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AN EXPLICIT UNCONDITIONALLY STABLE NUMERICAL
METHOD FOR SOLVING DAMPED NONLINEAR SCHRODINGER
EQUATIONS WITH A FOCUSING NONLINEARITY*

WEIZHU BAO' AND DIETER JAKSCH?

Abstract. This paper introduces an extension of the time-splitting sine-spectral (TSSP) method
for solving damped focusing nonlinear Schrédinger equations (NLSs). The method is explicit, un-
conditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for
the normalization of the wave function if linear damping terms are added to the NLS. Extensive
numerical tests are presented for cubic focusing NLSs in two dimensions with a linear, cubic, or
quintic damping term. Our numerical results show that quintic or cubic damping always arrests
blowup, while linear damping can arrest blowup only when the damping parameter 6 is larger than
a threshold value 6;;,. We note that our method can also be applied to solve the three-dimensional
Gross—Pitaevskii equation with a quintic damping term to model the dynamics of a collapsing and
exploding Bose-Einstein condensate (BEC).
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1. Introduction. Since the first experimental realization of Bose—Einstein con-
densation (BEC) in dilute weakly interacting gases, the nonlinear Schrédinger equa-
tion (NLS) has been used extensively to describe the single particle properties of
BECs. The results obtained by solving the NLS showed excellent agreement with
most of the experiments (for a review, see [2, 3, 11, 10]). In fact, up to now there
have been very few experiments in ultracold dilute bosonic gases which could not be
described properly by using theoretical methods based on the NLS [20, 23].

Recent experiments by Donley et al. [12] provide new experimental results for
checking the validity of describing a BEC by using the NLS in the case of attractive
interactions (focusing nonlinearity) in three dimensions. Since the particle density
might become very large in the case of attractive interactions, inelastic collisions
become important and cannot be neglected. These inelastic collisions are assumed
to be accounted for by adding damping terms to the NLS. Two particle inelastic
processes are taken into account by a cubic damping term, while three particle inelastic
collisions are described by a quintic damping term. Collisions with the background gas
and feeding of the condensate can be studied by adding linear damping terms. One
of the major theoretical challenges in comparing results obtained in the experiment
with theoretical results is to find reliable methods for solving the NLS with a focusing
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nonlinearity and damping terms in the parameter regime where the experiments are
performed.

The aim of this paper is to extend the time-splitting sine-spectral (TSSP) method
for solving the focusing NLS with additional damping terms and to present extensive
numerical tests. The comparison of our numerical results with the experimental results
obtained for a collapsing BEC [12] will be presented elsewhere [8].

We consider the NLS [7, 36]

(1.1) ive=—5 MYV - PP, £>0,  xeRY
(1.2) P(x,t =0) = ¢o(x), x € R9,

with ¢ > 0 a positive constant, where ¢ = 1 corresponds to a cubic nonlinearity,
o = 2 corresponds to a quintic nonlinearity, V' (x) is a real-valued potential whose
shape is determined by the type of system under investigation, and (3 positive/negative
corresponds to the focusing/defocusing NLS. In BEC, where (1.1) is also known as the
Gross—Pitaevskii equation (GPE) [21, 26, 33|, ¢ is the macroscopic wave function of
the condensate, ¢ is time, x is the spatial coordinate, and V (x) is a trapping potential
which usually is harmonic and can thus be written as V(x) = 3 (v#z? + - -+ + 7322)

with 41,...,7¢ > 0. Two important invariants of (1.1) are the normalization of the
wave function
(1.3) Ny = [ 0P dx ez
Rd
and the energy
1
(1) B() = [ [|w<x,t>|2 VR -~ e )7 dx, £ >0,
Re |2 o-+1

From the theory for the local existence of the solution of (1.1), it is well known
that if ||¢(-,t)|| g2 is bounded, the solution exists for all ¢ [36]. As a result, when the
NLS is defocusing (6 < 0), conservation of energy implies that [p, [Vi(x,1)|? dx is
bounded and the solution exists globally. On the other hand, if the NLS is focusing
(8 > 0) at critical (¢d = 2) or supercritical (od > 2) dimensions and for an initial
energy F(0) < 0, then the solutions of (1.1) can self-focus and become singular in
finite time; i.e., there exists a time ¢, < oo such that (see [36])

thj? V|2 = 00 and tll)r?* [t L = 0.

However, the physical quantities modeled by 1 do not become infinite, which implies
that the validity of (1.1) breaks down near the singularity. Additional physical mech-
anisms, which were initially small, become important near the singular point and
prevent the formation of the singularity. In BEC, the particle density |¢)|? becomes
large close to the critical point, and inelastic collisions between particles which are
negligible for small densities become important. Therefore, a small damping (absorp-
tion) term is introduced into the NLS (1.1) which describes inelastic processes. We are
interested in the cases where these damping mechanisms are important and therefore
restrict ourselves to the case of focusing nonlinearities § > 0, where § may also be
time dependent. We consider the damped nonlinear Schrodinger equation (DNLS)

(15) ide=—5 AP+ V) ¥ BP0 —igeP)o, >0, xeRY,
(1.6)  P(x,t=0) =1p(x), x € RY,
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where g(p) > 0 for p = [|? > 0 is a real-valued monotonically increasing function.

