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Abstract. We study numerically the time-independent vector Gross–Pitaevskii equations
(VGPEs) for ground states and time-dependent VGPEs with (or without) an external driven field
for dynamics describing a multicomponent Bose–Einstein condensate (BEC) at zero or a very low
temperature. In preparation for the numerics, we scale the three-dimensional (3d) VGPEs, approx-
imately reduce it to lower dimensions, present a continuous normalized gradient flow (CNGF) to
compute ground states of multicomponent BEC, prove energy diminishing of the CNGF, which pro-
vides a mathematical justification, and discretize it by the backward Euler finite difference (BEFD),
which is monotone in linear and nonlinear cases and preserves energy diminishing property in the lin-
ear case. Then we use a time-splitting sine-spectral (TSSP) method to discretize the time-dependent
VGPEs with an external driven field for computing dynamics of multicomponent BEC. The merits
of the TSSP method for VGPEs are that it is explicit, unconditionally stable, time reversible and
time transverse invariant if the VGPEs is, has “good” resolution in the semiclassical regime, is of
spectral-order accuracy in space and second-order accuracy in time, and conserves the total particle
number in the discretized level. Extensive numerical examples in three dimensions for ground states
and dynamics of multicomponent BEC are presented to demonstrate the power of the numerical
methods and to discuss the physics of multicomponent BEC.
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1. Introduction. Since its realization in dilute bosonic atomic gases [2, 12],
Bose–Einstein condensation (BEC) of alkali atoms and hydrogen has been produced
and studied extensively in the laboratory [26], and has afforded an intriguing glimpse
into the macroscopic quantum world. In view of potential applications, such as the
generation of bright beams of coherent matter waves (atom laser), a central goal has
been the formation of condensate with the number of atoms as large as possible. It is
thus of particular interest to study a scenario where this goal is achieved by uniting
two (or more) independently grown condensates to form one large single condensate.
The first experiment involving the uniting of multicomponent BEC was performed
with atoms evaporately cooled in the |F = 2,mf = 2〉 and |1,−1〉 spin states of
87Rb [36]. Physically speaking, two independently formed condensates are character-
ized by a random relative phase of their macroscopic wave functions. A “fusing” of
two condensates thus amounts to locking the relative phase in a dissipative process.
Currently, there are two typical ways to lock the relative phase: (i) an external driven
field [36] and (ii) an internal atomic Josephson junction [28]. In fact, recent experi-
mental advances in exploration of systems of uniting two or more condensates, e.g., in
a magnetic trap in rubidium [36] and subsequently in an optical trap in sodium [43],
have spurred great excitement in the atomic physics community and renewed interest
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in studying the ground states and dynamics of multicomponent BEC [26, 17, 28, 19].
Theoretical treatment of such systems began in the context of superfluid helium

mixtures and spinpolarized hydrogen [41], and has now been extended to BEC in the
alkalis [27, 22, 32, 38]. Theoretical predications of properties of uniting two or more
condensates, e.g., density profile, dynamics of interacting BEC condensates [24], mo-
tional damping [28], and formation of vortices [29, 30, 33], can now be compared with
experimental data [26, 3]. Needless to say, this dramatic progress on the experimental
front has stimulated a wave of activity on both the theoretical and the numerical
front. In fact, the properties of uniting two or more BEC states at temperatures T
much smaller than the critical condensation temperature Tc [31] are usually mod-
eled by the vector Gross–Pitaevskii equations (VGPEs) for the macroscopic vector
wave function [37, 31] with either an external driven field [26] or an internal atomic
Josephson junction [28]. Note that equations very similar to the VGPEs also appear
in nonlinear optics where indices of refraction, which depend on the light intensity,
lead to nonlinear terms like those encountered in VGPEs.

There have been extensive numerical studies of the time-independent Gross–
Pitaevskii equation (GPE) for ground states and the time-dependent GPE for dy-
namics of single-component BEC. For computing ground states of BEC, Bao and
Du [4] presented a continuous normalized gradient flow (CNGF), proved energy di-
minishing, and discretized it by a backward Euler finite difference (BEFD) method;
Bao and Tang [11] proposed a method which can be used to compute the ground
and excited states via directly minimizing the energy functional; Edwards and Bur-
nett [21] introduced a Runge–Kutta-type method. Other methods include an explicit
imaginary-time algorithm used in [1] and [18], a direct inversion in the iterated sub-
space (DIIS) used in Schneider and Feder [40], and a simple analytical-type method
proposed by Dodd [20]. For numerical solutions of the time-dependent GPE for find-
ing dynamics of BEC, Bao, Jaksch, and Markowich [6] presented a time-splitting
sine-spectral (TSSP) method; Ruprecht et al. [39] used the Crank–Nicolson finite dif-
ference method; Cerimele et al. [15] and Cerimele, Pistella, and Succi [16] proposed a
particle-inspired scheme. Up to now, there have been only a few numerical simulations
on multicomponent BEC [28, 17, 23].

In this paper, we take the three-dimensional (3d) VGPEs with an external driven
field for multicomponent BEC, make it dimensionless, approximately reduce it to a
two-dimensional (2d) VGPEs and a one-dimensional (1d) VGPEs in certain limits,
and discuss the approximate ground state solution of VGPEs in a (very) weak interac-
tion regime. Then we present a CNGF to compute ground states of multicomponent
BEC, prove energy diminishing of the CNGF, which provides a mathematical justi-
fication, and discretize it by the backward Euler finite difference (BEFD), which is
monotone in linear and nonlinear cases and preserves energy diminishing property in
the linear case. At last, we use a TSSP method, which was studied in Bao, Jin, and
Markowich [8, 9] for the nonlinear Schrödinger equation (NLS) in the semiclassical
regime and used for the GPE of single-component BEC [6], the damped GPE for col-
lapse and explosion of BEC [5, 7], and the Zakharov system for plasma physics [10],
to discretize the time-dependent VGPEs with an external driven field for computing
dynamics of multicomponent BEC. The merits of the TSSP method for VGPEs are
that it is explicit, unconditionally stable, easy to program, requires less memory, is
time reversible and time transverse invariant if the VGPEs is, has “good” resolution
in the semiclassical regime, is of spectral-order accuracy in space and second-order
accuracy in time, and conserves the total particle number in the discretized level.
Extensive numerical examples in three dimensions for ground states and dynamics
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of multicomponent BEC are presented to demonstrate the power of the numerical
methods.

The paper is organized as follows. In section 2 we start out with the 3d VGPEs
with an external driven field, make it dimensionless, and show how to reduce it to
lower dimensions. In section 3 we give the approximate ground state solution in a
(very) weak interaction regime, present a CNGF to compute ground states of multi-
component BEC, prove energy diminishing of the CNGF, discretize it by the BEFD,
as well as apply the CNGF and its BEFD discretization to a nonlinear two-state
model for vortex states dynamics in BEC. In section 4, we present the TSSP method
for the VGPEs with an external driven field. In section 5 numerical tests of the
VGPEs for ground states and dynamics of multicomponent BEC are presented. In
section 6 a summary is given. Throughout, we adopt the standard l2-norm of vectors,
matrices, and ‖ · ‖ as the standard L2-norm for functions, as well as the ∗̇ operator
which is used in Matlab for two vectors U = (u1, . . . , uM )T and V = (v1, . . . , vM )T

as U ∗̇ V = (u1v1, . . . , uMvM )T .

2. VGPEs. At temperatures T much smaller than the critical temperature Tc

[31], a BEC for M components with an external driven field is well described by
the macroscopic vector wave function Ψ = Ψ(x, t) = (ψ1(x, t), . . . , ψM (x, t))T whose
evolution is governed by a self-consistent, mean-field VGPEs [25, 37]. If the harmonic
trap potential is considered, the VGPEs become

i�
∂Ψ(x, t)

∂t
= − �2

2m
∇2Ψ + V̂(x) ∗̇ Ψ + Â(Ψ) ∗̇ Ψ + �f̂(t)B̂Ψ,(2.1)

where x = (x, y, z)T is the spatial coordinate vector, m is the atomic mass, � =

1.05 × 10−34[J s] is the Planck constant, f̂(t) is a given real-valued scalar function,
B̂ = (bjl)

M
j,l=1 is a given M×M symmetric real matrix, i.e., bjl = blj (j, l = 1, . . . ,M),

and V̂(x) = (V̂1(x), . . . , V̂M (x))T is the harmonic trap potential, i.e.,

V̂j(x) =
m

2

(
ω2
x,j (x− x̂0,j)

2 + ω2
y,j (y − ŷ0,j)

2 + ω2
z,j (z − ẑ0,j)

2
)
, j = 1, . . . ,M,

with (x̂0,j , ŷ0,j , ẑ0,j)
T and ωx,j , ωy,j , ωz,j the center and trap frequencies in x-, y-,

and z-direction, respectively, of the jth (j = 1, . . . ,M) component. For the following

we assume (without loss of generality) ωx,1 = min1≤j≤M{ωx,j , ωy,j , ωz,j}. Â(Ψ) =

(Â1(Ψ), . . . , ÂM (Ψ))T models the interaction, i.e.,

Âj(Ψ) = uj1 |ψ1|2 + · · · + ujM |ψM |2 with ujl =
4π�2ajl

m
, 1 ≤ j, l ≤ M,

with ajl = alj the s-wave scattering length between the jth and lth component (pos-
itive for repulsive interaction and negative for attractive interaction, j, l = 1, . . . ,M).
It is necessary to ensure that the vector wave function is properly normalized. Specif-
ically, we require ∫

R3

|ψj(x, 0)|2 dx = N0
j > 0, j = 1, . . . ,M,(2.2)

where N0
j is the number of particles of the jth (j = 1, . . . ,M) component at time

t = 0.



