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Abstract

In this paper, we investigate the dynamics of rotating two-component Bose–Einstein condensates (BEC) based on the coupled Gross–Pitaevskii
equations (CGPEs) with an angular momentum rotation term and an external driving field, and propose an efficient and accurate method for
numerical simulations. We prove the conservation of the angular momentum expectation, derive the dynamic laws for the density of each
component and condensate widths, and analyze the dynamics of a stationary state with its center shifted from the trap center. By formulating
the CGPEs in either 2D (two-dimensional) polar coordinate or 3D cylindrical coordinate system, the angular momentum rotation term becomes
a term with constant coefficients. This allows us to develop an efficient time-splitting method which is time reversible, time transverse invariant,
unconditionally stable, efficient and accurate for the problem. Moreover, it conserves the total position density in the discretized level. The
numerical method is applied to verify our analytical results and study the dynamics of quantized vortex lattices in rotating two-component BEC
with/without an external driving field.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since its realization in dilute bosonic atomic gases [2,14,10], Bose–Einstein condensation (BEC) has been produced and studied
extensively in the laboratory [38,1,22], and has afforded an intriguing glimpse into the macroscopic quantum world [38]. Attention
has been broadened to include exploration of quantized vortex states and their dynamics associated with superfluidity [34,1] and
of systems of two or more condensates [22,24] since the first vortex experiment of BEC was realized in 1998 [1,34]. These are
some of the key issues, in view of potential applications, in the study of quantized vortices which are well-known signatures of
superfluidity [8] and the generation of bright beams of coherent matter waves (atom laser) [22,4]. The first experiment involving
the interactions between multi-component BEC was performed with atoms evaporatively cooled in the |F = 2,m f = 2〉 and
|F = 1,m f = −1〉 spin states of 87Rb, which is at different hyperfine states of the same species [37]. It demonstrated the
possibility of producing long-lived multiple condensate systems, and that the condensate wave function is dramatically affected by
the presence of inter-component interactions. While many interesting phenomena have been found in rotating single-component
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BECs [34,1], a rich variety of static and dynamic phenomena are expected to occur in a system of rotating two-component BEC
consisting, for example, of two different hyperfine spin states of atoms [22]. In fact, recent experimental advances in exploration
of systems of uniting two or more condensates, e.g. in a magnetic trap in rubidium [37] and subsequently in an optical trap in
sodium [42], have spurred great excitement in the atomic physics community and renewed interest in studying the ground states
and dynamics of rotating two-component BEC [22,23,36,27].

Theoretical treatment of such systems began in the context of superfluid helium mixtures and spin polarized hydrogen, and
has now been extended to BEC in alkalis [23,15,29,39]. With the realization of BEC in experiments, the theoretical predications
of multi-component condensates, e.g. density profile, dynamics of interacting BEC [21], motion damping [24] and formation of
vortices, can now be compared with experimental data [22,3]. Needless to say that this dramatic progress on the experimental front
has stimulated a wave of activity on both theoretical and numerical fronts. In fact, the properties of multi-component BEC, in a
rotational frame, at temperatures T much smaller than the critical condensation temperature Tc [38,30,31] are usually modelled by
the coupled Gross–Pitaevskii equations (CGPEs) for the macroscopic vector wave functions with an angular momentum rotation
term and an external driving field [31,30,15]. Note that equations very similar to the CGPEs also appear in nonlinear optics where
indices of refraction, which depend on the light intensity, lead to nonlinear terms like those encountered in CGPEs.

There have been extensive mathematical analysis and numerical simulations of the time-independent Gross–Pitaevskii equation
(GPE) for ground states [41,5] and time-dependent GPE for dynamics [35,6,5,9] of single-component BEC. For non-rotating
two-component BEC, Bao [4] presented a continuous normalized gradient flow (CNGF) with backward Euler finite difference
discretization to compute ground state and a time-splitting sine-pseudospectral (TSSP) method to compute dynamics; Chang
et al. [11,12] proposed Gauss–Seidel-type methods for studying bound states and segregated nodal domains; Lin and Wei [32,
33] analyzed the existence of ground states and spike solutions; Pérez-Garcı́a et al. [16] studied the stability and dynamics of
quantized vortices; Riboli et al. [40] and Jezek [25] classified different spatial patterns of the ground states; Chui et al. [13] studied
quantum phase separation dynamics, the effect of trap displacements and symmetric–asymmetric transition. For rotating two-
component BEC, due to the appearance of the angular momentum rotation term and the external driving field, new difficulties are
introduced mathematically and numerically. Currently, there has been few analytical results about rotating two-component BEC in
the literature. In addition, there is no efficient and accurate numerical method for studying its dynamics. Thus it is of great interest
to develop mathematical theories governing the dynamics of rotating two-component BEC and to propose efficient and accurate
numerical methods for simulating the CGPEs with an angular momentum rotation term and an external driving field. The aim of
this paper is to mathematically find the dynamic laws for the density of each component, condensate width, angular momentum
expectation and a stationary state with its center shifted from the trap center, and to present an unconditionally stable numerical
method with high-order accuracy for computing the dynamics of rotating two-component BEC. In addition, the numerical method
is applied to verify the dynamic laws and to study the dynamics of quantized vortex lattices in rotating two-component BEC. Our
extensive numerical results demonstrate that the method is very efficient and accurate.

The paper is organized as follows. In Section 2, we begin with the 3D coupled Gross–Pitaevskii equations (CGPEs) with an
angular momentum rotation term and an external driving field, scale them to get dimensionless CGPEs, show how to reduce them
to the single GPE in certain limiting regimes and provide their semiclassical scaling, energy asymptotics and geometrical optics in
strong repulsive interaction regimes. In Section 3, we propose an efficient and accurate numerical method for discretizing CGPEs
and apply it to study the dynamics of quantized vortex lattices. In Section 4, we derive the dynamic laws for the density of each
component, angular momentum expectation, condensate width and a stationary state with its center shifted from the trap center, and
we also apply our method to numerically verify these laws. Finally, some conclusions are drawn in Section 5.

2. Coupled Gross–Pitaevskii equations

At temperatures T much smaller than the critical temperature Tc [38,15], in the rotating frame, a two-component BEC with an
external driving field can be well described by two self-consistent nonlinear Schrödinger equations (NLSEs), also known as coupled
Gross–Pitaevskii equations (CGPEs) [26,17,31,30],

ih̄
∂ψ j (x, t)

∂t
=

[
−

h̄2

2m
∇

2
+ V j (x)− Ω̃ L z +

2∑
l=1

U jl |ψl |
2

]
ψ j − λ̃h̄ψk j , j = 1, 2, (2.1)

where ψ j (x, t) denotes the macroscopic wave function of the j th ( j = 1, 2) component with x = (x, y, z)T being the Cartesian
coordinate vector and t being time, h̄ is the Planck constant, m is the atomic mass (for simplicity, here we assume that the atomic
mass of the two components is the same), Ω̃ is the angular velocity of the rotating laser beam, L z = −ih̄(x∂y − y∂x ) is the z
component of the angular momentum, and λ̃ is the Rabi frequency describing the strength of the external driving field. V j (x) is the
external trapping potential acting on the j th component, and if the harmonic potential is considered, it takes the form

V j (x) =
m
2

(
ω2

x, j x2
+ ω2

y, j y2
+ ω2

z, j z
2
)
, j = 1, 2, (2.2)
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with ωx, j , ωy, j and ωz, j the trapping frequencies of the j th component in x-, y- and z-directions, respectively. The interactions of
particles are described by U jl = 4π h̄2 a jl/m with a jl = al j ( j, l = 1, 2) being the s-wave scattering lengths between the j th and
lth component (positive for repulsive interaction and negative for attractive interaction). The integers k j in (2.1) are chosen as

k j =

{
2, j = 1,
1, j = 2. (2.3)

It is necessary to ensure that the wave functions are properly normalized. Especially, we require∫
R3

(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx = N = N 0

1 + N 0
2 , t ≥ 0, (2.4)

where

N 0
j =

∫
R3

|ψ j (x, 0)|2dx, (2.5)

is the particle number of the j th ( j = 1, 2) component at time t = 0 and N is the total number of particles in the condensate.

2.1. Dimensionless CGPEs

Under the normalization (2.4), we introduce the dimensionless variables as follows: t → t/ωmin with ωmin =

min1≤ j≤2{ωx, j , ωy, j , ωz, j }, Ω̃ → ωminΩ , λ̃ → ωminλ, x → a0x with a0 =
√

h̄/mωmin, and ψ j → ψ j
√

N/a3/2
0 , i.e. we

choose 1/ωmin and a0 as the dimensionless time unit and length unit, respectively. After some computations from (2.1), we obtain
the dimensionless CGPEs as

i
∂ψ j (x, t)

∂t
=

[
−

1
2
∇

2
+ V j (x)− Ω L z +

2∑
l=1

β jl |ψl |
2

]
ψ j − λψk j , j = 1, 2, (2.6)

where the dimensionless interaction parameters are characterized by β jl = βl j =
mU jl N
h̄2 a0

=
4πNa jl

a0
( j, l = 1, 2). The dimensionless

angular momentum rotation term becomes

L z = −i(x∂y − y∂x ) = −i∂θ := −iL̂ z (2.7)

with (r, θ) the polar coordinate in 2D, and resp. (r, θ, z) the cylindrical coordinate in 3D. The dimensionless external potentials are

V j (x) =
1
2

(
γ 2

x, j x2
+ γ 2

y, j y2
+ γ 2

z, j z
2
)
, j = 1, 2 (2.8)

with γx, j = ωx, j/ωmin, γy, j = ωy, j/ωmin and γz, j = ωz, j/ωmin ( j = 1, 2).
In a disk-shaped condensate, i.e.