The general form of (1.5) covers many DNLSs arising in various different appli-
cations. In BEC, for example, when g(p) = 0, (1.5) reduces to the usual GPE (1.1);
a linear damping term g(p) = 6 with 6 > 0 describes inelastic collisions with the
background gas; cubic damping g(p) = 618p with é; > 0 corresponds to two-body
loss [13, 35, 34]; and a quintic damping term of the form g(p) = 623%p* with 63 > 0
adds three-body loss to the GPE (1.1) [1, 35, 34]. It is easy to see that the decay of
the normalization according to (1.5) due to damping is given by

d

an Ni)= /IR e D dx = -2 /IR oG PG O dx <0, 10,

In particular, if g(p) = 6 with 6 > 0, the normalization is given by

(1.8) N(t) = /Rd lh(x,t)]? dx = e 2 IN(0) = e~ 20! /]Rd [ (x)|? dx, t>0.

There has been a series of recent studies which deals with the analysis and numeri-
cal solution of the DNLS. Fibich [14] analyzed the effect of linear damping (absorption)
on the critical self-focusing NLS, Tsutsumi [37, 38] studied the global solutions of the
NLS with linear damping, and the regularity of attractors and approximate inertial
manifolds for a weakly damped NLS were given in Goubet [17, 19, 18] and by Jolly,
Temam, and Xiong [24]. For numerically solving the linearly damped NLS, Peranich
[32] proposed a finite difference scheme, and this method was revisited recently by
Ciegis and Pakalnyte [9] and Zhang and Lu [39]. Moebs and Temam [30] presented a
multilevel method for weakly damped NLS, and Moebs applied it to solve a stochastic
weakly damped NLS in [29]. Variable mesh difference schemes for the NLS with a
linear damping term were used by Iyengar, Jayaraman, and Balasubramanian [22].

Also, the TSSP method, which we will use in this paper to solve the DNLS, was
already successfully used for solving the Schriodinger equation in the semiclassical
regime and for describing BEC using the GPE by Bao et al. [4, 5, 7]. The TSSP
method is explicit, unconditionally stable, and time transversal invariant. Moreover,
it gives the exact decay rate of the normalization when linear damping is applied to
the NLS (i.e., g(p) = § with 6 > 0 in (1.5)) and yields spectral accuracy for spatial
derivatives and second-order accuracy for the time derivative. Thus this method is a
very good candidate for solving the DNLS, especially in two or three dimensions. We
test the novel numerical method extensively in two dimensions.

Finally, we want to emphasize that the NLS is also used in nonlinear optics, e.g.,
to describe the propagation of an intense laser beam through a medium with a Kerr
nonlinearity [16, 36]. In nonlinear optics, 1 = ¥(x,t) describes the electrical field am-
plitude, t is the spatial coordinate in the direction of propagation, x = (z1,...,74)7
is the transverse spatial coordinate, and V(x) is determined by the index of refrac-
tion. Nonlinear damping terms of the form g(p) = §39p? with 8, ¢ > 0 correspond to
multiphoton absorption processes [14].

The paper is organized as follows. In section 2, we present the TSSP approxi-
mation for the damped nonlinear Schrédinger equation. In section 3, numerical tests
are presented for the cubic focusing NLS in two dimensions with a linear, cubic, or
quintic damping term. In section 4, some conclusions are drawn.

2. Time-splitting sine-spectral method. In this section we present a time-
splitting sine-spectral (TSSP) method for solving the problem (1.5), (1.6) with homo-
geneous periodic boundary conditions. For simplicity of notation, we shall introduce
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the method for the case of one spatial dimension (d = 1). Generalizations to d > 1
are straightforward for tensor product grids, and the results remain valid without
modifications. For d = 1, the problem becomes

. 1 - )
(21) it = =gt + V(@)Y = B —ig(P)y,  a<z<b >0,
(2.2) YP(z,t=0)=1o(x), a<z<b, Y(a,t) =(b,t) =0, t>0.
2.1. General damping term. We choose the spatial mesh size h = Az > 0

with h = (b — a)/M and M an even positive integer. The time step is given by
k = At > 0, and we define grid points and time steps by

x;=a+jh, tn :=nk, 7=0,1,..., M, n=20,1,2,....

Let ] be the numerical approximation of ¥(z;,t,) and 9™ the solution vector at
time ¢ = ¢,, = nk with components 7.

