t ≥ 0, and
(iv) when N ≥ 5, the N − 1 vortices with the same index move
outside and they never collide with the vortex with the opposite
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Fig. 3. Numerical solutions of the ODE (2.25) with κ = 1 for: (a) different a with N = 3, and (b) different N with a = 2.
index no matter how small the initial radius of the circle is.
Again, from our numerical results, we observe that, for N = 3,
the collision time satisfies (cf. Fig. 3(a))

tc = O(a), a � 1,

and for N ≥ 5, for any δ > 0, we have (cf. Fig. 3(b))

C1
N − 4

a2κ
t1−δ

≤ gN (t) ≤ C2
N − 4

a2κ
t1+δ, t � 1.

Lemma 2.5. If the initial data in (1.10) satisfies for j = 1, 2

x0
j = a (cos ( jπ + θ0) , sin ( jπ + θ0))

T , x1
j = (0, 0)T,

m1 = −m2 = m0, (2.27)

i.e. two opposite vortices (denoted as Pattern IV), then the
solutions of (1.9)–(1.10) can be given, for j = 1, 2, by

x j (t) = hN (t) (cos ( jπ + θ0) , sin ( jπ + θ0))
T

=
hN (t)

a
x0

j , 0 ≤ t ≤ tc, (2.28)

where hN (t) satisfies the following second order ODE

h′′

N (t)hN (t) = −
1
κ
, t ≥ 0, hN (0) = a,

h′

N (0) = 0; (2.29)

or the following first order ODE

h′

N (t) = −
√

2/κ
√

ln [hN (t)/a], t ≥ 0, hN (0) = a. (2.30)

The proof is similar to that of Lemma 2.2 with N = 2. Fig. 4
shows numerical results of the second order ODE (2.29) with
κ = 1 for different a. From the results in Lemma 2.5 and Fig. 4,
we can see that, for the dynamics of (1.9)–(1.10) in Pattern IV,
when 0 ≤ t < tc, the two vortices move towards each other
along a line passing through their initial locations and collide at
the origin at time t = tc according to the reduced dynamic law.
Again, from our numerical results, we observe that the collision
time satisfies (cf. Fig. 4)

tc = O(a), a � 1. (2.31)
Fig. 4. Numerical solutions of the ODE (2.29) with κ = 1 for different a.

3. Numerical method and stability of vortex solutions

In this section, we first propose an efficient and accurate
numerical method to discretize NLWE (1.1) with (1.2)–(1.3)
and then apply it to study numerically the stability of the
quantized vortex state solution (1.4) of NLWE (1.1).

3.1. An efficient and accurate numerical method

In the practical implementation, we truncate the problem
(1.1)–(1.3) to one defined in a bounded computational domain
with an inhomogeneous Dirichlet boundary condition:

∂t tψ(x, t) = ∇
2ψ +

1

ε2

(
V (x)− |ψ |

2
)
ψ, x ∈ ΩR,

t > 0, (3.1)

ψ(x, t) = eimθ , x ∈ Γ = ∂ΩR, t ≥ 0, (3.2)

ψ(x, 0) = ψ0(x), ∂tψ(x, 0) = ψ1(x), x = Ω R, (3.3)

where we choose ΩR = {(x, y), r =

√
x2 + y2 < R} with R

sufficiently large. In our simulations, a sufficiently large R is
chosen to assure that the effect of domain truncation remains
insignificant. The use of more sophisticated radiation boundary
conditions is an interesting topic that remains to be examined
in the future.