ωx, j ≈ ωy, j ≈ ωmin, ωz, j � ωmin ⇐⇒ γx, j ≈ γy, j ≈ 1, γz, j � 1, j = 1, 2,

the 3D CGPEs (2.6) can be reduced to 2D CGPEs with x = (x, y)T [35,6,5]. Thus here we consider the following CGPEs in d
dimensions (d = 2, 3):

i
∂ψ j (x, t)

∂t
=

[
−

1
2
∇

2
+ V j (x)− Ω L z +

2∑
l=1

β jl |ψl |
2

]
ψ j − λψk j , t ≥ 0, (2.9)

ψ j (x, 0) = ψ0
j (x), x ∈ Rd , (2.10)

where the initial data are normalized as

‖ψ0
1 ‖

2
+ ‖ψ0

2 ‖
2

:=

∫
Rd

(
|ψ0

1 (x)|
2
+ |ψ0

2 (x)|
2
)

dx =
N 0

1
N

+
N 0

2
N

= 1,

and the external potentials are given as

V j (x) =


1
2

(
γ 2

x, j x2
+ γ 2

y, j y2
)
, d = 2,

1
2

(
γ 2

x, j x2
+ γ 2

y, j y2
+ γ 2

z, j z
2
)
, d = 3,

j = 1, 2. (2.11)
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The dimensionless CGPEs (2.9) conserve the total density:

N (t) = N1(t)+ N2(t) ≡ ‖ψ0
1 ‖

2
+ ‖ψ0

2 ‖
2

= 1, t ≥ 0 (2.12)

with

N j (t) = ‖ψ j (·, t)‖2
:=

∫
Rd

|ψ j (x, t)|2dx, t ≥ 0, j = 1, 2, (2.13)

and the energy

E(ψ1, ψ2) =

∫
Rd

[
2∑

j=1

(
1
2
|∇ψ j |

2
+ V j (x)|ψ j |

2
− ΩRe

(
ψ∗

j L zψ j

)
+

2∑
l=1

β jl

2
|ψ j |

2
|ψl |

2

)
− 2λRe(ψ∗

1ψ2)

]
dx

≡ E
(
ψ0

1 , ψ
0
2

)
, t ≥ 0 (2.14)

with f ∗ and Re( f ) denoting the conjugate and real part of a function f , respectively. In addition, if there is no external driving
field in (2.9), i.e. λ = 0, the density of each component is also conserved, i.e.

N j (t) =

∫
Rd

∣∣ψ j (x, t)
∣∣2 dx ≡ ‖ψ0

j ‖
2

=
N 0

j

N
, t ≥ 0, j = 1, 2. (2.15)

2.2. Reduction to single GPE

If there is no external driving field in (2.9), i.e. λ = 0, and the initial particle numbers of the two components N 0
1 and N 0

2
(w.l.o.g., assuming that N 0

1 ≥ N 0
2 ) in (2.4) satisfy N 0

1 � N 0
2 , i.e. N 0

1 = O(N ) and N 0
2 = o(N ), when N � 1, we have

N2(t) =

∫
Rd

|ψ2(x, t)|2dx ≡
N 0

2
N

:= ε � 1, (2.16)

N1(t) =

∫
Rd

|ψ1(x, t)|2dx ≡
N 0

1
N

:= 1 − ε ≈ 1, t ≥ 0. (2.17)

These immediately imply that the effect of the second component is insignificant and the original two-component system is mainly
dominated by the first component. Formally, we can drop the second component from the two-component BEC and get a single-
component BEC, and in this case the CGPEs (2.9) are reduced to

i
∂ψ(x, t)
∂t

=

[
−

1
2
∇

2
+ V (x)+ β|ψ |

2
− Ω L z

]
ψ, t ≥ 0 (2.18)

by setting ψ(x, t) =

√
N/N 0

1ψ1(x, t), V (x) = V1(x) and β = N 0
1β11/N ≈ β11. The GPE (2.18) conserves the normalization of

the wave function

‖ψ(·, t)‖2
≡

∫
Rd

|ψ(x, 0)|2dx =

∫
Rd

N

N 0
1
|ψ1(x, 0)|2dx =

N

N 0
1

N 0
1

N
= 1, t ≥ 0, (2.19)

and the energy

Es(ψ) =

∫
Rd

[
1
2

|∇ψ |
2
+ V (x)|ψ |

2
− ΩRe

(
ψ∗L zψ

)
+
β

2
|ψ |

4
]

dx, t ≥ 0. (2.20)

In addition, by setting ψ1(x, t) =

√
N 0

1 /Nψ(x, t) and ψ2(x, t) =

√
N 0

2 /Nφ(x, t) in the energy of the two-component BEC (2.14)
with λ = 0, we obtain

E(ψ1, ψ2) =
N 0

1
N

Es(ψ)+
N 0

2
N

Er (ψ, φ) = (1 − ε)Es(ψ)+ εEr (ψ, φ)

= Es(ψ)+ ε [−Es(ψ)+ Er (ψ, φ)] , (2.21)

where

Er (ψ, φ) =

∫
Rd

[
1
2

|∇φ|
2
+ V2(x)|φ|

2
− ΩRe

(
φ∗L zφ

)
+ β21

N 0
1

N
|ψ |

2
|φ|

2
+
β22

2
N 0

2
N

|φ|
4

]
dx.
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This formally implies that the relative error between the energy of the two-component BEC (2.14) and that of the single-component

BEC (2.20) converges to 0 linearly when ε =
N 0

2
N goes to 0, i.e.

|E(ψ1, ψ2)− Es(ψ)|

Es(ψ)
= ε

(
1 −

Er (ψ, φ)

Es(ψ)

)
= O(ε), when 0 < ε � 1. (2.22)

2.3. Semiclassical scaling and geometrical optics

Let βmax = max{β11, β12, β22}. If βmax � 1, i.e. in the strong repulsive interaction regime or there are many particles in the
condensate, under the normalization (2.12), the semiclassical scaling for the CGPEs (2.9) is also very useful in practice by choosing

x = ε−1/2x, ψεj = εd/4ψ j , ε = β
−2/(d+2)
max . (2.23)

Substituting (2.23) into (2.9), we get the CGPEs in the semiclassical scaling under the normalization (2.12) with ψ j = ψεj
( j = 1, 2):

iε
∂ψεj (x, t)

∂t
=

[
−
ε2

2
∇

2
+ V j (x)− εΩ L z +

2∑
l=1

α jl
∣∣ψεl ∣∣2

]
ψεj − ελψεk j

, j = 1, 2, (2.24)

where α jl = β jl/βmax = O(1) (or o(1)). In this case, the energy functional Eε(ψε1 , ψ
ε
2 ) is defined as

Eε
(
ψε1 , ψ

ε
2
)

=

∫
Rd

[
2∑

j=1

(
ε2

2
|∇ψεj |

2
+ V j (x)|ψεj |

2
− εΩRe

(
(ψεj )

∗L zψ
ε
j

)

+

2∑
l=1

α jl

2
|ψεj |

2
|ψεl |

2

)
− 2ελRe

(
(ψε1 )

∗ψε2
)]

dx = O(1), t ≥ 0, (2.25)

by assuming that ψεj is ε-oscillatory (see (2.27)) and ‘sufficiently’ integrable such that all terms have O(1)-integral. Then the
leading asymptotics of the energy functional E(ψ1, ψ2) in (2.14) can be given by

E(ψ1, ψ2) = ε−1 Eε(ψε1 , ψ
ε
2 ) = O(ε−1) = O

(
β

2/(d+2)
max

)
. (2.26)

If λ = 0 and 0 < ε � 1 in (2.24), we can set, i.e. the WKB ansatz [19]

ψεj (x, t) =

√
ρεj (x, t) exp

(
i
ε

Sεj (x, t)
)
, j = 1, 2, (2.27)

where ρεj = |ψεj |
2 and Sεj = ε arg(ψεj ) are the position density and phase of the wave function ψεj of j th component ( j = 1, 2),

respectively. Inserting (2.27) into (2.24) and collecting the real and imaginary parts, we get the coupled transport equations for the
densities ρεj and the Hamilton–Jacobi equations for the phases Sεj ( j = 1, 2):

∂tρ
ε
j + div

(
ρεj ∇Sεj

)
+ Ω L̂ zρ

ε
j = 0, (2.28)