From time ¢ = t,, to time ¢ = ¢,41, the DNLS (2.1) is solved in two steps. One
solves

for one time step, followed by solving

(24)  i(e,t) = V(@)(e,t) = Bz, )P (e,t) —ig([Y(z, ) )d(a,b),

again for the same time step. Equation (2.3) is discretized in space by the sine-spectral
method and integrated in time ezactly. For t € [t,, t,,4+1], multiplying the ODE (2.4)
by ¥(z,t), the conjugate of ¥)(z,t), one obtains

(2.5) i ¢l )0 (2, t) = V(@) (@, )] = Bl(x, t)*772 — i g(v(z, )*) [ (a, )]

Subtracting the conjugate of (2.5) from (2.5) and multiplying by —i, one obtains

(2.6) %W(ﬂf,f)IQ = Y@, (2, 1) + ez, )Y@, t) = =2g(|(x, 1)) [ (@, ).

Let

2.7) f(s) = / L g hsr) = {
5 9(s)

Then, if g(s) > 0 for s > 0, we find

[ (f(s)—27), >0, 720,
0, s=0, 7>0.

(2.8) 0<h(s,7)<s for s>0, 7>0,
and the solution of the ODE (2.6) can be expressed as (with 7 =1t —t,,)

+7) =[x, t)]* = h (|(, t) >t — tn) == h(p(ty), T)
) =9, tn)l?, b <t <tpyr.

0 < p(t) = p(ts
(2.9) < p(tn
Combining (2.9) and (2.4), we obtain

i Yo, t) = V(@)p(a,t) = B [h ([0, tn) Pt = 1) 7 (1)
(2.10) —ig (h (|2, ta)*t —t)) (2, ),  tn <t <tnyr.
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Integrating (2.10) from ¢, to ¢, we find

Yz, t) = exp{i [~V (z)(t —tn) + G (|¥(z,tn) 2t — tn)] — F (J(z.t,)|° t — tn) }
(2.11) X P(x,tn),  tn <t <tnyi,

where we have defined
(212)  Fls,r) = / g(h(s, 7)) dr >0, G(s,r) = / 8 [h(s, )" dr.
0 0
To find the time evolution between ¢t = t,, and t = t,, 1, we combine the splitting steps
via the standard second-order Strang splitting TSSP method for solving the DNLS
(2.1). In detail, the steps for obtaining 1/);‘“ from 17 are given by
v; = exp {=F ([0} ° k/2) +i [V (e;)k/2+ G (0] k/2)] } ¥7,

M—1
(213) )" = > e 2 g sin(u(x; —a)),  j=1,2,...,M -1,

1=1

Wit = exp {=F (1717 k/2) + i [V (w)k/2+ G (05", k/2)]} 45,

where (7; are the sine-transform coefficients of a complex vector U = (Uy, Uy, ..., Unp)
with Uy = Up; = 0 which are defined as

M—1
7l ~ 2 .
(2.14) = — Ur= 17 z:l Uj sin(u(z; —a)), 1=1,2,...,M —1,
i=
where
(2.15) ¢ = (x;,0) = olz;),  j=0,1,2,..., M.

Note that the only time discretization error of the TSSP method is the splitting
error, which is second-order in k if the integrals in (2.7) and (2.12) can be evaluated
analytically.

2.2. Most frequently used damping terms. In this subsection we present ex-
plicit formulae for using the TSSP method when solving the NLS with those damping
terms most frequently appearing in BEC and nonlinear optics.

Case 1. NLS with a linear damping term. We choose g(p) = 6 with 6 > 0 in (1.5).
In BEC, this damping term describes inelastic collisions of condensate particles with
the background gas. From (2.7), we find

(2.16) f(s) = / %ds = glns and h(s,7) = e 27 s,
s

Substituting (2.16) into (2.9) and (2.12), we obtain

(217) p(t) = 6_26(t_tn) |¢($7tn)|27 tn <t< thrlv
(2.18) F(s,r) = ér,

580 —2bor
(2.19) Gls,m) = 55— (1—e27).
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Substituting (2.18) and (2.19) into (2.13), we get the following second-order TSSP
steps for the NLS with a linear damping term:

PF =exp {—k6/2+i [~V (xj)k/2+ B} (1 —e~%F) /(260)]} ¥,
M—1
(220) @5 = > e T2 g8 sin(u(z; —a)),  j=12,...,M -1,
=1

Wi = exp {—k8/2+ i [V (;)k/2+ Bl (1 - e7%%) /(280)]} o™,

Case I1. NLS with a damping term of the form g(p) = 68%p%, where 6, ¢ > 0 in
(1.5). For ¢ =1 (¢ = 2), we obtain the damping term describing two (three) particle
inelastic collisions in BEC. From (2.7) we get

1 1 S
2.21 =) ————ds=——-— d h = .
@2) 16)= [ gt =g ) (15 287 7sm) "

Substituting (2.21) into (2.9) and (2.12), we obtain

[ (z, tn)[?