GROUND STATE AND DYNAMICS OF MULTICOMPONENT BEC 213

2.1. Dimensionless VGPEs. In order to scale the VGPEs (2.1), we introduce

t̃ = ωx,1t, x̃ =
x

a0
, ψ̃j(x̃, t̃) =

a
3/2
0√
N0

j

ψj(x, t), 1 ≤ j ≤ M, a0 =

√
�

mωx,1
,(2.3)

where a0 is the length of the harmonic oscillator ground state. In fact, here we choose
1/ωx,1 and a0 as the dimensionless time and length units, respectively. Plugging (2.3)
into (2.1), multiplying by 1

mω2
x,1(N

0
j a0)1/2 to the jth (j = 1, . . . ,M) equation, and then

removing all ˜, we obtain the following dimensionless VGPEs in three dimensions
with an external driven field:

i
∂Ψ(x, t)

∂t
= −1

2
∇2Ψ(x, t) + V(x) ∗̇ Ψ(x, t) + A(Ψ) ∗̇ Ψ(x, t) + f(t)BΨ(x, t),(2.4)

where f(t) = f̂ (t/ωx,1) /ωx,1, and

V(x) = (V1(x), . . . , VM (x))T , A(Ψ) = (A1(Ψ), . . . , AM (Ψ))
T
,

Vj(x) =
1

2

(
γ2
x,j (x− x0,j)

2 + γ2
y,j (y − y0,j)

2 + γ2
z,j (z − z0,j)

2
)
,

γx,j =
ωx,j

ωx,1
, γy,j =

ωy,j

ωx,1
, γz,j =

ωz,j

ωx,1
, x0,j =

x̂0,j

a0
, y0,j =

ŷ0,j

a0
, z0,j =

ẑ0,j

a0
,

Aj(Ψ) = βj1|ψ1|2 + · · · + βjM |ψM |2, j = 1, . . . ,M,

βjl =
ujlN

0
l

a3
0�ωx,1

=
4π�2ajlN

0
l

ma3
0�ωx,1

=
4πajlN

0
l

a0
, j, l = 1, . . . ,M,

B = G−1
0 B̂ G0, with G0 = diag

(√
N0

1 , . . . ,
√
N0

M

)
.

There are two extreme regimes: One is when β = max1≤j,l≤M |βjl| � 1 (⇐⇒
|βjl| � 1 for all j, l = 1, . . . ,M); then the system (2.4) describes a weakly interacting
condensation. The other one is when β 	 1; then (2.4) corresponds to a strongly
interacting condensation or to the semiclassical regime or the Thomas–Fermi regime.
In fact, in practice, each βjl may range from 0 to thousands due to different numbers
of particles in different components. Furthermore, each γx,j , γy,j , and γz,j may range
from 1 to thousands, especially in disk-shaped or cigar-shaped condensation, due to
the different ratio between the trap frequencies in experiments. Thus this is really a
multiscale problem.

2.2. Reduction to lower dimensions. In the following two cases, the 3d
VGPEs (2.4) without an external driven field, i.e., f ≡ 0, can approximately be
reduced to two dimensions or even one dimension. In the case (disk-shaped conden-
sation)

ωx,j ≈ ωy,j ≈ ωx,1, ωz,j 	 ωx,1 ⇐⇒ γx,j ≈ γy,j ≈ 1, γz,j 	 1, j = 1, . . . ,M,

the 3d VGPEs (2.4) can be reduced to 2d VGPEs with x = (x, y)T by assuming that
the time evolution does not cause excitations along the z-axis since they have large
energy of approximately �ωz,j compared to excitations along the x- and y-axis with
energies of about �ωx,1. Thus we may assume that the condensate wave function
along the z-axis is always well described by the ground state wave function and set

Ψ = Ψ2(x, y, t) ∗̇ Ψho(z) with Ψho(z) = (ψho,1(z), . . . , ψho,M (z))
T
,(2.5)
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where Ψ2(x, t) = (ψ2,1(x, t), . . . , ψ2,M (x, t))
T

and ψho,j(z) =
γ
1/4
z,j

π1/4 e
− γz,j(z−z0,j)2

2 , 1 ≤
j ≤ M . Plugging (2.5) into (2.4), then ∗̇ both sides by Ψ∗

ho(z) (g∗ denotes the
conjugate of a function g), integrating with respect to z over (−∞,∞), we get

i
∂Ψ2(x, t)

∂t
= −1

2
∇2Ψ2(x, t) + (V2(x) + C) ∗̇ Ψ2(x, t) + A2(Ψ2) ∗̇ Ψ2(x, t),(2.6)

where

V2(x) = (V2,1(x, y), . . . , V2,M (x, y))
T
, C = (c1, . . . , cM )

T
,

V2,j(x, y) =
1

2

(
γ2
x,j (x− x0,j)

2 + γ2
y,j (y − y0,j)

2
)
, j = 1, . . . ,M,

cj =
γ2
z,j

2

∫ ∞

−∞
(z − z0,j)

2|ψho,j |2 dz +
1

2

∫ ∞

−∞

∣∣∣∣dψho,j(z)

dz

∣∣∣∣2 dz, j = 1, . . . ,M,

A2(Ψ) = (A2,1(Ψ), . . . , A2,M (Ψ))
T
, A2,j(Ψ) =

M∑
l=1

β2,jl|ψ2,l|2,

β2,jl = βjl

∫ ∞

−∞
|ψho,j(z)|2|ψho,l(z)|2 dz = βjl

√
γz,jγz,l

π(γz,j + γz,l)
e
− γz,jγz,l(z0,j−z0,l)

2

γz,j+γz,l .

Since this VGPEs is time transverse invariant, we can replace Ψ2 → Ψ2 ∗̇ e−iCt/2,
which drops the constant vector C in the trap potential, and obtain the 2d VGPEs
with Ψ = Ψ2 and x = (x, y)T :

i
∂Ψ(x, t)

∂t
= −1

2
∇2Ψ(x, t) + V2(x) ∗̇ Ψ(x, t) + A2(Ψ) ∗̇ Ψ(x, t).(2.7)

The observables are not affected by this.
Similarly in the case (cigar-shaped condensation)

ωx,j ≈ ωx,1, ωy,j 	 ωx,1, ωz,j 	 ωx,1 ⇐⇒ γx,j ≈ 1, γy,j 	 1, γz,j 	 1, 1 ≤ j ≤ M,

the 3d VGPEs (2.4) can be reduced to 1d VGPEs with x = x. Similarly to the 2d
case, we derive the 1d VGPEs:

i
∂Ψ(x, t)

∂t
= −1

2
∇2Ψ(x, t) + V1(x) ∗̇ Ψ(x, t) + A1(Ψ) ∗̇ Ψ(x, t),(2.8)

where

V1(x) = (V1,1(x), . . . , V1,M (x))
T
, V1,j(x) =

1

2
γ2
x,j (x− x0,j)

2, j = 1, . . . ,M,

A1(Ψ) = (A1,1(Ψ), . . . , A1,M (Ψ))
T
, A1,j(Ψ) =

M∑
l=1

β1,jl|ψl|2,

β1,jl = βjl

∫
R2

|ψho,j(y, z)|2 |ψho,l(y, z)|2 dydz

=
βjl

π

√
γy,jγy,lγz,jγz,l

(γy,j + γy,l)(γz,j + γz,l)
e
− γy,jγy,l(y0,j−y0,l)

2

γy,j+γy,l
− γz,jγz,l(z0,j−z0,l)

2

γz,j+γz,l .