To match the highly oscillatory boundary condition (3.2)
in the transverse direction when m is large, we use the polar
coordinate (r, θ), and discretize (3.1)–(3.3) in θ -direction by
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the Fourier pseudospectral method, in r -direction by finite
difference or finite element method and in time by the second
order central finite difference method. Choose a time step1t >
0 and a mesh size in θ -direction ∆θ = 2π/K > 0 with K an
even positive integer. Denote the grid points as θk = k∆θ for
0 ≤ k ≤ K , and time sequence as tn = n1t for n = 0, 1, . . .;
let 0 < r1 < r2 < · · · < rJ = R be a partition of [r1, R] and
denote r0 = −r1. Letψn

j,k be the approximation ofψ(r j , θk, tn)
and ψn be the solution vector at time t = tn with component
ψn

j,k . Then the NLWE (3.1) can be discretized, for 1 ≤ j < J ,
0 ≤ k ≤ K and n = 0, 1, . . . , as

ψn+1
j,k − 2ψn

j,k + ψn−1
j,k

(1t)2
=

(
∇

2
hψ

n
)∣∣∣

j,k

+
1

ε2

(
V (r j , θk)− |ψn

j,k |
2
)
ψn

j,k, (3.4)

where ∇
2
h , the approximate differential operator for ∇

2, is
defined by [6,5,34,35](
∇

2
hψ

n
)

| j,k =

K/2−1∑
l=−K/2

[
D2

r (̂ψ
n)l

∣∣∣
r=r j

+
1
r j

Dr (̂ψn)l

∣∣∣
r=r j

−
l2

r2
j

(̂ψn
j )l

]
eilθk ,

D2
r (̂ψ

n)l

∣∣∣
r=r j

=
1

∆r j C j−1/2
(̂ψn

j+1)l
−

2
∆r j ∆r j−1

(̂ψn
j )l

+
1

∆r j−1 C j−1/2
(̂ψn

j−1)l
,

Dr (̂ψn)l

∣∣∣
r=r j

=
∆r j−1

2∆r j C j−1/2
(̂ψn

j+1)l

+
∆r j − ∆r j−1

∆r j ∆r j−1
(̂ψn

j )l

−
∆r j

2∆r j−1 C j−1/2
(̂ψn

j−1)l
;

with ∆r j = r j+1 − r j and C j−1/2 =
(
∆r j−1 + ∆r j

)
/2 for

j = 0, 1, . . . , J − 1. The initial condition (3.3) is discretized as

ψ0
j,k = ψ0(r j , θk),

ψ1
j,k − ψ−1

j,k

21t
= ψ1(r j , θk),

1 ≤ j ≤ J, 0 ≤ k ≤ K . (3.5)

The boundary condition (3.2) is discretized as

(̂ψn
0 )l = (−1)l (̂ψn

1 )l , (̂ψn
J )l = δlm,

l = −K/2, . . . , K/2 − 1, (3.6)

where δlm is the Kronecker delta and, for any fixed n and j ,
(̂ψn

j )l
(−K/2 ≤ l ≤ K/2 − 1) are the Fourier coefficients of

the vector ψn
j,k (0 ≤ k ≤ K ) defined as [34,6]

(̂ψn
j )l

=
1
K

K−1∑
k=0

ψn
j,k e−ilθk , −K/2 ≤ l ≤ K/2 − 1.

The above discretization is spectrally accurate in the θ -
direction, second order accurate in both the r -direction and
time. At each time step, the computational cost is O(J K ln K )
since the fast Fourier transform (FFT) can be used in the θ -
direction.

In our computation, we take R = 7400 for ΩR and time step
1t = 0.0001. In the θ -direction, a uniform mesh with mesh size
∆θ =

π
128 , i.e. K = 256 in (3.4), is used. In the r -direction, a

graded piecewise uniform mesh with 6001 grid points from the
smallest mesh size ∆r =

1
60 for the subinterval [0, 10] to the

largest mesh size ∆r =
11
3 for the subinterval [6400, 7400] is

applied. These parameter values have been tested to assure the
accuracy of the simulation results.

In all the figures presented below, we always use the symbol
‘+’ to mark the center of a vortex with index m = +1, either
‘−’ or ‘×’ to mark the center of a vortex with index m = −1,
and ‘o’ to mark the collision position of two or more opposite
vortices.

3.2. Stability of vortex states

In order to study the stability of vortex states of NLWE
numerically, we take ε = 1 and V (x) ≡ 1 in (1.1) and choose
the initial data (1.2) as

ψ0(x) = φm(x), ψ1(x) ≡ 0, x ∈ R2, (3.7)

where φm(x) is given in (1.4) with fm(r) obtained numerically
from (1.5) and (1.6).