2.22 t) = sty S <tnq1,
222 el [1+2¢809(t — t,)|(x, ,)]29] "
(2.23)  F(s,r) = 2iq In (1 + 2¢é6rp9s?),
pa
55 In (1 + 2¢é6rp?s?), q=o,
(224) G(S,T) = ﬂl_qqsa_q [_1 + (1 + 2q(57‘ﬂq84)(q_0)/q] ?é
o#q.

26(q — o) ’

Substituting (2.23) and (2.24) into (2.13), we get the following second-order TSSP
method for the NLS:

(2.25)
exp {z [—V(a:j)k/Q + 877 (1 + 5qk’5q|¢;‘2q) /(26‘1)] } " _
1/2(1 7o g =4q,
(1 + qskBalyp[2a)
ij - . V(zj)k /Bliqw’;wzai?q s q |, |29 %
exp i | ——5— + —5—0 *1+(1+ akBIy}| ) " y
] o q,
(1 N qékﬂqw?l%)lmq J
M-1
it = 3 e O sinu ey ), G =12 M-,
=1
exp {i [~V (2j)k/2 + B =In (1 + 6qkB903[29) /(26q)] } e
iy g=4gq,
(1+q5k,3‘1\1/1;*\2‘1)1/2q J
n+1 _
v = G L A L M Sak B |**|24 =
exp i |——5— + 36(a=o) —1+(1+ qkB|p3| ) o 2
i, o #q.

(1 + qokBafyr=(20) "/

Case 111. Focusing cubic NLS with a damping term that accounts for two-body
and three-body losses in a BEC [35]. We choose 0 = 1, g(p) = 618p + 823%p? with
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61, 62 > 0, in (1.5). Using (2.7), we get

1 62
0, s =0.

(2.26)

Substituting (2.7) into (2.12) and changing the variable of integration, we obtain

r —(F(s)— h(s,r)
F(s,r) = / g (F1(f(s) - 27)) dr IO / Loy my an

2
hisr) —LIn(h(s,7)/s), s>0
_ o — 2 ’ 9 9
(2.27) = / o5, dh { 0, o0,

where h(s,r) is the solution of
(2.28) f(s) = f(h(s,m)) =2r for any r > 0,

with f given in (2.26). Similarly we find

h(s,r) 6 1 In h(s,r)(61+623s) s>0
229)  G(s,r) = _ B gn = T e :
22 cen = [T { 0 s=0.

Substituting (2.27) and (2.29) into (2.13), we get the following second-order TSSP
steps for the NLS with a combination of cubic and quintic damping terms:

(2.30

o 2 26, 197121 + 62BR([WT 2, K/2)

)
{ /(W72 k/2) exp{i [vm)k L, h(lw;%k/z)(&w«szﬁw;”)” L ur 20,
M —

1

E 1’““1/2@\ sin(p (z; — a)), j=12,...,M—1,

VR k) Viek 1 h(l" 2 k/2) 6+ 82805 2)
i |~ -1 J J se o grr
wtey B H P e el § A

¥ =0.

Remark 2.1. As demonstrated in this subsection, the integrals in (2.7) and (2.12)
can be evaluated analytically for the damping terms which most frequently appear in
physical applications. If the integrals in (2.7) or (2.12) cannot be evaluated analyti-
cally or the inverse of f in (2.7) cannot be expressed explicitly, e.g., if g(p) in (1.5) is
not a polynomial, one can solve the following ODE numerically by either the second-
or fourth-order Runge-Kutta method

O _ o) ne),  0<t<k/2,

h(0) =s
to get h(s,k/2) for any given s > 0 and set h(s,k/2) = 0 for s = 0. By changing the

variable of integration in (2.12) (see detail in (2.27) and (2.29)), the first integral in
(2.12), i.e., F(s,k/2), can be evaluated exactly (see detail in (2.27)), and the second
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integral in (2.12), i.e., G(s,k/2) = fsh(s’k/2) —ﬁ;;z;; dh, can be evaluated numerically
by using a numerical quadrature, e.g., the trapezoidal rule or Simpson’s rule.

The TSSP scheme is explicit and is unconditionally stable as we will demonstrate
in the next subsection. Another main advantage of the time-splitting method is its
time transversal invariance, which also holds for the NLS and the DNLS themselves.

If a constant « is added to the potential V', then the discrete wave functions z/J]E-’"H

obtained from the TSSP method get multiplied by the phase factor e "Dk which
leaves the discrete normalization unchanged. This property does not hold for finite
difference schemes.