In fact, the 3d VGPEs (2.4), 2d VGPEs (2.7), and 1d VGPEs (2.8) with an
external driven field can be written in a unified way:

i
∂Ψ(x, t)

∂t
= −1

2
∇2Ψ + Vd(x) ∗̇ Ψ + Ad(Ψ) ∗̇ Ψ + f(t)BΨ, x ∈ Rd,(2.9)
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where

V3(x) = V(x), A3(Ψ) = A(Ψ).

The VGPEs (2.9) conserves the normalization of the vector wave function or the
total number of particles:

N(G0Ψ) =

∫
Rd

‖G0Ψ(x, t)‖2
l2 dx =

M∑
j=1

∫
Rd

N0
j |ψj(x, t)|2 dx = N0, t ≥ 0.(2.10)

When there is no external driven field, i.e., f ≡ 0 in (2.9), the VGPEs (2.9) is time
reversible, time transverse invariant, and conserves the normalization of the wave
function for each component or the number of particles of each component,

Nj(ψj) =

∫
Rd

|ψj(x, t)|2 dx = 1, t ≥ 0, j = 1, . . . ,M,(2.11)

and the energy,

Eβ(Ψ) =

M∑
j=1

Eβ,j(Ψ) N0
j /N

0,(2.12)

with

Eβ,j(Ψ) =

∫
Rd

[
1

2
|∇ψj |2 + Vd,j(x)|ψj |2 +

1

2

M∑
l=1

βd,jl |ψj |2 |ψl|2
]

dx, 1 ≤ j ≤ M.

3. Ground state solution. To find a stationary solution of (2.9) without an
external driven field, i.e., f ≡ 0, we write

Ψ(x, t) = e−i U t ∗̇ Φ(x),(3.1)

where U = (µ1, . . . , µM )
T

is the chemical potential vector of the multicomponent con-

densate and Φ(x) = (φ1(x), . . . , φM (x))
T

is a real-valued vector function independent
of time. Inserting (3.1) into (2.9) gives the following equations for (U ,Φ):

U ∗̇ Φ(x) = −1

2
∆Φ(x) + Vd(x) ∗̇ Φ(x) + Ad(Φ) ∗̇ Φ(x), x ∈ Rd,(3.2)

under the normalization condition∫
Rd

|φj(x)|2 dx = 1, j = 1, . . . ,M.(3.3)

This is a nonlinear eigenvalue problem under the constraint (3.3), and any eigenvalue
vector U can be computed from its corresponding eigenfunction vector Φ by

µj = µβ,j(Φ) =

∫
Rd

[
1

2
|∇φj(x)|2 + Vd,j(x)|φj(x)|2 + Ad,j(Φ)|φj(x)|2

]
dx

=

∫
Rd

[
1

2
|∇φj(x)|2 + Vd,j(x)|φj(x)|2 +

M∑
l=1

βd,jl |φl(x)|2 |φj(x)|2
]

dx

= Eβ,j(Φ) +
1

2

∫
Rd

M∑
l=1

βd,jl |φl(x)|2 |φj(x)|2 dx, j = 1, . . . ,M.(3.4)
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It is easy to see that critical points of the energy functional Eβ(Φ) under the constraint
(3.3) are eigenfunctions of the nonlinear eigenvalue problem (3.2) under the constraint
(3.3) and vice versa. In fact, (3.2) can be viewed as the Euler–Lagrange equations of
the energy functional Eβ(Φ) under the constraint (3.3). The multicomponent BEC
ground state solution Φg(x) is found by minimizing the energy Eβ(Φ) under the
constraint (3.3), i.e.,
(V) Find

(
Ug = (µg,1, . . . , µg,M )T , Φg = (φg,1, . . . , φg,M )T ∈ U

)
such that

Eg = Eβ(Φg) = min
Φ∈U

Eβ(Φ), µg,j = µβ,j(Φg), 1 ≤ j ≤ M,(3.5)

where the set U is defined as

U =

{
Φ | Eβ(Φ) < ∞,

∫
Rd

|φj(x)|2 dx = 1, 1 ≤ j ≤ M

}
.

In nonrotating multicomponent BEC, the minimization problem (3.5) has a unique
real-valued nonnegative ground state solution Φg(x) > 0 for x ∈ Rd [35]. When
M = 1, i.e., single-component BEC, the minimizer of (3.5) was computed either by a
CNGF [4], by directly minimizing the energy functional [11], or by the imaginary time
method [1, 18], etc. Here we extend the CNGF and its discretization for computing
ground state solution from single-component BEC to multicomponent BEC.

3.1. CNGF and energy diminishing. Consider the following CNGF:

Φt =
1

2
∆Φ − Vd(x) ∗̇ Φ − Ad(Φ) ∗̇ Φ + UΦ(t) ∗̇ Φ, x ∈ Rd, t ≥ 0,(3.6)

Φ(x, 0) = Φ0(x) = (φ0,1(x), . . . , φ0,M (x))
T
, x ∈ Rd,(3.7)

where UΦ(t) = (µΦ,1(t), . . . , µΦ,M (t))
T

with

UΦ,j(t) =
1

‖φj(·, t)‖2

∫
Rd

[
1

2
|∇φj(x, t)|2 + Vd,j(x) |φj(x, t)|2

+

M∑
l=1

βd,jl |φl(x, t)|2 |φj(x, t)|2
]

dx, j = 1, . . . ,M.(3.8)

In fact, the right-hand side of (3.6) is the same as (3.2) if we view UΦ(t) as a La-
grange multiplier for the constraint (3.3). Furthermore, as observed in [4] for single-
component BEC, the solution of (3.6) also satisfies the following theorem.

Theorem 3.1. Suppose Vd(x) ≥ 0 for all x ∈ Rd, βjl ≥ 0 (j, l = 1, . . . ,M) and
‖φ0,j‖ = 1 (j = 1, . . . ,M). Then the CNGF (3.6)–(3.7) is normalization conservation
and energy diminishing, i.e.,

‖φj(·, t)‖2 =

∫
Rd

φ2
j (x, t) dx = ‖φ0,j‖2 = 1, t ≥ 0, j = 1, . . . ,M,(3.9)

d

dt
Eβ(Φ) = −

M∑
j=1

2N0
j

N0
‖∂tφj(·, t)‖2

= −
M∑
j=1

2N0
j

N0

∫
Rd

|∂tφj(x, t)|2 dx ≤ 0 ,(3.10)

which in turn implies

Eβ(Φ(·, t1)) ≥ Eβ(Φ(·, t2)), 0 ≤ t1 ≤ t2 < ∞.



GROUND STATE AND DYNAMICS OF MULTICOMPONENT BEC 217

Proof. Multiplying the jth (j = 1, . . . ,M) equation in (3.6) by φj , integrating
over Rd, integrating by parts and noticing (3.8), we obtain

1

2

d

dt

∫
Rd

φ2
j (x, t) dx =

∫
Rd

φj ∂tφj dx

=

∫
Rd

[
1

2
∆φj − Vd,j(x)φj −Ad,j(Φ)φj + µΦ,j(t)φj

]
φj dx

= −
∫

Rd

[
1

2
|∇φj(x, t)|2 + Vd,j(x)φ2

j (x, t) + Ad,j(Φ)φ2
j

]
dx + µΦ,j(t)‖φj(·, t)‖2

= 0, t ≥ 0, j = 1, . . . ,M.(3.11)

This implies the normalization conservation (3.9).
Next, direct calculation shows

d

dt
Eβ(Φ) =

M∑
j=1

N0
j

N0

d

dt
Eβ,j(Φ)