As it is commonly accepted that the stability of vortices is
dependent on the type of perturbations, we thus consider the
stability of vortex states under a small perturbation on the initial
data; an example is given by artificially setting ψ0(±0.1, 0) =

0.
Fig. 5 shows surface plots of −|ψ(x, t)| at different times

for m = 1 and m = 3. From it and additional numerical
experiments not shown here for brevity, we can draw the
following conclusions: the vortex states with winding number
m = ±1 are dynamically stable (cf. Fig. 5(a)), and resp., vortex
states with winding number |m| > 1 are dynamically unstable
in NLWE under perturbations that are either in the initial data
(cf. Fig. 5(b)) or in the external potential V (x) in (1.1). Thus, in
the following sections, we only study dynamics and interaction
of quantized vortices with winding numbers m = ±1 in NLWE.

4. Interaction of vortices with zero initial velocity

In this section, we report the numerical results of vortex
interaction by directly simulating NLWE (1.1)–(1.3) with zero
initial velocity, i.e. we take ε = 1 and V (x) ≡ 1 in (1.1). The
initial data is chosen as (1.8) and ψ1(x) ≡ 0 in (1.2).

4.1. Interactions of N (N ≥ 2) like vortices, Patterns I & II

Fig. 6 displays contour plots of the phase S (ψ =
√
ρ eiS) at

different times when the initial data in (1.8) is chosen as (2.6)
with N = 2, m0 = +1 and a = 2, and Fig. 7 shows time evo-
lution of the vortex centers for different N ≥ 2 in Pattern I. In
addition, Figs. 8 and 9 show similar results when the initial data
in (1.8) is chosen as (2.15)–(2.16) with m0 = +1, i.e. Pattern II.
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Fig. 5. Surface plots of −|ψ(x, t)| at different times for the stability study of the vortex states in NLWE under a perturbation on the initial data for different winding
numbers: (a) m = 1, and (b) m = 3.
Fig. 6. Contour plots of the phase S (ψ =
√
ρ eiS ) at different times when the initial data is chosen as Pattern I with N = 2, m0 = +1 and a = 2 in (2.6).
Fig. 7. Time evolution of vortex centers when the initial data is chosen as Pattern I with m0 = +1 and a = 2 in (2.6) for different N : (a) N = 2, and (b) N = 3.
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Fig. 8. Contour plots of the phase S at different times for the interaction of three like vortices in Pattern II with N = 3, m0 = +1 and a = 0.1 in (2.15)–(2.16).
Fig. 9. Time evolution of vortex centers when the initial data is chosen as Pattern II with m0 = +1 and a = 3 in (2.15)–(2.16) for different N : (a) N = 3, and (b)
N = 4.
From Figs. 6–9 and additional numerical experiments not
shown here for brevity, we can draw the following conclusions
for the interaction of N like vortices when the initial data is
chosen as either Pattern I or II:

(i) The mass center of the vortex centers is conserved for any
time t ≥ 0 (cf. Figs. 7 and 9), which confirms the conservation
law in (2.3).

(ii) Vortices with the same index undergo a repulsive
interaction and they never collide (cf. Figs. 6, 7 and 9) when
they are well-separated. In Pattern II, the vortex initially at the
origin does not move during the dynamics (cf. Fig. 9), which
confirms the analytical solution (2.17).

(iii) Due to the symmetry of the initial data, each vortex of
those initially located on a circle moves along the line passing
through its initial location and the origin, and at any time t ≥ 0,
their centers are always on a circle (cf. Figs. 6–9) when they are
well-separated, which confirms the analytical solutions (2.7)
and (2.18).

(iv) When the distance between the vortex centers is very
small at t = 0, i.e. they are overlapped, complicated interaction
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Fig. 10. Dynamics of three opposite vortices when the initial data is chosen as Pattern III with N = 3 and m0 = +1 in (2.15)–(2.16) for different a: (a) Contour
plots of the phase S at different times when a = 10 � 1, and (b) Time evolution of vortex centers when a = 4 = O(1).
patterns of the vortex centers of the NLWE are observed in our
direct numerical results (cf. Fig. 8).