∂t Sεj +
1
2
|∇Sεj |

2
+ V j (x)+

2∑
l=1

α jlρ
ε
l =

ε2

2
√
ρεj

∇
2
√
ρεj , j = 1, 2. (2.29)

Furthermore, by defining the current densities

Jεj (x, t) = ρεj ∇Sεj = εIm
[(
ψεj

)∗

∇ψεj

]
, j = 1, 2, (2.30)

where Im( f ) is the imaginary part of a function f , we can rewrite (2.28)–(2.29) as a coupled Euler system with third-order
dispersion terms

∂tρ
ε
j + div Jεj + Ω L̂ zρ

ε
j = 0, j = 1, 2, (2.31)

∂t Jεj + div

(
Jεj ⊗ Jεj
ρεj

)
+ ρεj ∇V j (x)+ ∇ Pj

(
ρε1, ρ

ε
2
)
+ Ω

(
L̂ z + G

)
Jεj =

ε2

4
∇

(
ρεj ∇

2 ln ρεj
)
, (2.32)



54 Y. Zhang et al. / Physica D 234 (2007) 49–69

where the symplectic matrix G is defined as

G =

(
0 1

−1 0

)
, for d = 2, G =

 0 1 0
−1 0 0
0 0 0

 , for d = 3, (2.33)

and the pressures Pj are defined as

Pj
(
ρε1, ρ

ε
2
)

=
1
2

2∑
l=1

α jlρ
ε
jρ
ε
l , j = 1, 2.

By formally passing to the limit ε → 0+ in (2.28)–(2.29), we get

∂tρ
0
j + div

(
ρ0

j ∇S0
j

)
+ Ω L̂ zρ

0
j = 0, (2.34)

∂t S0
j +

1
2
|∇S0

j |
2
+ V j (x)+

2∑
l=1

α jlρ
0
l = 0, j = 1, 2, (2.35)

with ρ0
j = limε→0+ ρεj and S0

j = limε→0+ Sεj . Similarly, letting ε → 0+ in (2.31)–(2.32), formally we get an Euler system coupling
through the pressures

∂tρ
0
j + div J0

j + Ω L̂ zρ
0
j = 0, j = 1, 2, (2.36)

∂t J0
j + div

(
J0

j ⊗ J0
j

ρεj

)
+ ρ0

j ∇V j (x)+ ∇ Pj

(
ρ0

1 , ρ
0
2

)
+ Ω

(
L̂ z + G

)
J0

j = 0, (2.37)

where J0
j (x, t) = ρ0

j ∇S0
j ( j = 1, 2). The system (2.36)–(2.37) is a coupled isotropic Euler system with quadratic pressure–density

constitutive relations in the rotational frame. The formal asymptotics is supposed to hold up to caustic onset time [19,20].

Remark 2.1. When λ 6= 0 in (2.24), the WKB analysis for studying the semiclassical limit of the nonlinear Schrödinger equation
[19] is no longer valid for (2.24). Alternatively, one may need to use the Wigner transform [20] to study the semiclassical limit of
(2.24) when λ 6= 0.

3. Numerical methods

In this section, we present an efficient and accurate numerical method to solve the CGPEs (2.9)–(2.10) for the dynamics of
rotating two-component BEC. The key ideas are to apply a time-splitting technique for decoupling the nonlinearity and to adopt the
polar coordinate in 2D, and resp. cylindrical coordinate in 3D, such that the angular momentum rotation term becomes a term with
constant coefficients. Due to the trapping potentials V1(x) and V2(x) given by (2.11), the solution (ψ1, ψ2) of (2.9)–(2.10) decays
to zero exponentially fast when |x| → ∞. Thus in practical computation, we truncate the problem (2.9)–(2.10) into a bounded
computational domain Ωx with homogeneous Dirichlet boundary conditions:

i
∂ψ j

∂t
=

[
−

1
2
∇

2
+ V j (x)− Ω L z +

2∑
l=1

β jl |ψl |
2

]
ψ j − λψk j , x ∈ Ωx, t ≥ 0, (3.1)

ψ j (x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0, (3.2)

ψ j (x, 0) = ψ0
j (x), x ∈ Ωx, with

∫
Ωx

(
|ψ0

1 (x)|
2
+ |ψ0

2 (x)|
2
)

dx = 1. (3.3)

In practical computation, we use sufficiently large domain so as to make sure the homogeneous Dirichlet boundary condition
(3.2) does not introduce aliasing error. Usually, the radius of the bounded computational domain depends on the problem. In general,
it should be larger than the “Thomas–Fermi radius”. Of course, the use of more sophisticated radiation boundary conditions is an
interesting topic that remains to be examined in the future.

3.1. Time-splitting

We choose a time step 1t > 0. For n = 0, 1, . . ., from time t = tn = n1t to t = tn+1 = tn +1t , the CGPEs (3.1) are solved in
three splitting steps [4,6]. One first solves

i
∂ψ j

∂t
= −

1
2
∇

2ψ j − Ω L zψ j , j = 1, 2 (3.4)
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for the time step of length 1t , followed by solving

i
∂ψ j

∂t
= V j (x)ψ j +

2∑
l=1

β jl |ψl |
2ψ j , j = 1, 2 (3.5)

for the same time step, and then by solving

i
∂ψ j

∂t
= −λψk j , j = 1, 2 (3.6)

again for the same time step. For time t ∈ [tn, tn+1], the ODE system (3.5) leaves |ψ1(x, t)| and |ψ2(x, t)| invariant in t [4,6], and
thus it can be integrated exactly to obtain [4,5], for j = 1, 2 and t ∈ [tn, tn+1]

ψ j (x, t) = ψ j (x, tn) exp

[
−i

(
V j (x)+

2∑
l=1

β jl |ψl(x, tn)|2
)
(t − tn)

]
. (3.7)

For the ODE system (3.6), we can rewrite it as

i
∂Ψ
∂t

= −λAΨ , with A =

(
0 1
1 0

)
and Ψ =

(
ψ1
ψ2

)
. (3.8)

Since A is a real and symmetric matrix, it can be diagonalized and integrated exactly, and then we obtain [4], for t ∈ [tn, tn+1]

Ψ(x, t) = eiλA(t−tn)Ψ(x, tn) =

(
cos (λ(t − tn)) i sin (λ(t − tn))
i sin (λ(t − tn)) cos (λ(t − tn))

)
Ψ(x, tn). (3.9)

The Eqs. (3.1) are now decoupled and thus we need only show how to discretize the following single GPE in a rotational frame:

i
∂ψ

∂t
= −

1
2
∇

2ψ − Ω L zψ, x ∈ Ωx, tn ≤ t ≤ tn+1. (3.10)

Various algorithms were introduced in the literature for discretizing the GPE (3.10) [5,44,7]. For the convenience of the reader, here
we review a method which discretizes the Eq. (3.10) in the θ -direction by the Fourier-pseudospectral method, in the r -direction by
the fourth-order finite difference method, in the z-direction by the sine-pseudospectral method and in time by the Crank–Nicolson
(C–N) scheme [5]. In order to do so, we choose the bounded computational domain Ωx = {(x, y), r =

√
x2 + y2 < R} in 2D, and

resp. Ωx = {(x, y, z), r =

√
x2 + y2 < R, a < z < b} in 3D with R, |a|, and b sufficiently larger than the Thomas–Fermi radii.

3.2. Discretization in 2D

When d = 2, we use the polar coordinate (r, θ) and assume that

ψ(r, θ, t) =

L/2−1∑
l=−L/2

ψ̂l(r, t)eilθ , (3.11)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the lth mode. Plugging (3.11) into (3.10) and noticing
the orthogonality of the Fourier functions, we obtain, for −

L
2 ≤ l ≤

L
2 − 1 and 0 < r < R:

i
∂ψ̂l(r, t)
∂t

= −
1
2r

∂

∂r

(
r
∂ψ̂l(r, t)
∂r

)
+

(
l2

2r2 − lΩ
)
ψ̂l(r, t), (3.12)

ψ̂l(R, t) = 0, (for all l), ψ̂l(0, t) = 0, (for l 6= 0). (3.13)

In order to discretize (3.12)–(3.13) in space by the finite difference method, we choose an integer M > 0, a mesh size
1r = 2R/(2M + 1) and grid points rm = (m − 1/2)1r for 1 ≤ m ≤ M + 1. Let ψ̂l,m(t) be the approximation of ψ̂l(rm, t). Then
a fourth-order finite difference discretization for (3.12)– (3.13) with t ∈ [tn, tn+1] reads [5,28]

i
dψ̂l,m(t)

dt
=

(
l2

2r2
m

− lΩ
)
ψ̂l,m(t)−

−ψ̂l,m+2(t)+ 16ψ̂l,m+1(t)− 30ψ̂l,m(t)+ 16ψ̂l,m−1(t)− ψ̂l,m−2(t)
24(1r)2

−
−ψ̂l,m+2(t)+ 8ψ̂l,m+1(t)− 8ψ̂l,m−1(t)+ ψ̂l,m−2(t)

24rm1r
, 1 ≤ m ≤ M, (3.14)
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i
dψ̂l,M+1(t)

dt
=

(
l2

2r2
M+1

− lΩ

)
ψ̂l,M+1(t)−

11ψ̂l,M+2(t)− 20ψ̂l,M+1(t)+ 6ψ̂l,M (t)+ 4ψ̂l,M−1(t)− ψ̂l,M−2(t)

24 (1r)2

−
3ψ̂l,M+2(t)+ 10ψ̂l,M+1(t)− 18ψ̂l,M (t)+ 6ψ̂l,M−1(t)− ψ̂l,M−2(t)

24rM+11r
, (3.15)

ψ̂l,−1(t) = (−1)lψ̂l,2(t), ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,M+1(t) = 0. (3.16)

Finally, the ODE system (3.14)–(3.16) is discretized by the standard C–N scheme in time. Although an implicit time
discretization is applied for (3.14)–(3.16), the 1D nature of the problem makes the coefficient matrix for the linear system
pentadiagonal, which can be solved very efficiently, i.e. via O(M) arithmetic operations.