=

M∑
j=1

N0
j

N0

∫
Rd

[
∇φj · ∇(∂tφj) + 2Vd,j(x)φj∂tφj +

M∑
l=1

βjl

(
|φl|2φj∂tφj + |φj |2φl∂tφl

)]
dx

=

M∑
j=1

N0
j

N0

∫
Rd

[
∇φj · ∇(∂tφj) + 2Vd,j(x)φj∂tφj +

M∑
l=1

βjl|φl|2φj∂tφj

]
dx

+

M∑
j=1

M∑
l=1

N0
j

N0

∫
Rd

βjl|φj |2φl∂tφl dx

=

M∑
j=1

N0
j

N0

∫
Rd

[
∇φj · ∇(∂tφj) + 2Vd,j(x)φj∂tφj +

M∑
l=1

βjl|φl|2φj∂tφj

]
dx

+
M∑
l=1

N0
l

N0

M∑
j=1

∫
Rd

βlj |φj |2φl∂tφl dx

=
M∑
j=1

2N0
j

N0

∫
Rd

[
∇φj · ∇(∂tφj) + 2Vd,j(x)φj∂tφj +

M∑
l=1

βjl|φl|2φj∂tφj

]
dx

= 2

∫
Rd

[
−1

2
∆φj + Vd,j(x)φj + Ad,j(Φ)φj

]
∂tφj dx

=
M∑
j=1

2N0
j

N0

∫
Rd

[−∂tφj(x, t) + µΦ,j(t)φj(x, t)] ∂tφj dx

= −
M∑
j=1

2N0
j

N0
‖∂tφj(·, t)‖2 + µΦ,j(t)

d

dt

∫
Rd

|φj(x, t)|2 dx

= −
M∑
j=1

2N0
j

N0
‖∂tφj(·, t)‖2 , t ≥ 0,(3.12)

since µΦ,j(t) (j = 1, . . . ,M) are always real and

d

dt

∫
Rd

|φj(x, t)|2 dx = 0, j = 1, . . . ,M,

due to the normalization conservation. Thus, we easily get

Eβ(Φ(·, t1)) ≥ Eβ(Φ(·, t2)), 0 ≤ t1 ≤ t2 < ∞,
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for the solution of (3.6).
Using an argument similar to that in [42], we may also get that as t → ∞, Φ ap-

proaches a steady state solution which is a critical point of the energy. In nonrotating
multicomponent BEC, it has a unique real-valued nonnegative ground state solution
Φg(x) ≥ 0 for all x ∈ Rd [35]. We choose the initial data Φ0(x) ≥ 0 for x ∈ Rd, e.g.,
the approximate ground state solution (3.30) in weakly interacting multicomponent
BEC. Under this kind of initial data, the ground state solution Φg and its corre-
sponding chemical potential Ug can be obtained from the steady state solution of the
CNGF (3.6)–(3.7), i.e.,

Φg(x) = lim
t→∞

Φ(x, t), x ∈ Rd, µg,j = µβ,j(Φg), 1 ≤ j ≤ M.(3.13)

3.2. Projection. When one wants to evolve the CNGF (3.6)–(3.7) numerically,
it is natural to consider the following projection (or splitting) scheme, which was
widely used in physical literatures for computing the ground state solution of single-
component BEC [4] by constructing a time sequence 0 = t0 < t1 < t2 < · · · < tn < · · ·
with tn = n k and k > 0 time step:

Φt =
1

2
∆Φ − Vd(x) ∗̇ Φ − Ad(Φ) ∗̇ Φ, x ∈ Rd, tn ≤ t < tn+1, n ≥ 0,(3.14)

φj(x, tn+1)
�
= φj(x, t

+
n+1) =

φj(x, t
−
n+1)

‖φj(·, t−n+1)‖
, x ∈ Rd, n ≥ 0,(3.15)

Φ(x, 0) = Φ0(x), x ∈ Rd,(3.16)

where Φ(x, t±n ) = (φ1(x, t
±
n ), . . . , φM (x, t±n ))

T
= limt→t±n

Φ(x, t) and ‖φ0,j‖ = 1 (j =
1, . . . ,M). In fact, the gradient flow (3.14) can be viewed as applying the steepest
descent method to the minimization problem (3.5) by ignoring the constraint Φ ∈ U
and the normalization step (3.15) projecting back to the set U. The gradient flow
(3.14) can also be viewed as applying an imaginary time (i.e., t → −it) in (2.9). The
normalized step (3.15) is equivalent to solving the following ODE system exactly :

Φt(x, t) = UΦ(t, k) ∗̇ Φ(x, t), x ∈ Rd, tn ≤ t < tn+1, n ≥ 0,(3.17)

Φ(x, t+n ) = Φ(x, t−n+1), x ∈ Rd,(3.18)

where UΦ(t, k) = (µΦ,1(t, k), . . . , µΦ,M (t, k))
T

with

µΦ,j(t, k) = − 1

2 k
ln ‖φj(·, t−n+1)‖2, tn ≤ t ≤ tn+1, 1 ≤ j ≤ M.(3.19)

Thus the gradient flow with projection can be viewed as a first-order splitting method
for the following continuous gradient flow with discontinuous coefficients:

Φt =
1

2
∆Φ − Vd(x) ∗̇ Φ − Ad(Φ) ∗̇ Φ + UΦ(t, k) ∗̇ Φ, x ∈ Rd, n ≥ 0,(3.20)

Φ(x, 0) = Φ0(x), x ∈ Rd.(3.21)

Letting k → 0 and noting (3.19), (3.8), and (3.14), we get

lim
k→0+

µΦ,j(t, k) = µΦ,j(t), t ≥ 0,(3.22)

which implies that the problem of (3.20), (3.21) collapses to (3.14), (3.15) as k → 0.
Furthermore, using Theorem 2.1 in [4], we get immediately the following theorem.
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Theorem 3.2. Suppose Vd(x) ≥ 0 for all x ∈ Rd and ‖φ0,j‖ = 1 (j =
1, . . . ,M). For βjl = 0 (j, l = 1, . . . ,M), the gradient flow with projection (3.14)–
(3.16) is energy diminishing under any time step k and initial data Φ0, i.e.,

E0(Φ(·, tn+1)) ≤ E0(Φ(·, tn)) ≤ · · · ≤ E0(Φ(·, 0)) = E0(Φ0), n ≥ 0.(3.23)

3.3. Backward Euler finite difference (BEFD) discretization. In this sub-
section, we present a full discretization of the gradient flow with projection (3.14),
(3.15) by the BEFD which was proposed in [4] for discretizing a CNGF for single-
component BEC.

For simplicity of notation we shall introduce the method for the case of one spatial
dimension (d = 1) with homogeneous Dirichlet boundary conditions. Generalizations
to d > 1 are straightforward for tensor product grids, and the results remain valid
without modifications. For d = 1, the problem becomes

Φt =
1

2
Φxx − V1(x) ∗̇ Φ − A1(Φ) ∗̇ Φ, a < x < b, tn ≤ t < tn+1, n ≥ 0,(3.24)

φj(x, tn+1)
�
= φj(x, t

+
n+1) =

φj(x, t
−
n+1)

‖φj(·, t−n+1)‖
, a ≤ x ≤ b, n ≥ 0, j = 1, . . . ,M,(3.25)

Φ(x, 0) = Φ0(x), a ≤ x ≤ b, Φ(a, t) = Φ(b, t) = 0, t ≥ 0,(3.26)

with

‖φ0,j‖2 =

∫ b

a

|φ0,j(x)|2 dx = 1, j = 1, . . . ,M.

We choose the spatial mesh size h = ∆x > 0 with h = (b− a)/N and N an even
positive integer and define grid points by

xj := a + j h, j = 0, 1, . . . , N.

Let Φn
j = ((φ1)

n
j , . . . , (φM )nj )T be the numerical approximation of Φ(xj , tn) =

(φ1(xj , tn), . . . , φM (xj , tn))T . Here we use the backward Euler for time discretiza-
tion and second-order centered finite difference for spatial derivatives for the gradient
flow (3.14). The detail scheme is

Φ∗
j − Φn

j

k
=

1

2h2

[
Φ∗

j+1 − 2Φ∗
j + Φ∗

j−1

]
− V1(xj) ∗̇ Φ∗

j − A1(Φ
n
j ) ∗̇ Φ∗

j ,

j = 1, . . . , N − 1,

Φ∗
0 = Φ∗

N = 0, Φ0
j = Φ0(xj), j = 0, 1, . . . , N,

(φl)
n+1
j =

(φl)
∗
j√

h
∑N−1

s=1 ((φl)∗s)
2
, 0 ≤ j ≤ N, 1 ≤ l ≤ M, n ≥ 0.(3.27)

It is easy to see that the discretizetion BEFD (3.27) is monotone for any time
step k > 0 when V1(x) ≥ 0 and βjl ≥ 0 (j, l = 1, . . . ,M). Furthermore, similar to the
proof of Theorem 3.1 in [4], we can prove the BEFD normalized flow (3.27) is energy
diminishing for any time step k > 0 when V1(x) ≥ 0 and βjl = 0 (j, l = 1, . . . ,M).