(v) There exists a critical time tcr > 0 dependent of N and
a, such that when 0 ≤ t ≤ tcr = O(1), the vortices initially
located on a circle move with a varying velocity, and after time
tcr, i.e. for t ≥ tcr, their velocity is almost a constant (cf. Figs. 7
and 9).

(vi) In Patterns I and II, if the initial distance between vortex
centers is large, i.e. they are well-separated, the solutions of
the reduced dynamic laws agree with our numerical results of
NLWE qualitatively, and quantitatively with a proper κ chosen
in (1.9), which depends on the initial setup in (1.8); while
when the initial distance is small, i.e. they are overlapped,
the solutions of the reduced dynamic laws do not agree with
our numerical results of NLWE qualitatively (cf. Fig. 8) and
corrections, e.g. the correction term denoting the residuals of a
holomorphic function defined away from the vortices in [22],
need to be added to the reduced dynamic laws.

4.2. Interactions of N (N ≥ 3) opposite vortices, Pattern III

Fig. 10 shows contour plots of the phase S and time
evolution of the vortex centers when the initial data in (1.8) is
chosen as Pattern III with m0 = +1 and N = 3 in (2.15) and
(2.16) for different a. Figs. 11 and 12 display similar results for
N = 4 and N = 5, respectively.

From Figs. 10 to 12 and additional numerical experiments
not shown here for brevity, we can draw the following
conclusions for the interaction of N opposite vortices when the
initial data is chosen as Pattern III:

(i) The mass center of the vortex centers is conserved for any
time t ≥ 0, which again confirms the conservation law in (2.3).

(ii) The vortex initially at the origin does not move for
any time t ≥ 0 (cf. Figs. 10(b), 11(b), 12(a) and (b)), which
confirms the analytical solution (2.23). After a short time
period, each vortex of those initially located on a circle moves
to the origin when N = 3, and resp. moves away when N ≥ 5,
along the line passing through its initial location and the origin,
and the vortex centers are always on a circle (cf. Figs. 10(b),
11(b), 12(a) and (b)).

(iii) When N = 3, collisions between the three vortex
centers are observed at a critical time tc (cf. Fig. 10) and
this collision time is almost linearly proportional to the initial
distance a when a � 1. At time t = tc they collide at the
origin, and after it only one vortex with index m = m0 is left
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Fig. 11. Dynamics of four opposite vortices when the initial data is chosen as Pattern III with N = 4 and m0 = +1 in (2.15)–(2.16) for different a: (a) Contour
plots of the phase S at different times when a = 4 = O(1), and (b) Time evolution of vortex centers when a = 10 � 1.
and it stays at the origin for any time t ≥ tc (cf. Fig. 10). For
the collision pattern, there exists a critical acr = O(1). When
0 < a < acr, the interaction is always attractive and the three
vortices collide at the origin when they meet each other at the
first time (cf. Fig. 10(b)). On the other hand, when a > acr,
the three vortices first undergo an attractive interaction towards
the origin but they don’t collide when they meet at the origin the
first time (cf. Fig. 10(a) with t = 17). The three vortices interact
and the two vortices with winding number m = +1 penetrate
the origin and move first outwards (repulsive interaction) due
to nonzero velocity and then towards (attractive interaction)
the origin along the line perpendicular to that connecting
the original three vortex centers (cf. Fig. 10(a)). Eventually,
they collide at the origin when they meet each other the
second time.

(iv) When N = 4, if a is very large, the four opposite
vortices would stay at their initial locations for a long time
period (cf. Fig. 11(b)) and the larger is the initial distance a,
the longer is the time period. On the other hand, if a is small,
they first undergo attractive interactions towards the origin and
they don’t collide when they meet at the origin the first time (cf.
Fig. 11(a) with t = 9.5). The four vortices interact and the three
vortices with winding number m = +1 penetrate the origin and
move first outwards from the origin (repulsive interactions) due
to nonzero velocity and then towards to the origin (attractive
interactions) and finally collide there (cf. Fig. 11(a)). After the
collision, there are two like vortices left and they undergo a
repulsive interaction (cf. Fig. 11(a) with t ≥ 28.5).