In practice, we always use the second-order Strang splitting [43]; i.e. from time t = tn to t = tn+1 (i) evolve (3.5) for half time
step 1t/2 with the initial data given at t = tn ; (ii) evolve (3.6) for half time step 1t/2 with the new data; (iii) evolve (3.4) for
time step 1t with the new data obtained in (ii); (iv) evolve (3.6) for half time step 1t/2 with the new data obtained in (iii), and (v)
evolve (3.5) for half time step 1t/2 with the newer data.

For the discretization considered here, the total memory requirement is O(M L) and the total computational cost per time step
is O(M L ln L). The method is time reversible and time transverse invariant when the original CGPEs (2.9) does. Furthermore,
following the similar proofs in [4,6,5], the total density can be shown to be conserved in the discretized level.

Remark 3.1. When λ = 0 in (3.1), in the above second-order Strang splitting for the problem, the step (ii) and (iv) can be removed,
and then the method will consist of three steps. In this case, the density of each component is also conserved in the discretized level.
In addition, a second-order finite difference discretization for (3.12)–(3.13) was proposed in [5].

3.3. Discretization in 3D

When d = 3, we use the cylindrical coordinate (r, θ, z) and assume that

ψ(r, θ, z, t) =

L/2−1∑
l=−L/2

K−1∑
k=1

ψ̂l,k(r, t)eilθ sin(µk(z − a)), (3.17)

where L and K are two even positive integers, µk =
πk

b−a (k = 1, . . . , K − 1) and ψ̂l,k(r, t) is the Fourier-sine coefficient for
the (l, k)th mode. Plugging (3.17) into (3.10) with d = 3, noticing the orthogonality of the Fourier-sine modes, we obtain, for
−

L
2 ≤ l ≤

L
2 − 1, 1 ≤ k ≤ K − 1 and 0 < r < R, that

i
∂ψ̂l,k(r, t)

∂t
= −

1
2r

∂

∂r

(
r
∂ψ̂l,k(r, t)

∂r

)
+

(
l2

2r2 +
µ2

k
2

− lΩ

)
ψ̂l,k(r, t), (3.18)

with essential boundary conditions

ψ̂l,k(R, t) = 0 (for all l), ψ̂l,k(0, t) = 0 (for l 6= 0). (3.19)

The discretization of (3.18)–(3.19) is similar as that for (3.12)–(3.13) and thus omitted here.
For the algorithm in 3D, the total memory requirement is O(M L K ) and the total computational cost per time step is

O(M L K ln(L K )).

3.4. Dynamics of vortex lattices

To demonstrate the efficiency and accuracy of our method, we apply it to study the dynamics of quantized vortex lattices in
rotating two-component BEC. In our computations, we take d = 2 and R = 12 for Ωx in (3.1)–(3.3), and choose mesh sizes
1r = 0.005, 1θ = π/128 and time step 1t = 0.0001.

The parameters are chosen as Ω = 0.9, β11 = β22 = 200 and β12 = 160 in (2.9), which corresponds to an experimental
setup with the following parameters: h̄ = 1.054 × 10−34

[J s], m = 1.443 × 10−25
[kg], ωmin = 2π × 200 [Hz],

a11 = a22 = 5.5 × 10−9
[m], a12 = 4.4 × 10−9

[m], Ω̃ = 2π × 180 [Hz] and N 0
1 = N 0

2 = 1100 [22,25,26]. The initial
data in (2.10) is taken as the stationary square vortex lattices [26], which are computed by using the above parameters as well as
λ = 0 and γx, j = γy, j = 1 ( j = 1, 2) in (2.9). Figs. 1 and 2 depict the contour plots of the wave functions |ψ1|

2 and |ψ2|
2 at

different times for two cases: (i) adding an external driving field, i.e. at t = 0, changing λ in (2.9) from 0 to 1, and (ii) changing the
trapping frequencies, i.e. at t = 0, setting γx,1 = γy,1 = 0.9 and γx,2 = γy,2 = 1.1, respectively.

From Figs. 1 and 2, we can see that initially there are two square lattices with about 16 and 21 quantized vortices in the first and
second components, respectively (cf. Figs. 1 and 2 leftmost column). When we add an external driving field at t = 0, the two vortex
lattices rotate due to the angular momentum term and shift their condensate shapes almost periodically due to the external driving
field (cf. Fig. 1). On the other hand, if we change the trapping frequencies at time t = 0, the two vortex lattices rotate again due
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Fig. 1. Contour plots of the wave functions |ψ1|
2 (top row (a)) and |ψ2|

2 (bottom row (b)) at different times for case (i).

Fig. 2. Contour plots of the wave functions |ψ1|
2 (top row (a)) and |ψ2|

2 (bottom row (b)) at different times for case (ii).

to the angular momentum term but the condensate shape of each component keeps almost unchanged and the number of vortices in
each lattice does not change during the dynamics (cf. Fig. 2). Of course, the lattice patterns are changed due to the inter-component
interactions (cf. Figs. 1 and 2). The numerical results demonstrate the efficiency and high-resolution of our numerical method.

4. Dynamics of rotating two-component BEC

In this section, we study the dynamics of rotating two-component BEC. From an analytical perspective, we prove the
conservation of the angular momentum expectation in symmetric traps, derive second-order ordinary differential equations (ODEs)
for time evolution of the density of each component and condensate widths, and present some dynamic laws for a stationary state
with its center shifted from the trap center in rotating two-component BEC. In addition, we also apply our numerical method to
verify these analytical results numerically.

4.1. Dynamics of the density of each component

As we know, when λ = 0 in (2.9), the density of each component is conserved as specified in (2.15). While when λ 6= 0, we
have the following lemmas for the dynamics of the density of each component:

Lemma 4.1. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of the CGPEs (2.9)–(2.10); then we have, for j = 1, 2

N ′′

j (t) = −2λ2 [2N j (t)− 1
]
+ F j (t), t ≥ 0, (4.1)
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with initial conditions

N j (0) = N (0)
j =

∫
Rd

|ψ0
j (x)|

2dx =
N 0

j

N
, (4.2)

N ′

j (0) = N (1)
j = 2λ

∫
Rd

Im
[
ψ0

j (x)
(
ψ0

k j
(x)
)∗]

dx; (4.3)

where for t ≥ 0,

F j (t) = λ

∫
Rd

(
ψ∗

jψk j + ψ jψ
∗

k j

) [
Vk j (x)− V j (x)− (β j j − βk j j )|ψ j |

2
+ (βk j k j − β jk j )|ψk j |

2
]

dx, t ≥ 0.

Proof. Differentiating (2.13) with respect to t , noting (2.9) and integrating by parts, we obtain for j = 1, 2

N ′

j (t) =
d
dt

‖ψ j (·, t)‖2
=

d
dt

∫
Rd

|ψ j (x, t)|2dx =

∫
Rd

(
ψ j∂tψ

∗

j + ψ∗

j ∂tψ j

)
dx

= i
∫
Rd

[
ψ j

(
−

1
2
∇

2ψ∗

j + V j (x)ψ∗

j − Ω L∗
zψ

∗

j + ψ∗

j

2∑
l=1

β jl |ψl |
2
− λψ∗

k j

)

− ψ∗

j

(
−

1
2
∇

2ψ j + V j (x)ψ j − Ω L zψ j + ψ j

2∑
l=1

β jl |ψl |
2
− λψk j

)]
dx

= i
∫
Rd

[(
1
2
|∇ψ j |

2
+ V j (x)|ψ j |

2
− ψ∗

j Ω L zψ j + |ψ j |
2

2∑
l=1

β jl |ψl |
2

)

−

(
1
2
|∇ψ j |

2
+ V j (x)|ψ j |

2
− ψ∗

j Ω L zψ j + |ψ j |
2

2∑
l=1

β jl |ψl |
2

)
− λψ jψ

∗

k j
+ λψ∗

jψk j

]
dx

= iλ
∫
Rd

(
ψ∗

jψk j − ψ jψ
∗

k j

)
dx = 2λRe

[∫
Rd

iψ∗

jψk j dx
]
, t ≥ 0. (4.4)