Remark 3.1. Extension of the BEFD discretization (3.24) for multicomponent
BEC can be done as those in the appendix in [4] for single-component BEC in the
cases when Vd(x) is in two dimensions with radial symmetry or in three dimensions
with spherical symmetry or cylindrical symmetry, as well as in two dimensions or
three dimensions for central vortex states.
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3.4. Approximate ground state solution. For a weakly interacting conden-
sate, i.e., β � 1 (⇐⇒ |βjl| � 1, j, l = 1, . . . ,M), we drop the nonlinear terms (i.e.,
the last term on the right-hand side of (3.2)) and find the linear vector Schrödinger
equations with the harmonic oscillator potentials,

U ∗̇ Φ(x) = −1

2
∆Φ(x) + Vd(x) ∗̇ Φ(x), x = (x1, . . . , xd)

T ∈ Rd,(3.28)

under the normalization condition (3.3). The ground state solution of (3.28) is [34]

µw
g,j =

γx1,j + · · · + γxd,j

2
, j = 1, . . . ,M,(3.29)

φw
g,j(x) =

(γx1,j . . . γxd,j)
1/4

πd/4
e−(γx1,j(x1−(x1)0,j)

2+···+γxd,j(xd−(xd)0,j)
2)/2.(3.30)

It can be viewed as an approximate ground state solution of (3.2) in the case of a
weakly interacting multicomponent BEC. This approximate ground state can be used
as initial data in the CNGF (3.6), or (3.14) and (3.15), or (3.20) for computing the
ground state solution of multicomponent BEC when βjl �= 0.

3.5. Application to a two-state model. The CNGF and its BEFD discretiza-
tion for multicomponent BEC can be applied to compute coupled basis wavefunctions
with the lowest energy of the nonlinear two-state model used in [13, 14] for studying
vortex dynamics in single-component BEC with (or without) an external rotation. For
the convenience of the reader, here we briefly review the derivation of the nonlinear
two-state model from the Gross–Pitaevskii equation (GPE). Consider the dimension-
less GPE for BEC in two dimensions with radial symmetry [4, 11, 6]:

i ψt(r, θ, t) = −1

2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂θ2

]
+

r2

2
ψ + β|ψ|2ψ,(3.31)

under the normalization condition∫ ∞

0

∫ 2π

0

|ψ(r, θ, t)|2 r drdθ = 1,

where (r, θ) is the polar coordinate, ψ(r, θ, t) is the macroscopic wave function for the
condensate, and β is a parameter that models the interaction. In order to represent the
condensate mean-field wavefunction ψ by the superposition of a symmetric component
φs and a vortex component φve

iθ, we take the ansatz

ψ(r, θ, t) = asφs(r;nv)e
−iµst + avφv(r;nv)e

iθe−iµvt,(3.32)

where as and av are the complex amplitudes of the symmetric and vortex components,
respectively. The vortex fraction is 0 ≤ nv = |av|2 ≤ 1, and the symmetric fraction is
ns = |as|2 = 1−nv. The φs and φv are real nonnegative functions, and are normalized
to unity, i.e.,

2π

∫ ∞

0

|φs(r;nv)|2 r dr = 1, 2π

∫ ∞

0

|φv(r;nv)|2 r dr = 1.(3.33)

Plugging (3.32) into (3.31), multiplying both sides by 1 and e−iθ, respectively, and
then integrating over R2 (see details in [13]), we get the following nonlinear two-state
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model:

µsφs = − 1

2r

d

dr

(
r
dφs

dr

)
+

r2

2
φs + β

(
nsφ

2
s + 2Fnvφ

2
v

)
φs,(3.34)

µvφv = − 1

2r

d

dr

(
r
dφv

dr

)
+

(
r2

2
+

1

2r2

)
φv + β

(
2Fnsφ

2
s + nvφ

2
v

)
φv,(3.35)

dφs(r;nv)

dr

∣∣∣∣
r=0

= 0, φv(0;nv) = 0, lim
r→∞

φs(r;nv) = lim
r→∞

φv(r;nv) = 0,(3.36)

where the factor F = 1 but can be adjusted in some cases. In order to study vortex
dynamics in BEC through the two-state model (3.34), (3.35) [13, 14], one needs to
find the coupled basis wavefunctions φs(r;nv) and φv(r;nv) for any given 0 ≤ nv ≤ 1
by minimizing the energy E(φs, φv) defined as

E(φs, φv) = ns Es(φs, φv) + nv Ev(φs, φv),

Es(φs, φv) = π

∫ ∞

0

r[|φ′
s(r;nv)|2 + (r2 + β(nsφ

2
s(r;nv) + 2Fnvφ

2
v(r;nv)))φ

2
s(r;nv)dr,

Ev(φs, φv) = π

∫ ∞

0

r[|φ′
v(r;nv)|2

+

(
r2 +

1

r2
+ β

(
2Fnsφ

2
s(r;nv) + nvφ

2
v(r;nv)

))
φ2
v(r;nv)dr,

under the constraint (3.33). The CNGF for computing the above minimizer is

∂φs(r, t;nv)

∂t
=

1

2r

d

dr

(
r
dφs

dr

)
−
[
r2

2
+ β

(
nsφ

2
s + 2Fnvφ

2
v

)
− µs(t)

]
φs,(3.37)

∂φv(r, t;nv)

∂t
=

1

2r

d

dr

(
r
dφv

dr

)
−
[
r2

2
+

1

2r2
+ β

(
2Fnsφ

2
s + nvφ

2
v

)
− µv(t)

]
φv,(3.38)

∂φs(r, t;nv)

∂r

∣∣∣∣
r=0

= 0, φv(0, t;nv) = 0, lim
r→∞

φs(r, t;nv) = lim
r→∞

φv(r, t;nv) = 0,(3.39)

φs(r, 0;nv) = φs,0(r) ≥ 0, φv(r, 0;nv) = φv,0(r) ≥ 0, 0 ≤ r < ∞,(3.40)

with

2π

∫ ∞

0

|φs,0(r)|2 r dr = 1, 2π

∫ ∞

0

|φv,0(r)|2 r dr = 1,

and

µs(t) =
1∫∞

0
r |φs(r, t;nv)|2 dr

∫ ∞

0

r

2

[
|∂rφs(r, t;nv)|2 + r2φ2

s(r, t;nv)

+ 2β
(
nsφ

2
s(r, t;nv) + 2Fnvφ

2
v(r, t;nv)

)
φ2
s(r, t;nv)

]
dr,

µv(t) =
1∫∞

0
r |φv(r, t;nv)|2 dr

∫ ∞

0

r

2

[
|∂rφv(r, t;nv)|2 +

(
r2 +

1

r2

)
φ2
v(r, t;nv)

+ 2β
(
2Fnsφ

2
s(r, t;nv) + nvφ

2
v(r, t;nv)

)
φ2
v(r, t;nv)

]
dr.

If we choose the initial data φs,0(r) ≥ 0 and φv,0(r) ≥ 0 for 0 ≤ r < ∞, e.g.,

φs,0(r) = 1
π1/2 e

−r2/2 and φv,0(r) = r
π1/2 e

−r2/2, then the minimizers φs,g(r;nv) and
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φv,g(r;nv) can be obtained from the steady state solution of the CNGF (3.37)–(3.40),
i.e.,

φs,g(r;nv) = lim
t→∞

φs(r, t;nv), φv,g(r;nv) = lim
t→∞

φv(r, t;nv), 0 ≤ r < ∞,

µs,g = 2π

∫ ∞

0

r

2

[∣∣φ′
s,g(r;nv)

∣∣2 + r2φ2
s,g(r;nv)

+ 2β
(
nsφ

2
s,g(r;nv) + 2Fnvφ

2
v,g(r;nv)

)
φ2
s,g(r;nv)

]
dr,

µv,g = 2π

∫ ∞

0

r

2

[∣∣φ′
v,g(r;nv)

∣∣2 +

(
r2 +

1

r2

)
φ2
v,g(r;nv)

+ 2β
(
2Fnsφ

2
s,g(r;nv) + nvφ

2
v,g(r;nv)

)
φ2
v,g(r;nv)

]
dr.

The BEFD discretization scheme introduced in section 3.3 can be easily extended
to discretize the CNGF (3.37)–(3.40). We omitted the details here.

Remark 3.2. The normalized gradient flow and its BEFD discretization for the
two-state model in two dimensions with radial symmetry can be easily extended to the
two-state model in [14] in three dimensions with cylindrical symmetry.

4. TSSP method for dynamics. In this section we present a TSSP method
for the VGPEs (2.9) with (or without) an external driven field for dynamics of mul-
ticomponent BEC. For simplicity of notation we shall introduce the method in one
space dimension (d = 1). Generalizations to d > 1 are straightforward for tensor
product grids, and the results remain valid without modifications. For d = 1, the
equations (2.4) with homogeneous Dirichlet boundary conditions become

i
∂Ψ(x, t)

∂t
= −1

2
Ψxx + V1(x) ∗̇ Ψ + A1(Ψ) ∗̇ Ψ + f(t)BΨ, a < x < b, t ≥ 0,(4.1)

Ψ(a, t) = Ψ(b, t) = 0, t ≥ 0,(4.2)

Ψ(x, t = 0) = Ψ0(x) = (ψ0,1(x), . . . , ψ0,M (x))T , a ≤ x ≤ b,(4.3)

with

‖ψ0,j‖ =

∫ b

a

|ψ0,j(x)|2 dx = 1, j = 1, . . . ,M.