(v) When N ≥ 5, for large a, the vortices undergo repulsive
interactions and they never collide (cf. Fig. 12(b)), while for
small a, the vortices first undergo attractive interactions within
time 0 ≤ t ≤ t0 but they don’t collide, and after time t0, their
interactions become repulsive (cf. Fig. 12(a)).

(vi) In Pattern III, the solutions of the reduced dynamic
laws agree with our numerical results of NLWE qualitatively
when the distances between the vortex centers are very large,
i.e. when they are well-separated. On the contrary, they are
completely different when the distances are small, i.e. when
they are overlapped (c.f. Figs. 11(a) and 10(a) for t ≥ 17)! One
may argue that when the distance between the vortex centers is
small, the cores of the vortices are overlapped and thus the next
order effect becomes important in the underlying vortex motion
of the original NLWE. In this regime, correction must be added,
e.g. the correction term denoting the residuals of a holomorphic
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Fig. 12. Time evolution of vortex centers when the initial data is chosen as Pattern III with N = 5 and m0 = +1 in (2.15)–(2.16) for different a: (a) a = 1 = O(1),
and (b) a = 7 � 1.
function defined away from the vortices in [22], to the reduced
dynamic laws.

4.3. Interactions of two opposite vortices, Pattern IV

Fig. 13 displays contour plots of the phase S and time
evolution of the two vortex centers when the initial data in (1.8)
is chosen as Pattern IV with m0 = +1 and a = 2 in (2.27).
In addition, Fig. 14 shows the collision time tc vs the initial
distance between the two vortex centers.

From Figs. 13 and 14, we can draw the following
conclusions for the interaction of two opposite vortices when
the initial data is chosen as Pattern IV:

(i) The mass center of the two vortex centers is conserved
(cf. Fig. 13(b)), which again confirms the conservation law in
(2.3).

(ii) Two vortices with opposite indices undergo an attractive
interaction, and their centers move along a straight line passing
through their locations at t = 0. The speed of the motion for
the two vortex centers depends on their distance. The smaller is
the distance, the faster is the motion (cf. Fig. 13).

(iii) There exists a critical time tc > 0, and at time t = tc
the two opposite vortices collide with each other at the origin
(cf. Fig. 13). From our numerical results, we find numerically
that the collision time depends on the distance of the two vortex
centers at t = 0 as (cf. Fig. 14)

tc = O(a), a � 1, (4.1)

which confirms the result (2.31) of the reduced dynamic laws.
(iv) Again, in Pattern IV, the solutions of the reduced

dynamic laws agree with our numerical results of NLWE
qualitatively, and quantitatively if a proper κ in (1.9) is chosen,
which depends on the initial setup in (1.8).

4.4. Interactions of vortices with nonsymmetric setups

In this subsection, we report the interaction of quantized
vortices in NLWE with nonsymmetric initial setups. For
simplicity, we only consider the case of three vortices, i.e. N =

3. Here we consider the following three different cases (with
m1 = m3 = +1 in all the cases):

Case 1. x0
1 = (−a,−b/2), x0

2 = (0, b),

x0
3 = (a,−b/2), m2 = +1;

Case 2. x0
1 = (−

√
3a/2,−a/2), x0

2 = (0, a),

x0
3 = (

√
3a/2,−a/2), m2 = −1;

Case 3. x0
1 = (−a,−b/2), x0

2 = (0, b),

x0
3 = (a,−b/2), m2 = −1.

Fig. 15 shows time evolution of the vortex centers of the
NLWE (1.1) when the initial data in (1.8) is chosen as Case
1. For comparison, we also plot the numerical solutions of
the reduced dynamic laws (1.9) by using the standard finite
difference discretization for the second order ODEs (1.9) with
the initial data in (1.10) is chosen as in Case 1. In addition,
Figs. 16 and 17 show similar results for Case 2 and Case 3,
respectively.