Similarly, differentiating (4.4) with respect to t , noting (2.9) and integrating by parts, we get

N ′′

j (t) = 2λ
d
dt

Re
[∫
Rd

iψ∗

jψk j dx
]

= 2λRe
[∫
Rd

(
iψk j ∂tψ

∗

j + iψ∗

j ∂tψk j

)
dx
]

= 2λRe

[∫
Rd

[
ψk j

(
1
2
∇

2ψ∗

j − V j (x)ψ∗

j + Ω L∗
zψ

∗

j + λψ∗

k j
− ψ∗

j

2∑
l=1

β jl |ψl |
2

)

+ ψ∗

j

(
−

1
2
∇

2ψk j + Vk j (x)ψk j − Ω L zψk j − λψ j + ψk j

2∑
l=1

βk j l |ψl |
2

)]
dx

]

= λ

∫
Rd

[(
ψ∗

jψk j + ψ jψ
∗

k j

) (
Vk j (x)− V j (x)− (β j j − βk j j )|ψ j |

2

+ (βk j k j − β jk j )|ψk j |
2
)

− 2λ
(
|ψ j |

2
− |ψk j |

2
)]

dx, t ≥ 0. (4.5)

Thus the Eq. (4.1) is a combination of (4.5) and (2.12). In addition, the initial conditions (4.2) and (4.3) can be obtained from
(2.13) and (4.4) by setting t = 0, respectively. �

Lemma 4.2. (i) If the external trapping potentials are the same and the inter/intra-component s-wave scattering lengths in (2.9)
are the same, i.e.

V1(x) = V2(x) x ∈ Rd , and β11 = β12 = β22 (i.e. a11 = a12 = a22), (4.6)

for any initial data (ψ0
1 (x), ψ

0
2 (x)), we have, for t ≥ 0,

N j (t) =
∥∥ψ j (·, t)

∥∥2
=

(
N (0)

j −
1
2

)
cos(2λt)+

N (1)
j

2λ
sin(2λt)+

1
2
, j = 1, 2. (4.7)

Thus in this case, the density of each component is a periodic function with period T = π/|λ| depending only on λ.
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Fig. 3. Time evolution of the densities N1(t) = ‖ψ1(·, t)‖2 (dash line), N2(t) = ‖ψ2(·, t)‖2 (dot line) and N (t) = N1(t) + N2(t) (solid line) for two sets of
interaction parameters: (a) β11 = β12 = β22; (b) β11 6= β12 6= β22.

(ii) For all other cases, we have, for any t ≥ 0,

N j (t) =

(
N (0)

j −
1
2

)
cos(2λt)+

N (1)
j

2λ
sin(2λt)+

1
2

+ f j (t), j = 1, 2, (4.8)

where f j (t) is the solution of the following second-order ODE:

f ′′

j (t)+ 4λ2 f j (t) = F j (t), f j (0) = f ′

j (0) = 0. (4.9)

Proof. (i) Under the assumptions in (i), the ODE (4.1) collapses to

N ′′

j (t) = −2λ2 (2N j (t)− 1
)
, t ≥ 0, j = 1, 2. (4.10)

Thus, (4.7) is the unique solution of the second-order ODE (4.10) with the initial data (4.2) and (4.3).
(ii) From the results in (i) and using the superposition principle, we get that (4.8) is the unique solution of the second-order ODE

(4.1) with the initial data (4.2) and (4.3). �

To verify the dynamics of the densities N j (t) = ‖ψ j (·, t)‖2 ( j = 1, 2) in (4.7) and (4.8), we take λ = 1, Ω = 0.6,
γx, j = γy, j = 1 ( j = 1, 2) in (2.9). The initial data in (2.10) is chosen as

ψ0
1 (x) =

x + iy
√
π

exp
(

−
x2

+ y2

2

)
, ψ0

2 (x) ≡ 0, x ∈ R2. (4.11)

Fig. 3 shows the time evolution of the densities for two sets of interaction parameters: (i) β11 = β12 = β22 = 500 (i.e. a11:a12:a22 =

1:1:1); (ii) β11 = 500, β12 = 300 and β22 = 400 (i.e. a11:a12:a22 = 1:0.6:0.8).
From Fig. 3, we can see that (i) the total density N (t) is conserved in the discrete level for both cases; (ii) the densities of both

components, i.e. N1(t) and N2(t), are periodic functions of period T = π/λ = π when β11 = β12 = β22 (cf. Fig. 3(a)); otherwise
when β11 6= β12 6= β22 they are periodic functions of period T = π with a perturbation (cf. Fig. 3(b)), which confirms the analytical
results in (4.7) and (4.8).

4.2. Conservation of angular momentum expectation

As a measure of vortex flux, we define the total angular momentum expectation:

〈L z〉(t) = 〈L z〉1(t)+ 〈L z〉2(t), t ≥ 0, (4.12)

where for j = 1, 2

〈L z〉 j (t) =

∫
Rd
ψ∗

j (x, t)L zψ j (x, t)dx = i
∫
Rd
ψ∗

j (x, t)(y∂x − x∂y)ψ j (x, t)dx. (4.13)

In fact, 〈L̃ z〉 j (t) :=
〈L z〉 j (t)

N j (t)
is the angular momentum expectation of the j th ( j = 1, 2) component. Typically when λ = 0, as

the density of each component is conserved, then 〈L̃ z〉 j (t) =
〈L z〉 j (t)

N j (0)
. For the dynamics of the angular momentum expectations in

rotating two-component BEC, we have the following lemmas.
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Lemma 4.3. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of the CGPEs (2.9)–(2.10); then we have,

d〈L z〉 j (t)
dt

=

(
γ 2

x, j − γ 2
y, j

) ∫
Rd

xy|ψ j |
2dx − β jk j

∫
Rd

|ψ j |
2(x∂y − y∂x )|ψk j |

2dx

− 2λRe
[∫
Rd
ψ∗

k j
(x∂y − y∂x )ψ j dx

]
, t ≥ 0, j = 1, 2. (4.14)

Proof. Differentiating (4.13) with respect to t , noting (2.7) and (2.9), and integrating by parts, we obtain for j = 1, 2

d〈L z〉 j (t)
dt

=

∫
Rd

[
∂tψ

∗

j L zψ j + ψ∗

j L z∂tψ j

]
dx =

∫
Rd

[
−i∂tψ

∗

j L̂ zψ j + i∂tψ j L̂ zψ
∗

j

]
dx

=

∫
Rd

[
L̂ zψ j

(
−

1
2
∇

2ψ∗

j + V j (x)ψ∗

j − Ω L∗
zψ

∗

j + ψ∗

j

2∑
l=1

β jl |ψl |
2
− λψ∗

k j

)

+ L̂ zψ
∗

j

(
−

1
2
∇

2ψ j + V j (x)ψ j − Ω L zψ j + ψ j

2∑
l=1

β jl |ψl |
2
− λψk j

)]
dx

=

∫
Rd

[
−

1
2

(
L̂ zψ j∇

2ψ∗

j + L̂ zψ
∗

j ∇
2ψ j

)
+ V j (x)

(
ψ∗

j L̂ zψ j + ψ j L̂ zψ
∗

j

)
+

(
ψ∗

j L̂ zψ j + ψ j L̂ zψ
∗

j

) (
β j j |ψ j |

2
+ β jk j |ψk j |

2
)

− λ
(
ψ∗

k j
L̂ zψ j + ψk j L̂ zψ

∗

j

) ]
dx

=

∫
Rd

[(
γ 2

x, j − γ 2
y, j

)
xy|ψ j |

2
− β jk j |ψ j |

2 L̂ z |ψk j |
2
− 2λRe

(
ψ∗

k j
L̂ zψ j

)]
dx. (4.15)

Then the equality (4.14) is a combination of (2.7) and (4.15). �

Lemma 4.4. Suppose the traps in (2.11) are radially symmetric in 2D, and resp. cylindrically symmetric in 3D, i.e. γx,1 = γy,1
and γx,2 = γy,2.
(i) For any given initial data (ψ0

1 (x), ψ
0
2 (x)) in (2.10), the total angular momentum expectation is conserved, i.e.

〈L z〉(t) ≡ 〈L z〉(0) =

2∑
j=1

∫
Rd

(
ψ0

j (x)
)∗

L zψ
0
j (x)dx, t ≥ 0. (4.16)

In addition, the energy for non-rotating part is also conserved, i.e.

En(ψ1, ψ2) :=

∫
Rd

[
2∑

j=1

(
1
2
|∇ψ j |

2
+ V j (x)|ψ j |

2
+

2∑
l=1

β jl

2
|ψ j |

2
|ψl |

2

)
− 2λRe(ψ∗

1ψ2)

]
dx ≡ En

(
ψ0

1 , ψ
0
2

)
,

t ≥ 0. (4.17)

(ii) Suppose the initial data (ψ0
1 (x), ψ

0
2 (x)) in (2.10) is chosen as

ψ0
j (x) = f j (r)eim j θ with m j ∈ Z and f j (0) = 0 when m j 6= 0, (4.18)

in 2D, and resp. in 3D,

ψ0
j (x) = f j (r, z)eim j θ with m j ∈ Z and f j (0, z) = 0 when m j 6= 0. (4.19)

If λ = 0, then 〈L̃ z〉1(t) and 〈L̃ z〉2(t) are conserved, i.e.