Let Ψn
j = ((ψ1)

n
j , . . . , (ψM )nj )T be the approximation of Ψ(xj , tn) = (ψ1(xj , tn),

. . . , ψM (xj , tn))T . From time t = tn to t = tn+1, the VGPEs (4.1) is solved in three
splitting steps. One solves first

i
∂Ψ(x, t)

∂t
= −1

2
Ψxx(x, t)(4.4)

for the time step of length k, followed by solving

i
∂Ψ(x, t)

∂t
= V1(x) ∗̇ Ψ(x, t) + A1(Ψ(x, t)) ∗̇ Ψ(x, t)(4.5)

for the same time step, and then by solving

i
∂Ψ(x, t)

∂t
= f(t) B Ψ(x, t).(4.6)
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Equation (4.4) will be discretized in space by the sine-spectral method and inte-
grated in time exactly. For t ∈ [tn, tn+1], the ODE system (4.5) leaves |ψj(x, t)|
(j = 1, . . . ,M) invariant in t and therefore becomes

i
∂Ψ(x, t)

∂t
= V1(x) ∗̇ Ψ(x, t) + A1(Ψ(x, tn)) ∗̇ Ψ(x, t)(4.7)

and thus can be integrated exactly. The solution of (4.7) is

Ψ(x, t) = e−i(V1(x)+A1(Ψ(x,tn)))(t−tn) ∗̇ Ψ(x, tn), tn ≤ t ≤ tn+1.(4.8)

For t ∈ [tn, tn+1], the ODE system (4.6) can be solved exactly too since B̂ is a real and
symmetric matrix. After a simple computation, the solution of the ODE system (4.6)
is

Ψ(x, t) = G−1
0 P e−i D

∫ t
tn

f(s) ds PT G0 Ψ(x, tn), tn ≤ t ≤ tn+1,(4.9)

where P is an orthonormal real matrix and D = diag(d1, . . . , dM ) such that B̂ =
P D PT .

From time t = tn to t = tn+1, we combine the splitting steps via the standard
second-order splitting:

Ψ
(1)
j =

2

N

N−1∑
l=1

e−i k µ2
l /4 (̂Ψn)l sin

(
i j l π

N

)
,

Ψ
(2)
j = e−i(V1(xj)+A1(Ψ

(1)
j ))k/2 ∗̇ Ψ

(1)
j ,

Ψ
(3)
j = G−1

0 P e−iD
∫ tn+1
tn

f(s) ds PT G0 Ψ
(2)
j ,

Ψ
(4)
j = e−i(V1(xj)+A1(Ψ

(3)
j ))k/2 ∗̇ Ψ

(3)
j ,

Ψn+1
j =

2

N

N−1∑
l=1

e−i k µ2
l /4 (̂Ψ(4))l sin

(
i j l π

N

)
, 1 ≤ j ≤ N − 1,(4.10)

where Ψ̂l = ((̂ψ1)l, . . . , (̂ψM )l)
T (l = 1, . . . , N − 1), the sine coefficients of Ψ with

Ψ0 = ΨN = 0, are defined as

µl =
lπ

b− a
, Ψ̂l =

N−1∑
j=1

Ψj sin

(
i j l π

N

)
, l = 1, . . . , N − 1.(4.11)

The overall time discretization error comes solely from the splitting, which is sec-
ond order in k, and the spatial discretization is of spectral (i.e., “infinite”) order of
accuracy. It is time reversible and time transverse invariant if the VGPEs (2.4) is,
i.e., f ≡ 0. Furthermore, for the stability of the TSSP (4.10), we have the following
lemma, which shows that the total number of particles in the multicomponent BEC is
conserved for any given real-valued external driven field f , and the number of particles
of each component is conserved when there is no external driven field, i.e., f ≡ 0.

Lemma 4.1. The TSSP method (4.10) is unconditionally stable and conserves
the total number of particles in the multicomponent BEC. In fact, for every mesh size
h > 0 and time step k > 0,

‖G0Ψ
n‖l2 =

√√√√ M∑
l=1

N0
l h

N−1∑
j=1

∣∣(ψl)nj
∣∣2 = ‖G0Ψ0‖l2 =

√
N0, n ≥ 0.(4.12)



224 WEIZHU BAO

Furthermore, when f ≡ 0 in (4.1), i.e., without an external driven field, we have

‖(ψl)
n‖l2 :=

√√√√h

N−1∑
j=1

∣∣(ψl)nj
∣∣2 = ‖(ψl)

0‖l2 = 1, n ≥ 1, 1 ≤ j ≤ M.(4.13)

Proof. From (4.12), noting (4.10), the Parseval equality, we get

‖G0Ψ
n+1‖2

l2 = ‖G0Ψ
(4)‖2

l2 = ‖G0Ψ
(3)‖2

l2 = ‖P e−iD
∫ tn+1
tn

f(·,s) ds PT G0 Ψ(2)‖2
l2

= ‖G0Ψ
(2)‖2

l2 = ‖G0Ψ
(1)‖2

l2 = ‖G0Ψ
n‖2

l2 , n = 0, 1, . . . .(4.14)

The conservation (4.12) is obtained from (4.14) by induction. When f ≡ 0, the proof
of (4.13) follows the line of the analogous result for the linear Schrödinger equation
by time-splitting Fourier-spectral approximation in [8, 5].

Remark 4.1. When the definite integral
∫ tn+1

tn
f(s) ds in (4.10) can not be evalu-

ated analytically for some very complicated function f , it can be evaluated numerically
using a numerical quadrature, e.g., Simpson’s rule:∫ tn+1

tn

f(s) ds ≈ k

6

[
f(tn) + 4f

(
tn +

k

2

)
+ f(tn+1)

]
, j = 0, . . . , N, n ≥ 0.

5. Numerical results. In this section we report the coupled basis wavefunctions
with the lowest energy of a two-state model and ground states of multicomponent BEC
by using CNGF and its BEFD discretization, and dynamics of multicomponent BEC
by using the TSSP method. Furthermore, we also give a physical discussion on our
numerical results.

Example 1. Coupled basis wavefunctions with the lowest energy of a two-state
model; i.e., we choose β = 100 and F = 0.79 in (3.34), (3.35). We solve this problem on
[0, 8] with mesh size hr = 1

64 and time step k = 0.1 by using the BEFD discretization.
The initial data in (3.40) is chosen as

φs,0(r) =
1

π1/2
e−r2/2, φv,0(r) =

r

π1/2
e−r2/2, r ≥ 0.

The steady state solution is reached when ‖φn+1
s −φn

s ‖l2+‖φn+1
v −φsv

n‖l2 < ε = 10−6.
Table 5.1 displays the values of φs(0), energies Es, Ev, and Eg, and chemical potentials
µs, µv. Figure 1 shows the coupled basis wavefunctions φs,g(r) and φv,g(r) for different
vortex fraction 0 ≤ nv ≤ 1, and Figure 2 shows surface plots of the atomic density

function |ψ|2 =
∣∣asφs,g + avφv,ge

iθ
∣∣2 with av =

√
nv and as =

√
1 − nv for different

vortex fraction 0 ≤ nv ≤ 1.

Table 5.1

Numerical results for a two-state model in two dimensions in Example 1.

nv ns φs(0) Es Ev Eg µs µv

0 1 0.2381 3.9459 NA 3.9459 5.7598 NA
0.1 0.9 0.2517 3.8697 5.8901 4.0717 5.7939 6.9516
0.3 0.7 0.2875 3.7370 5.4928 4.2637 5.8864 6.6513
0.5 0.5 0.3433 3.6474 5.1110 4.3792 6.0166 6.4091
0.7 0.3 0.4450 3.6291 4.7618 4.4220 6.1946 6.2276
0.9 0.1 0.7113 3.7653 4.4637 4.3938 6.4023 6.0951
1 0 NA NA 4.3689 4.3689 NA 6.0514
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Fig. 1. The coupled basis wavefunctions for a two-state model in Example 1 for different vortex
fraction nv = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1 (in the order of decreasing peak). (a) symmetric state φs,g(r);
(b) vortex state φv,g(r).
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Fig. 2. Surface plot of the atomic density function |ψ|2 for different vortex fraction 0 ≤ nv ≤ 1.
(a) nv = 0; (b) nv = 0.1; (c) nv = 0.3; (d) nv = 0.5; (e) nv = 0.9; (f) nv = 1.0.