Based on Figs. 18–20 and our additional numerical results
not shown here for brevity, we can draw the following
conclusions for the interactions of three vortices with non-
symmetric initial setups:
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Fig. 13. Dynamics of two opposite vortices when the initial data is chosen as Pattern IV with m0 = +1 and a = 2 in (2.27): (a) Contour plots of the phase S at
different times, and (b) Time evolution of vortex centers.
Fig. 14. The collision time tc vs initial setup a in Pattern IV.

(i) The mass centers of the vortex centers are not conserved
(cf. Figs. 15(a) and (c), 16(a) and (c), 17(a) and (c)) during the
dynamics within the time frame we computed the solutions,
which conflicts with the results from the reduced dynamic
law (cf. Figs. 15(b) and (d), 16(b) and (d), 17(b) and (d)).
These suggest that the reduced dynamic law (1.9)–(1.10) has
considerable discrepancy with the original dynamics in some
regimes. One may argue that a possible cause is due to the fact
that the reduced dynamic law is the adiabatic approximation in
the leading order when the N vortices are well-separated, and
thus the next order effect becomes important in the underlying
vortex motion of the original NLWE when the N vortices are
not well-separated.

(ii) For the interaction of three like vortices, the three vortex
centers move almost on three straight lines after some time
t0, and they never collide (cf. Fig. 15). On the contrary, for
the interaction of three opposite vortices, our numerical results
by directly simulating NLWE (1.1)–(1.3) show that they will
collide at finite time and after collision, only one vortex is left
(cf. Figs. 16(a) and (c), 17(a) and (c)); however, the solutions
of the reduced dynamic law indicate that these three vortices
undergo a periodic interaction with a period depending on the
initial distance between them (cf. Figs. 16(b) and (d), 17(b) and
(d)), and they never collide!

(iii) For the interaction of vortices with nonsymmetric initial
setup, the solutions of the reduced dynamic laws agree with our
numerical results of NLWE qualitatively if they have the same
winding number and they are well-separated; on the contrary,
if they are not well-separated or they have different winding
numbers, the solutions of the reduced dynamic laws and NLWE
may be completely different!

5. Other dynamics of vortices

In this section, we report the numerical results of the
vortex dynamics of NLWE with either nonzero initial velocity
or inhomogeneous external potential by directly simulating
NLWE (1.1)–(1.3).

5.1. Vortex interactions with nonzero initial velocity

For simplicity, here we only report interactions of two like
and opposite vortices, and we take ε = 1 and V (x) ≡ 1 in (1.1).
The initial data ψ0(x) in (1.2) is chosen as (1.8) with N = 2.
We take ψ1(x) in (1.2) as

∂tψ(x, 0) = ψ1(x) = αe−
(
x2

+y2)/16, x ∈ R2, (5.1)

where the parameter α = ±1, that is, we consider two types of
initial velocities which have the same magnitudes but different
directions at the point x ∈ R2.
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Fig. 15. Time evolution of vortex centers when the initial data in (1.8) is chosen as Case 1 for different initial distances between the vortex centers: (a) and (b)
a = 1, b = 4, and (c) and (d). a = 3, b = 6; where (a) and (c): from directly simulating NLWE (1.1)–(1.3), and (b) and (d): from reduced dynamic law (1.9)–(1.10).
Figs. 18 and 19 show the interaction of two like and opposite
vortices in the NLWE (1.1) with nonzero initial velocity chosen
as (5.1) with α = 1, respectively. In addition, Figs. 20 and 21
show similar results for α = −1 in (5.1).