〈L̃ z〉 j (t) ≡ 〈L̃ z〉 j (0) =
1

N j (0)

∫
Rd

(
ψ0

j (x)
)∗

L zψ
0
j (x)dx, t ≥ 0, j = 1, 2. (4.20)

On the other hand, if m1 = m2 := m in (4.18) for 2D, and resp. in (4.19) for 3D, then for any given λ, 〈L̃ z〉1(t) and 〈L̃ z〉2(t) are
conserved, i.e.

〈L̃ z〉 j (t) ≡ 〈L̃ z〉 j (0) = m, t ≥ 0, j = 1, 2. (4.21)



Y. Zhang et al. / Physica D 234 (2007) 49–69 61

Proof. (i) Summing (4.14) for j = 1, 2, noting (4.12) and (2.3), and integrating by parts, we have

d〈L z〉(t)
dt

=

2∑
j=1

(
γ 2

x, j − γ 2
y, j

) ∫
Rd

xy|ψ j |
2dx − 2λRe

[∫
Rd

(
ψ∗

2 L̂ zψ1 + ψ∗

1 L̂ zψ2
)

dx
]

−β12

∫
Rd

(
|ψ1|

2 L̂ z |ψ2|
2
+ |ψ2|

2 L̂ z |ψ1|
2
)

dx

=

2∑
j=1

(
γ 2

x, j − γ 2
y, j

) ∫
Rd

xy|ψ j |
2dx, t ≥ 0. (4.22)

Consequently, if γx,1 = γy,1 and γx,2 = γy,2, (4.22) reduces to the first-order ODE:

d〈L z〉(t)
dt

= 0, t ≥ 0. (4.23)

We thus get the conservation of the total angular momentum expectation 〈L z〉 immediately.
Noting E(ψ1, ψ2) = En(ψ1, ψ2)− ΩRe(〈L z〉) and Re(〈L z〉) = 〈L z〉, we get (4.17) from (2.14) and (4.16).
(ii) When the initial data (ψ0

1 (x), ψ
0
2 (x)) in (2.10) satisfies (4.18) for 2D, and resp. (4.19) for 3D, due to symmetry, when λ = 0

or m1 = m2, the solution (ψ1(x, t), ψ2(x, t)) of (2.9)–(2.10) satisfies

ψ j (x, t) = g j (r, t)eim j θ with g j (r, 0) = f j (r), (4.24)

in 2D, and resp. in 3D,

ψ j (x, t) = g j (r, z, t)eim j θ with g j (r, z, 0) = f j (r, z). (4.25)

Plugging (4.24) or (4.25) into (4.14) and noting λ = 0, we obtain for j = 1, 2

d〈L z〉 j (t)
dt

= −β jk j

∫
Rd

|ψ j |
2∂θ |ψk j |

2dx = −β jk j

∫
Rd

|g j |
2∂θ |gk j |

2dx

= 0, t ≥ 0. (4.26)

We thus get the conservation of 〈L̃ z〉 j (t) ( j = 1, 2) from (4.26) and (2.15) immediately. On the other hand, when m1 = m2 := m
in (4.24) for 2D, and resp. (4.25) for 3D, noting (2.7), we have, for j = 1, 2

〈L̃ z〉 j (t) =
〈L z〉 j (t)

N j (t)
=

∫
Rd ψ

∗

j L zψ j dx∫
Rd |ψ j |2dx

=
−i
∫
Rd ψ

∗

j ∂θψ j dx∫
Rd |ψ j |2dx

=
−i
∫
Rd g∗

j e−imθ (im)g j eimθdx∫
Rd |g j |2dx

= m

∫
Rd |g j |

2dx∫
Rd |g j |2dx

≡ m, t ≥ 0. (4.27)

This immediately implies the conservation laws in (4.21). �

To verify the conservation of the angular momentum expectation, we take Ω = 0.6, λ = 1, β11 = 400, β12 = 388 and β22 = 376
in (2.9). The initial data in (2.10) is chosen as

ψ0
j (x) =

x + iy
√

2π
exp

(
−

x2
+ y2

2

)
, x ∈ R2, j = 1, 2. (4.28)

Fig. 4 shows time evolution of the angular momentum expectations for two sets of parameters: (i) γx,1 = γy,1 = γx,2 = γy,2 = 1
which corresponds to a symmetric trap; (ii) γx,1 = γy,1 = 1, γx,2 = 1.05, γy,2 = 0.9 which corresponds to an asymmetric trap.

From Fig. 4, we can see that (i) the total angular momentum expectation 〈L z〉(t) is conserved when both of the two external
trapping potentials are symmetric; furthermore, if the initial data satisfies (4.18), the quantities 〈L̃ z〉1(t) and 〈L̃ z〉2(t) are also
conserved when m1 = m2 (cf. Fig. 4(a)); (ii) if one or two of the external trapping potentials are asymmetric, the angular momentum
expectations 〈L z〉(t), 〈L̃ z〉1(t) and 〈L̃ z〉2(t) are not conserved (cf. Fig. 4(b)); (iii) all the above numerical results confirm the
analytical result (4.16), (4.20) and (4.21).

4.3. Dynamics of condensate widths

Another important quantity characterizing the dynamics of a rotating two-component BEC is the condensate width defined as

σα(t) =

√
δα(t) =

√
δα,1(t)+ δα,2(t), α = x, y or z, (4.29)



62 Y. Zhang et al. / Physica D 234 (2007) 49–69

Fig. 4. Time evolution of the angular momentum expectations 〈Lz〉(t) (solid line), 〈L̃z〉1(t) (‘-*’) and 〈L̃z〉2(t) (‘-o’): (a) for case (i); (b) for case (ii).

where

δα, j (t) = 〈α2
〉 j (t) =

∫
Rd
α2

|ψ j (x, t)|2dx, t ≥ 0, j = 1, 2. (4.30)

For the dynamics of condensate widths, we have the following lemmas.

Lemma 4.5. Suppose (ψ1(x, t), ψ2(x, t)) is the solution of problem (2.9)–(2.10); then we have

d2δα(t)
dt2 =

∫
Rd

2∑
j=1

[
(∂yα − ∂xα)

(
4iΩψ∗

j (x∂y + y∂x )ψ j + 2Ω2(x2
− y2)|ψ j |

2
)

+ 2|∂αψ j |
2
− 2α|ψ j |

2∂α(V j (x))+ |ψ j |
2

2∑
l=1

β jl |ψl |
2

]
dx, t ≥ 0, (4.31)

δα(0) = δ(0)α =

∫
Rd
α2
(
|ψ0

1 (x)|
2
+ |ψ0

2 (x)|
2
)

dx, α = x, y, z, (4.32)

δ′α(0) = δ(1)α = 2
2∑

j=1

∫
Rd
α
[
−Ω |ψ0

j |
2 (x∂y − y∂x

)
α + Im

(
(ψ0

j )
∗∂αψ

0
j

)]
dx. (4.33)

Proof. Differentiating (4.30) with respect to t , applying (2.9) and integration by parts, we obtain

dδα, j (t)
dt

=
d
dt

∫
Rd
α2

|ψ j (x, t)|2dx =

∫
Rd
α2
(
ψ j∂tψ

∗

j + ψ∗

j ∂tψ j

)
dx

=

∫
Rd

[
i
2
α2
(
ψ∗

j ∇
2ψ j − ψ j∇

2ψ∗

j

)
+ Ωα2 (x∂y − y∂x

)
|ψ j |

2
+ iλα2

(
ψ∗

jψk j − ψ jψ
∗

k j

)]
dx

=

∫
Rd

[
iα
(
ψ j∂αψ

∗

j − ψ∗

j ∂αψ j

)
− 2Ωα|ψ j |

2 (x∂y − y∂x
)
α + iλα2

(
ψ∗

jψk j − ψ jψ
∗

k j

)]
dx, j = 1, 2. (4.34)

Differentiating the above equation again, applying (2.9) and integrating by parts, we get

d2δα, j (t)
dt2 =

∫
Rd

[
2iα

(
∂tψ j∂αψ

∗

j − ∂tψ
∗

j ∂αψ j

)
+ i

(
ψ∗

j ∂tψ j − ψ j∂tψ
∗

j

)
− 2Ωα

(
ψ j∂tψ

∗

j + ψ∗

j ∂tψ j

) (
x∂y − y∂x

)
α + iλα2

(
∂tψ

∗

jψk j − ∂tψ jψ
∗

k j
+ ψ∗

j ∂tψk j − ψ j∂tψ
∗

k j

)]
dx

:= I + I I + I I I + I V, j = 1, 2. (4.35)

Plugging (2.9) into (4.35), noting (2.3) and integrating by parts, we obtain
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I :=

∫
Rd

2α
[
(i∂tψ j )∂αψ

∗

j + (−i∂tψ
∗

j )∂αψ j

]
dx

=

∫
Rd

[
− α

(
∂αψ

∗

j ∇
2ψ j + ∂αψ j∇

2ψ∗

j

)
− 2Ωα

(
∂αψ

∗

j L zψ j + ∂αψ j L∗
zψ

∗

j

)
+ 2α

(
V j (x)+

2∑
l=1

β jl |ψl |
2

)(
ψ j∂αψ

∗

j + ψ∗

j ∂αψ j

)
− 4λαRe

(
ψk j ∂αψ

∗

j

)]
dx

=

∫
Rd

[
−|∇ψ j |

2
+ 2|∂αψ j |

2
− 2V j (x)|ψ j |

2
− 2α|ψ j |

2∂α
(
V j (x)

)
− β j j |ψ j |

4

+ 2β jk jα|ψk j |
2∂α|ψ j |

2
− 2λα

(
ψk j ∂αψ

∗

j + ψ∗

k j
∂αψ j

)
+ 2Ωψ∗

j L zψ j

+ 2iΩ
(
∂yα − ∂xα

)
ψ∗

j (x∂y + y∂x )ψ j

]
dx.