226 WEIZHU BAO

From Table 5.1 and Figures 1 and 2, we can see that when the vortex state fraction
nv increases from 0 to 1, the central value of the symmetric state φs(0) and the total
energy Eg increase, while chemical potentials of the symmetric state µs and vortex
state µv increase and decrease, respectively; the atomic density function |ψ|2 changes
from ground state (cf. Figure 2(a)) to vortex state (cf. Figure 2(f)).

Example 2. Ground state of two-component BEC in three dimensions with dy-
namically stable intercomponent interaction; i.e., a11 > 0, a22 > 0, and a11a22−a2

12 >
0 [28]. We choose M = 2, m = 1.44 × 10−25 [kg], a11 = a22 = 5.45 [nm], a12 = a21 =
5.24 [nm], ωx,1 = ωy,1 = ωx,2 = ωy,2 = 10 × 2π [1/s], ωz,1 = ωz,2 =

√
8ωx,1,

x̂0,1 = x̂0,2 = ŷ0,1 = ŷ0,2 = ẑ0,1 = ẑ0,2 = 0, f̂ ≡ 0 in (2.1). Plugging these pa-
rameters into (2.4), we get the dimensionless parameters a0 = 0.3407 × 10−5 [m],
β11 = 0.02010177N0

1 , β12 = 0.0193272N0
2 , β21 = 0.0193272N0

1 , β22 = 0.02010177N0
2 .

We compute the ground states of this problem in cylindrical coordinates on (r, z) ∈
Ω = [0, 8] × [−4, 4] with mesh size h = hr = hz = 1

32 and time step k = 0.1 by using
the BEFD discretization for different N0

1 and N0
2 . Here we report the results for two

cases:
Case I. N0

2 = N0
1 .

Case II. N0
2 = 2N0

1 .
Table 5.2 displays the central densities φg,1(0, 0)2, φg,2(0, 0)2, chemical potentials

µg,1, µg,2, and energy Eg for Case I with different N0
1 . Figure 3 shows the ground

state condensate wave functions for Case I. Furthermore, Table 5.3 and Figure 4 show
similar results for Case II.

Table 5.2

Numerical results for the ground states of two-component BEC in three dimensions in Exam-
ple 2 for Case I.

N0
1 φ2

g,1(0, 0) µg,1 φ2
g,2(0, 0) µg,2 Eg

0 0.5496 2.4130 0.5496 2.4130 2.4130
100 0.4747 2.7664 0.4747 2.7664 2.5994
500 0.3548 3.6406 0.3548 3.6406 3.1161

1,000 0.2969 4.3481 0.2969 4.3481 3.5650
3,000 0.2170 6.0980 0.2170 6.0980 4.7258
6,000 0.1765 7.7461 0.1765 7.7461 5.8504
10,000 0.1513 9.3204 0.1513 9.3204 6.9388
20,000 0.1226 12.0802 0.1226 12.0802 8.8655

Table 5.3

Numerical results for the ground states of two-component BEC in three dimensions in Exam-
ple 2 for Case II.

N0
1 φ2

g,1(0, 0) µg,1 φ2
g,2(0, 0) µg,2 Eg

10 0.5353 2.4738 0.5351 2.4746 2.4440
100 0.4504 2.9062 0.4491 2.9122 2.6799
500 0.3225 4.0142 0.3193 4.0315 3.3582

1,000 0.2679 4.8777 0.2637 4.9029 3.9218
3,000 0.1963 6.9773 0.1902 7.0200 5.3429
6,000 0.1610 8.9353 0.1536 8.9931 6.6984
10,000 0.1392 10.7975 0.1309 10.8692 8.0013
20,000 0.1145 14.0520 0.1053 14.1471 10.2956

From Tables 5.2 and 5.3 and Figures 3 and 4, we can see that when the number
of particles of the two components are the same, i.e., N0

1 = N0
2 , then the ground state

density functions for the two components are equal to each other, i.e., φ2
g,1 = φ2

g,2,
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Fig. 3. Ground state solution in three dimensions with cylindrical symmetry in Example 2 for
Case I. Condensate wave function on two lines for N0

1 = 0, 100, 500, 1000, 3000, 6000, 10000, 20000
(in the order of decreasing peak): (a) on the line z = 0: φg,1(r, 0) = φg,2(r, 0); (b) on the line
r = 0: φg,1(0, z) = φg,2(0, z); (c) surface plot of the condensate density function |φg,1|2 = |φg,2|2
for N0

1 = 20000.

due to the same parameters used for the two components; when N0
1 �= N0

2 , then
φ2
g,1 �= φ2

g,2. In the two cases, when the number of particles in the first condensate N0
1

increases, the central value of the density functions φ2
g,1(0, 0) and φ2

g,2(0, 0) decrease,
but the total energy Eg and the chemical potentials µg,1 and µg,2 increase.

Example 3. Ground state of two-component BEC in three dimensions with dy-
namically unstable intercomponent interaction; i.e., a11 > 0, a22 > 0, and a11a22 −
a2
12 < 0 [26]. We choose M = 2, m = 1.44 × 10−25 [kg], a12 = a21 = 55.3Å =

5.53 [nm], a11 = 1.03a12 = 5.6959 [nm], a22 = 0.97a12 = 5.3641 [nm], ωz,1 = ωz,2 =
47 × 2π [1/s], ωx,1 = ωy,1 = ωx,2 = ωy,2 = ωz,1/

√
8, x̂0,1 = x̂0,2 = ŷ0,1 = ŷ0,2 = 0,

f̂ ≡ 0 in (2.1). Plugging these parameters into (2.4), we get the dimensionless
parameters a0 = 0.2643 × 10−5 [m], β11 = 0.02708165N0

1 , β12 = 0.02629286N0
2 ,

β21 = 0.02629286N0
1 , β22 = 0.02550407N0

2 . We compute the ground states of this
problem in cylindrical coordinates on (r, z) ∈ Ω = [0, 16] × [−12, 12] with mesh size
h = hr = hz = 1

16 and time step k = 0.1 by using the BEFD discretization for
different N0

1 and N0
2 . Here we report the results for three cases:

Case I. ẑ0,1 = ẑ0,2 = 0, N0 = N0
1 + N0

2 = 1, 000, 000. Varying the ratio between
N0

1 and N0
2 .

Case II. N0
2 = N0

1 = 500, 000. ẑ0,1 = −ẑ0,2 �= 0. Varying ẑ0,1.
Case III. ẑ0,1 = −ẑ0,2 = 0.15a0, N

0 = N0
1 + N0

2 = 1, 000, 000. Varying the ratio
between N0

1 and N0
2 .

Table 5.4 displays the central densities φg,1(0, 0)2, φg,2(0, 0)2, chemical potentials
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Fig. 4. Ground state solution in three dimensions with cylindrical symmetry in Example 2 for
Case II. Condensate wave function on two lines for N0

1 = 10, 100, 500, 1000, 3000, 6000, 10000, 20000
(in the order of decreasing peak). On the line z = 0: (a) φg,1(r, 0); (c) φg,2(r, 0). On the line r = 0:
(b) φg,1(0, z); (d) φg,2(0, z). Surface plot of the condensate density functions for N0

1 = 20000:
(e) |φg,1|2; (f) |φg,2|2.

µg,1, µg,2, and energy Eg for Case I with different N0
1 . Figure 5 shows the ground

state condensate wave functions for Case I. Furthermore, Table 5.5 and Figure 6 show
similar results for Case II and Table 5.6 and Figure 7 for Case III.

From Tables 5.4–5.6 and Figures 5–7, we can have the following observations:
(i) In Case I, the trap potentials for the two components are the same when the
fraction of the number of particles in the first component, i.e., N0

1 /N
0, increases, the

energy Eg increases, and the chemical potentials for the two components, µg,1 and
µg,2, increases and decreases, respectively. The reason for this is due to a11 > a22.
Furthermore, we observe a crater in the density function of the first component,
corresponding to a shell in which the second component resides (cf. Figures 5(e)–(f)).
This confirms the experimental results (cf. Figure 1 in [26]) and theoretical results
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Table 5.4

Numerical results for the ground states of two-component BEC in three dimensions in Exam-
ple 3 for Case I.