Based on Figs. 18–21 and our additional numerical results
not shown here for brevity, we can draw the following
conclusions for the interactions of two vortices in the NLWE
(1.1) under nonzero initial velocity:

(i) Two like vortices may undergo repulsive interaction
and attractive interaction depending on the initial velocity.
But they never collide with each other. In fact, for the two
like vortices, if α = +1 in (5.1) and a is small, the two
vortices first undergo an attractive interaction towards the origin
due to the nonzero initial velocities at x = (±a, 0)T, e.g.
ψ1(x, 0) ≈ 0.8688 when a = 1.5, and then they meet at the
origin, reflect each other to the y-axis and undergo a repulsive
interaction (cf. Fig. 18(a)); while when a is large, the two
vortices have a repulsive interaction which is similar to the case
with zero initial velocity (cf. Fig. 18(b)). If α = −1 in (5.1),
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Fig. 16. Time evolution of vortex centers when the initial data in (1.8) is chosen as Case 2 for different initial distances between the vortex centers: (a) and (b)
a = 2, and (c) and (d). a = 5; where (a) and (c): from directly simulating NLWE (1.1)–(1.3), and (b) and (d): from reduced dynamic law (1.9)–(1.10).
the two like vortices always undergo a repulsive interaction
(cf. Fig. 20).

(ii) Two opposite vortices may undergo repulsive interaction
and attractive interaction depending on the initial velocity. They
will collide with each other at finite time. After the collision,
they will disappear together. In fact, for the two opposite
vortices, if α = +1 in (5.1) and the initial distance a is small
or intermediate, e.g. when a = 0.5 is small, at t = tc = O(a)
they collide and annihilate at the origin, after some time there
are two new opposite vortices generated and they first undergo
a repulsive interaction and then an attractive interaction, and
eventually they collide at the origin and no vortex exists after it
(cf. Fig. 19(a)); and when a = 8 is intermediate, at t = tc ≈ 1.4
another two opposite vortices are generated near the origin
and then the two pairs of opposite vortices attract each other
and collide at two different locations (cf. Fig. 19(b)). On the
contrary, when α = −1 in (5.1) and the initial distance is
small or intermediate, the two opposite vortices first undergo
a repulsive interaction and then an attractive interaction, and
eventually they collide at the origin (cf. Fig. 21(a)). In addition,



2406 W. Bao et al. / Physica D 237 (2008) 2391–2410
Fig. 17. Time evolution of vortex centers when the initial data in (1.8) is chosen as Case 3 for different initial distances between the vortex centers: (a) and (b) a = 2,
b = 4, and (c) and (d). a = 4, b = 8; where (a) and (c): from directly simulating NLWE (1.9)–(1.10), and (b) and (d): from reduced dynamic law (1.9)–(1.10).
when a is extremely large in this case, e.g. a > 30, the
interactions are always similar to those with zero initial velocity
(cf. Figs. 19(c) and 21(b)) no matter α = +1 or −1 in (5.1),
which is because |ψ1(x, 0)| ≈ 0 when x = (±a, 0)T and a is
large.

(iii) In general, the interaction patterns of two vortices in
the NLWE (1.1) under nonzero initial velocity, i.e. ψ1 6= 0 in
(1.2), are much more complicated than those under zero initial
velocity. The larger is the initial velocity, the stronger is the
effect on the interaction patterns.
(iv) In general, it is not easy to determine explicitly the
initial velocity in (1.10) for the reduced dynamic laws (1.9)
from the nonzero initial velocity in (1.2) for the NLWE
(1.1). The reduced dynamic laws for the NLWE with nonzero
initial velocity may exist, but they are usually not available
explicitly!

5.2. Vortex dynamics under an inhomogeneous potential

Here we also numerically study the dynamics of vortices
under an inhomogeneous external potential. We take V (x) in
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Fig. 18. Time evolution of vortex centers for the interaction of two like vortices in the NLWE (1.1) with nonzero initial velocity chosen as (5.1) with α = +1 for
different initial distance a: (a) a = 1.5; (b) a = 15.
(1.1) as

V (x) =

1
2 + γx x2

+ γy y2

1 + γx x2 + γy y2 = 1 −
1

2
(
1 + γx x2 + γy y2

) ,
x ∈ R2 (5.2)

with γx and γy two positive constants. It is easy to see that V (x)
attains its minimum value 1

2 at the origin. The initial data in
(1.2) is chosen as

ψ(x, 0) = ψ0(x) = φ1(x − x0), ψ1(x) ≡ 0,

x ∈ R2, (5.3)

where φ1(x) is the vortex state of (1.4) with winding number
m = 1 and x0 is a given point.