Remark 2.2. For the focusing cubic NLS with a quintic damping term describing
three-body recombination loss and an additional feeding term for the BEC [25], we
choose 0 = 1, g(p) = —61 + 628%p* with 81,62 > 0 in (1.5). The idea of constructing
the TSSP method is also applicable to this case, although we could not prove that it
is unconditionally stable due to the feeding term. Inserting the above feeding term
into (2.7), we get

(231) o ={ gl el 20

Inserting (2.31) into (2.9), we find

_ sV
\/51674761 4 (1 _ 67‘”51)525252 )

and substituting (2.32) into (2.9) and (2.12), we obtain

¥ (@, ta) PVéL

(2.32) h(s,T)

2.33) p(t) = b <tz
( ) P( ) \/616—47—61 + (1 _ 6_4T61)62ﬁ2‘¢($,tn)‘4 +1
(2.34) F(s,r) = —b1r + iln (14 8,8252(€*7 —1)/6,]

1 Bs/82¢%0 1 \/61 + 65322 (T8 — 1)

(2.35) G(s,r) = QMIH NSNS

Inserting (2.34) and (2.35) into (2.13), we get the following second-order TSSP steps
for the NLS with a quintic damping term and a feeding term:

(2.36)
n 2 k6 " .
h1/2 e [ (VDR L 1y BT [2/52e"01 4 /614627 |07 (e2R01 -1)
. 2 21/6162 VoA 24/52 .
(2 1/4 VAl

[1+ 62527 |4 (e2k01 —1)/61]

M—1
9 ~
¢;* = Z e ki /2 Y sin(u(z; — a)), j=1,2,...,M —1,
1=1

*ox 2 ké ok ké
eh61/2 e [ [ VEdk |3 1 2152V 1y /01+0262 w7 |4(e2F01 —1)
2 2\/5162 Vo8I |2y/62 "
]1/4 d)j :

d}n-&-l
P =
[1 + 6262|¢;*|4(e2k61 —-1)/61

Remark 2.3. The TSSP scheme (2.13) can easily be extended for solving the
complex Ginzburg-Landau (CGL) equation [15, 28]

(2.37) iy =—(1—ie) A — [’y —i (620> — 61) ¥,
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where ¢, 61, and 6, are positive constants. The idea of constructing the TSSP method
for the DNLS is also applicable to the CGL equation provided that we solve

(2.38) i = —(1—ie)Ay

in the first step instead of (2.3). Inserting o = 1, § =1, and g(p) = d2p — 61 with 61,
82 > 0 into (1.5) and using (2.7), we get

éln|62—61/s|, s> 0,

(2.39) f(s) = { 5 S

Inserting (2.39) into (2.7), we find

- 861
= 562 (1 — 6—27-61) + (516—2761 )

(2.40) h(s,T)

and substituting (2.40) into (2.9) and (2.12), we obtain

1 [p(a, tn)]?
2.41 = n <t <1tnt1,
( ) P(t) 5o \1/1(9Cytn)|2 (1 _ 6—27—61) + §1e—27617 t t<tnt1
(242)  F(s,r) = —21 2

2 . s69 + (61 — 562) e—2rér’

1 81 — 869 + s69€%701
2.4 = —1 .
( 3) G(S7 7") 252 n 61

Inserting (2.42) and (2.43) into (2.13), we get the following second-order TSSP steps
for the CGL equation (2.37):

(2.44)
" 81 i 61— G p? + balyr e
v = —exp [ ——In i
baltf 2 + (81— Salyf[z) e=hor | 262 o
M-—-1
. 2 -~ . .
1/,;‘* = Z e (etDku Y sin(p (z; — a)), Jj=12,...,.M -1,
=1
i 81— ol |2 4 Galyprr|2ek
. o o[ o3 [2 + 83| v
S e A D T 2 A

Remark 2.4. If the homogeneous periodic boundary conditions in (2.2) are re-
placed by the periodic boundary conditions

(245) w(av t) = 1/’(’% t)v %(a,t) = wac(ba t)v t>0,

the TSSP scheme (2.13) still works provided that one replaces the sine-series in (2.13)
by a Fourier series [4, 5, 7].

2.3. Stability and decay rate. Let U = (Uy, Uy, ..., Up)T with Uy = Upr =0
and || - ||;2 be the usual discrete [2-norm on the interval (a,b), i.e.,

(2.46)
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For the stability of the TSSP approximations (2.13), we have the following lemma,
which shows that the total normalization does not increase.

LEMMA 2.1. The TSSP schemes (2.13) are unconditionally stable if g(s) > 0 for
s > 0. In fact, for every mesh size h > 0 and time step k > 0,

(2.47) 1" e < 9" lle < 19° = lltbollie,  n=10,1,2,....

Furthermore, when a linear damping term is used in (1.5), i.e., when we choose g(p) =
6 with 6 > 0, the decay rate of the normalization satisfies

(2.48) 19" iz = e [[90]] 12 = €7 lgbolliz,  m=1,2,....
In fact, (2.48) is a discretized version of the decay rate of the normalization N(t) in
(1.8).