N0
1 N0

2 φ2
g,1(0, 0) µg,1 φ2

g,2(0, 0) µg,2 Eg

100,000 900,000 0.0007 47.8143 0.0453 47.2278 33.8714
300,000 700,000 0.0025 47.9650 0.0514 47.2456 34.0028
500,000 500,000 0.0063 48.0880 0.0605 47.2631 34.1575
700,000 300,000 0.0129 48.1999 0.0759 47.2779 34.3323
900,000 100,000 0.0270 48.3077 0.1082 47.2873 34.5266
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Fig. 5. Ground state solution in three dimensions with cylindrical symmetry in Example 3
for Case I. Condensate wave function on two lines for N0

1 /N
0 = 0.1, 0.3, 0.5, 0.7, 0.9 (in the order

of increasing at the origin). On the line z = 0: (a) φg,1(r, 0); (c) φg,2(r, 0). On the line r = 0:
(b) φg,1(0, z); (d) φg,2(0, z). Surface plot of the condensate density functions for N0

1 = N0
2 =

500, 000: (e) |φg,1|2; (f) |φg,2|2.
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Table 5.5

Numerical results for the ground states of two-component BEC in three dimensions in Exam-
ple 3 for Case II.

ẑ0,1/a0 φ2
g,1(0, 0) µg,1 φ2

g,2(0, 0) µg,2 Eg

0.01 0.0092 48.0611 0.0601 47.2363 34.1375
0.1 0.0307 47.3400 0.0513 46.4531 33.5336
0.5 0.0370 43.9392 0.0425 43.0278 30.8042
2.0 0.0277 37.3581 0.0271 36.4870 26.2717
4.0 0.0001 36.7085 0.0000 35.8441 26.0203
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Fig. 6. Ground state solution in three dimensions with cylindrical symmetry in Example 3 for
Case II. Condensate wave function on two lines for ẑ0,1/a0 = −ẑ0,2/a0 = 0.01, 0.1, 0.5, 2.0, 4.0. On
the line z = 0: (a) φg,1(r, 0); (c) φg,2(r, 0). On the line r = 0: (b) φg,1(0, z); (d) φg,2(0, z). Surface
plot of the condensate density functions for ẑ0,1/a0 = −ẑ0,2/a0 = 2.0: (e) |φg,1|2; (f) |φg,2|2.
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Table 5.6

Numerical results for the ground states of two-component BEC in three dimensions in Exam-
ple 3 for Case III.

N0
1 N0

2 φ2
g,1(0, 0) µg,1 φ2

g,2(0, 0) µg,2 Eg

100,000 900,000 0.0023 44.3215 0.0452 47.0379 33.4594
300,000 700,000 0.0129 45.9058 0.0502 46.5788 33.1356
500,000 500,000 0.0335 46.8865 0.0489 45.9868 33.1615
700,000 300,000 0.0463 47.6052 0.0285 45.1929 33.4916
900,000 100,000 0.0443 48.1503 0.0072 43.9508 34.1429
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Fig. 7. Ground state solution in three dimensions with cylindrical symmetry in Example 3 for
Case III. Condensate wave function on two lines for N0

1 /N
0 = 0.1, 0.3, 0.5, 0.7, 0.9. On the line

z = 0: (a) φg,1(r, 0); (c) φg,2(r, 0). On the line r = 0: (b) φg,1(0, z) (in the order of decreasing peak);
(d) φg,2(0, z) (in the order of increasing peak). Surface plot of the condensate density functions for
N0

1 = N0
2 = 500, 000: (e) |φg,1|2; (f) |φg,2|2.
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Fig. 8. Time evolution of the mean of the density functions for the two components,
‖ψ1‖2, ‖ψ2‖2 (labeled as ‖E1‖2 and ‖E2‖2, respectively, which indicates the time evolution of the
number of particles in the two components, N0

1 ‖ψ1‖2, N0
1 ‖ψ2‖2, respectively) for different driven

field frequencies Ω. (a) Ω = 6.5 × 2π [1/s]; (b) 65 × 2π [1/s]; (c) 650 × 2π [1/s].

in spherical symmetry case [44]. (ii) In Case II, when the distance between the
center of the trap potentials for the two components, i.e., ẑ0,1 − ẑ0,2, increases, the
energy Eg and chemical potentials for the two components, µg,1 and µg,2, decrease.
Furthermore, the bigger the distance, the more separation in the density functions
of the two components (cf. Figure 6). (iii) The above observation (i) also holds for
Case III except that the crater in the density function for the first component almost
disappears (cf. Figure 7). This is due to the separation of the centers of the trap
potentials for the two components.

Example 4. Dynamics of two-component BEC in three dimensions with dynam-
ically unstable intercomponent interaction; i.e., a11 > 0, a22 > 0, and a11a22 − a2

12 <
0 [26]. We choose M = 2, m = 1.44 × 10−25 [kg], a12 = a21 = 55.3Å = 5.53 [nm],
a11 = 1.03a12 = 5.6959 [nm], a22 = 0.97a12 = 5.3641 [nm], ωz,1 = ωz,2 = 47 ×
2π [1/s], ωx,1 = ωy,1 = ωx,2 = ωy,2 = ωz,1/

√
8, x̂0,1 = x̂0,2 = ŷ0,1 = ŷ0,2 = 0,

ẑ0,1 = −ẑ0,2 = 0.15a0, f̂(x, t) = Ω cos(ωd t) in (2.1). We start the simulation with
the initial data chosen as the ground state of (2.4) computed by setting f ≡ 0 and
using the BEFD discretization. We take ωd = 6.5 × 2π [1/s], N0

1 = N0
2 = 500, 000,

and solve this problem on the box [−16, 16] × [−16, 16] × [−8, 8] with mesh sizes
hx = hy = 1/4, hz = 1/8, and time step k = 0.0002. Figure 8 shows the time
evolution of the mean of the density functions for the two components, ‖ψ1‖2, ‖ψ2‖2

(noticing that the number of particles in the two components are N0
1 ‖ψ1‖2, N0

1 ‖ψ2‖2,
respectively) for Ω = 6.5 × 2π [1/s], 65 × 2π [1/s], and 650 × 2π [1/s]. Furthermore,
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Fig. 9. Time evolution of the density functions for the two components for the driven field
frequencies Ω = 65 × 2π [1/s] at different times; from top to bottom: t = 0.0, 0.24, 0.58, 0.98, 1.42,
1.96, 2.52, 3.4. Left column: |ψ1|2; middle column: |ψ2|2, right column: |ψ1|2 + |ψ2|2.

Figure 9 displays the time evolution of the density functions for the two components
for Ω = 65 × 2π [1/s].

The general form of time evolution on the number of particles in the two compo-
nents is similar for different external driven field frequency Ω. When Ω is small, the
number of particles in the first component, i.e., N0

1 ‖ψ1‖2, increases, attains its peak,
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and then decreases; the pattern for N0
2 ‖ψ2‖2 is the opposite (cf. Figure 8(a)), which

is due to the total number of particles in the two components being conserved. When
Ω becomes bigger, the pattern of N0

1 ‖ψ1‖2 oscillates for some time period, attains its
absolute peak, and then oscillates again (cf. Figure 8(b)). Initially, the density func-
tions for the two components are well separated (cf. Figure 9, first row); around at
time t = 3.4, the number of particles in the first component attains its maximum and
a bigger condensate (approximately 52% bigger in terms of the number of particles
for the first component than that initially at time t = 0) is generated (cf. Figures 8(b)
and 9). When Ω becomes very big, similar pattern of N0

1 ‖ψ1‖2 is observed. In fact,
the bigger Ω is, the faster oscillation in the pattern of the number of particles in the
condensates (cf. Figures 8(a)–(c)).

6. Conclusions. The ground states and dynamics of multicomponent BEC at
temperature T much smaller than the critical condensate temperature Tc are studied
numerically by using the time-independent VGPEs and time-dependent VGPEs with
(or without) an external driven field, respectively. We started with the 3d VGPEs,
scaled it to obtain a dimensionless VGPEs, and showed how to approximately reduce
it to a 2d VGPEs and a 1d VGPEs in certain limits. We provided the approximate
ground state solution of the VGPEs in the (very) weakly interacting condensates.
Then, most importantly, we presented a CNGF to compute ground states of multi-
component BEC, proved energy diminishing of the CNGF, which provides a math-
ematical justification, discretized it by the BEFD, which is monotone in linear and
nonlinear cases and preserves energy diminishing property in linear case; we also used
a TSSP method to discretize the time-dependent VGPEs with an external driven field
for computing dynamics of multicomponent BEC. The merits of the TSSP method
for VGPEs are that it is explicit, unconditionally stable, easy to program, requires
less memory, is time reversible and time transverse invariant if the VGPEs is, has
“good” resolution in the semiclassical regime, is of spectral-order accuracy in space
and second-order accuracy in time, and conserves the total particle number in the
discretized level. Extensive numerical examples in three dimensions for ground states
and dynamics of multicomponent BEC are presented to demonstrate the power of the
numerical methods. Finally, we want to point out that equations very similar to the
VGPEs are also encountered in nonlinear optics. In the future we plan to apply the
powerful numerical methods to study vortex states and their dynamical stability in
multicomponent BEC.
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