Figs. 22 and 23 display time evolution of the vortex
centers for symmetric and anisotropic inhomogeneous external
potential, respectively.

From Figs. 22 and 23, we can draw the following
conclusions: (i) For both cases, the vortex center moves towards
the position where the external potential attains its minimum
value. The speed of the motion depends on the values of the
parameter ε. (ii) If γx = γy = 1, the trajectory for different ε is
the same, and it is a straight line connecting the initial location
of the vortex center and the origin. After reaching the origin,
the vortex will oscillate with respect to the origin along the
straight line due to nonzero velocity (cf. Fig. 22). (iii) For an
anisotropic potential, e.g. γx = 1 and γy = 5, the trajectory of
the vortex center depends on the parameter ε (cf. Fig. 23(a)).
Rigorous justification, e.g. reduced dynamic laws for NLWE
with inhomogeneous external potential, for this observation is
still not available.
6. Conclusion

We have studied the dynamics and interaction of quantized
vortices in the nonlinear wave equation (NLWE) both
analytically and numerically. From the analytical perspective,
we reviewed the second order nonlinear ordinary differential
equations of the reduced dynamic laws governing the dynamics
of N vortex centers; proved that the mean velocity of the
vortex centers is conserved and the mass center of the vortex
centers is conserved if the initial mean velocity is zero based
on the reduced dynamic laws; and solved analytically the
nonlinear ordinary equations (ODEs) of the reduced dynamic
laws with a few types of initial data. These conservation
quantities and analytical solutions of the reduced dynamic
laws provide qualitative and quantitative interaction patterns of
quantized vortices in the NLWE when they are well-separated.
From the numerical perspective, we introduced an efficient
and accurate Fourier pseudospectral method based on using
the polar coordinate to match the highly oscillating nonzero
far field condition for solving the NLWE, and applied it to
numerically study issues such as the stability of vortex states in
the NLWE, the interaction of a few vortices with different initial
data and motion of a vortex under an inhomogeneous external
potential. We found numerically that quantized vortices with
winding number m = ±1 are dynamically stable, and resp.,
|m| > 1 are dynamically unstable, in the dynamics of the
NLWE. Comparisons between the solutions of the reduced
dynamic laws and direct simulation results of the NLWE
were provided. Some conclusive findings were obtained, and
discussions on numerical and theoretical results were made
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Fig. 19. Interaction of two opposite vortices in the NLWE (1.1) with nonzero initial velocity chosen as (5.1) with α = +1 for different initial distance a: (a) Contour
plots of the phase S with a = 0.5; (b) Contour plots of the phase S with a = 8; and (c) Time evolution of the two vortex centers with a = 30.
to provide further understanding of vortex interactions in
the NLWE. In fact, the analytical and numerical results in
the paper enhanced significantly our understanding on the
stability and interaction of quantized vortices in the nonlinear
wave equation.
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Fig. 20. Time evolution of vortex centers for the interaction of two like vortices in the NLWE (1.1) with nonzero initial velocity chosen as (5.1) with α = −1 and
initial distance a = 0.5.
Fig. 21. Time evolution of vortex centers for the interaction of two opposite vortices in the NLWE (1.1) with nonzero initial velocity chosen as (5.1) with α = −1
and different initial distance a: (a) a = 0.5; (b) a = 15.
Fig. 22. Time evolution of the vortex center under a symmetric inhomogeneous external potential (5.2) with γx = γy = 1. (a) trajectories for different ε, and (b)
distance between the vortex center and the origin.
thanks Professor Jack X. Xin for helpful discussions on the
subject. This work was partially done while the authors were
visiting the Institute for Mathematical Sciences of National
University of Singapore in 2007.



2410 W. Bao et al. / Physica D 237 (2008) 2391–2410
Fig. 23. Time evolution of the vortex center under an anisotropic
inhomogeneous external potential (5.2) with γx = 1 and γy = 5. (a) trajectories
for different ε; and (b) distance between the vortex center and the origin.
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