Proof. We combine (2.13), (2.14), and (2.46) and note that F'(s,7) > 0 for s > 0
and 7 > 0 to obtain

M-

1
m”WlHH% Z n+1|

S
L

M—-1

1 1
=27 2 b [22F (P ok/2)] |t < 57 D sl
=1 j=1
M—1|M-1 2 M-1 M-1
1 i T 1 —1 1 e 2
= Z ~ikui /2 Y sin(p(z; — =3 e~ hHE/2 x| = 5 Y
j=1 | 1=1 I=1 =1
2
M-1 M-1 M-
1 2
= Y7 sin(w(z Z ;‘
1=1 ]:1 =1
| M1 M-
=+ exp [—2F (Y712 k/2)] W Z

j=1

1 n
= m”ﬂ’ 72

(2.49)

Here, we used the identity

M—-1

E sin mJ sin @ _10 r—s#2mM, m, n integer
- M M )\ M/2, r—s=2mM,r#2nM, ’ ger-
J=

(2.50)

When a linear damping term is added to the NLS (1.5), the equality (2.48) follows
from the above proof, (2.18), and

M—-1

Zexp —2F (|p0 2, k/2)) [or|* = 3 e o |yr|* = ook Z [

Jj=1

3. Numerical examples. In this section, we present numerical tests of the
TSSP scheme (2.13) for solving a focusing cubic NLS appearing in nonlinear optics [16,
36] and for the GPE in BEC [7] in two dimensions with a linear, a cubic, or a quintic
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FiG. 1. Numerical results in Ezample 1, case 1. (a) Surface plot of the density ||? at time
t = 1.25 with § = 0.5. Normalization, energy, and central density |1(0,0,t)|? as functions of time:
(b) with § = 0.5, (¢) 6 = 0.3, (d) § = 0 (no damping). Blowup study: (e) 6§ = 0.3, (f) § =0 (no

damping).

damping term. In our computations, the initial condition (1.2) is always chosen such
that |1o(x)| decays to zero sufficiently fast as |x| — co. We choose an appropriately
large rectangle [a,b] x [c,d] in two dimensions to prevent the homogeneous periodic
boundary condition (2.2) from introducing a significant (aliasing) error relative to the
whole space problem. To quantify the numerical results of the GPE for a BEC, we
define the condensate widths along the x, y, and z axes by

1

=) = 5 L, ot ax

with a=ux, y, or z.
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FIG. 2. Numerical results in Example 1, case 1. Surface plot of the density |4|? with § = 0.02:
(a) At time t = 0.4, (b) t = 1.0. Normalization, energy, and central density |1(0,0,t)|? as functions
of time: (c) with § =0.02, (d) § =0.005 (with h =1/128, k = 0.00002).

Example 1. Solution of the two-dimensional damped focusing cubic NLS. We
choose d = 2, 0 = 1, and V(z,y) = 0 in (1.5) and present computations for three
different damping terms (§ > 0):

I. A linear damping term; i.e., we choose g(p) = 6.

II. A cubic damping term; i.e., we choose g(p) = 603p.

II1. A quintic damping term; i.e., we choose g(p) = §3%p>.

The initial condition (1.6) is taken to be

1/4

(3.1) ¥(2,y,0) = Po(z,y) = j/y? ety (g y) e R

We assume v, = 2, ¢ = 0.2, and § = 8 in (1.5) such that E(0) = —0.751582 < 0 in
(1.4). We solve the NLS on the square [—16,16]% i.e., a =c= —16 and b = d = 16
with mesh size h = 31—2, time step £ = 0.0002, and homogeneous periodic boundary
conditions along the boundary of the square. We compare the effect of changing the
damping parameter § in the three different cases I, II, and III.

Figure 1 shows the surface plot of the density |1 (z,y,t)|> at time t = 1.25 with

6 = 0.5; plots of the normalization, energy, and central density |1/(0,0,)|? are shown
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FIG. 3. Numerical results in Ezample 1, case I11. Surface plot of the density |1|? with § = 0.01:
(a) At time t = 0.4, (b) t = 1.0. Normalization, energy, and central density |1(0,0,t)|? as functions
of time: (c) with § =0.01, (d) 6 = 0.001.

as functions of time with § = 0.5, 0.3, and 6 = 0 (no damping) for case I. Figure 2
shows similar results for case IT and Figure 3 for case III. Furthermore, Figure 4 shows
contour plots of the density [1|? at different times for case III with § = 0.01.