I I :=

∫
Rd

[
ψ∗

j (i∂tψ j )+ (−i∂tψ
∗

j )ψ j

]
dx

=

∫
Rd

[
−

1
2

(
ψ∗

j ∇
2ψ j + ψ j∇

2ψ∗

j

)
+ 2V j (x)|ψ j |

2
− Ω

(
ψ∗

j L zψ j + ψ j L∗
zψ

∗

j

)
− λ

(
ψ∗

jψk j + ψ jψ
∗

k j

)
+ 2|ψ j |

2
2∑

l=1

β jl |ψl |
2

]
dx

= 2
∫
Rd

[
1
2
|∇ψ j |

2
+ V j (x)|ψ j |

2
− Ωψ∗

j L zψ j +

2∑
l=1

β jl |ψ j |
2
|ψl |

2
− λRe

(
ψ∗

jψk j

)]
dx.

I I I := −2Ω
∫
Rd
αL zα

[
ψ∗

j (i∂tψ j )− (−i∂tψ
∗

j )ψ j

]
dx

= 2Ω
∫
Rd
αL zα

[
−

1
2

(
ψ j∇

2ψ∗

j − ψ∗

j ∇
2ψ j

)
+ Ω

(
ψ j L zψ

∗

j − ψ∗

j L∗
zψ j

)
+ λ

(
ψ jψ

∗

k j
− ψ∗

jψk j

)]
dx

= 2Ω
∫
Rd

(
∂yα − ∂xα

) [
iψ∗

j (x∂y + y∂x )ψ j + Ω |ψ j |
2
(

x2
− y2

)
− iλxy

(
ψ∗

jψk j − ψ jψ
∗

k j

)]
dx.

I V := iλ
∫
Rd
α2
(
∂tψ

∗

jψk j − ∂tψ jψ
∗

k j
+ ψ∗

j ∂tψk j − ψ j∂tψ
∗

k j

)
dx.

Plugging I–IV into (4.35), we have, for j = 1, 2

d2δα, j (t)
dt2 =

∫
Rd

[
(∂yα − ∂xα)

(
2Ω2(x2

− y2)|ψ j |
2
+ 4iΩψ∗

j (x∂y + y∂x )ψ j

)
+ 2|∂αψ j |

2
− 2α|ψ j |

2∂α(V j (x))+ β j j |ψ j |
4
− 2β jk jα|ψ j |

2∂α|ψk j |
2
]

dx

− 2λ
∫
Rd

[
Re
(
ψ∗

jψk j

)
+ 2αRe

(
ψk j ∂αψ

∗

j

)
− Ωxy(∂yα − ∂xα)Re

(
ψ∗

jψk j

)]
dx

+ iλ
∫
Rd
α2
(
∂tψ

∗

jψk j − ∂tψ jψ
∗

k j
+ ψ∗

j ∂tψk j − ψ j∂tψ
∗

k j

)
dx. (4.36)

Thus the equality (4.31) can be obtained by summing (4.36) for j = 1, 2 and noting (2.3). In addition, (4.32) and (4.33) can be
obtained by summing (4.30) and (4.34) with t = 0 for j = 1, 2, respectively. �

Lemma 4.6. In 2D with radially symmetric traps, i.e., d = 2 and γx,1 = γy,1 = γx,2 = γy,2 := γr in (2.9), we have
(i) If there is no external driving field, i.e. λ = 0 in (2.9), for any given initial data (ψ0

1 (x), ψ
0
2 (x)) in (2.10), we have, for t ≥ 0,

δr (t) =
E(ψ0

1 , ψ
0
2 )+ Ω〈L z〉(0)
γ 2

r
[1 − cos(2γr t)] + δ(0)r cos(2γr t)+

δ
(1)
r

2γr
sin(2γr t), (4.37)

where δr (t) = δx (t) + δy(t), δ
(0)
r := δx (0) + δy(0) and δ(1)r := δ′x (0) + δ′y(0). Furthermore, when the initial data (ψ0

1 (x), ψ
0
2 (x))

in (2.10) satisfies (4.18), we have, for t ≥ 0,

δx (t) = δy(t) =
1
2
δr (t)

=
E
(
ψ0

1 , ψ
0
2
)
+ Ω〈L z〉(0)

2γ 2
r

[1 − cos(2γr t)] + δ(0)x cos(2γr t)+
δ
(1)
x

2γr
sin(2γr t). (4.38)
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Thus in this case, the condensate widths σr (t), σx (t) and σy(t) are periodic functions with frequency doubling the trapping
frequency.
(ii) If there is an external driving field, i.e. λ 6= 0 in (2.9), we have

δr (t) =
E(ψ0

1 , ψ
0
2 )+ Ω〈L z〉(0)
γ 2

r
+

(
δ(0)r −

E(ψ0
1 , ψ

0
2 )+ Ω〈L z〉(0)
γ 2

r

)
cos(2γr t)+

δ
(1)
r

2γr
sin(2γr t)+ gr (t), t ≥ 0, (4.39)

where gr (t) is the solution of the following second-order ODE:

d2gr (t)
dt2 + 4γ 2

r gr (t) = Gr (t), gr (0) = g′
r (0) = 0, (4.40)

with

Gr (t) = 8λ
∫
Rd

Re
(
ψ∗

1ψ2
)

dx.

Proof. Summing (4.31) with d = 2 and γx,1 = γy,1 = γx,2 = γy,2 := γr for α = x and y, noting (2.14) and (4.16), we have the
following ODE for δr (t):

d2δr (t)
dt2 =

∫
Rd

2∑
j=1

[
2|∇ψ j |

2
− 2|ψ j |

2 (x∂x (V j (x))+ y∂y(V j (x))
)
+ 2|ψ j |

2
2∑

l=1

β jl |ψl |
2

]
dx

= −

∫
Rd

[
2∑

j=1

(
8V j (x)|ψ j |

2
− 4Ωψ∗

j L zψ j

)
− 4λ(ψ∗

1ψ2 + ψ1ψ
∗

2 )

]
dx + 4E(ψ1(·, t), ψ2(·, t))

= −4γ 2
r δr (t)+ 4Ω〈L z〉(t)+ 4E(ψ1(·, t), ψ2(·, t))+ 8λ

∫
Rd

Re
(
ψ∗

1ψ2
)

dx

= −4γ 2
r δr (t)+ 4Ω〈L z〉(0)+ 4E(ψ0

1 , ψ
0
2 )+ 8λ

∫
Rd

Re
(
ψ∗

1ψ2
)

dx. (4.41)

(i) When λ = 0, the above ODE collapses to

d2δr (t)
dt2 = −4γ 2

r δr (t)+ 4Ω〈L z〉(0)+ 4E(ψ0
1 , ψ

0
2 ), t ≥ 0. (4.42)

δr (0) = δ(0)r , δ′r (0) = δ(1)r . (4.43)

Thus, (4.37) is the unique solution of the second-order ODE (4.42) with the initial data (4.43). Furthermore, when the initial data
(ψ0

1 (x), ψ
0
2 (x)) in (2.10) satisfies (4.18), the solution (ψ1(x, t), ψ2(x, t)) of (2.9)–(2.10) satisfies (4.24). This implies

δx (t) = δx,1(t)+ δx,2(t) =

∫
R2

x2
(
|ψ1(x, y, t)|2 + |ψ2(x, y, t)|2

)
dx

=

∫
∞

0

∫ 2π

0
r2 cos2 θ

(
|g1(r, t)|2 + |g2(r, t)|2

)
rdθdr

= π

∫
∞

0
r2
(
|g1(r, t)|2 + |g2(r, t)|2

)
rdr

=

∫
∞

0

∫ 2π

0
r2 sin2 θ

(
|g1(r, t)|2 + |g2(r, t)|2

)
rdθdr

=

∫
R2

y2
(
|ψ1(x, y, t)|2 + |ψ2(x, y, t)|2

)
dx = δy(t), t ≥ 0. (4.44)

Therefore, (4.38) is a combination of (4.44) and (4.37).
(ii) When λ 6= 0, the ODE (4.41) collapses to

d2δr (t)
dt2 = −4γ 2

r δr (t)+ 4Ω〈L z〉(0)+ 4E(ψ0
1 , ψ

0
2 )+ Gr (t), t ≥ 0, (4.45)

and (4.39) is the unique solution of the second-order ODE (4.45) with the initial data (4.43). �

To verify the dynamics of the condensate widths, we take Ω = 0.6, λ = 0, β11 = 400, β12 = 388 and β22 = 376 in (2.9). The
initial data in (2.10) is chosen as (4.28). Fig. 5 shows the time evolution of the condensate width for two sets of trapping frequencies:
(i) γx,1 = γy,1 = γx,2 = γy,2 = 1; (ii). γx,1 = γy,2 = 1 and γx,2 = γy,1 = 1.2.
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Fig. 5. Time evolution of the condensate widths σx (t) (dash line), σy(t) (dot line) and σr (t) (solid line) for two sets of trapping frequencies: (a) for case (i); (b) for
case (ii).