In the numerical computations, a blowup is detected either from the plot of the
central density [(0,0,¢)|?, which at the blowup shows a very sharp spike with a peak
value that increases when the mesh size h decreases, or from the plot of the energy
E(t), which has a very sharp spike with negative values at the blowup. In fact, the
TSSP method (2.13) aims to capture the solution of the DNLS without blowup, i.e.,
physical relevant solution. If one wants to capture the blowup rate of the NLS, we
refer to [27, 31].

From the numerical results we find the following conditions for arresting a blowup
of the wave function with initial energy E(0) < 0. (1) For linear damping, the blowup
is arrested if the damping parameter is bigger than a certain threshold value which
we find to be b, ~ 0.461 by numerical experiments. As shown in Figure 1(b), blowup
is arrested for 6 = 0.5 > &, while the wave function blows up for § < 6, as can
be seen from Figure 1(c),(d), where we have chosen § = 0.3 < 6y, and § = 0 < g,
respectively. The time at which the blowup of the wave function happens, however,
increases with increasing é (cf. Figure 1(c)(d)). (2) For a cubic damping term with
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(e)

FIG. 4. Contour plots of the density |1|? at different times in Example 1, case 111, with § = 0.01.
(a) t=0, (b) t=0.2, (c) t =04, (d) t=0.6, (e) t =0.8, (f) t =1.

6 > 0, the blowup of the wave function is always arrested (cf. Figure 2). (3) The
above observation (2) also holds for a quintic damping term (cf. Figure 3).

For linear damping, we also test the dependence of the threshold value of the
damping parameter ¢;;, on 3 and the initial data. First we take v, = 2 and € = 0.2
in (3.1). Table 1 shows the threshold values &y, for different 5 in (1.5), and E(0)
represents the initial energy. Then we choose § = 16 in (1.5) and v, = 2 in (3.1).
Table 2 displays the threshold values 6y, for different values of ¢ in (3.1).

From Table 1, we find by a least square fitting

6tn = —0.6930E(0) or Otn = 0.38723 — 2.4627.
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FIG. 5. Numerical results in Example 2, case 1. Surface plot of the density |1|? with § = 1.25:
(a) At time t = 0 (ground-state solution), (b) t = 2.8. Normalization, energy, and central density
[4(0,0,t)|% as functions of time: (c) with § = 1.25, (e) § = 1.1, (f) § = 0 (no damping). (d)
Condensate widths with 6 = 1.25.

TABLE 1
Dependence of 6y, on B for vy =2 and € = 0.2 in (3.1).

B=8 pB=16 p=32 p=64 p=128
E(0) —0.7516 —5.253 —14.256 —32.263 —68.275
Sen 0.461 3.655 10.35 22.15 40.05

TABLE 2
Dependence of 6y, on € in (3.1) for 8 =16 in (1.5) and vy, = 2 in (3.1).

e=0.8 e=04 e=0.2 e=0.1 e =0.05
E(0) —1.3133 —2.6266 —5.2532 —10.506 —21.013
btn 0.895 1.845 3.655 7.25 14.55
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FiG. 6. Numerical results in Ezample 2, case I1. (a) Surface plot of the density ||? with
6 = 0.15: At time t = 0.8 (left column) and t = 2.4 (right column). Normalization, energy, and
central density |1(0,0,t)|? (left column) and condensate widths (right column) as functions of time:
(b) With 6 =0.15; (c) 6 = 0.04 (under h =1/128,k = 0.00002 for (c)).

Similarly, from Table 2, we obtain
6tn = —0.6922E(0).

Based on this observation, we conclude that the threshold value of the linear damping
parameter 8y, depends linearly on the initial energy E(0).

FEzample 2. Solution of the two-dimensional damped GPE with focusing nonlin-
earity. We choose d = 2, 0 = 1, and V(z,y) = (7222 + ﬁyz) to be a harmonic
oscillator potential with 7,7, > 0 in (1.5). Again, we present computations for the
same three different damping terms in (1.5) that we studied in Example 1.
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F1G. 7. Numerical results in Ezample 2, case 111. (a) Surface plot of the density |b|? with
6 = 0.15: At time t = 0.8 (left column) and t = 3.2 (right column). Normalization, energy, and

central density |1(0,0,t)|? (left column) and condensate widths (right column) as functions of time:
(b) With § = 0.15; (c) 6 = 0.005.

We take 7, = 1 and v, = 4. The initial condition (1.6) is assumed to be the
ground-state solution of (1.5) with g(p) = 0 (i.e., undamped case) and 8 = —40 [6].
The cubic nonlinearity is ramped linearly from § = —40 (defocusing) to 8 = 50 (fo-
cusing) during the time interval [0,0.1] and afterward kept constant. The absorption
parameter was set to § = 0 during the time interval [0, 0.1] and increased to a positive
value 6 > 0 afterward.

We solve the GPE on the rectangle [—24,24] x [—6, 6], i.e., for a = —24, b = 24,
¢ = —6, and d = 6 with mesh size h, = %, hy = %, time step k£ = 0.0005,
and homogeneous periodic boundary conditions along the boundary of the rectangle.
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2 1.5

(e)

FIG. 8. Contour plots of the density |1|? at different times in Example 2, case 111, with § = 0.15.
(a) t=0, (b) t=04, (c) t=0.8, (d) t=1.2, (e) t =1.6, (f) t =2.4.

Again, we compare the effect of changing the damping parameter ¢ in the three
different cases I, II, and III.

Figure 5 shows a surface plot of the density |1 (z,y,t)|? at times t = 0 (ground-
state solution) and ¢ = 2.8 with § = 1.25; normalization, energy, and central density
[4(0,0,t)|? are shown as functions of time with § = 1.25, 1.1, and 0 (no damping) for
case I. Figure 6 shows similar results for case II and Figure 7 for case III. Furthermore,
Figure 8 shows contour plots of the density |4|? at different times for case III with
6 =0.15.

From our numerical results we find that the observations (1)—(3) made for Ex-
ample 1 are still valid with the additional trapping potential. However, the value of
6tn depends on S (or initial energy E(0)), and we find 6, =~ 1.185 for linear damping
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(cf. Figure 5).

3.1. Discussion. In this subsection, we discuss our numerical results in terms
of physical properties of a BEC described by the GPE. We concentrate on those cases
where a collapse of the wave function is arrested since this collapse leads to unphysical
processes like the negative peaks in the energy E(t) shown in Figures 1(c), (d) and
5(e), (f).

The general form of the time evolution in Example 1 is similar for all three
cases. Initially the cloud of atoms contracts due to the attractive interaction between
the particles. This contraction is accompanied by an increase in the energy due to
particle loss which is most efficient in regions of high particle density. These regions
are characterized by a negative local energy density leading to an increase in energy
for each particle lost there. After the central particle density has reached a maximum,
the cloud starts to expand due to the kinetic energy gained by the particles during
the contraction. Particles are emitted from the cloud in burst-like pulses which can
be seen in Figures 4 and 8. Such bursts have also been seen in BEC experiments
[12]. The main differences between the three cases are the behavior of the energy and
the number of particles as a function of time. In case I, where we assumed a linear
damping term, the loss rate of particles from the condensate is independent of the
shape of the condensate wave function. The energy decrease during the condensate
expansion is determined by the loss of particles (cf. Figure 1(b)). In the cases of cubic
and quintic damping, the loss term has a significant effect only on the time evolution
of the condensate during the contraction. When the condensate expands, the density
of particles is so low that the loss terms have only a very small effect and the energy
E(t) and the number of particles N(¢) remain almost constant (see Figures 2(c) and
3(c), (d)).

In Example 2, we add an additional trap potential which confines the BEC, and
we assume a realistic scenario (described above) to prepare the condensate in the trap
(cf. the experiments by Donley et al. [12]). We find that the initial process of turning
on the attractive interactions between the particles leads to oscillations in the widths
of the condensate [7] as can be seen from Figures 5, 6, and 7. However, neither the
additional trap potential nor these oscillations significantly alter the behavior of the
system compared to Example 1, when the condensate is strongly contracted. Before
and after this contraction, some differences can be seen. By looking at Figures 5
and 6 we find that the first minimum in o, due to the oscillations of the condensate
causes an increase in the central density and in the energy. For cubic and quintic
damping, this is accompanied by an increased particle loss. However, an arrested
collapse of the wave function happens only when both o, and o, attain a minimum
value due to the attractive interactions (cf. Figures 5(d) and 6(b)). We also note
that the frequency of the oscillations after an arrested collapse has happened is not
significantly influenced by the damping terms. The amplitude of these oscillations is,
however, strongly dependent on § and decreases with increasing ¢. Finally, we want
to mention that a series of contractions and expansions of the condensate is possible.
In Figure 7(b), we find three contractions of the condensate where only the first one
reaches a sufficiently high particle density to lead to an increase in energy while the
next two contractions show a rather smooth decrease in energy and particle number.
For a smaller quintic damping term, we obtain two contractions of the condensate
which increase the energy (see Figure 7(c)).

4. Conclusions. We extended the explicit unconditionally stable second-order
TSSP method for solving damped focusing NLSs. We showed that this method is
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time transversal invariant and preserves the exact decay rate of the normalization for
a linear damping of the NLS. Extensive numerical tests were presented for the cubic
focusing NLS in two dimensions with linear, cubic, and quintic damping terms. Our
numerical results show that quintic and cubic damping always arrest blowup, whereas
linear damping can arrest blowup only when the damping parameter ¢ is bigger than
a certain threshold value 8;,. We will apply this novel method to solve the three-
dimensional GPE with a quintic damping term and will compare the numerical results
with the experimental dynamics [12] of collapsing and exploding BECs [§].
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