From Fig. 5, we can see that the condensate widths σr (t), σx (t) and σy(t) are periodic functions of period T = π/γx,1 = π

when γx,1 = γy,1 = γx,2 = γy,2 = 1 (cf. Fig. 5(a)) and periodic functions of period T = π with a perturbation when
1 = γx,1 = γy,1 6= γx,2 = γy,2 = 1.2 (cf. Fig. 5(b)), again confirming the analytical results (4.38) and (4.39), respectively.

4.4. Dynamics of a stationary state with its centers shifted

When λ = 0 in (2.9), let (φe
1(x), φ

e
2(x)) be a stationary state of the CGPEs (2.9) with chemical potential (µe

1, µ
e
2),

i.e., (µe
1, µ

e
2;φ

e
1, φ

e
2) satisfying

µe
jφ

e
j (x) = −

1
2
∇

2φe
j + V j (x)φe

j − Ω L zφ
e
j +

2∑
l=1

β jl |φ
e
l |

2φe
j , x ∈ Rd , (4.46)

‖φe
j‖

2
:=

∫
Rd

|φe
j (x)|

2dx =
N 0

j

N
, j = 1, 2. (4.47)

If the initial data (ψ0
1 (x), ψ

0
2 (x)) in (2.10) is chosen as a stationary state with a shift in its center, one can construct an exact solution

of the CGPEs (2.9) with harmonic oscillator potentials (2.11). This kind of analytical construction can be used, in particular, in
the benchmark and validation of numerical algorithms for the CGPEs (2.9). For single-component non-rotating and rotating BEC,
this kind of analytical construction can be found in the literature [18,5]. For rotating two-component BEC, we have the following
lemma.

Lemma 4.7. If the initial data (ψ0
1 (x), ψ

0
2 (x)) in (2.10) is chosen as

ψ0
1 (x) = φe

1(x − x0
1), ψ0

2 (x) = φe
2(x − x0

2), x ∈ Rd , (4.48)

where x0
1 and x0

2 are two given points in Rd , when λ = 0, x0
1 = x0

2 := x0 and V1(x) ≡ V2(x), then the exact solution of the CGPEs
(2.9)–(2.10) satisfies

ψ j (x, t) = φe
j (x − x(t))e−iµe

j t eiw j (x,t), x ∈ Rd , t ≥ 0, j = 1, 2, (4.49)

where for any t ≥ 0, w j (x, t) is a linear function for x, i.e. for j = 1, 2

w j (x, t) = c j (t) · x + g j (t), c j (t) = (c j,1(t), . . . , c j,d(t))T , x ∈ Rd , t ≥ 0, (4.50)

and x(t) satisfies the following second-order ODE system

x ′′(t)− 2Ω y′(t)+

(
γ 2

x,1 − Ω2
)

x(t) = 0, (4.51)

y′′(t)+ 2Ωx ′(t)+

(
γ 2

y,1 − Ω2
)

y(t) = 0, t ≥ 0, (4.52)

x(0) = x0, y(0) = y0, x ′(0) = Ω y0, y′(0) = −Ωx0. (4.53)

Moreover, if in 3D, another ODE needs to be added:

z′′(t)+ γ 2
z,1z(t) = 0, z(0) = z0, z′(0) = 0. (4.54)
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Fig. 6. Surface plots of the wave functions |ψ1|
2 (top row (a)) and |ψ2|

2 (bottom row (b)) at different times for case (i).

Fig. 7. Time evolution of the center of mass in (4.49), i.e. x(t), for case (i) (‘+/o’: initial location of the two vortex centers x0
1/x

0
2 respectively).

Proof. The proof follows the line of the analogous result for rotating single-component BEC in [5]. �

The ODE system (4.51)–(4.54) governing the motion of the center of mass x(t) [44] for rotating two-component BEC is the
same as that for single-component BEC [5]. This ODE system was solved analytically in [44] and different motion patterns of the
center were classified in details based on the parameters Ω , γx,1, γy,1 and γz,1.

Remark 4.1. When the two shifted centers at t = 0 are different or the trapping potentials are different, i.e. x0
1 6= x0

2 or
V1(x) 6= V2(x), our numerical results show that, in general, there is not such an analytical construction of the solution as in
(4.49)–(4.54) for the problem (cf. Figs. 6 and 7).

To verify the analytical solution (4.49) of the CGPEs for rotating two-component BEC, we take Ω = 1, λ = 0, β11 = 200,
β12 = 194 and β22 = 188 in (2.9). The initial data in (2.10) is chosen as (4.48) with (φe

1(x), φ
e
2(x)) the central vortex state solution

of the CGPEs (2.9) with winding number m = 1, which is computed numerically by using the same parameters as in dynamics. We
consider the dynamics of three different cases:

(i) with the same traps and the same shifted centers, i.e. x0
1 = x0

2 = x0
= (1, 1)T and γx,1 = γy,1 = γx,2 = γy,2 = 1;

(ii) with the same traps but different shifted centers, i.e. x0
1 = (1, 1)T , x0

2 = (−1,−1)T and γx,1 = γy,1 = γx,2 = γy,2 = 1;
(iii) with the same shifted centers but different traps, i.e. x0

1 = x0
2 = x0

= (1, 1)T and γx,1 = γy,1 = 1, γx,2 = γy,2 = 2.

Figs. 6, 8 and 9 display the surface plots of |ψ1|
2 and |ψ2|

2 at different times for cases (i), (ii) and (iii), respectively. In addition,
Fig. 7 depicts the time evolution of the center of mass in (4.49), i.e. x(t), for case (i).

From Figs. 6–9, we can see that (i) when x0
1 = x0

2 and V1(x) = V2(x), the density functions of the two components move like
solitary waves in 2D and their shapes do not change during dynamics (cf. Fig. 6) with their mass centers moving exactly in the same
way and satisfying the ODE system (4.51)–(4.53) (cf. Fig. 7), confirming the analytical construction (4.49) for the CGPEs (2.9);
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Fig. 8. Surface plots of the wave functions |ψ1|
2 (top row (a)) and |ψ2|

2 (bottom row (b)) at different times for case (ii).

Fig. 9. Surface plots of the wave functions |ψ1|
2 (top row (a)) and |ψ2|

2 (bottom row (b)) at different times for case (iii).

(ii) when x0
1 6= x0

2 or V1(x) 6= V2(x), the dynamics of the two wave functions evolves dramatically (cf. Figs. 8 and 9), suggesting
that there maybe no soliton-like construction of the solution for rotating two-component BEC in cases (ii) and (iii).

5. Conclusion

Based on the coupled Gross–Pitaevskii equations (CGPEs) with an angular momentum rotation term and an external driving
field, we have studied the dynamics of rotating two-component Bose–Einstein condensates (BEC) both analytically and numerically.
Along the analytical front, a second-order ODE was derived to describe the time evolution of the density of each component as a
periodic function with/without a perturbation, and the frequency of the periodic functions doubles that of the external driving field.
We proved the conservation of the angular momentum expectation when the external trapping potentials are radially symmetric in
2D, and respectively cylindrically symmetric in 3D. Another second-order ODE was also derived to describe the time evolution
of the condensate width as a periodic function with/without a perturbation, and the frequency of the periodic function doubles the
trapping frequency. We also presented an ODE system with complete initial data to govern the dynamics of a stationary state with a
shifted center. On the numerical side, we proposed an efficient, accurate and unconditionally stable numerical method for simulating
the dynamics of rotating two-component BEC. We also applied the new method to study numerically the dynamics of condensate,
including the density of each component, condensate widths, angular momentum expectation as well as quantized vortex lattices
and a stationary state with its center shifted from the trap center. In the future, this efficient and accurate numerical method can be
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used to study the stability, dynamics and interaction of central vortex states in 2D and 3D for rotating two-component BEC and to
make more close comparisons with experimental findings.
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